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Abstract

Video self-supervised learning (VSSL) has made significant progress in recent
years. However, the exact behavior and dynamics of these models under different
forms of distribution shift are not yet known. In this paper, we comprehensively
study the behavior of six popular self-supervised methods (v-SimCLR, v-MoCo,
v-BYOL, v-SimSiam, v-DINO, v-MAE) in response to various forms of natural
distribution shift, i.e., (i) context shift, (i) viewpoint shift, (iii) actor shift, (iv)
source shift, (v) generalizability to unknown classes (zero-shot), and (vi) open-set
recognition. To perform this extensive study, we carefully craft a test bed consisting
of 17 in-distribution and out-of-distribution benchmark pairs using available public
datasets and a series of evaluation protocols to stress-test the different methods
under the intended shifts. Our study uncovers a series of intriguing findings and
interesting behaviors of VSSL methods. For instance, we observe that while video
models generally struggle with context shifts, v-MAE and supervised learning
exhibit more robustness. Moreover, our study shows that v-MAE is a strong
temporal learner, whereas contrastive methods, v-SimCLR and v-MoCo, exhibit
strong performances against viewpoint shifts. When studying the notion of open-set
recognition, we notice a trade-off between closed-set and open-set recognition
performance if the pretrained VSSL encoders are used without finetuning. We hope
that our work will contribute to the development of robust video representation
learning frameworks for various real-world scenarios. The project page and code
are available at: https://pritamqu.github.io/00D-VSSL.

1 Introduction

Self-supervised learning has achieved tremendous success in learning strong and meaningful represen-
tations in various video domains, such as action recognition [1, 2, 3, 4, 5, 6, 7], action localization [8],
video summarization [9], and video captioning [10, 11, 12]. Considering the diversity and complexity
of the video domain, real-world deployment of video-based intelligent systems requires to understand
the model performance under distribution shifts. Distribution shifts may occur due to differences in
contextual information, viewpoint, geographical location, and the presence of unknown classes with
respect to the training data, among others.

Despite the vast amount of work on VSSL [13, 14, 15, 16, 17, 18, 5, 1, 19, 8, 12], a number of
fundamental questions regarding the out-of-distribution behavior and dynamics of VSSL methods
remain unanswered. To date, there have been no comprehensive studies of these aspects, which we
attempt to address in this paper. Specifically, we pose and answer the following questions:

Q1. How do the learned spatial and temporal representations vary based on different VSSL pretrain-
ing methodologies? How robust are these representations to different distribution shifts?
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Q2. Considering recent findings about the robustness of finetuning on the generalizability of large
language models (LLMs) [20, 21], we pose the question: How does finetuning influence the
out-of-distribution (OoD) generalization and zero-shot performance of VSSL?

Q3. How do VSSL methods perform on open-set problems (where test samples can be from classes
previously unknown to the model)? And what is the relationship between performance in
closed-set vs. open-set recognition?

Q4. Do different VSSL methods exhibit comparable decision-making patterns (‘decision similarity’)
given the same training conditions? And how is this impacted by different distribution shifts?

To address these questions, we consider six dif-

ferent self-supervised learning algorithms, (i)  vsveerviseo
SimCLR [22], (if) MOCO-v3 [23], (iii) BYOL

[24], (iv) SimSiam [25], (v) DINO [26], and vSMCLR
(vi) MAE [27], along with fully supervised
learning, and analyze their behaviors in vari-
ous OoD settings. We select these methods to
cover three key categories of self-supervision,
namely contrastive (SimCLR, MoCo-v3), non-
contrastive (BYOL, SimSiam, DINO), and gen-
erative (MAE), approaches. In particular, these
methods represent fundamental approaches on
which numerous variants have been built and VDo
therefore represent many existing nuanced solu-

tions in the area [2, 3,4, 5,6, 7, 1, 19, 8, 12]. For vMAE{ 093
distribution shifts, we study a series of different
possibilities which occur in videos in real-world
settings due to changes in context (e.g., real

vs. mime actions) [28, 29, 30, 31, 32], view- _ ] . .
point (e.g, third-person vs. ego-centric view) Figure 1: We present a high-level overview of

different video learning methods depicting their
33, 34, 35, 36], act .g., real-world vs. syn- . S .
t[h etic) [37, 3 8]] aic(lc()iraiz sgouzi?: s 2;0; d\illffeizgt performance under different distribution shifts. We

normalized the eval. metric of each method to that
of the highest performing method in each OoD
scenario and averaged the results over multiple
OoD datasets. See Appendix D.6 for more details.
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datasets) [39, 40]. Moreover, we evaluate the
generalizability of the VSSL methods on unseen
classes, i.e., zero-shot recognition [41, 42, 43]
and open-set recognition [44, 45, 46, 47]. To
perform this investigation, we design a comprehensive study consisting of 17 in-distribution and
out-of-distribution (InD-OoD) dataset pairs and examine the dynamics of VSSL under different
distribution shifts using a variety of evaluation protocols including linear evaluation, finetuning,
unsupervised clustering, and zero-shot recognition. Moreover, for a fair comparison, the VSSL
methods are pretrained in identical experimental setups. We provide a high-level overview comparing
the performance of all methods across all shifts in Figure 1. To the best of our knowledge, this is the
first work to study VSSL under distribution shift to this depth.

In summary, our contributions are as follows:

* We present the first comprehensive and large-scale systematic investigation of real-world distribu-
tion shifts on VSSL methods. Our study encompasses 2 large-scale pretraining datasets, 7 video
learning algorithms, 17 InD-OoD dataset pairs, as well as 3 toy datasets. Our thorough evalua-
tion involves a total of 269 experiments, covering various evaluation protocols including linear
evaluation, finetuning, unsupervised clustering, zero-shot recognition, and open-set recognition.

* Our study uncovers a series of intriguing behaviors and relationships of various VSSL methods,
shedding light on the strengths and weaknesses that often go unnoticed in InD validation. Moreover,
our investigation provides a comprehensive and impartial perspective on the effectiveness of
supervised vs. self-supervised pretraining.

2 Related work

The analysis of robustness is a well-established area in computer vision, with an extensive body
of research dedicated to image-based models [48, 49, 50, 51, 52]. Despite the growing popularity
of video models in different domains, detailed comparative studies on their robustness remains



under-explored. We come across two recent works [53, 54] that study the behavior of video models
(supervised) against synthetic perturbations. An initial study [54] explores the performance of video
models against spatial corruptions like noise, blur, color jittering and others. In a subsequent work,
[53] extends the analysis of video models on temporal perturbations like frame reversal, jumbling,
and freezing among others. In particular, our study focuses on real-world distribution shifts, which
we find crucial as synthetic perturbations yield little or no consistency to the natural distribution shifts
of real data [49, 48]. Moreover, none of the prior works attempts to understand the behavior of video
self-supervised methods under various forms of distribution shift.

3 Preliminaries

Contrastive methods. We study two popular contrastive methods: v-SimCLR' and v-MoCo. These
methods learn representations by maximizing the similarity of positive pairs while minimizing
the similarity of negative pairs using the InfoNCE loss [22, 23, 55], where the similarity scores
are calculated using L2-normalized cosine distance. The implementation of our v-MoCo is based
on MoCo-v3 [23], and it uses a momentum target encoder to fetch the key embeddings for the
corresponding query embeddings. The momentum encoder is progressively updated from the online
encoder using an exponential moving average (EMA) technique [56]. In contrast, v-SimCLR directly
uses the online encoder to compute the similarity scores from the embeddings of the given views.
Additionally, v-MoCo employs a predictor head, unlike v-SimCLR.

Non-contrastive methods. We study three popular non-contrastive methods v-BYOL, v-SimSiam,
and v-DINO. These methods learn meaningful representations by minimizing the distance between
positive views of a given sample, without requiring any negative pairs. v-BYOL uses an architecture
similar to v-MoCo, but instead of optimizing an InfoNCE loss, it minimizes the L2-normalized
cosine distance of the positive views [24, 25]. v-SimSiam is an ablation variant of v-BYOL that does
not use a target encoder and directly obtains the embeddings corresponding to the views from the
online encoder. The setup of v-DINO is also similar to v-BYOL, but it introduces ‘Centering’ [26]
to prevent against model collapse, instead of using a predictor head like v-BYOL and v-SimSiam.

Generative method. Finally, we also study v-MAE which aims to learn representations through
reconstructions of heavily masked inputs. v-MAE employs an autoencoder architecture [27, 1, 57]
where the encoder compresses the input information, which is then reconstructed by the decoder
while minimizing the L2-reconstruction error [27].

We provide additional details and design specifics for each method in Appendix B.

4 Distribution Shifts

Let p, denote a probability distribution over labels. Let p,, denote a class conditional density of
input z given labels y. We draw y from p, and then x from p,, (z[y). In the case of InD, there
is no distribution shift and the validation set is drawn from the exact same distribution as above.
We consider two types of distribution shifts in this paper: input-based and output-based. For Input
shift, we assume that the class conditional density shifts from p,, to g,,. To measure the OoD
performance, we choose g, such that there is no overlap between the distributions of the unlabelled
pretraining data and OoD validation sets. For Output shift, we assume that the label distribution
shifts from p, to g,. Note that we are particularly interested in cases where the support set of g,
might be different from that of p,, i.e., novel classes appear at test time.

We study four different input shifts, (7) context shift, (ii) viewpoint shift, (iii) actor shift, and (iv)
source shift. Context shift or out-of-context refers to when the scenic background or contextual
information is misleading or absent, e.g., mime actions. Humans possess a deep understanding of
actions and can thus recognize actions without much context. However, vision models tend to rely
heavily on contextual cues and background objects to make predictions [28, 58, 59]. As a result,
models may generalize poorly when contextual information is absent or different from what the
model has been trained on. Viewpoint shift refers to the change in the viewpoint or perspective of
the camera that captures the scene. Some of the popular viewpoints in the video domains include
third-person view, egocentric view, bird’s-eye view, top-down view, and surveillance camera view,

Lv denotes the video variant of the image-based self-supervised method.
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Figure 2: Sample video frames of distribution shifts. In these examples, the left frames of each
category represent an InD sample and the right frames represent an OoD sample.

among a few others. In this work, we examine the generalizability of models trained on third-person
views to other viewpoints including egocentric, surveillance camera, and top-down views. Further,
we study generalizability under actor shift, which occurs when the ‘type’ of actors changes between
training and test sets. These actor-type shifts can include human-to-animal shifts or synthetic-to-real
shifts. We consider human actions in the real world as InD while animal actions and synthetic
videos (e.g., video games, animation) are considered OoD. Lastly, we study the distribution shifts
caused due to the changes in the data sources, referred to as source shift. As discussed in [39, 40],
datasets of similar classes also exhibit distribution shifts due to the difference in curation strategies,
annotation schemes, demographics, geographical locations, and other factors, even when none of
the specific shifts mentioned earlier apply. To assess the generalizability of video models under
real-world distribution shifts, we also investigate their performance when faced with multiple forms
of distribution shifts occurring simultaneously. For example, we evaluate the model’s ability to
handle ‘top-down synthetic videos’ which causes both viewpoint and actor shifts concurrently. A few
examples are presented in Figure 2.

We also investigate the dynamics of video models under output shifts. We perform zero-shot
recognition on both regular actions and unusual or rare actions. An example of rare actions would
be ‘hammering watermelon’ as opposed to ‘cutting watermelon’, as shown in Figure 2. Lastly, we
evaluate performance in open-set problems where models are required to distinguish between known
vs. unknown classes while correctly predicting the known ones [60, 45, 44, 46]. Deep learning models
are known to struggle in such scenarios due to their tendency towards over-confident predictions. We
note that existing literature has only evaluated VSSL methods under closed-set scenarios, neglecting
the importance of their performance in real-world open-set settings.

S Experiment setup

Benchmarks. We use two large-scale video action datasets, Kinetics400 [61] and Kinetics700
[62], for pretraining the video models. The results presented in the main paper use Kinetics400
for pre-training, while we provide additional results based on pretraining with Kinetics700 in Ap-
pendix D. To evaluate the video models under distribution shifts, we use a total of 12 real-world
benchmarks, comprising: Mimetics10 and Mimetics50 [28] as the out-of-context validation sets;
CharadesEgo [36], TinyVirat-v2 [63], and Sims4Action [64] to investigate viewpoint shifts (ego-
centric, surveillance camera, and top-down views, respectively); ActorShift [65] and Sims4action
[64], for actor shifts (animal and synthetic domains, respectively); UCF101 [66] and HMDB51
[67] for source shift; UCF101 [66], HMDBS51 [67], and RareAct [68] for zero-shot recognition;
UCF101 and HMDBS1 for open-set recognition while using Kinetics400 and UCF101 as closed-set.
For each OoD validation set, we create an InD training and validation set to measure the change in
performance. We construct the InD splits using Kinetics400 [61], Kinetics700 [62], MiT-v2 [69],
and CharadesEgo [36]. Finally, we also use 3 toy datasets to conduct experiments in controlled



setups, including ToyBox [70], COIL [34], STL-10 [71]. Additional details of the benchmarks can
be found in Appendix C.

Pretraining. To ensure a fair comparison between the VSSL methods, we pretrain them in identical
setups with necessary adjustments in hyperparameters. Although some of the methods studied in this
work are already available in the literature [3, 5, 72, 1], they follow a variety of experiment setups
including different architectures (e.g., R2+1D [73], R3D [72], TSM [74], ViT [75]), inputs, and others.
Therefore, they could not be directly adopted for our experiments and are instead re-implemented.
Specifically, we keep the encoder, inputs, batch sizes, and maximum number of pretraining epochs
the same for all the methods. Furthermore, VSSL methods are tuned based on the InD validation
split, with no exposure to OoD validation sets. We use the ViT-Base [75, 76] as the encoder, with a
patch size of 4 x 16%. Amongst the 6 VSSL methods studied in this paper, all of them use a Siamese
[77] architecture other than v-MAE. Therefore, the contrastive and non-contrastive methods are fed
with 2 random spatio-temporal augmented crops from the original videos, similar to [72]. For a fair
comparison, the v-MAE which requires a single view as input, is fed with 3 x 32 x 1122 inputs, while
the other VSSL methods are fed with 3 x 16 x 1122 inputs per view. Additional details for VSSL
pretraining can be found in Appendix B.

Evaluation. To study input-based distribution shifts, we perform linear evaluation and finetuning
using the InD training splits, followed by evaluating on both InD and OoD validation splits. We follow
the standard protocol used in [72, 2, 4, 6, 78, 79, 7] for linear evaluation and finetuning. To evaluate
the models on zero-shot recognition, we follow [41, 42] and jointly train video-text encoders using
the Word2Vec [80] word embeddings. Lastly, we follow [45] for open-set recognition. We report
top-1 accuracy for multi-class classification and mean average precision (meanAP) for multi-label
multi-class classification. Moreover, for open-set problems, we report the area under the ROC curve
(AUC) for distinguishing known vs. unknown, and accuracy for measuring closed-set performance.
Please find more details in Appendix C.

