
Near-optimal Sketchy Natural Gradients
for Physics-Informed Neural Networks

Maricela Best McKay 1 Avleen Kaur 2 Chen Greif 2 Brian Wetton 1

Abstract

Natural gradient methods for PINNs have
achieved state-of-the-art performance with errors
several orders of magnitude smaller than those
achieved by standard optimizers such as ADAM
or L-BFGS. However, computing natural gradi-
ents for PINNs is prohibitively computationally
costly and memory-intensive for all but small neu-
ral network architectures. We develop a random-
ized algorithm for natural gradient descent for
PINNs that uses sketching to approximate the nat-
ural gradient descent direction. We prove that the
change of coordinate Gram matrix used in a natu-
ral gradient descent update has rapidly-decaying
eigenvalues for a one-layer, one-dimensional neu-
ral network and empirically demonstrate that this
structure holds for four different example prob-
lems. Under this structure, our sketching algo-
rithm is guaranteed to provide a near-optimal low-
rank approximation of the Gramian. Our algo-
rithm dramatically speeds up computation time
and reduces memory overhead. Additionally, in
our experiments, the sketched natural gradient
outperforms the original natural gradient in terms
of accuracy, often achieving an error that is an
order of magnitude smaller. Training time for a
network with around 5,000 parameters is reduced
from several hours to under two minutes. Training
can be practically scaled to large network sizes;
we optimize a PINN for a network with over a
million parameters within a few minutes, a task
for which the full Gram matrix does not fit in
memory.

1Department of Mathematics, University of British Columbia,
BC, Canada 2Department of Computer Science, University of
British Columbia, BC, Canada. Correspondence to: Maricela Best
Mckay <maricela@math.ubc.ca>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Partial differential equations (PDEs) are fundamental in
mathematical modelling and simulation. However, most
PDEs lack analytical solutions and must be solved numer-
ically. Although there are extensive tools for numerically
solving a variety of PDEs, many problems of scientific inter-
est remain computationally intractable or require significant
simplification.

The success of deep learning has generated great interest
in combining deep learning techniques with scientific com-
puting (Weinan et al., 2021; Baker et al., 2019). Physics-
informed neural networks (PINNs) (Raissi et al., 2019) are
one such technique. PINNs have appealing features for
tackling challenges in scientific computing and modelling,
and have shown a lot of promise across a broad range of
applications; they have been used for data assimilation, to
model multi-scale and multi-physics phenomena, as inverse
problem solvers for parameter estimation, to solve high-
dimensional systems of PDEs, and to combine incomplete
mechanistic understanding with data (Karniadakis et al.,
2021; Dabrowski et al., 2023).

Despite their demonstrated utility, important limitations
have emerged. PINNs can be notoriously difficult to op-
timize, particularly for multi-scale problems and problems
that exhibit multiple frequencies (Rohrhofer et al., 2022;
Wong et al., 2022; Krishnapriyan et al., 2021; Wang et al.,
2021; 2022). First-order methods such as ADAM (Kingma
& Ba, 2015), while scalable, are generally unable to achieve
appropriate performance accuracy. While memory-intensive
second-order optimizers such as BFGS or L-BFGS often
fare better (Krishnapriyan et al., 2021; Zhu et al., 1997;
Rathore et al., 2024), PINNs rarely achieve accuracy better
than 1E-03 (Müller & Zeinhofer, 2023).

Recently, another class of optimization methods, natural
energy gradients, has been developed for PINNs to address
these difficulties (Müller & Zeinhofer, 2023). Natural en-
ergy gradients take advantage of the underlying geometry
in the function space for the PDE residual related to a PINN
to formulate a better search direction in the parameter space.
These methods show significant promise; they can achieve
state-of-the-art accuracy, often outperforming other opti-

1

Near-optimal Sketchy Natural Gradients for PINNs

mizers by orders of magnitude. However, natural gradients
are prohibitively computationally costly for all but small
network sizes.

In this paper, we aim to scale these methods while main-
taining the high accuracy that they provide. We introduce
sketchy natural energy gradient descent (SNGD), a random-
ized algorithm for natural gradient descent for PINNs that
uses sketching (Tropp et al., 2017) to approximate the natu-
ral gradient descent direction.

Main contributions Our main contributions can be sum-
marized as follows:

• Our algorithm is fast, scalable and accurate. We demon-
strate that our method dramatically speeds up compu-
tation time and reduces memory overhead by training
a network with over a million parameters within a few
minutes. For this network size, the full Gram matrix
required for natural energy gradients cannot fit in mem-
ory. In our experiments, SNGD consistently achieves
error rates that are more than an order of magnitude
lower than those of the original natural gradient.