6 Findings

Q1: Dynamics of learned spatial and temporal representations under distribution shifts

Our experiments on context shift show that video models greatly suffer in out-of-context generaliza-
tion, as OoD performance significantly drops for all of the methods as presented in Table 1. Notice
that v-Supervised achieves the best OoD performance under linear evaluation (Lin.) and v-MAE
achieves the best when finetuned (FT), for both benchmarks. Intuitively speaking, the models need to
learn strong temporal dynamics to generalize well under context shift, as the background or contextual
information may be misleading or absent. v-MAE and v-Supervised show strong temporal learning
capabilities as they learn time-variant representations. This is in contrast to the other (contrastive and
non-contrastive) methods which encourage learning time-invariant or time-persistent representations
by minimizing the embedding distance of the positive pairs sampled from two different timestamps.
Additionally, our statistical analysis in Appendix D.7 confirms the higher robustness of v-Supervised
and v-MAE against context shift (10 class) in both linear and finetuned setups. Moreover, in context
shift with 50 classes, v-Supervised exhibits more robustness in linear evaluation, while v-MAE is
more robust when finetuned.

Table 1: Comparison under context shift.

Context (10 class) Context (50 class)
Lin. FT Lin. FT
OoD InD OoD InD QoD InD OoD InD

Method

Accuracy
Accuracy

’v—Supervised 37.0&04 89.2+0 412 92.7 15.0105()(\3 0s 19.0 78.1
©-SIMCLR  31.44:,92.5.. 353 944 149,717 19.1 81.8 N .
©-MoCo 29704922, 39.0 94 15.00,74.0... 20.5 81. (@) Transformation recog. (b) Object recog.

v-BYOL 31600789300 41.2 94.6 14420271800 21.1 80.8 1 ) . .
v-SimSiam  30.8:07 89,5+ 40.4 038 13.8.00670... 19.0 75, Figure 3: Comparing VSSL methods on dis-

v-DINO  34.8.0:90.4.. 404936 13.0:0:687.. 190783 entangled (a) temporal and (b) spatial repre-
v-MAE 33.3.582.9.10 41.2 95.2 12320456401 26.0 81.4  sentations.




To further investigate the performance of the video models in learning temporal dynamics, we conduct
a toy experiment in a controlled setup using ToyBox [70]. ToyBox consists of 9 distinct temporal
transformations of 12 different toy objects and transformations include positive rotations, negative
rotations, and translations across the x, ¢, and z axes. We use the frozen VSSL encoders to extract
embeddings, which are then used to perform a K-means clustering to distinguish the transformations.
As the static spatial information is non-discriminative to the temporal transformations, the models have
to understand the underlying temporal dynamics to correctly distinguish the applied transformations.
The results, presented in Figure 3 (a), show that v-MAE and v-Supervised outperform the other
methods by a large margin on this task, confirming that they are better temporal learners. Additionally,
to ensure that the superiority of v-MAE and v-Supervised are not due to spatial representations, we
also test the frozen encoders in object recognition using the videos of the same static objects (i.e., no
temporal information), and we find that v-MAE and v-Supervised are worse among all of them (see
Figure 3 (b)). This proves that v-MAE and v-Supervised are indeed strong temporal learners while
being weak spatial learners.

These findings raise an interesting question: if the contrastive and non-contrastive methods are not
effective temporal learners, then how do they perform well on action recognition [72, 5, 81, 2, 79,
82, 3, 717 We believe that the strong performance of these methods on action recognition can be
attributed to the significance of spatial information in classifying human activities. The temporal
sequence of representations might not be as crucial for these tasks, which possibly allows contrastive
and non-contrastive methods to perform well.

Table 2: Comparison of video models in viewpoint and actor shifts.

Viewpoint (ego.) Viewpoint (surv.+low res) View+Act (t-down+syn.) Actor (animal)
Lin. FT Lin. FT Lin. FT Lin. FT
OoD InD OoD InD OoD InD OoD InD OoD InD OoD InD OoD InD OoD InD

Method

13.6 17.8 23.120233.420> 24.5 434 28.5206 0623200 44.3 76 64.820690.0:02 69.6 92.3

v-SIMCLR  12.7:02 147201 15.6 19.6 261106 39.1 00 475 42.4:567.8:5 63.1 78.8 67.9:0691.7202 73.2 92.9
v-MoCo 13.3:01 15.0202 16.1 19.4 24.8:1240.0-12 27.6 48.6 41.1:0467.9-0: 62.8 80.0 68.1:0092.2:0. 71.4 92.9
v-BYOL 12,0201 144201 15.1 18.7 22.720737.8207 247 46.9 37.320205.6:02 56.2 78.2 68.320391.5:00 71.4 92.9
v-SimSiam  11.6z02 14,101 13.7 17.6 23320434301 25.8 454 40.0£1065.5:10 53.6 76.0 68.1+1591.1:02 71.4 92.1
v-DINO 12.0202 14,4200 13.7 17.4 223209353200 24.2 45.1 3532046292010 50.3 77.5 66.720590.7+01 71.4 92.2
v-MAE 109200 13. 7201 14.2 21.4 23.520932.0200 29.1 48.6 37.845058.0:50 61.1 76.2 59.820785.9:01 72.6 92.9

v-Supervised 11.4401 143

)
x
(=)

The results on viewpoint shifts, presented in Table 2 reveal that contrastive methods (v-SimCLR and
v-MoCo) generally achieve superior performance in all three setups in both linear and finetuning
schemes. Moreover, based on the statistical analysis in Appendix D.7, v-SimCLR exhibits more
robustness to all three viewpoint shifts, while v-MoCo exhibits robustness in egocentric and top-
down viewpoint shifts. We believe the better performance of v-SimCLR and v-MoCo is due to the
availability of negative samples during pretraining which improves viewpoint invariance compared
to the other approaches. Note that while aggressive cropping also improves viewpoint invariance
as discussed in [83], we do not notice such improvements in non-contrastive methods although
a similar aggressive cropping is applied. It is worth noting that while v-Supervised exhibits a
comparable performance to VSSL methods in egocentric and surveillance camera viewpoint shifts, its
performance decreases significantly when multiple shifts are applied concurrently, as evident in the
case of synthetic top-down viewpoint shift. This suggests that supervised learning may not generalize
well in scenarios with more complex and realistic distribution shifts.

For further investigation, we study viewpoint
invariance in a controlled setup using the pre-
trained VSSL encoders through unsupervised
evaluation, avoiding any form of additional train-
ing which may alter the learned representations.
Moreover, to limit the influence of temporal rep-
resentations we use an image-based toy dataset
COIL100 [34] which is commonly used to test
viewpoint invariance [84, 85], as it contains im- ~ (a) Viewpoint invariance (b) Low-resolution
ages of similar objects from different angles.
Our results presented in Figure 4 (left) show
that v-MoCo achieves the best performance, fol-
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lowed by v-SimCLR. Moreover, the results show that v-MAE is susceptible to viewpoint shifts as it
performs worse. We believe that as v-MAE and v-Supervised are trained with a single view of frame
sequences, they are more sensitive to viewpoint shifts. Additionally, amongst the non-contrastive
methods, v-DINO shows a better performance. Notice that our results so far have revealed a trade-off
between learning viewpoint invariance vs. strong temporal dynamics. While single-stream networks
learn better temporal dynamics, Siamese frameworks learn better viewpoint invariance.

Notice that while contrastive methods dominate performance under viewpoint shifts (Table 2), v-MAE
shows the best performance only in the case of low-resolution surveillance cameras. We hypothesize
that this is due to the fact that in addition to v-MAE being a strong temporal learner (see Figure 3),
it is also inherently robust to low-resolution inputs. This is likely since it learns strong pixel-level
relations [86] through reconstruction of highly occluded inputs. To further investigate this, we
perform a follow-up study in a controlled toy setup where we systematically decrease the resolution
of input frames from 1122 to 162 and measure the robustness as 1 — (accii2 — acen) /100, following
[53]. Here accy refers to accuracy at resolution N2, We use 1122 as the maximum resolution as
this is used during pretraining, and 162 is set as the lowest resolution as we use a patch size of 162.
To limit the interference of temporal representations with the outcome, we use an image dataset,
STL10 [71], to perform unsupervised image classification using the frozen pretrained VSSL encoders.
The results presented in Figure 4 (right) show that v-MAE achieves a more steady performance on
low-resolution inputs compared to the other methods, which is in alignment with our hypothesis.

Highlights: (@) Video models generally struggle in out-of-context generalization, while v-
Supervised and v-MAE exhibit better performance as they are strong temporal learners. (b)
Contrastive methods (v-SimCLR, v-MoCo) exhibit better performance to viewpoint shifts. (c)
v-MAE is robust against extremely low-resolution inputs. (d) v-Supervised shows extreme vulner-
ability in complex scenarios when multiple distribution shifts are applied concurrently.

Table 3: Comparison under source shift. Table 4: Comparison in zero-shot action
recognition.
UCF/HMDB HMDB/UCF

Method - .
Lin. FT Lin. FT Method UCF HMDB  RareAct K400 (InD)
OoD(H) InD(U) OoD(H) InD(U) OoD(U) InD(H) OoD(U) InD(H) Lin. FT Lin. FT Lin. FT Lin. FT
v-Supervised 45.8:0s 92.7 563  96.8  50.3:00 7594 511 846 v-Supervised n/a 374 n/a 190 n/a 99 n/a 59.0
v-SimCLR  47.7:05 96.0:00 537 97.7  55.1s0 82.0.00 567  85.6 v-SimCLR  37.2:1540.3 18.6:1724.9 7.7:05 10.4 56.8.02 69.8
v-MoCo 51.5.06 97.1 557 98.9  57.2u 84.5.. 583 863 v-MoCo  35.2.5046.3 19.5:2022.3 8.7:00 10.5 58.4.0.: 69.3
v-BYOL 514:07 94.5 594 975 63.dwe 79.9.. 604  87.3 v-BYOL  33.0:1:41.0 22.4:2124.7 7.5:0110.3 57.4.0: 69.3
v-SimSiam  46.1.10 92.6:0-  50.6 955  522:0s 76200 532 83.0 v-SimSiam  34.0:1038.7 18.8:1021.0 7.7:05 111 50.4.00 64.3
v-DINO 49.3.04 943 514 963 538u4 77500 556 828 v-DINO  34.3.1041.3 17.2:0322.8 8.1:0510.5 53.4.02 65.7
v-MAE 39.5:02 89200 553 965 39.0u 728.. 436 813 v-MAE 255010421 14.2:0725.8 5.8200 10.7 35.9:00 68.4

Q2: Effect of finetuning under distribution shifts

Our thorough empirical experiments presented in Tables 1, 2, and 3, show
several interesting aspects of finetuning under distribution shifts. First, finetun- -

. . . Lin. 632% 31.5%
ing generally results in better InD and OoD performance compared to linear YTy
evaluation (see Table 5). Moreover, the benefits of finetuning vary between FL ‘&7”) t )(fj
different VSSL methods; for example, v-MAE benefits the most from fine-
tuning (see Figures 5 and 6). Second, the benefits of finetuning depend on Table 5: Linear
the nature of the distribution shift. Specifically, by comparing OoD and InD  Vvs. finetuned
performance, we observe that finetuning is more helpful for actor shift in comparison  sum-
both animal and synthetic domains (see Figure 5), whereas it is less beneficial mary. Please see
for zero-shot and viewpoint shift in both egocentric and surveillance camera Appendix D.5 for
view. Moreover, finetuning often leads to ‘in-distribution overfitting” where the ~additional details.
InD validation improves with additional training, while leading to poor OoD

generalization (see Appendix D). Overall, the results of zero-shot recognition presented in Table 4
show that no single method dominates in all three benchmarks for zero-shot recognition. v-MAE,
v-MoCo, and v-SimSiam achieve the best performances on HMDB, UCF, and RareAct, respectively,
when finetuned. Third, the benefits of finetuning also depend on the InD training benchmark. For
example, as shown in Figure 5, while finetuning is significantly beneficial under the source shift of
UCF to HMDB, it interestingly hurts the performance when this shift is reversed (HMDB to UCF).
This can be attributed to the limited utility of small-scale datasets, such as HMDB, in learning strong

InD OoD




representations. Such datasets could potentially even diminish the effectiveness of robust pretrained
models. For instance, in the case of v-BYOL, the performance of the frozen encoder exceeds that of
the finetuned model, as seen in Table 3 (HMDB/UCF).

In distribution

30.0 Out-of-distribution

25.0

Improvement (%)
-
G
o

00 ITaldnii Illlll i

N T R T T T R R TR TR TR TR TR TR TR gy DO D DD DD
AECRERCEE LS R R A UV VRS OR RS
SRS S TS T EEITEIE O SR IR I SR O O A Ll L PP
PN SRS DN
S R o T G FFFF T TS S LEL I S ST
LSS S S FLLLLELEES o o o Oy N N M M S S SIS S
I S S S S O S S S SR SN, (@G0 000 %@ (L@ (@ (& O O O 0 00 72 92O
S i (S (S (S (S (S (S S S S S S ST TS Y S S S S A A e 0 0000
W R T R 1S o 8 S o S RE 0 LOF D& O owwwmmmﬂwev@e@z@z@e
N N A S A S O N O g W e O I S O Vo VYo ke
é\"é{@“é c;%ixv:&&mo*ommoy ST LR VNS @Oﬁ@”’\ﬁf‘\@%ogéofo‘%@@v
ST GE T E C TS 7 R e SEGEE
K 2 o&igﬂx“ DA 2 Ko Ny o O $9
& ¥

Figure 5: Linear vs. finetuned performance comparison under real-world distribution shifts. We
measure the improvements as the difference between finetuned and linear evaluation accuracy.

To further investigate scenarios where finetun-
ing may impair VSSL pretraining, we evalu-
ate the video models on temporally perturbed
inputs (e.g., freeze frames, random sampling,
reverse sampling) in a controlled setup. As the
VSSL methods are never trained with temporally
perturbed inputs, this constitutes a distribution
shift. The results presented in Figure 6 show that
end-to-end finetuning of the contrastive and non-
contrastive video encoders diminishes the time-
invariance of the learned representations, which
decreases robustness to temporal perturbations.
As a result, in such cases, the frozen encoders
perform better than the finetuned ones. More-
over, the frozen v-MAE shows the worst perfor-
mance under temporal shifts as it learns time-
variant representations through self-supervised
pretraining.
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Figure 6: Linear vs. finetuned performance com-
parison under synthetic temporal perturbations.

rHighlights: (a) As opposed to LLMs, finetuning generally helps VSSL in both InD and OoD.)
(b) The benefits of finetuning largely vary between different VSSL methods and the type of
distribution shifts. (¢) Finetuning provides more benefits against actor shifts in both animal and
synthetic domains in comparison to viewpoint shifts like egocentric and surveillance camera
views. (d) Finetuning degrades robustness to temporal perturbations as it impairs the time-invariant
representations of contrastive and non-contrastive methods. It can also degrade performance under
source shift depending on the quality of the training benchmark.

Q3: Closed-set vs. open-set performance

We perform open-set recognition in two setups: (1) we use the Kinetics400 for closed-set recognition,
while the non-overlapping classes from the UCF101 and HMDBS51 are used for open-set. (2) we
use UCF101 and the non-overlapping classes of HMDB for closed-set and open-set recognition,
respectively. To perform a comprehensive analysis on the performance of closed-set vs. open-
set, we adopt two approaches, i.e, single-objective (closed-set only with cross-entropy error) and
joint-objective (closed-set and open-set recognition simultaneously with DEAR loss [45]) variants.



Table 6: Comparison in open-set recognition. v-Supervised trained from scratch with DEAR loss
failed to converge in K/U and K/H. Here, closed/open-set pairs are denoted as K/H: KineticsyHMDB,
K/U: Kinetics/UCF, U/H: UCF/HMDB, CE: cross-entropy error.

(a.) End-to-end finetuned. (b.) Linear evaluation.

Open-set Closed-set Closed-set Open-set  Closed-set Closed-set

Method (AUC) w/ DEAR (Acc.) w/ CE (Acc.) Method (AUC) w/DEAR (Acc.) w/ CE (Acc.)
K/U KH UH K400* U101* K400* U101 U/H U101+ U101
v-Supervised - - 7.7 - 86.5 57.6 87.4 v-Supervised  77.3:01 80.4-0:1 81.7
v-SimCLR  63.0 60.1 843 69.8 90.6 725 90.3 v-SimCLR ~ 49.9:05 11.6:10 84.1
v-MoCo 61.3 61.0 852 70.1 90.4 72.8 90.7 v-MoCo 50.7=06 32.7:0s 84.9
v-BYOL 60.5 60.1 81.7 69.4 89.4 72.5 90.2 v-BYOL 56.0:15 63.7:08 85.4
v-SimSiam  60.6 559 77.8 64.7 85.9 69.3 87.2 v-SimSiam  73.7:03 79.5:02 82.5
v-DINO 60.0 583 81.7 65.9 87.0 713 88.5 v-DINO 79400 80.4-02 80.9
v-MAE 55.1 555 73.1 67.5 87.8 73.3 90.5 v-MAE 66.0:00 74.6:02 76.2
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Figure 7: (a-c) Comparing open macro-F1 scores of finetuned models vs. openness (openness is
measured as the ratio of unknown to known classes). (d) The relationships between closed-set and
open-set recognition performance of frozen pretrained encoders.

The results in Table 6 (a) demonstrate that the models struggle in open-set recognition when using
Kinetics400 as closed-set in comparison to UCF101. This is due to the large number of known
classes in Kinetics400 compared to the unknowns (400 known classes in Kinetics400 vs. 31 and
22 unknown classes from UCF and HMDB, respectively). Therefore, the models tend to become
over-confident and make false predictions. Evident from Table 6 (a), contrastive methods are robust
to open-set recognition in all setups. This is likely due to the auxiliary information contributed by the
negative samples used in these methods. To verify this hypothesis, we analyze the open macro-F1
scores vs. openness of the video models following [45, 44] by incrementally adding more unknown
classes. The results in Figure 7 (a-c) show that both v-SimCLR and v-MoCo consistently achieve
better performances compared to others. An additional statistical analysis on the performance of
contrastive methods in open-set recognition is presented in Appendix D.7, which confirms their better
performance relative to other methods.

Next, instead of end-to-end finetuning, we use the frozen encoders to train a linear head for open-set
recognition. The top 3 closed-set performers, v-BYOL, v-MoCo, and v-SimCLR (see Figure 7
(d) or UI01" in Table 6 (b)), show the worst performance in open-set recognition. However, the
pretrained encoders, v-SimSiam, v-DINO, and v-Supervised, which are considered weaker in closed-
set, perform better in open-set recognition, which might be due to their lack of over-confidence.
v-DINO outperforms other methods in open-set recognition achieving 79.4% while the performance
of v-SimCLR and v-MoCo drops to almost chance levels. In comparison, v-MoCo reports 84.9% in
standard closed-set recognition, whereas v-DINO achieves 80.9%. The results presented in Figure 7
(d) suggest that there is a trade-off between closed-set and open-set recognition performances,
particularly when frozen encoders are used without finetuning.

Highlights: (a) Contrastive methods demonstrate superior performance in open-set recognition
when finetuned. (b) There is a trade-off between closed-set and open-set recognition performance
when frozen pretrained encoders are used. (c¢) Strong frozen encoders (v-MoCo, v-SimCLR)
have no open-set generalization performance due to their over-confident predictions. (d) On the
other hand, slightly weak VSSL frozen encoders (v-DINO, v-SimSiam) show better open-set
performance, while v-MAE seems to perform poorly in both settings.
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Figure 8: The decision similarity between the video models in InD (top) vs. OoD (bottom). The
lighter color indicates less similarity.

Q4: Decision similarity under distribution shifts

To measure ‘decision similarity’ between the video models, we evaluate whether the models make
similar predictions, regardless of their correctness. The results presented in Figure 8 demonstrate
that decision similarity varies between the VSSL methods both InD and OoD, but is generally lower
in OoD settings. Specifically, while we observe only a slight decrease in decision similarity in the
case of animal domain actor shift, we observe significant drops in decision similarity in the case of
context shifts and source shifts. Moreover, the results reveal that the decision similarity between
supervised and self-supervised methods significantly drops under distribution shifts, indicating that
under such shifts, VSSL methods make considerably different decisions than supervised learning. We
also observe low decision similarity between v-MAE and other VSSL methods, which can be due to
the generative nature of v-MAE vs. the others. Lastly, we note that contrastive methods tend to have
greater decision similarities with each other than the similarities observed among non-contrastive
methods. Additional results are presented in Appendix D.

Highlights: (a) The decision similarity of video models decreases under distribution shifts, which
further varies based on the type of shift. (b) Context and source shifts cause the most dissimilarity
between decisions. (c) Overall, the predictions between the supervised and self-supervised methods,
as well as between v-MAE and other VSSL methods exhibit the least similarity.

7 Discussion and Summary

Limitations. We consider contrastive, non-contrastive, and generative VSSL methods in our work, as
they are well-established and have demonstrated strong performance in previous studies [72, 1, 3, 5]
on various video benchmarks [1, 87, 72]. However, there exists another category of VSSL methods
which uses pretext tasks for self-supervision, e.g., rotation prediction [88], frame and clip order
prediction [14, 89], motion prediction [90], and others [91, 92, 93, 94]. While these methods are not
included in our study, they are worth exploring in future research. Moreover, our work primarily
focuses on various self-supervised methods as opposed to network architectures. It would be valuable
to further investigate VSSL under distribution shifts with larger Transformer [95] or convolutional
[96] architectures , which we could not perform due to resource constraints. Nonetheless, our findings
serve as a foundation for future studies. We discuss the broader impact of our work in Appendix A.

Summary. In this work, we thoroughly examine the behavior of VSSL methods under real-world
distribution shifts that commonly occur in videos due to changes in context, viewpoint, actor, and
source. Moreover, our study delves into investigating the generalizability of VSSL methods in zero-
shot and open-set recognition. To rigorously evaluate the robustness of video models, we introduce a
comprehensive OoD test bed curated from existing literature. This test bed is carefully designed to
stress test the robustness of video models and provide a comprehensive evaluation of their capabilities.
Our study uncovers a wide range of interesting dynamics of various VSSL methods under different
distribution shifts, which can be instrumental in guiding future research and algorithm development
in video representation learning. To the best of our knowledge, this is the first work to systematically
investigate VSSL under real-world distribution shifts.
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A Broader impact

In this work, we conduct a thorough study on the behavior of Video Self-supervised Learning (VSSL)
methods in the face of distribution shifts. We believe this work has far-reaching implications for
advancing the field of video representation learning and its real-world applications. This work is of
utmost importance primarily for the following two reasons.

Real-world deployment: Video models have a wide range of real-world applications across various
domains. These applications include surveillance and security, autonomous vehicles, sports analysis,
video content recommendation, human-computer interaction, video captioning and summarization,
among many others. However, in real-world scenarios, distribution shifts pose a significant challenge,
where the distribution of the data that the system encounters may differ from the training data
distribution. Understanding how VSSL algorithms behave under real-world distributional shifts
is crucial for ensuring their reliable performance and generalization capabilities for real-world
applications. By studying VSSL methods under distribution shifts, we identify the limitations and
challenges faced by the popular VSSL methods. We believe our work is a step towards enabling the
development of robust and reliable solutions for real-world deployment.

Algorithmic robustness: Our study provides valuable insights into the algorithmic robustness of
VSSL methods, advancing our understanding of VSSL algorithms. By systematically exploring
the behavior of these methods under distribution shifts, we have uncovered intriguing findings and
observed interesting behaviors which are previously unknown. Our work not only highlights the
strengths of VSSL methods but also identifies their weaknesses in different scenarios. We find that
different VSSL methods exhibit varying levels of robustness when confronted with different types of
distribution shifts. Some methods demonstrate resilience against certain shifts, while they prove to be
vulnerable to others. These findings pave the way for future research to develop robust frameworks
that leverage the strengths of different approaches, thereby enhancing the overall performance of
VSSL algorithms.
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B Video self-supervised learning

B.1 Methods

In the following section, we provide a comprehensive overview of our implementation of the VSSL
methods explored in this study. We define an encoder f(-), which is composed of a Transformer
backbone 6(-) and an MLP projection head h(-). We further define the auxiliary network components,
a target encoder f;(-) (utilized in v-MoCo, v-BYOL, and v-DINO), a decoder f;(-) (employed
in v-MAE), and a predictor head f,(-) (utilized in v-BYOL, v-SimSiam, and v-MoCo). Note,
fi(+) and fq(-) are built on the Transformer architecture, while f,(-) utilizes an MLP head. For
given samples v, we generate two augmented views as v; and vy, where v; and vo are randomly
sampled from different timestamps and differently augmented. Moreover, an augmented view
v; € RTXHXWXC cap be expressed into a sequence of P spatio-temporal patches of size t x hxw x C,
where, P = T'/t x H/h x W /w. We project the spatio-temporal patches to a linear layer followed by
feeding to the encoders. Following, we briefly summarize the training algorithms of these VSSL
methods along with their design differences. An overview of these frameworks is presented in
Figure S1.
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Figure S1: A simplified version of the video self-supervised methods are presented.

v-SimCLR. The objective of v-SimCLR is to maximize the similarity between positive pairs and
minimize the similarity between negative pairs using the InfoNCE loss function. Given two augmented
views vy and v, we obtain z; and 29 as f(vq) and f(vs). The L2 normalized cosine similarity

a
scores, referred to as logits, are then calculated as sim(z1, z2), where sim(z1, z2) = % The

pretraining loss is calculated as L1 = InfoNCE(logits) as per Equation S1, where k+ refers to
the positive embeddings (i.e., embeddings of the augmented views) and k— refers to the negative
embeddings (embeddings of other samples in a minibatch).

Eke{k+} exp(logits/7)

InfoNGE(logits) = ~log 2ok (k- exp(logits/T)

, where 7 is temperature. (S1)
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v-MoCo. Similar to v-SimCLR, v-MoCo also calculates InfoNCE loss for given query-key pairs.
We obtain the query embeddings as p1 = f,(f(v1)) and its corresponding key embeddings are
obtained as zzo = sg(fi(vz2)), where sg refers to stop-gradient operation. In Equation S1, the
positive and negative key embeddings {k+,k—} € 2z and the query embedding ¢ € p;. To
calculate a symmetrized loss we also obtain po and zz;. The training objective L,,0¢, is defined as
InfoNCE(sim(p1, 222)) + InfoNCE(sim(ps, 221 )). The encoder f is updated using L,,,c0, and the
target encoder f; is updated using the exponential moving average (EMA) [56] as f; < af+(1—«)f,
where « is the EMA coefficient.

v-BYOL. Different from v-SimCLR and v-MoCo, v-BYOL does not require any negative pairs
and only relies on positive views. Therefore, we obtain p; and 229 as f,(f(v1)) and sg(f;(v2)) to
calculate the similarity scores as sim(p1, z2z2). Moreover, to obtain a symmetrized loss, we also
calculate sim(p2, zz1) and define total loss Ly, = — sim(p1, 2z2) — sim(pa, 221 ). Please note, we
use Ly, to train the f, and the weights of f; are updated using an EMA similar to v-MoCo.

v-SimSiam. The approach for v-SimSiam is very similar to the v-BYOL, except it does not use f;,
and directly uses the representations of the f as the target. We obtain p; and 23 as f,(f(v1)) and
sg(f(v2)) to calculate the similarity scores as sim(p1, z2). Similarly, we also obtain sim(ps, 21) and
define total 10ss Lgimsiam = — sim(p1, 22) — sim(pa, 21).

v-DINO. Similar to v-BYOL and v-MoCo, v-DINO uses a target encoder f;(-) but does not use
a predictor head. We obtain z; and 225 as f(v1) and sg(f;(vy) — C) respectively, where C refers
to the Centering operation which can be interpreted as adding a bias term, preventing the model
from collapsing [26]. Next, we calculate the cross-entropy (CE) error between z; and zzo as
CE(z1, 222) = — softmax(zzs /1) log(softmax(z1 /75)), where 7 and 7, denote the temperatures
used to sharpen the representations of the target and base encoder respectively. Finally, we calculate
loss Lgino = CE(21 + z22) + CE(22, 221) which is used to update f and the weights of f; are
updated using EMA similar to v-BYOL and v-MoCo.

v-MAE. Unlike the methods mentioned above, v-MAE takes a single view and performs masking
and reconstruction using an autoencoder architecture [27, 1, 57]. Moreover, different from the
other models, the encoder does not contain a projection head, i.e., f = 0, instead uses a decoder
fa for reconstruction. For a given sample v, we obtain masked tokens v[" as {v’|m’ = 1},
and the corrupted inputs as © = {v|m’ = 0}£_,. We calculate the reconstruction 1oss as L,,,qc =
(f4(6(9)) — vl™))2, which is used to train the # and f,.

After pretraining using the aforementioned methods, we discard the auxiliary network components
and utilize only € for downstream evaluations.

B.2 Implementation details

Datasets. We use 2 popular large-scale datasets Kinetics400 [61] and Kinetics700 [62] for pretraining.
Kinetics400 consists of 240K samples including 400 action classes, whereas, Kinetics700 consists of
537K training samples spread over 700 action classes. Following [97, 42], we discard the overlapping
classes between Kintics700 and UCF101 [66], HMDBS51 [67] from pretraining, which results in
approximately 480K samples spread over 663 action classes. We follow such a setup so that the
pretrained encoder can be used for zero-shot recognition on full UCF101 and HMDBS51.