• Our method exploits structural properties inherent to
the change of coordinate Gram matrix used in a natu-
ral gradient descent update. In Section 3, we provide
insight into the structural properties of the change of
coordinate Gram matrix used in a natural gradient de-
scent update. We provide empirical evidence that this
matrix is numerically low-rank, ill-conditioned and
has rapidly-decaying eigenvalues. We show that for a
one-layer, one-dimensional neural network, the eigen-
values of the Gramian decay rapidly. In Section 4.1,
we show that under this structure, our sketching algo-
rithm is guaranteed to provide a near-optimal low-rank
approximation of the Gramian.

• Our method is a computationally efficient technique
for promoting the training of higher-frequency com-
ponents in neural networks and thus is relevant to the
problem of spectral bias exhibited by fully connected
neural networks (Rahaman et al., 2019; Zhang et al.,
2023). See Appendix A and Appendix B for more
insight.

Related work Many works address the accuracy and train-
ing difficulties in PINNs. Some of which are complementary
to the present work in that they can be used together with
SNGD.

• Müller & Zeinhofer (2023) propose energy natural gra-
dient descent (ENGD), which the current work directly
builds on.

• Wu et al. (2023); Adcock et al. (2022); Daw et al.
(2023) study strategies for sampling the collocation
points used in training to improve training.

• van der Meer et al. (2022) focuses on adaptively weigh-
ing different components of the PINN loss.

• Wang et al. (2024) forces a PINN to respect causality
by modifying the PINN loss to enforce temporal order
in time-dependent problems.

• Wang et al. (2021) suggests a specialized architecture
to improve training.

• Various other optimization strategies have been sug-
gested for PINN training (Zeng et al., 2022; Davi &
Braga-Neto, 2022; Nurbekyan et al., 2023). These
strategies have worse performance accuracy compared
to both ENGD and the present work.

• Rathore et al. (2024) provides an in-depth analysis of
optimization challenges in PINNs. They examine the
ill-conditioning of the loss landscape, which is linked
to the spectral properties of the Hessian, and intro-
duce a novel second-order method for PINN training,
NysNewton-CG.

Another line of related work is the use of sketching for
higher-order optimization.

• Yang et al. (2022) introduces sketching techniques for
approximating the empirical Fisher information matrix
(EFIO). However, the problem under consideration,
as well as the use of sketching to accelerate natural
gradient descent, differ significantly from the treatment
presented in this work.

• Gower et al. (2019) proposes randomized subspace
Newton, which uses sketching to approximate the Hes-
sian of the loss function. The authors focus on linear
regression problems using sketching to approximate
the Hessian. This differs from the present work, which
considers non-linear optimization problems and natural
gradient methods rather than Newton’s method.

2. Background
We are interested in approximating, with a neural network,
the solution to the following system of differential equa-
tions,

Du = f in Ω

Bu = g on ∂Ω (1)

where D(·) is a differential operator, B(·) is a boundary
value operator, Ω ⊂ Rn, ∂Ω is an appropriately defined

2

Near-optimal Sketchy Natural Gradients for PINNs

boundary, and u is the unknown solution. f and g are
known functions in L2. Note that g ∈ ∂Ω may include an
initial condition for a time-dependent system. Consider the
form

F(u, v) =

∫
Ω

(Du− f)(Dv − f) dΩ

+

∫
∂Ω

(Bu− g)(Bv − g) ds.1 (2)

Finding the solution u to Equation (1) is equivalent to find-
ingR(u) = F(u, u) = 0.

In PINNs, we aim to approximate the solution u to Equa-
tion (1) with some neural network, which we will call uθ,
by minimizing

R(uθ) =

∫
Ω

(Duθ − f)2 dΩ +

∫
∂Ω

(Buθ − g)2 ds, (3)

where θ is the set of parameters of the neural network. The
derivatives of uθ can be easily computed with automatic
differentiation. The norms in Equation (3) are replaced by
Euclidean norms with an appropriately-defined quadrature,
which defines a loss function on the parameter space of the
network. To find a numerical approximation to Equation (1),
the parameters θ are trained using an optimization algorithm,
such as gradient descent.

In natural energy gradient descent (ENGD), the traditional
gradient typically used in a gradient descent step is replaced
with a new gradient direction that is related to the function
space geometry of the loss (Müller & Zeinhofer, 2023).
Let R denote the discretization ofR using an appropriate
quadrature rule, then the loss function is

L(θ) = R(uθ).