Pretraining. To ensure a fair comparison between the VSSL methods, we pretrain them in identical
setups with necessary adjustments in hyperparameters. Specifically, we keep the encoder, inputs,
batch size, and maximum number of pretraining epochs identical for all the methods. However,
we adjust the data augmentation strategy and auxiliary network components (e.g., predictor head,
projector head, decoder) as required to achieve their best performance on 2 validation sets Kinetics400
and UCF101. For example, the projector head of v-DINO is based on the configuration proposed in
[26], whereas, the projector head for the other Siamese frameworks is made of an MLP head similar
to [24, 25]. The details of the frameworks are presented in Table S1. Considering the widespread use
of Transformers in vision, VSSL methods are implemented using ViT-B [75] as the encoder with a
patch size of 4 x 162. Videos are downsampled to 8 FPS and resized to 3 x 1122 frames. Except for
v-MAE, all VSSL methods are fed with 16 frames in each view and 32 frames are fed as input to
v-MAE. We use AdamW [98, 99] optimizer with cosine learning rate scheduler and train all methods
up to 800 epochs with a batch size of 768. We present the hyperparameters in Table S3. All the
methods are pretrained using 8§ V100 32 GB GPUs in parallel. We present the computational specifics
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in Table S2, which shows that v-MAE is the most computationally efficient framework amongst all
the VSSL methods.

Table S1: Architecture details of the VSSL frameworks.
v-SimCLR v-MoCo v-BYOL v-SimSiam v-DINO v-MAE

Encoder ViT-B

Target Encoder X 4 v X v X
Predictor (# layers) X 1 2 1 X X
Projector (# layers) 4 3 3 4 3 X
Decoder (# depth) X X X X X 4

Table S2: Computational details of VSSL pretraining.
v-SimCLR v-MoCo v-BYOL v-SimSiam v-DINO v-MAE

Encoder Param 88M

Total Params 106M 110M 114M 114M 96M 96M
Pretraining Flops 36G 72G 72G 36G 72G 10G
Time/100 epochs 23Hrs. 11 Hrs.

Table S3: Hyperparameters of VSSL pretraining.
v-SimCLR ~ v-MoCo v-BYOL wv-SimSiam  v-DINO v-MAE

Batch size 768

Crop scale [0.08,1.0] [0.2,0.766] [0.5,1]
Clip duration 2.0 4.0
Color [0.6, 0.6, 0.6, 0.15] -
Grayscale 0.2 -
Gaussian blur 0.5 -
Hroizontal flip 0.5

Epochs 800

‘Warmup epochs 30

Optimizer AdamW [0.9,0.95]

Weight decay 0.05 0.05 to 0.5
Learning rate (Base LR) 24 3e™? 3e™? le™* 3e™? 374
Pred LR (x Base LR) — 10x 10x 10x — —
EMA (cosine sch.) — 0.998—1 0.997—1 - 0.997—1 —
Online temp. (fixed) 0.1 0.1 — — 0.1 —
Target temp. (cosine sch.) - - - — 0.04—0.07 -
Centering momentum - - - — 0.9 -
Masking ratio - - - - - 85%

B.3 Additional insights

Aggressive cropping. As discussed in the main paper, aggressive cropping leads to viewpoint
invariance, therefore we experiment with various multi-crop ratios commonly used in the literature
[22, 72] across all six VSSL methods. We present the best setups corresponding to individual methods
in Table S3. We observe that aggressive cropping negatively impacts the performance of v-MAE.
This is primarily because reconstructing a local crop serves as a weak pseudo task due to limited
pixel-level variation, resulting in suboptimal representation learning. Additionally, as depicted in
Figure S2, the impact of cropping varies between contrastive and non-contrastive methods. Very high
aggressive cropping ratios (0.08 — 1.0) prove beneficial for contrastive methods, while slightly less
aggressive cropping ratios (0.2 — 0.766) yield better results for non-contrastive methods.

Pretraining epoch vs. accuracy. We track the performance of different videl learning methods on
two downstream benchmarks, Kinetics400 and split-1 of UCF101. In particular, Kinetics400 is used
for finetuning and UCF101 for linear evaluation. The results are presented in Figure S3 shows that
while v-MAE achieves the lowest linear evaluation accuracy, it shows the best performance when
finetuned. Moreover, v-BYOL, v-SimCLR, and v-MoCo exhibit superior performance compared to
v-DINO and v-SimSiam in both the linear evaluation and finetuning setups. Interestingly, contrastive
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Figure S2: The impact of cropping strategies slightly differs between non-contrastive methods
(v-BYOL, v-DINO) and contrastive methods (v-SimCLR, v-MoCo). Aggressive cropping with a
crop ratio of [0.08, 1.0], enhances the performance of contrastive methods, while a ratio of [0.2, 0.766]
yields the best performance on non-contrastive methods. We show the performance with a crop ratio
of [0.2,0.766] with solid lines and [0.08, 1.0] with dashed lines. Evaluation is carried out on UCF101
using a linear SVM.

methods v-SimCLR and v-MoCo show comparable performance among them, however, there is a
notable performance gap between the non-contrastive methods. Specifically, v-BYOL outperforms
both v-SimSiam and v-DINO by a significant margin in both the linear evaluation and finetuning
setups. Moreover, Figure S3 (a) indicates minimal or no improvements between 600 to 800 epochs.
Therefore, we refrain from training the models beyond 800 epochs.
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Figure S3: The pretraining epochs vs. top-1 accuracies are presented. VSSL methods are validated
in two setups. Kinetics400 is used for finetuning and UCF101 is used for linear evaluation. v-BYOL,
v-SimCLR, and v-MoCo show superior performance compared to v-DINO and v-SimSiam in both
setups. Interestingly, v-MAE achieves the lowest linear evaluation accuracy, while performing the
best when finetuned.

Spatial vs. temporal dependency. In addition to the out-distribution tests discussed in the main
paper, we also conduct several interesting analyses to understand the dependency of these VSSL
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No Temporal  Partial Appearance No Appearance Original Frames

Figure S4: Sample frames from UCF101 depicting different spatio-temporal dependency scenarios.

Table S4: Comparing video models on controlled temporal and appearance information.

No Temporal Partial Appe. No Appe. Original
Lin. / FT. Lin. /FT. Lin./FT. Lin./FT.

Method

v-Supervised 43.7/36.6 4.1/49 1.3/1.0 81.7/87.4
v-SimCLR 57.1/46.5 43/49 09/1.1 84.1/90.3

v-MoCo 56.0/48.8 4.716.7 1.7/1.1 84.9/90.7
v-BYOL 58.2/50.9 35/6.0 1.1/2.6 85.4/902
v-SimSiam 47.7128.3 5.6/45 20/15 825/872
v-DINO 41.9/38.6 32/17.7 1.2/14 80.9/88.5
v-MAE 5.6/25.7 3.1/53 1.1/2.7 76.2/90.5

methods towards spatial vs. temporal representations. To explore the spatial vs. temporal dependency
of the VSSL methods, we use UCF101 as the base validation dataset and create 3 synthetic variant of
it, (/) No Temporal: we completely remove the temporal information from the input and treat single
frames as an input. In particular, we obtain 80 frames per video that represent 10 seconds of video
sampled at 8 FPS. (ii) Partial Appearance: Next, to suppress the spatial information, we obtain the
optical flow [100] from the original videos. (iii) No Appearance: Following [101], we also obtain
the videos of no appearance, i.e., the static frames have no meaning and actions are present in the
temporal dimension. We present sample frames of these variants in Figure S4.

The results are presented in Table S4 show several intriguing observations. First, removing the
temporal dimension from the videos leads to a significant drop in performance in all the methods.
Amongst all the video models, v-MAE suffers the worst in the absence of temporal information in
both linear and finetune setups, which shows its overly dependent nature on temporal information
and it is a weak spatial learner (also discussed in the main paper). Second, in the absence of temporal
information, the frozen encoder outperforms the finetuned variant even in the case of v-Supervised.
We also notice the performance of the non-contrastive methods significantly varies under such setups,
for example, while v-BYOL achieves the best performance in linear evaluation, v-DINO performs
worse other than v-MAE. Additionally, our tests under partial or no appearance reveal that none of
the video models is capable of understanding actions just from the temporal information. In fact,
the performance of video models drops near chance level ( 1%) in no appearance setup and achieve
slightly better (3 — 7%) in partial appearance setup.
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C Distribution Shifts

C.1 Overview

We provide a summary of our proposed out-of-distribution test bed in Table S5, and the details of our
setup are described in the following subsections. Due to the large number of experiments conducted
across various setups, we will release configuration files for individual evaluation on the project
website rather than sharing them here.

Table S5: An overview of our out-of-distribution test-bed. #Samples are in following order training
samples/InD test samples/OoD test samples; In zero-shot and open-set recognition, #Classes indicates
the number of InD/OoD classes and for others the number of InD and OoD classes remains the same.

# Distribution Shift InD OoD #Classes #Samples

1. Context shift (10 classes) Kinetics400 Mimetics10 10 5930,/494/136

2. Context shift (50 classes) Kinetics400 Mimetics50 50 34K /2481/713

3. Viewpoint shift (egocentric) CharadesEgo CharadesEgo 157 34K /9386/9145

4. Viewpoint shift (surveillance) MiT-v2 TinyVirat-v2 14 41K/1400/2644

5. Actor shift (animal) Kinetics400 ActorShift 7 15K/1018/165

6. Viewpoint + Actor shift (top-down+synthetic) MiTv2 Sims4Action 6 19K/600/950

7. Source shift (UCF/HMDB) UCF HMDB 17 1877/746/510

8. Source shift (HMDB/UCF) HMDB UCF 17 1190/510/746

9. Zero-shot (K400/UCF) Kinetics400 UCF 400/31 240K/20K/3965
10. Zero-shot (K400/HMDB) Kinetics400 HMDB 400/22 240K/20K /3288
11. Zero-shot (K400/RareAct) Kinetics400 RareAct 400/149 240K/20K/1961
12. Zero-shot (K700/UCF) Kinetics700 UCF 663/101 480K/ — /13K
13. Zero-shot (K700/HMDB) Kinetics700 HMDB 663/51 480K/ — /6.7K
14. Zero-shot (K700/RareAct) Kinetics700 RareAct 663/149 480K/ — /1961
15. Open-set (K400/UCF) Kinetics400 UCF 400/31 240K/20K/3965
16. Open-set (K400/HMDB) Kinetics400 HMDB 400/22 240K/20K/3288
17. Open-set (U101/HMDB) UCF101 HMDB 101/34 9537/3783/4366

C.2 Context shift

We use the two splits of Mimetics (i.e., Mimetics10 [102] and Mimetics50 [28]) as the OoD validation
benchmark to study video models under context shift. Mimetics consists of a subset of action classes
from Kinetics400, where the context in the videos is either partial or misleading or completely absent.
We train the pretrained encoders using videos of corresponding action classes from Kinetics400, and
subsequently perform InD and OoD validations using Kinetics400 and Mimetics, respectively. For
linear evaluation, we extract the fixed features by taking the mean of all the patches from the last
layer of the encoder. We then employ an SVM with a linear kernel for classification. In the finetuning
stage, we add a fully-connected layer on top of the encoder and train it end-to-end using the AdamW
optimizer and cross-entropy error. The top-1 accuracy is reported for both InD and OoD validation.
Please note, the different VSSL methods are individually tuned to achieve their best performance.

C.3 Viewpoint shift

We study three types of viewpoint shifts, (i) egocentric view, (if) surveillance camera view, and
(iif) top-down view. We use CharadesEgo [36], TinyVirat-v2 [63], and Sims4Action [64] as the
OoD benchmark for egocentric view, low-resolution surveillance camera view, and top-down view
respectively. CharadesEgo is a collection of paired third-person and first-person videos of human
activities. Therefore, we use the corresponding third-person videos from CharadesEgo [36] for InD
training and validation split while the egocentric view is used as OoD validation. We use MiT-v2 [69]
to create the corresponding InD split for TinyVirat-v2 and Sims4Action [64]. MiT-v2 is a large-scale
video benchmark of 1M videos spread over 339 different human actions. We use the videos of
overlapping classes between MiT-v2 and Tiny Virat-v2 to study surveillance camera viewpoint shift.
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Similarly, the videos of overlapping classes between MiT-v2 and Sims4Action are used to study
top-down viewpoint shifts. The class assignments between InD and OoD benchmarks are mentioned
at the end of this subsection.

For training the models on CharadesEgo, we adopt the approach proposed in [103]. In this setup,
instead of using one-hot encoded labels, we utilize the text descriptions associated with the videos.
We generate tokens from these descriptions and train a video-text encoder using an InfoNCE objective
function [55]. In particular, we use the DistilBERT base [104] as the text encoder along with the
pretrained ViT-B is used as the video encoder. We redirect the readers to [103], to know more about
the training scheme of CharadesEgo. In the case of linear evaluation, the above-mentioned setup
remains the same, except we keep the video encoder frozen. Moreover, our training strategy with
MiT-v2 to study surveillance camera viewpoint and top-down viewpoint shifts follow a standard
finetuning setup using cross-entropy error [72, 2, 4, 6, 78, 79, 7]. However, due to the difference in
the nature of the datasets, as Tiny Virat contains multiple actions per video, whereas, MiT-v2 consists
of single actions per video, we make an adjustment in the prediction layer. Instead of using a Softmax
layer, we utilize a Sigmoid layer to predict multiple possible outputs for a given input video. We set
the threshold for classification at 0.5. Similarly, the setup for linear evaluation on Tiny Virat remains
the same, except the video encoder is kept frozen. Next, in the case of Sims4Action, we use SVM for
linear evaluation. We report mean average precision and F1-score for CharadesEgo and Tiny Virat,
respectively, and top-1 accuracy for the rest of them.

TinyVirat-v2 and MiT-v2. opening: opening, pull: pulling, activity_carrying: carrying, entering:
entering, exiting: exiting, loading: loading, talking: talking, activity_running: running, riding:
riding, closing: closing, activity_walking: walking, push: pushing, activity_standing: standing,
specialized_talking_phone: telephoning.

Sims4Action and MiT-v2. cook: cooking, drink: drinking, eat: eating, read_book: reading,
use_phone: telephoning, walk: walking.

C.4 Actor shift

We study actor shift in two setups, i.e., animal domain and synthetic domain. We use the ActorShift
[65] as the OoD validation set to test generalizability on animal actions, while using the video of
overlapping classes from Kinetics700 [62] as InD training and validation. We use SVM for linear
evaluation and follow standard techniques [72, 2, 4, 6, 78, 79, 7] as discussed earlier for finetuning.
We report top-1 accuracy for both InD and OoD validation. We present the overlapping classes
between Kinetics700 and ActorShift at the end of this subsection. The setup for synthetic domain
shift is already discussed in the previous subsection (Viewpoint shift).

ActorShift and Kinetics700. sleeping, watching tv, eating, drinking, swimming, running, opening
door.

C.5 Source shift

To study source shift, we use the videos from the common classes of UCF101 and HMDBS51. While
using the UCF as the training split, we use the corresponding videos from HMDB as the OoD
validation set and vice versa. Following standard protocol [72, 2, 4, 6, 78, 79, 7], we use SVM for
linear evaluation and the pretrained encoder along with a fully-connected layer for finetuning. We
report the top-1 accuracy for both setups. The class assignments are as follows.

UCF101 and HMDBS5]1. FrisbeeCatch: catch, RockClimbingIndoor: climb, Diving: dive, (Basket-
ballDunk, Basketball): dribble, Fencing: fencing, GolfSwing: golf, (HandstandPushups, Handstand-
Walking): handstand, (LongJump, JumpingJack): jump, SoccerPenalty: kick_ball, PullUps: pullup,
Punch: punch, PushUps: pushup, Biking: ride_bike, HorseRiding: ride_horse, ThrowDiscus: throw,
WalkingWithDog: walk, Archery: shoot_bow,

C.6 Zero-shot
We perform zero-shot in two setups: (1) we train the video-text encoder on Kinetics400, while the

non-overlapping classes from UCF101 and HMDB51 are used for OoD validation [105]. (2) We train
the models using the videos from Kinetics700 that do not share classes with UCF101 and HMDBS51,
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while the full UCF101 and HMDBS51 are used for OoD validation. Moreover, in both cases, we also
use RareAct as the OoD benchmark, which consists of rare or unusual video actions.

Since, the pretraining of VSSL methods does not employ language, first, a video-text encoder is
jointly trained to learn the mapping between video and text representations. Following [42], we
use Word2Vec [80] to extract the word embeddings from the labels, which are then fed to a text
encoder consists of an MLP head. We measure the similarity between the video and text pairs as
the dot product of L2 normalized video-text embeddings, referred to as logits. Next, the video text
encoders are trained to minimize the Softmax cross-entropy error using the obtained logits and the
class labels. We redirect readers to [42] for additional details of the training method. Please note,
we also try with a stronger language model (e.g., BERT[106], DistilBERT[104]) than Word2Vec,
however, it does not improve the performance, in fact, slightly worsens it. Since the labels in Kinetics
are typically composed of only a few words (mostly less than 2), the average pooled word embeddings
work well in such cases. This finding is consistent with the observations of [42]. Moreover, we
perform zero-shot in both setups when the pretrained video encoder is kept frozen and finetuned in
an end-to-end manner.

C.7 Open-set

We perform open-set recognition in two setups: (1) We use the Kinetics400 for closed-set recognition,
while the non-overlapping classes from the UCF101 and HMDBS51 are used for open-set, similar
splits that have been used in zero-shot. (2) We use UCF101 and the non-overlapping classes of
HMDB for closed-set and open-set recognition, respectively. We obtain the non-overlapping classes
by manual inspection, presented at the end of this subsection.

To enable the models for open-set recognition, we follow [45] and train the pretrained encoders with
the DEAR loss which aims to calibrate the uncertainty to ensure the models show high uncertainty
towards the unknown and low uncertainty towards the known. We redirect readers to [45] for more
information about open-set training. We conduct open-set recognition in both finetuned and linear
evaluation setups. We observe that both supervised training and linear evaluation setups using VSSL
encoders did not converge when Kinetics400 was used for closed set recognition. This is likely
because the models tend to become over-confident due to the large number of known classes in
Kinetics400 compared to the unknowns. To measure the models’ performance we report the area
under the ROC curve (AUC) for open-set recognition and accuracy for closed-set recognition.

HMDBS51. The non-overlapping classes from HMDBS51 used in open-set recognition while using
UCF101 as the closed-set: brush_hair, cartwheel, chew, clap, climb_stairs, drink, eat, fall_floor,
flic_flac, hit, hug, kick, kiss, laugh, pick, pour, push, run, shake_hands, shoot_ball, shoot_bow,
shoot_gun, sit, situp, smile, smoke, somersault, stand, swing_baseball, sword, sword_exercise, talk,
turn, wave.

C.8 Toy experiments

In all of our toy experiments, we use the pretrained frozen encoders to extract the fixed representations,
which are then used for K-means clustering®. Additionally, we apply the Hungarian algorithm [107]
for assigning the formed cluster to the targets and measure the accuracy. The details of the datasets
used to conduct the toy experiments are as follows.

C.8.1 ToyBox

The ToyBox [108] consists of egocentric views of 9 distinct temporal transformations of different toy
objects. The transformations include positive rotations, negative rotations, and translations across
the z, y, and z axis. A few representative frames illustrating such transformations are presented in
Figure S5. Using the pretrained frozen encoders, we aim to correctly cluster different transformations
across various objects. Moreover, as the static spatial information is non-discriminative to the
temporal transformations, we aim to form clusters solely based on temporal representations. The
main motivation behind this experiment is to disentangle spatial representations from the embedding
space to independently evaluate the models on their ability to learn temporal dynamics.

2sklearn.cluster.KMeans
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C.8.2 COIL100

We use COIL100 [34] to study viewpoint invariance which consists of images of different objects
captured from different camera angles. We particularly choose an image-based dataset for this
experiment to restrict any discriminatory temporal features in the embedding space that may attribute
to the outcome of the models’ prediction. We present a few representative frames in Figure S6

C.8.3 STL10

We use an image dataset STL10 [71] to test the robustness of the pretrained encoder against low-
resolution inputs. We systematically reduce the resolution from 1122 to 162, please see a few
examples in Figure S7. Similar to our viewpoint shift setup, we choose an image dataset to restrict
any influence of temporal representations in the outcome.

positive rotations across x-axis nciatlve rotations across x-axis

ositive rotations across y-axis nciatlvc rotations across y-axis
negative rotations across z-axis

positive rotations across z-axis

Figure S5: Samples from ToyBox showing rotations across different axes.

Figure S6: Samples from COIL100 showing different viewpoints.

C.9 License of Dataset

In Table S6, we summarize the licensing terms for the datasets used in this study.
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Figure S7:

327167 112° 967 642

Samples from STL10 presenting low-resolution inputs.

Table S6: Licensing terms for the datasets used in this study.

Dataset License Link

CharadesEgo Non-commercial use https://prior.allenai.org/projects/
charades-ego

Moments-in-Time-v2 Non-commercial use http://moments.csail.mit.edu/

Kinetics CCBY 4.0 https://www.deepmind. com/open-source/
kinetics

HMDB51 CCBY 4.0 https://serre-lab.clps.
brown.edu/resource/
hmdb-a-large-human-motion-database/

ToyBox CCBY 4.0 https://aivaslab.github.io/toybox/

Mimetics Open access https://europe.naverlabs.com/research/
computer-vision/mimetics/

UCF101 Open access https://www.crcv.ucf.edu/data/UCF101.

Tiny Virat-v2

COIL100
STL-10
ActorShift
Sims4Action

RareAct

Open access

Open access
Open access
MIT
MIT

Apache

php

https://www.crcv.ucf.edu/
tiny-actions-challenge-cvpr2021/
#tabtwo
https://www.cs.columbia.edu/CAVE/
software/softlib/coil-100.php
https://cs.stanford.edu/ acoates/
st110/
https://uvaauas.figshare.com/articles/
dataset/ActorShift_zip/19387046
https://github.com/aroitberg/
sims4action
https://github.com/antoine77340/
RareAct
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https://cs.stanford.edu/~acoates/stl10/
https://uvaauas.figshare.com/articles/dataset/ActorShift_zip/19387046
https://uvaauas.figshare.com/articles/dataset/ActorShift_zip/19387046
https://github.com/aroitberg/sims4action
https://github.com/aroitberg/sims4action
https://github.com/antoine77340/RareAct
https://github.com/antoine77340/RareAct

D Additional Experiments and Results

D.1 Pretrained on Kinetics700

In addition to the Kinetics400 used in the main paper, we further utilize the Kinetics700 to evaluate
the benefits of incorporating more diverse data for out-of-distribution generalization. We use a subset
of Kinetics700 comprising 480K samples, which doubles the size of Kinetics400. We use this subset
to pretrain the VSSL methods for the same number of total iterations as Kinetics400. Unless stated
otherwise, we compare the performance between Kinetics400 and Kinetics700 pretraining in linear
evaluation, averaging over 3 trials. In Table S7 and Figure S8, we present a high-level overview
showing the impact of using more diverse data in pretraining. Table S7 highlights that non-contrastive
methods (v-BYOL, v-SimSiam, v-DINO) benefit more from the inclusion of diverse data compared
to the contrastive approaches (v-SimCLR, v-MoCo) and v-MAE. Interestingly, we observe a slight
decrease in the performance of v-MAE in this setting. This could be attributed to several factors,
such as the pretrained encoder ViT-B reaching saturation in the pretraining setup of v-MAE, resulting
in no improvements in performance from the additional data. To address this, a larger backbone like
ViT-L or ViT-H, as used in prior works [57, 1], could be explored. Unfortunately, resource limitations
prevented us from adopting a larger network to test this. Detailed results are presented in Tables S8,
S9, S10, S11 and S12.

Table S7: Summary of the models’ behavior with more diverse pretraining data is presented.
In terms of overall performance, we report the average accuracy across all VSSL methods and
distribution shifts, encompassing a total of 66 experiments. Additionally, we present results from 11
experiments for each individual VSSL method. The results demonstrate that non-contrastive methods
(v-BYOL, v-SimSiam, v-DINO) benefit more from the inclusion of diverse data compared to the
contrastive approaches (v-SimCLR, v-MoCo) and v-MAE. Moreover, we observe a slight decrease
in the performance of v-MAE when pretrained with more diverse videos from Kinetics700.

Methods Pretraining  InD OoD
Overall Kinetics400  63.0 31.6
Kinetics700 645 (1 1.5) 325 (1 0.9)
. Kinetics400  66.0 32.9
v-SImCLR — pietics700 67.0 (11.0)  33.0 (1 0.1)
©-MoCo Kinetics400 67.1 33.1
Kinetics700  67.7 (1 0.6) 33.9 (1 0.8)
Kinetics400  65.2 33.1
vBYOL  Kinetics700 683 (13.1) 350 (1 1.9)
o SimSiay | Kinetics400 620 315
Kinetics700  63.9 (1 1.9) 324 (1 0.9)
Kinetics400 63.1 31.5
v-DINO Kinetics700  63.9 (1 0.8) 34.1 (1 2.6)
O MAE Kinetics400  54.4 274

Kinetics700  54.1 (1 0.3) 26.6 (| 0.8)
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Table S8: Comparison of video models under context shift when pretrained with Kinetics400 (#240K)
vs. Kinetics700 (#480K). We highlight the best result in each scenario in bold. Interestingly, we
observe a consistent benefit from the inclusion of more diverse data in the InD validation sets of both
splits. However, the improvements in OoD are not consistently observed.

Context (10 class) Context (50 class)
Kinetics400  Kinetics700  Kinetics400  Kinetics700
OoD InD OoD InD OoD InD OoD InD

Method

v-SimCLR 314 925 302 912 149 71.7 153 733
v-MoCo 29.7 922 277 931 150 74.0 141 750
v-BYOL 316 893 324 914 144 718 158 75.2
v-SimSiam  30.8 895 336 914 138 679 14.7 70.3
v-DINO 348 904 343 91.0 13.0 0687 145 723
v-MAE 333 829 319 834 123 564 127 545

Table S9: Comparison of video models under viewpoint and actor shifts, when pretrained with
Kinetics400 (#240K) vs. Kinetics700 (#480K). We highlight the best results in each scenario
in bold. The results demonstrate that adding diverse pretraining data significantly improves the
performance under egocentric viewpoint shifts and top-down synthetic domain shifts. However, less
significant improvements are observed for surveillance viewpoint shifts and animal domain actor
shifts. Moreover, the performance of v-MAE deteriorates when pretrained with Kinetics700.

View (ego.) View (surv.+low res) View+Act (t-d+syn.)  Actor (animal)
K400 K700 K400 K700 K400 K700 K400 K700
OoD InD OoD InD OoD InD OoD InD OoD InD OoD InD OoD InD OoD InD

Method

v-SimCLR 12.7 14.7 13.7 157 26.1 39.1 249 40.2 42.4 67.8 43.1 71.2 67.9 91.7 68.7 92.4
v-MoCo  13.3 15.0 14.1 16.1 24.8 40.0 25.9 40.5 41.1 67.9 49.4 69.7 68.1 92.2 67.1 92.5
v-BYOL  12.0 14.4 139 16.1 22.7 37.8 22.2 41.7 37.3 65.6 45.5 71.4 68.3 91.5 69.1 93.3
v-SimSiam 11.6 14.1 12.8 14.9 23.3 34.3 21.4 37.3 40.0 65.5 37.9 67.0 68.1 91.1 67.791.5
v-DINO 12.0 14.4 13.4 15.7 22.3 353 229 38.0 353629 42.0 68.5 66.7 90.7 68.3 91.2
v-MAE 10.9 13.7 10.9 13.8 23.532.0 23.1 31.2 37.8 58.0 33.5 57.6 59.8 85.9 56.2 86.3

Table S10: Comparison of video models under source shift, when pretrained with Kinetics400
(#240K) vs. Kinetics700 (#480K). We highlight the best results in each scenario in bold. v-
DINO and v-SimSiam benefit the most from the inclusion of diverse pretraining data, while the
other methods show the same or worse performance.

UCF/HMDB HMDB/UCF

Method Kinetics400  Kinetics700  Kinetics400  Kinetics700
OoD(H) InD(U) OoD(H) InD(U) 0oD(U) InD(H) OoD(U) InD(H)
v-SimCLR 477 960 451 965 551 820 551 83.6

v-MoCo 515 971 483 963 572 845 546 826
v-BYOL 514 945 50.5 96.8 63.1 799 61.1 828
v-SimSiam  46.1  92.6 48.0 925 522 762 53.1 805
v-DINO 493 943 503 958 53.8 775 582 818
v-MAE 395 892 395 893 391 728 375 724
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Table S11: Comparison of video models in zero-shot recognition, when pretrained with Kinetics400
(#240K) vs. Kinetics700 (#480K). We highlight the best results in each scenario in bold. The
results demonstrate that the inclusion of diverse data generally improves the zero-shot performance.
We observe significant improvements in most cases, with the exception of v-MAE on UCF and
v-BYOL on HMDB. Moreover, we also notice significant improvements in InD performance,
particularly in the case of non-contrastive methods and v-MAE.

UCF HMDB RareAct Kinetics400 (InD)
K400 K700 K400 K700 K400 K700 K400 K700

Method

v-SimCLR  37.2 39.0 18.6 19.0 77 94 56.8 57.8
v-MoCo 352 406 19.5 21.6 87 94 584 59.5
v-BYOL 33.0 44.0 224 21.1 75 99 574 61.0
v-SimSiam 34.0 39.2 18.8 20.3 77 83 50.4 523
v-DINO 343 41.1 17.2  20.0 81 95 534 583
v-MAE 255 241 142 172 58 62 359 354

Table S12: Comparison of video models in open-set recognition, when pretrained with Kinetics400
(#240K) vs. Kinetics700 (#480K). We highlight the best results in each scenario in bold. The
results exhibit a very similar trend in both pretraining setups. For example, while v-SimCLR and
v-MoCo perform fairly well in closed-set, they show near chance-level performance in open-set. v-
MAE performs poorly in both open-set and closed-set, in both pretraining setups. v-DINO achieves
the best open-set performance in both setups while retaining decent closed-set performance.