A natural energy gradient descent update is given by

θk+1 = θk − ηG†(θk)∇θL(θk), (4)

where η is the step size, † denotes the Moore-Penrose pseu-
doinverse, k ∈ N is some iteration of the descent, and

∇EL := G†(θ)∇θL (5)

is called the natural energy gradient2.

Entries of the Gram matrix G are given by an appropriate
discretization (via quadrature) of

Gi,j :=

∫
Ω

((∂θi ◦ D)[uθ])
((
∂θj ◦ D

)
[uθ]
)
dx

+

∫
∂Ω

((∂θi ◦ B)[uθ])
((
∂θj ◦ B

)
[uθ]
)
ds,

1 ≤ i, j ≤ |θ|, (6)

1In the case D is linear and f = g = 0, F(u, v) is an inner-
product.

where |θ| is the number of parameters in the neural net-
work, and (∂θi ◦ D) denotes the composition of the partial
derivative of uθ with respect to its i-th component with the
differential operator D.

3. The structure of the Gram matrix
The Gram matrix G is a dense, symmetric, and positive
semi-definite. It can also be observed empirically that G
is numerically low-rank, ill-conditioned, and has rapidly-
decaying eigenvalues. This empirical observation is con-
sistent across all the experimental results presented in this
paper. Figure 1 shows an illustrative example of this be-
havior for a neural network with 1, 341 parameters taken
from run 2 of the experiments described in Section 5.4.
Eigenvalues are shown for every 400 iterations of training.

Low-rank The success of deep learning has gone hand
in hand with the over-parameterization of neural networks
(Sejnowski, 2020; Belkin et al., 2019; Chang et al., 2021).
With this in mind, it is advisable to choose a network ar-
chitecture that ensures over-parameterization for the target
task; this design paradigm implies that the matrix G should
be rank-deficient.

Figure 1 demonstrates the rank deficiency of G, for the
experiment depicted |θ| = 1, 341 but G has only around
800 eigenvalues above machine precision at iteration 2,000
and can be observed to be rank deficient throughout training.

Ill-conditioned The Gram matrix is ill-conditioned be-
cause there are small non-zero eigenvalues close to machine
round-off. We can observe in Figure 1 that a significant
portion of the eigenvalues of G become very small and so
G is severely ill-conditioned. See Appendix A and Ap-
pendix B as well as Zhang et al. (2023) for insight into how
this phenomenon is related to the spectral bias of neural
networks.

Rapid eigenvalue decay In all of the experiments in this
paper, G exhibits exponential eigenvalue decay throughout
the training process. At each iteration, the eigenvalues de-
cay to machine unit roundoff at an exponential rate. This
behavior can be clearly seen in Figure 1.

For a one-dimensional, one-layer neural network with ReLU
activations, following the construction in Zhang et al. (2023),
the j-th largest eigenvalue of the Gram kernel function for
the network decays approximately as j−4, i.e., λj ∼ j−4.
This result can be seamlessly extended to show exponential
decay for the Gram kernel function in one dimension (in
continuous form), which corresponds to (6) in its semi-

2Notice that replacing G with the identity in Equation (4)
results in a normal gradient descent step.

3

Near-optimal Sketchy Natural Gradients for PINNs

discrete form.

Lemma 3.1. For the Gram kernel function G, define the
operator K : L2([a, b])→ L2([a, b])

Kh(x) =

∫ b

a

G(x, y)h(y)dy,

denote λj as the j-th largest eigenvalue of K. Then the
eigenvalues {λj} decay exponentially.

For any analytic activation function, G is an analytic func-
tion. Lemma 3.1 is a direct implication of the well-known
result that the eigenvalues of an integral operator with ana-
lytic kernels decay exponentially (König & Richter, 1984,
p. 148). This proves our claim as eigenvalues of the Gramian
matrix G and the corresponding integral kernel differ by a
constant (Zhang et al., 2023, p. 9). For more details, see
Appendix A and Appendix B.

0 200 400 600 800

Index k of eigenvalue λk

10−15

10−12

10−9

10−6

10−3

100

103

106

E
ig

en
va

lu
es
{λ

k
}

(l
og

sc
al

e)

λmaxe
−(1/18)k

10−13

i=0

i=400

i=800

i=1200

i=1600

i=2000

Figure 1. Eigenvalues3 of the matrix G at iteration i of training vs.
the index of the eigenvalue shown with the line y = λmaxe

− 1
18

k.
This figure is from run 2 in Section 5.4(see Table 6). Eigenvalues
are considered zero at 1E-16 and below this threshold. Note that
the number of non-zero eigenvalues changes during training. A
horizontal line at 1E-13 is also shown; this corresponds to the tol
value used for sketching throughout this paper (see Algorithm 1
for details).

4. Sketching process
To compute ∇EL defined in Equation (5), it is necessary
to compute G as well as the action of its pseudoinverse.
Since G is a square matrix with |θ|2 entries, both of these
operations can be quite computationally costly and memory-
intensive for networks of even moderate size. To address
these challenges, we employ randomized numerical linear
algebra techniques (Halko et al., 2011).

3Only every 15th eigenvalue in Figure 1 is shown in order to
aid in plot legibility.

The key idea is to replace G with a much smaller “sketched”
matrix. Concretely, G is replaced with A := GM where
M is a rectangular matrix of size |θ| × l, where l � |θ|,
whose entries are sampled from a Gaussian distribution.

To compute a sketched natural gradient update,

θk+1 = θk − η∇SL,

we employ single-pass and two-pass sketching techniques
from Saibaba et al. (2016). Both find the randomized sin-
gular value decomposition (RSVD) of a matrix. Due to
the symmetry in our case, this amounts to a randomized
eigenvalue decomposition. We regularize by truncating the
eigenvalues below a specified tolerance to robustly approxi-
mate the pseudoinverse of G (see Algorithm 1). A unique
feature of our setting is that G possesses exponentially-
decaying eigenvalues, which guarantees that the error can
be driven close to machine precision for single/two-pass
RSVD (see Section 4.1).

Instead of generating the entire Gram matrix and then mul-
tiplying it by M, it is possible to proceed more efficiently.
For any matrix Y we can compute GY as the discretization
of

Gi,j(Y) :=

∫
Ω

((∂θi ◦ D)[uθ])
[
YT (∇θ ◦ D)[uθ]

]
j
dΩ

+

∫
∂Ω

((∂θi ◦ B)[uθ])
[
YT (∇θ ◦ B)[uθ]

]
j
ds,

1 ≤ i, j ≤ |θ|, (7)

under an appropriate quadrature. This approach has the
advantage of requiring only the computation and storage of
the |θ| × l entries of A, as opposed to the computation and
storage of the |θ|2 entries of G in addition to the matrix-
matrix multiplication GM.

Computational complexity and memory requirements
We briefly discuss the per-iteration differences in com-
putational complexity and memory requirements between
ENGD and SNGD. The memory requirements for ENGD
are O(|θ|2) whereas for SNGD they are O(|θ|(r + p)),
where (r + p) � |θ|. The computational cost for com-
puting the matrix G is variable and depends on the structure
of the underlying PDE operator. For the full matrix G, the
cost is a function of the number of nested autodifferenti-
ations, which must be computed for each data point and
distinct entry in G. Therefore, using the sketched matrix
via Equation (7) leads to significant savings of a factor of
O(|θ|/(r + p)) for this part of the computation.

The remaining computational complexity for each algo-
rithm is related to computing G†∇θL. In ENGD this is
accomplished with a least-squares solve at a cost ofO(|θ|3).
SNGD, on the other hand, has a computational cost of

4

Near-optimal Sketchy Natural Gradients for PINNs

Algorithm 1 Sketchy Natural Gradient Descent (SNGD)
Input: Initial parameters θ, initial rank estimate r, over-
sampling parameter p, truncation threshold tol, and max-
imum iterations Nmax.
for i = 1 to Nmax do

Compute∇θL(θi)
Sample M ∈ R|θ|×(p+r) from a Gaussian distribution
A← GM via Equation (7)

QR = A Reduced QR factorization

Q← Q[:, 1 : (p+ r)]
Compute T:

Single-pass: T← QTA(QTM)−1

Two-pass: T← QTGQ via Equation (7)

SΛ(r+p)S
T = T

r ← |{λi|λi > tol}|
D† ← diag([1/λ1:r])
U← QS
∇SL(θi)← UD†UT∇θL(θi)
η∗ ← arg minη∈[0,1] L

(
θi − η∇SL(θi)

)
θi = θi−1 − η∗∇SL(θi)

end for

O(|θ|(p+ r)2) (see Algorithm 1). Both the computational
complexity and memory requirements are dynamic and
change as the estimated rank r changes.