Pretrained on Kinetics400 Pretrained on Kinetics700

Method Open-set Closed-set  Closed-set Open-set Closed-set Closed-set

(AUC) w/DEAR (Acc.) w/ CE (Acc.) (AUC) w/DEAR (Acc.) w/ CE (Acc.)

U/H U101* U101* U/H v101* U101*

v-SimCLR 49.9 11.6 84.1 49.7 18.5 83.6
v-MoCo 50.7 32.7 84.9 53.1 53.6 84.7
v-BYOL 56.0 63.7 85.4 74.5 85.5 86.7
v-SimSiam 73.7 79.5 82.5 69.6 80.5 82.3
v-DINO 79.4 80.4 80.9 82.0 84.5 85.0
v-MAE 66.0 74.6 76.2 65.6 74.2 75.1

Table S13: Comparison of VSSL methods in zero-shot recognition, when pretrained with Kinetics700
(#480K). We highlight the best results in each scenario in bold. In addition to Table S11, we also
finetune video-text encoders with Kinetics700 and perform zero-shot recognition using the full
UCF101 and HMDB51, along with RareAct. Please note that during both pretraining and finetuning,
we discard the videos from Kinetics700 that belong to the overlapping classes from UCF101 and
HMDBS51. v-MAE clearly shows superiority when validated on UCF101 and HMDBS51, while
v-MoCo outperforms others when validated on RareAct.

Method UCF HMDB RareAct

v-SimCLR 457  34.0 15.3
v-MoCo 484 339 18.4
v-BYOL 473 334 15.5
v-SimSiam 379  29.1 13.3
v-DINO 46.6 329 16.2
v-MAE 501 373 16.0
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Kinetics700 (480K)
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Figure S8: We present a high-level depiction of the models’ performance when pretrained with
Kinetics400 vs. Kinetics700. When pretrained with Kinetics700, the trend line of InD performance
(blue dashed line) is slightly higher than that of the OoD performance (brown dashed line).
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D.2 Temporal dynamics

In this subsection, we provide the additional results of our experiment on the temporal dynamics of
VSSL methods. We present the performance on temporal transformation recognition in Figure SO.

Moreover, we present the performance of VSSL methods in classifying the same objects from static

videos, in Figure S10.
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Figure S9: Evaluating performance of video models on egocentric transformation recognition using
ToyBox [70]. The models are used to classify a total of 9 types of temporal transformations including

positive rotations, negative rotations, and transformations across the z, y, and z axes. In all of the

cases, v-MAE consistently shows superior performance.
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are used to classify the videos of static objects including 4 types of animals, household items,

cars, and all of them together (a total of 12 classes). In all cases v-MAE consistently exhibits the
lowest performance. Among all the categories, the models perform significantly better in classifying
household objects than animals or vehicles. This is likely because the pretraining data Kinetics400

Figure S10: Evaluating performance of video models in egocentric object recognition. The models
consist of several human actions involving household objects e.g., kitchen utensils, etc.
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D.3 Comparing InD vs. OoD performance under natural distribution shifts

To gain a high-level understanding of the models’ performance in InD vs. OoD, we visualize their
accuracy in a 2D space in Figure S11. It is noteworthy that superior InD performance does not
necessarily translate to better OoD performance. We observe cases where models exhibit similar InD
performance but significantly differ in their performance under distribution shifts. Ablation variants
of Figure S11 are presented in Figure S12. Statistical analyses on the robustness of video models are
presented in Appendix D.7.
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Figure S11: We compare the InD vs. OoD performance of video models under different distribution
shifts. The filled markers indicate the finetuned results, while the empty markers represent the results
from linear evaluations. In all cases, we observe a decrease in performance in the OoD validation set,
as indicated by the data points below the y = z line.
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Figure S12: An ablated view of InD vs. QoD performance under natural distribution shifts, utilizing
both frozen (empty markers) and finetuned (filled markers) encoders. Here, y = max + ¢ shows
a linear fit for the given data points (i.e., projected InD and OoD performance metrics). The data
points above linear fit indicate more robustness. (a and b) v-Supervised demonstrates superior
performance in linear evaluation, while v-MAE achieves the best results when finetuned. On the
other hand, although v-MoCo and v-SimCLR show strong performance in InD validation, they
exhibit weaker generalization in out-of-context scenarios. (¢, d, and e) Overall, v-SimCLR and
v-MoCo perform better in viewpoint shifts in both linear and finetuning. v-MAE (finetuned) shows
a single instance of superior results for the specific case of low-resolution surveillance camera shift
due to its robustness in low-resolution inputs. (f) In animal domain actor shift, v-BYOL achieves
the best results in linear evaluation, whereas, v-SimCLR outperforms others when finetuned. (g
and h) v-BYOL achieves the best performance under source shifts in all setups. (i and j) Frozen
v-BYOL achieves the best zero-shot recognition on UCF but performs poorly on HMDB. On the
other hand, the frozen v-SimCLR performs the best on HMDB, while generalizing poorly on UCFE.
(k) Overall, video models generalize poorly in zero-shot recognition of unusual actions (RareAct).
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D.4 Effect of synthetic perturbations

In addition to the natural distribution shifts, we further extend our work investigating the performance
of VSSL methods under synthetic perturbations. We follow the setup proposed in [53] to create
the synthetic perturbation of varying severity on a scale of 1 to 5. We apply a total of 16 different
synthetic perturbations belonging to the common spatio-temporal augmentation techniques such as
noise addition, blurring, temporal perturbation, and camera motion. We test the robustness of the
frozen encoders against synthetic perturbations on 2 benchmarks UCF101 and Kinetics400, presented
in Figures S13 and S14 respectively. The results demonstrate that with increasing perturbation
severity, the performance of video models deteriorates. However, it is important to acknowledge that
certain visual augmentations, such as noise and blur, are already applied during the self-supervised
pretraining phase. As a result, they may not be considered as distribution shifts within the scope of our
setup. Furthermore, it is neither possible to train self-supervised methods without such augmentation
techniques. Despite these considerations, we present these results for the sake of completeness.

Since spatial perturbations are extensively covered in literature, we refrain from explaining them
here and redirect readers to [53, 54, 49]. Instead, we briefly discuss the temporal perturbations [53].
‘Sampling’: using different frame rates than used in training; ‘Reverse sampling’: reversing the
temporal order with different sampling rates; ‘Jumble’: shuffling frames in segments; ‘Box jumble’:
shuffling the segments instead of frames; ‘Freezing’: randomly freezing video frames; ‘Random
shuffle’: randomly shuffle the frame orders, please note random shuffle has just one severity level.

38



Shot Noise Impulse Noise Speckle Noise Gaussian Noise

e vBYOL vBYOL e vBYOL
80 V-DINO 80 vDINO 80 V-DINO
e vMAE V-MAE V-MAE
o e o v-MOCO B
e VSIMCLR VSIMCLR e VSIMCLR
e vSIMSIAM V-SIMSIAM 60 e vSiMSIAM
60 V-SUPERVISED | 60 V-SUPERVISED V-SUPERVISED
450 §so
2 < <40
40 -+~ v-BYOL 40
o] = vomo
e vMAE 30 20
—+- vMOCO
20{ =~ w-SIMCLR ..
e V-SIMSIAM 20 '
10 V-SUPERVISED R o - o
10
3 1 2 ) H ) 3 3 5 3 3 3 5 ) 3 3 i 5
Perturbation Severity Perturbation Severity Perturbation Severity Perturbation Severity
Translate Rotate Static Rotate Zoom Blur
vBYOL e vavOL e vBYOL
80 - v-DINO 80 0 == vDINO =~ vDINO
V-MAE - vMAE e vMAE
70 v-MOCO 70 == v:MOCO —+- v:MOCO
VSIMCLR 7 - vSIMCLR e VSIMCLR
60 V-SIMSIAM 60 o vsiMSIAM e vSiMSIAM
V-SUPERVISED . V-SUPERVISED V-SUPERVISED
50 50-
< i< <
40 40 1 ~-. *
1 v-BYOL 1
30 - 30 - v-DINO 40
M v-MAE
20 20 V-MOCO "
{ VSIMCLR
10 = 10 vSIMSIAM
o 3 V-SUPERVISED | S S —" 20
] T 3 3 3 5 ) 3 E] 5 ] 3 3 5 o 3 E] 5
Perturbation Severity Perturbation Severity Perturbation Severity Perturbation Severity
Motion Blur Defocus Blur Reverse Sampling Sampling
v-BYOL e vBYOL
80 - vDINO =~ vDINO
V-MAE e vMAE
20 v-MOCO - vMOCO
VSIMCLR e~ VSIMCLR
V-SIMSIAM e vSIMSIAM
60 V-SUPERVISED V-SUPERVISED
450
<
40 40] - v-BYOL 40d —=- vBYOL
—+- vDINO =~ vDINO
30 oo vMAE e vMAE
301 —+- v-MoCO 301 - vMoCO
2 - vsMCLR | e~ vSIMCLR
20{ —+- v-SIMSIAM - 20] =~ v-siMSIAM
o V-SUPERVISED I V-SUPERVISED -
10
3 T 2 5 5 ) 3 3 5 3 2 5 5 ) 3 5 5
Perturbation Severity Perturbation Severity Perturbation Severity Perturbation Severity
Jumble Box Jumble Freeze Random Shuffle
8
7
60
<
50 4 £ 70 A 7 , >
- vBY0L \ / e~ vBYOL —e- vBYOL v-BYOL
- vDiNO \ / e~ vDINO 40{ - v-DINO . V-DINO
40 V-MAE 65 ; e vMAE e vMAE e v-MAE
vMOCO Y e~ vMOCO 40| = vwoco - vMOCO
VSIMCLR V| e vSIMCLR e vsMCR | 30] —+- vSIMCLR
30 — v-SIMSIAM . \/ e vSIMSIAM —e- vSIMSIAM -~ e vSIMSIAM
15 v-SUPERVISED ¥ V-SUPERVISED 20 v-SUPERVISED e 20 V-SUPERVISED
3 T 5 ) 5 3 5 ) 5

2 3 z 3 2 3 z 3
Perturbation Severity Perturbation Severity Perturbation Severity Perturbation Severity

Figure S13: Spatio-temporal perturbations on UCF101 (linear evaluation). When subjected to
extreme perturbations, the performance of VSSL methods experiences a significant decline, reaching
near-chance levels. Notably, v-MAE exhibits the worst performance across all setups. Among all
methods, v-BYOL demonstrates superiority in scenarios involving blur and temporal perturbations,
while v-MoCo outperforms others in rotations and translations. Furthermore, v-DINO excels when
tested on noisy videos.
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Figure S14: Spatio-temporal perturbations on Kinetics400 (linear evaluation). When subjected to
extreme perturbations, the performance of VSSL methods experiences a significant decline, reaching
near-chance levels. Notably, v-MAE exhibits the worst performance across all setups. Among all
methods, v-MoCo demonstrates superiority in scenarios involving blur, rotations, and temporal
perturbations, while v-BYOL outperforming the others when tested on noisy videos.
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D.5 Effect of finetuning in out-of-distribution generalization

D.5.1 Linear vs. finetuning performance comparison

We conduct a thorough study evaluating the impact of finetuning across different VSSL methods. We
present a high-level overview in Table S14 and more detailed results in Figures S15, S16, and S17.

Table S14: A high-level summary of the impact of the models’ performance when finetuned, both InD
and OoD. Overall, finetuning improves performance in both InD and OoD. However, the performance
varies based on VSSL methods. Generally, the improvements in InD performance tend to be more
significant than those in OoD. We note that v-MAE benefits the most from finetuning due to its
extremely poor generalizability when using frozen encoders.

Methods Eval. setup InD OoD
Overall Linear 63.2 31.5
Finetune 719 (18.7) 374 (15.9)
v-Supervised Linear 65.5 30.7
P Finetune 69.0 (13.5) 35.1(14.4)
. Linear 66.0 329
v-SIMCLR - pctune 734 (17.4) 382 (15.9)
v-MoCo Linear 67.1 33.1
Finetune 73.6 (16.5) 39.1(16.0)
Linear 65.2 33.1
v-BYOL Finetune 732 (18.0) 38.7 (1 4.6)
v-SimSiam Linear 62.0 31.5
Finetune 704 (17.6) 36.2(14.7)
Linear 63.1 31.5
v-DINO Finetune 710 (1 7.9) 36.4 (1 4.9)
v-MAE Linear 54.4 27.4

Finetune 72.6 (17.2) 383 (110.9)
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Figure S15: A detailed comparison of the impact of finetuning on InD vs. OoD. For optimal
viewing, please rotate 90 degrees to the left ‘D. The results demonstrate that the benefits of finetuning
are highly dependent on the VSSL method and type of distribution shift. Our analysis reveals that
finetuning tends to be more advantageous in scenarios involving actor shifts (animal domain and
synthetic domain). Conversely, its benefits are relatively less pronounced under viewpoint shifts and
zero-shot recognition. Moreover, the impact of finetuning in source shift and context shift is mixed.
For example, while we notice significant benefits in UCF to HMDB shift, finetuning in fact worsens
the performance in the case of HMDB to UCF shift. Additionally, finetuning is more beneficial when
evaluated on a smaller benchmark with just 10 out-of-context classes. However, the improvements
are relatively modest in a more challenging setup involving 50 out-of-context classes.
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Figure S16: Comparing the performance of video models in linear evaluation vs. finetuning. In
the plot, the filled markers represent InD results, while the empty markers represent the OoD results.
Overall, we observe that finetuning consistently leads to improved performance, as indicated by the
data points lying above the diagonal line (y = x), with only one exception. It is worth noting that the
average improvement in InD performance (shown by the blue dashed line) is higher compared to the
improvement in OoD performance (shown by the brown dashed line).
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Figure S17: An ablated view of linear vs. finetuning performance comparison. Our results
demonstrate that improved InD performance does not necessarily translate to better OoD performance.
We observe cases where models exhibit similar InD performance but significantly differ in their
performance under distribution shifts, e.g., please see the linear results in d, e, f, and i.
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D.5.2 In-distribution overfitting due to finetuning

As mentioned in the main paper, while finetuning enhances overall performance, it is susceptible to
in-distribution overfitting. In other words, while additional training leads to improved performance on
InD validation, it adversely affects OoD performance. We present a few examples of such instances

in Figure S18. In practice, we apply early stopping to tackle such overfitting.
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Figure S18: A few examples showing in-distribution overfitting caused during finetuning.
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D.6 High-level overview

The high-level overview presented in Figure 1 summarizes our findings from Tables 1, 2, 3, 4, and
6(a) of the main paper. To create the overview plot, we first normalize the OoD performance (e.g.,
accuracy, mAP) of each experiment to that of the best-performing method. Thus, the best performing
method gets 1.0 and all other methods get a score in [0, 1]. Next, we group the experiments based
on their super-categories and then take their average score. For example, in the case of source shift,
we compute this average by grouping the normalized scores of 4 experiments, namely linear and
finetuning evaluation of both UCF/HMDB and HMDB/UCEF shifts. We follow similar steps for all the
shifts (details are given below), resulting in a 7 x 6 matrix, where 7 represents the number of video
methods, and 6 represents the total number of shifts. This final matrix is then used to color-code and
present a high-level summary of all methods across all shifts.

¢ Context shift: Table 1

Context shift (10 classes) linear; best performing method: v-Supervised
Context shift (10 classes) finetune; best performing methods: v-Supervised, v-BYOL,
v-MAE
Context shift (50 classes) linear; best performing methods: v-Supervised, v-MoCo
Context shift (50 classes) finetune; best performing method: v-MAE
* Viewpoint shift: Table 2
— Viewpoint shift (egocentric) linear; best performing method: v-MoCo
— Viewpoint shift (egocentric) finetune; best performing method: v-MoCo
— Viewpoint shift (surveillance+low resolution) linear; best performing method: v-
SimCLR
— Viewpoint shift (surveillance+low resolution) finetune; best performing method: v-
MAE
— Viewpoint+actor shift (top-down+synthetic) linear; best performing method: v-
SimCLR
— Viewpoint+actor shift (top-down+synthetic) finetune; best performing method: wv-
SimCLR
¢ Actor shift: Table 2
— Viewpoint+actor shift (top-down-+synthetic) linear; best performing method: wv-
SimCLR
— Viewpoint+actor shift (top-down+synthetic) finetune; best performing method: wv-
SimCLR
— Actor shift (animal) linear; best performing method: v-BYOL
— Actor shift (animal) finetune; best performing method: v-SimCLR
* Source shift: Table 3
Source shift (UCF/HMDB) linear; best performing method: v-MoCo
Source shift (UCF/HMDB) finetune; best performing method: v-BYOL
Source shift (HMDB/UCEF) linear; best performing method: v-BYOL
Source shift (HMDB/UCEF) finetune; best performing method: v-BYOL
* Zero-shot recognition: Table 4
— Zero-shot (UCF) linear; best performing method: v-SimCLR
Zero-shot (UCF) finetune; best performing method: v-MoCo
Zero-shot (HMDB) linear; best performing method: v-BYOL
Zero-shot (HMDB) finetune; best performing method: v-MAE
Zero-shot (RareAct) linear; best performing method: v-MoCo
Zero-shot (RareAct) finetune; best performing method: v-SimSiam

* Open-set recognition: Table 6(a)
— Open-set (K400/UCF) finetune; best performing method: v-SimCLR
— Open-set (K400/HMDB) finetune; best performing method: v-MoCo
— Open-set (U101/HHDB) finetune; best performing method: v-MoCo
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D.7 Statistical analysis

We present detailed statistical analyses to verify the statistical significance of all the major findings/-
claims discussed in the main paper. In particular, we compare the robustness of the video models
under different distribution shifts, after compensating their InD performance. The adjusted OoD
performance difference between the two methods is calculated as:

Adjusted Aoop = Aoop — M X A1pp — 1.96 X SEgop

Here, m € [0, 1] is the slope of a linear fit of projected InD and OoD performance measures of all the
models for a particular shift, calculated as:

Yoy (@ — T)(yi — 9)

m = i

Y-z

where z; and y; refer to InD and OoD performance measures for i method and i € [1, 7], and n is
the total number of methods studied. Moreover, £ and ¥ refer to the mean InD and OoD performances,
respectively. Between Method 1 and Method 2, we calculate Agop = y1 — y2 and Apyp = 1 — o,
while SEqoop is the standard error of Method 1’s OoD performance across several trials. We consider
the standard error with statistical significance at 95% confidence. Finally, we accept Method 1 is
more robust than Method 2, if Adjusted Ao,p > 0. The results of our statistical analyses are
presented in Tables S15 through S26.

Table S15: Comparative statistical analysis of the robustness of v-MAE and v-Supervised under
context shift (original numbers from Table 1).

Distribution shift Method1 ~ Method2 _Adiusted Aoop
Lin. FT.

v-Supervised v-SimCLR  5.24 5.90

v-Supervised v-MoCo 6.96 2.20

v-Supervised v-BYOL 5.00 0.00

v-Supervised v-SimSiam  5.73 0.80

v-Supervised v-DINO 1.81 0.80

Context (10class) ) MAE v-SimCLR ~ 0.25 5.90
v-MAE v-MoCo 1.97 2.20

v-MAE v-BYOL 0.01 0.00

v-MAE v-SimSiam  0.74 0.80

v-MAE v-DINO -3.17 0.80

v-Supervised v-SimCLR  0.44 2.68

v-Supervised v-MoCo 0.66 1.28

v-Supervised v-BYOL 0.92 -0.07

v-Supervised v-SimSiam  0.99 0.08

v-Supervised v-DINO 1.88 0.53

Context (S0 class) ) MAE »-SimCLR  -0.82 7.20
v-MAE v-MoCo -0.59 5.80

v-MAE v-BYOL -0.34 4.45

v-MAE v-SimSiam  -0.27 4.59

v-MAE v-DINO 0.63 5.04
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Table S16: Comparative statistical analysis of the robustness of v-MAE and v-Supervised in learning
temporal dynamics (original numbers from Figure 3(a)).

Distribution shift Method 1 Method 2 Adjusted Aoop

v-Supervised v-BYOL 0.06
v-Supervised v-SimSiam 0.05
v-Supervised v-DINO 0.05
v-Supervised v-SimCLR 0.06
Temporal learner v-Supervised v-MoCo 0.06
v-MAE v-BYOL 0.19
v-MAE v-SimSiam 0.19
v-MAE v-DINO 0.19
v-MAE v-SimCLR 0.20
v-MAE v-MoCo 0.20

Table S17: Comparative statistical analysis of the robustness of contrastive methods (v-SimCLR and
v-MoCo) under viewpoint shift (original numbers from Table 2).

Adjusted AOOD

Distribution shift Method 1 Method 2
Lin. FT.
v-SimCLR  v-BYOL 0.21 0.20
v-SImCLR  v-SimSiam 0.35 1.28
v-SimCLR  v-DINO 0.24 1.16
v-SimCLR  v-Supervised  0.71 1.44
Viewpoint (ego.) v-SimCLR  v-MAE 0.65 2.01
) v-MoCo v-BYOL 0.56 0.69
v-MoCo v-SimSiam 0.71 1.78
v-MoCo v-DINO 0.60 1.66
v-MoCo v-Supervised  1.06 1.94
v-MoCo v-MAE 1.00 2.51
v-SimCLR  v-BYOL 2.50 2.77
v-SimCLR  v-SimSiam 0.98 0.51
v-SimCLR  v-DINO 2.22 1.84
v-SimCLR  v-Supervised  0.89 0.10
Viewpoint (surv.+low res) v-SimCIR - v-MAE - -0.16
’ v-MoCo v-BYOL 0.49 1.44
v-MoCo v-SimSiam -1.03 -0.81
v-MoCo v-DINO 0.22 0.52
v-MoCo v-Supervised -1.12 -1.22
v-MoCo v-MAE -1.79 -1.48
v-SimCLR  v»-BYOL 1.87 6.30
v-SImCLR  v-SimSiam -0.88 6.70
v-SimCLR  v-DINO 2.06 11.5
v-SImMCLR  v-Supervised  8.45 16.0
View+Act (t-down-+syn.) v-SinCLR  v-MAE -3.93 -0.60
: v-MoCo v-BYOL 1.81 4.80
v-MoCo v-SimSiam -0.94 5.20
v-MoCo v-DINO 2.00 10.0
v-MoCo v-Supervised  8.39 14.5
v-MoCo v-MAE -3.99 -2.10
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Table S18: Comparative statistical analysis of the robustness of contrastive methods (v-SimCLR and

v-MoCo) in learning viewpoint invariance (original numbers from Figure 4(a)).

Distribution shift Method1  Method 2 Adjusted Apop
v-SimCLR  v-BYOL 0.05
v-SImCLR  v-SimSiam 0.04
v-SimCLR  v-DINO 0.02
v-SimCLR  v-Supervised 0.09

Viewpoint invariance v-SimCLR  v-MAE 0.09
v-MoCo v-BYOL 0.04
v-MoCo v-SimSiam 0.03
v-MoCo v-DINO 0.02
v-MoCo v-Supervised 0.09
v-MoCo v-MAE 0.09

Table S19: Comparative statistical analysis of the robustness of single stream networks (v-Supervised
and v-MAE) in learning temporal dynamics and Siamese networks (v-BYOL, v-SimSiam, v-DINO,
v-SimCLR, and v-MoCo) in learning viewpoint invariance (original numbers from Figures 3(a) and

4(a)).

Table S20: Comparative statistical analysis of the vulnerability (opposite of robustness) of v-
Supervised under multiple shifts (original numbers from Table 2).

Distribution shift Method 1 Method 2 Adjusted Apop
v-Supervised v-BYOL 0.06
v-Supervised v-SimSiam 0.05
v-Supervised v-DINO 0.05
v-Supervised v-SimCLR 0.06

Temporal learer v-Supervised v-MoCo 0.06
v-MAE v-BYOL 0.19
v-MAE v-SimSiam 0.19
v-MAE v-DINO 0.19
v-MAE v-SimCLR 0.20
v-MAE v-MoCo 0.20
v-SimCLR v-Supervised 0.09
v-SimCLR v-MAE 0.09
v-MoCo v-Supervised 0.09
v-MoCo v-MAE 0.09

Viewpoint invariance v-BYOL v-Supervised 0.05
v-BYOL v-MAE 0.05
v-SimSiam v-Supervised 0.06
v-SimSiam v-MAE 0.06
v-DINO v-Supervised 0.07
v-DINO v-MAE 0.07

Distribution shift Method1  Method2 _Adiusted Aoop
Lin. FT.

v-Supervised v-BYOL -7.11 -9.70

v-Supervised v-SimSiam  -9.87 -9.30

. v-Supervised v-DINO -6.92 -4.50
View+Act (t-down+syn.) v-Supervised v-SimCLR  -10.6 -16.0
v-Supervised v-MoCo -9.26 -14.5

v-Supervised v-MAE -12.9 -16.6
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Table S21: Comparative statistical analysis of the robustness of v-BYOL under source shift (original
numbers from Table 3).

Distribution shift Method 1 Method2 _‘*djusted Aoop
Lin. FT.

v-BYOL  v-Supervised 8.56 6.60

v»-BYOL  v-SimSiam  6.96 2.90

v»-BYOL  v-DINO 6.70 0.30

HMDBoUCF  ByvOL  »-SimCLR  9.96 2.00
v»-BYOL  v-MoCo 103 1.10

v-BYOL v-MAE 16.7 10.8

v-BYOL  v-Supervised 3.14 2.40

v-BYOL v-SimSiam 2.72 6.80

v-BYOL  v-DINO 123 6.80

UCFtoHMDB  ByOL  »-SimCLR  4.52 5.90
v»-BYOL  v-MoCo 1.89 5.10

v-BYOL  v-MAE 6.00 3.10

Table S22: Comparative statistical analysis of the impacts of finetuning over frozen encoder under
source shift (original numbers from Table 3).

Distribution shift Method 1 Method2 Adjusted Apop

HMDB to UCF Finetune Linear -8.67
UCF to HMDB Finetune Linear 1.97

Table S23: Comparative statistical analysis of the robustness of contrastive methods (v-SimCLR and
v-MoCo) in open-set recognition when finetuned (original numbers from Table 6(a)).

Distribution shift Method1  Method 2 Adjusted Aoop

v-SimCLR  v-BYOL 2.44
v-SimCLR  v-SimSiam 2.42
v-SimCLR  v-DINO 2.94
v-SimCLR  v-MAE 7.85

Kinetics400/UCF v-MoCo »-BYOL 072
v-MoCo v-SimSiam  0.70
v-MoCo v-DINO 1.22
v-MoCo v-MAE 6.13
v-SimCLR  v-BYOL 0.04
v-SimCLR  v-SimSiam  2.12
v-SimCLR  v-DINO 1.03
. v-SimCLR  v-MAE 5.09
Kinetics400/HMDB v-MoCo ©-BYOL 076
v-MoCo v-SimSiam  2.84
v-MoCo v-DINO 1.75
v-MoCo v-MAE 5.82
v-SimCLR  v-BYOL 2.58
v-SImCLR  v-SimSiam  4.29
v-SimCLR  v-DINO 1.31
UCF101/HMDB v-SimCLR  v-MAE 11.38

v-MoCo v-BYOL 3.20
v-MoCo v-SimSiam  4.91
v-MoCo v-DINO 1.94
v-MoCo v-MAE 12.0
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Table S24: Comparative statistical analysis of the robustness of slightly weak frozen encoders (v-
DINO, v-SimSiam, and v-Supervised) in open-set recognition in linear evaluation (the original
numbers from Table 6(b)).

Distribution shift Method 1 Method 2  Adjusted Aoop

v-DINO v-BYOL 23.4
v-DINO v-SimCLR 29.5
v-DINO v-MoCo 28.7
v-DINO v-MAE 13.4
v-SimSiam v-BYOL 17.5
v-SimSiam v-SimCLR 23.5
UCF101/HMDB v-SimSiam v-MoCo 22.7
v-SimSiam v-MAE 7.40
v-Supervised v-BYOL 21.2
v-Supervised v-SimCLR 27.3
v-Supervised v-MoCo 26.5
v-Supervised v-MAE 11.2

Table S25: Part 1. Comparative statistical analysis of the robustness of all methods in zero-shot
recognition (original numbers from Table 4).

Distribution shift Method1  Method 2 Adjusted Aoop

Lin. FT.

v-BYOL v-SimSiam  -5.02 -0.24
v-BYOL v-DINO -4.01 -2.13
v-BYOL v-MAE -2.89 -1.56
v-BYOL v-SimCLR  -5.37 0.95
v-BYOL v-MoCo -2.70 -5.30
v-SimSiam v-BYOL 2.31 0.24
v-SimSiam  v-DINO -0.42 -1.89
v-SimSiam v-MAE 0.70 -1.32
v-SimSiam  v-SimCLR  -1.79 1.19
v-SimSiam  v-MoCo 0.89 -5.06
v-DINO v-BYOL 1.78 2.13
v-DINO v-SimSiam  -1.96 1.89
v-DINO v-MAE 0.17 0.57
v-DINO v-SImCLR  -2.31 3.08
v-DINO v-MoCo 0.36 -3.17
Zero-shotonUCE— \iaE 4BYOL 028 1.56
v-MAE v-SimSiam  -3.46 1.32
v-MAE v-DINO -2.45 -0.57
v-MAE v-SimCLR  -3.81 2.51
v-MAE v-MoCo -1.14 -3.74
v-SImCLR  v-BYOL 2.40 -0.95
v-SimCLR  v-SimSiam -1.34 -1.19
v-SimCLR  v-DINO -0.32 -3.08
v-SimCLR  v-MAE 0.79 -2.51
v-SImCLR  v-MoCo 0.99 -6.25
v-MoCo v-BYOL -1.40 5.30
v-MoCo v-SimSiam  -5.14 5.06
v-MoCo v-DINO -4.12 3.17
v-MoCo v-MAE -3.01 3.74
v-MoCo v-SimCLR  -5.49 6.25
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Table S25 Part 2. Comparative statistical analysis of the robustness of all methods in zero-shot
recognition (original numbers from Table 4).

Distribution shift Method1  Method 2

Adjusted Apop

Lin. FT.

v-BYOL v-SimSiam  -0.18 1.05
v-BYOL v-DINO 2.17 -0.01
v-BYOL v-MAE 0.55 -1.58
v-BYOL v-SimCLR 1.64 0.06
v-BYOL v-MoCo 1.27 2.40
v-SimSiam v-BYOL -2.61 -1.05
v-SimSiam  v-DINO 1.48 -1.06
v-SimSiam v-MAE -0.14 -2.63
v-SimSiam  v-SimCLR 0.94 -0.99
v-SimSiam  v-MoCo 0.58 1.35
v-DINO v-BYOL -4.35 0.01
v-DINO v-SimSiam  -2.61 1.06
v-DINO v-MAE -1.88 -1.57
v-DINO v-SimCLR  -0.80 0.07
v-DINO v-MoCo -1.16 2.41
Zero-shoton HMDB - viap 4 BYOL  -3.15 158
v-MAE v-SimSiam  -1.42 2.63
v-MAE v-DINO 0.94 1.57
v-MAE v-SimCLR 040 1.64
v-MAE v-MoCo 0.04 3.98
v-SimCLR  v-BYOL -5.14 -0.06
v-SimCLR  v-SimSiam -3.40 0.99
v-SimCLR  v-DINO -1.05 -0.07
v-SimCLR  v-MAE -2.67 -1.64
v-SiIimCLR  v-MoCo -1.95 2.34
v-MoCo v-BYOL -5.55 -2.40
v-MoCo v-SimSiam  -3.81 -1.35
v-MoCo v-DINO -1.46 241
v-MoCo v-MAE -3.08 -3.98
v-MoCo v-SimCLR  -1.99 -2.34
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Table S25 Part 3. Comparative statistical analysis of the robustness of all methods in zero-shot
recognition (original numbers from Table 4).

Distribution shift Method1  Method 2

Adjusted Apop

Lin. FT.

v-BYOL v-SimSiam  -1.19 -0.95
v-BYOL v-DINO -1.36 -0.31
v-BYOL v-MAE -0.82 -0.43
v-BYOL v-SimCLR  -0.59 -0.09
v-BYOL v-MoCo -1.38 -0.20
v-SimSiam  v-BYOL 0.59 0.95
v-SimSiam  v-DINO -0.43 0.64
v-SimSiam v-MAE 0.11 0.52
v-SimSiam  v-SimCLR 0.33 0.86
v-SimSiam  v-MoCo -0.45 0.75
v-DINO v-BYOL 0.79 0.31
v-DINO v-SimSiam  -0.08 -0.64
v-DINO v-MAE 0.30 -0.12
v-DINO v-SimCLR 0.53 0.22
v-DINO v-MoCo -0.26 0.11
Zero-shot on RareAct o-MAE »-BYOL 2039 043
v-MAE v-SimSiam  -1.25 -0.52
v-MAE v-DINO -1.41 0.12
v-MAE v-SimCLR  -0.65 0.34
v-MAE v-MoCo -1.43 0.23
v-SimCLR  v-BYOL -0.26 0.09
v-SimCLR  v-SimSiam -1.12 -0.86
v-SimCLR  v-DINO -1.28 -0.22
v-SimCLR  v-MAE -0.75 -0.34
v-SimCLR  v-MoCo -1.3 -0.11
v-MoCo v-BYOL 0.50 0.20
v-MoCo v-SimSiam  -0.36 -0.75
v-MoCo v-DINO -0.52 -0.11
v-MoCo v-MAE 0.01 -0.23
v-MoCo v-SimCLR  0.24 0.11
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Table S26: Comparative statistical analysis of the robustness of all methods under animal domain
actor shift (original numbers from Table 2).

Ad_] usted A 0O0OD

Distribution shift Method 1 Method 2

Lin. FT.

v-Supervised v-SimCLR -1.86 -3.00
v-Supervised v-MoCo -1.50 -1.20
v-Supervised v-BYOL -2.46 -1.20
v-Supervised v-SimSiam -3.24 -2.00
v-Supervised v-DINO -1.70 -1.90
v-Supervised v-MAE 0.39 -2.40
v-SimCLR v-Supervised  0.74 3.00
v-SimCLR v-MoCo -0.2 1.80
v-SimCLR v-BYOL -1.16 1.80
v-SimCLR v-SimSiam -1.94 1.00
v-SimCLR v-DINO -0.40 1.10
v-SimCLR v-MAE 1.69 0.60
v-MoCo v-Supervised  0.09 1.20
v-MoCo v-SimCLR -1.21 -1.80
v-MoCo v-BYOL -1.82 0.00
v-MoCo v-SimSiam -2.59 -0.80
v-MoCo v-DINO -1.05 -0.70
v-MoCo v-MAE 1.04 -1.20
v-BYOL v-Supervised  1.58 1.20
v-BYOL v-SimCLR 0.28 -1.80
Animal domain actor shift > DL OL v-MoCo 0.64 0.00
v-BYOL v-SimSiam -1.10 -0.80
v-BYOL v-DINO 0.45 -0.70
v-BYOL v-MAE 2.54 -1.20
v-SimSiam v-Supervised  1.27 2.00
v-SimSiam v-SimCLR -0.03 -1.00
v-SimSiam v-MoCo 0.33 0.80
v-SimSiam v-BYOL -0.63 0.80
v-SimSiam v-DINO 0.13 0.10
v-SimSiam v-MAE 2.22 -0.40
v-DINO v-Supervised  0.67 1.90
v-DINO v-SimCLR -0.63 -1.10
v-DINO v-MoCo -0.27 0.70
v-DINO v-BYOL -1.23 0.70
v-DINO v-SimSiam -2.01 -0.10
v-DINO v-MAE 1.63 -0.50
v-MAE v-Supervised -1.60 2.40
v-MAE v-SimCLR -2.90 -0.60
v-MAE v-MoCo -2.55 1.20
v-MAE v-BYOL -3.51 1.20
v-MAE v-SimSiam -4.28 0.40
v-MAE v-DINO -2.74 0.50
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D.8 Exploring performance variation of VSSL methods across action classes

To provide a deeper understanding, we conduct a comprehensive analysis examining the impact of
distribution shifts on the models’ prediction across various action classes. Our investigation focuses
on evaluating the performance of the finetuned models across different categories in both the InD and
OoD. The findings are presented as follows:

Figure S19 Context shift (10 classes)

Figure S20 Context shift (50 classes)

Figure S21 Viewpoint shift (egocentric)

Figure S22 Viewpoint shift (surveillance camera+low resolution)
Figure S23 Viewpoint + actor shift (top-down + synthetic)
Figure S24 Actor shift (animal)

Figure S25 Source shift (UCF to HMDB)

Figure S26 Source shift (HMDB to UCF)

Figure S28 Zero-shot (UCF)

Figure S27 Zero-shot (HMDB)

Figure S29 Zero-shot (RareAct)

Figure S30 Open-set (UCF/HMDB)

Figure S32 Open-set (Kinetics400/UCF)

Figure S31 Open-set (Kinetics400/HMDB)
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water’, while other methods completely fail. In particular, VSSL methods demonstrate relatively
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good performance in identifying certain action classes in out-of-context scenarios, such as ‘golf

predictions. In another extreme example, v-MAE makes a few correct predictions for ‘surfing
driving’ and ‘playing volleyball’.

Figure S19: Context shift (10 classes): In-distribution vs. out-of-distribution performance compari-
son per action class. For optimal viewing, please zoom in. All of the contrastive and non-contrastive
methods fail to identify ‘canoeing’ in OoD, whereas, v-Supervised and v-MAE make a few correct
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Figure S21: Viewpoint shift (egocentric): In-distribution vs. out-of-distribution performance
comparison per action class. For optimal viewing, please zoom in and rotate 90 degrees to the left'D.
A few examples of poor OoD generalization include action classes such as: ‘lying on a bed’, ‘fixing a
vacuum’, and ‘someone is closing something’, among a few others. We also note a few instances,
where models show very similar InD and OoD performance, such as ‘holding some food’, ‘holding a
boom’, and ‘taking food from somewhere’, among a few others.
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both v-BYOL and v-SimSiam perform well in identifying ‘running’ but failed to identify
59

distribution performance comparison per action class. For optimal viewing, please zoom in. Interest-

ingly,
‘riding’. On the other hand, v-SimCLR and v-MoCo correctly identify ‘riding’ but fail to predict

‘running’. Overall, models show poor performance in distinguishing actions with subtle differences

Figure S22: Viewpoint shift (surveillance view + low resolution): In-distribution vs. out-of-

like ‘closing’ vs. ‘opening’, ‘entering’ vs. ‘exiting’, and ‘pull’ vs. ‘push’.
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Figure S23: Viewpoint + actor shift (top-down + synthetic): In-distribution vs. out-of-distribution

performance comparison per action class. For optimal viewing, please zoom in. The models exhibit

particularly poor performance in identifying the action classes ‘eat’, followed by ‘drink’. Conversely,

they demonstrate relatively better performance in identifying actions such as ‘read book’, ‘use phone’,

and ‘walk’.
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action class. For optimal viewing, please zoom in. The models exhibit particularly poor performance
in identifying action classes ‘drinking’ and ‘running’. Conversely, they perform well in ‘predicting

eating’, ‘opening door’, ‘swimming’, and ‘watching tv’.

Actor shift (animal): In

Figure S24:
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Figure S25:

For optimal viewing, please zoom in. The results demonstrate the

challenges faced by the video models in generalizing across similar action classes from different

comparison per action class.

For instance, the models trained on UCF videos which include ‘soccer penalty’, struggle to

datasets.

‘walking with dog’ class in UCF does not

generalize to the ‘kick ball’ class in HMDB. Similarly, the

in HMDB.

aid in generalizing to ‘walk’
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Overall, the VSSL methods
tend to exhibit poor generalization capabilities for actions such as ‘jump’, ‘throw’, and ‘dribble’,

among others.

f-distribution performance

please zoom in. We notice large variability

0
in performances across different methods. For example, v-Supervised performs very poorly in

DINO demonstrate strong performance in identifying the action
63

whereas, all the self-supervised methods perform reasonably well.

bl
bl

BYOL and v-

the other methods struggle to achieve a similar level of accuracy.

Figure S26: Source shift (HMDB to UCF): In-distribution vs. out-

comparison per action class. For optimal viewing,
identifying the action ‘dive

Furthermore, while v

‘walk’,



v-MOCO

v-SIMCLR

R

=

AN

SN

N

X3

S

AT

S———

S

sy

S5t
C

S—

%
- z
2,
O %S0
% %
&%
124
= v G
0, %
sy 0,5,
= 2%0.%,
S @Mf
455%
%%,
07,
) ) ) S ) )
e 3 § & & = 8
S ° S S s s 3
foeanooy
=
.
S
S
7///
S
A ——
NOSS-
s
ey
S
~
.
T ——
S & & & o & o o
& = 8 & § & & =2 8
s 8 o s o o© o

s o
Adeany

v-SIMSIAM

v-BYOL

bAb
Sy 7
[ &N
?
EEI—-
4
S S
%
S
STE——— Y, 2,
NSNS

RN

B

4o,
et O,
SN

e,
S 2,80

9%
%Yy,
S o© & & o o & o
~ © 0 = il N = <
s S © © © o© o o
Aoeandoy
S
e,
SN
%
1%,
SN
4
AT
Q,
o, %,
N
AN e\\@e o,
e 28 %
-
R
9, %,
7S
4
%
&\.\v
sy 07
. s
£,
o,
0,
%N\o %,
c\c«.\\Q ¢
-
00\ £
st Q0
0%
S—- 75
S5 e,
s, eo %
“7,
| K<}
S © & o o o o & o
® ~ © n = « N el <
S 8 8 © © © © o o
JEILESY

v-MAE

v-DINO

AT ——-—

S

B

S

S

oy

~

ST

RSN

B

S

-

eSS

R

S

TR

S

S

s

0.80

) o
© =
=] S

foranaoy

)
N
=

RS

BN

SIS

S

N

AN

B

A

s

S

SO

o

S

A

g

~

S

0.80

0.70

S o o
ERE
u

o o
Adeany

0.30

0.20

0.10

v-SUPERVISED

S
ey
<,

A ————————.y-

S

oy

AT

S

~

~

S—

s G,
£y

o
%,
o

S )
%

sy

S «\%\

g

sy

A—-

A
S
A<

0.60

0.50

Y >
3 il
S

o
Adeinady

=)
N
IS

0.10

&
(pe
IS

formance

The video models overall

. out-of-distribution per

ion vs
lease zoom

(HMDB): In-distributi

ion
lass. For opt

Zero-shot recogniti

Figure S27
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Iv
generalize well on action classes such as ‘chew’, ‘handstand’, ‘kick’, and ‘smile’, whereas, they show

poor generalizability on other action classes such as ‘fencing’, ‘flic flac’, ‘pick’, ‘run’, and ‘turn’

among others. Moreover, their performance largely varies across different actions.
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v-SimCLR v-MoCo

v-BYOL v-SimSiam

Figure S30: Confusion matrices for open-set recognition, using UCF101 as closed-set and HMDB
as open-set. The x-axis represents the ground truth and the y-axis represents the predicted labels.
We highlight known classes with green and unknown classes with red. Among all the methods
v-SimSiam and v-MAE show worse performance in identifying ‘unknown’ classes from HMDB as
‘unknown’.
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v-SimCLR v-MoCo

v-BYOL v-SimSiam

v-DINO v-MAE

Figure S31: Confusion matrices of open-set recognition, using Kinetics400 as closed-set and HMDB
as open-set. The x-axis represents the ground truth and the y-axis represents the predicted labels. We
highlight known classes with green and unknown classes with red. The results exhibit that all the
video models struggle in identifying ‘unknown’ classes from HMDB as ‘unknown’. This is likely
due to their over-confident predictions.
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Figure S32: Confusion matrices of open-set recognition, using Kinetics400 as closed-set and UCF
as open-set. The x-axis represents the ground truth and the y-axis represents the predicted labels. We
highlight known classes with green and unknown classes with red. The results exhibit that all the
video models struggle in identifying ‘unknown’ classes from UCF as ‘unknown’. This is likely due
to their over-confident predictions.

69