4.1. Near-optimal error when sketching G

As discussed in Section 3, G is a symmetric positive
semi-definite matrix, which is dense, low-rank, and ill-
conditioned with rapidly decaying eigenvalues. We have
used a randomized eigenvalue decomposition with single-
pass4 and two-pass techniques to estimate the sketched
natural gradient direction ∇SL, which depends on the
pseudoinverse of G (Saibaba et al. (2016, p. 316)), de-
noted by G†. The techniques mentioned above give us
G ≈ Ĝ(p+r) := QSΛ(QS)T , where Q and S have dimen-
sions |θ| × (p+ r) and (p+ r)× (p+ r), respectively, and
possess orthonormal columns. Halko et al. (2011, p. 273) de-
rive the following average spectral error5 for approximating
G by Ĝ(p+r),

E‖G− Ĝ(p+r)‖ ≤
(

1 +

√
r

p− 1

)
λr+1

+
e
√
p+ r

p

 n∑
j=r+1

λ2
j

 1
2

. (8)

4also in Halko et al. (2011, p. 251).

We know that the eigenvalues of G decay exponentially, so

 n∑
j=r+1

λ2
j

 1
2

≈ λr+1.

Therefore, (8) becomes

E‖G− Ĝ(p+r)‖ ≤ C(p, r, e)λr+1 . 10−16, (9)

where C(p, r, e) is a positive constant that depends on p, r,
and e.

Note that although the constantC(p, e, r) is polynomial in r,
for r sufficiently large the eigenvalues decay exponentially,
i.e rapidly enough to beat the polynomial growth in C. A
minimal amount of oversampling drives the error estimate
to the theoretically minimal value, and we obtain a nearly
optimal estimate G† ≈ Ĝ†(p+r) = (QS)TΛ−1(QS), with
significantly fewer computation and memory requirements
as compared to traditional truncated SVD techniques applied
to the full matrix G.

Why not use CG? Conjugate gradient (CG) can be used
for solving least-squares problems; however, for dense posi-
tive semi-definite low-rank matrices with rapidly decaying
eigenvalues such as G in the present work, CG is not an
ideal choice because it is based on matrix-vector products
and the presence of near-zero eigenvalues slows down its
convergence.

Why does sketchy natural gradient descent outper-
form natural energy gradient descent? Due to the ill-
conditioning of G, we seek a numerically stable algorithm.
Randomized algorithms are suitable because they are com-
putationally efficient and cut off near-zero eigenvalues. We
further truncate any eigenvalues that are below a specified
tolerance. Comparing the rank of G at the end of training
under SNGD vs. ENGD, computed as the number of eigen-
values above our tolerance, we observe that under SNGD,
G has a larger final rank (see Section 5.2 and Section 5.4).
This suggests that SNGD finds a better and flatter local
minimum, which is a phenomenon that has been observed
to be useful for generalization and related to spectral bias
(Li et al., 2018; Fridovich-Keil et al., 2022). We believe
that the randomness introduced by multiplying by a distinct
Gaussian matrix at each training iteration, as well as the
row-mixing effect of this multiplication, contributes to the
enhanced performance (see, e.g., (Avron et al., 2010) for
an illuminating discussion of the effect of mixing on the
coherence of a matrix).

5Note that (8) is mentioned for randomized SVD, which can
be extended to randomized eigenvalue decomposition by Section
5.3 of the reference.

5

Near-optimal Sketchy Natural Gradients for PINNs

5. Experiments
We contrast the results of training a PINN using the original
natural energy gradient descent with our sketchy version
on several problems. We first reproduce the experiments
from Müller & Zeinhofer (2023) and compare them with our
method, and then include a new problem: the transport equa-
tion with high-wave speed. This problem is deceptively sim-
ple yet notoriously challenging for PINNs (Krishnapriyan
et al., 2021).

Implementation details All of the code is implemented
in Python using the Jax library (Bradbury et al., 2018).
The neural networks are built using the Equinox library
(Kidger & Garcia, 2021). The Optax and Jaxopt libraries
are used for ADAM and BFGS, respectively (Babuschkin
et al., 2020; Kingma & Ba, 2015; Fletcher, 1987). All
experiments were run with Google Colaboratory using
an NVIDIA A100 GPU. All experiments were run using
double precision. We have found that this is necessary
to ensure adequate accuracy in computing G. Code to
reproduce experiments in this manuscript is available at
https://github.com/MaricelaM/ICML25SNGD.git.

Choosing the hyperparameters in SNGD Algorithm 1
requires selecting three hyperparameters: an estimate for
the rank of G at initialization, the (constant) oversampling
parameter p, and a tolerance for the truncation threshold for
the randomized eigenvalue decomposition of G.

To initialize r for Algorithm 1, a single/two-pass step is
performed with a hand-selected sketch size. The initial rank
estimate is chosen to be the number of eigenvalues above a
specified tolerance for this initial sketched matrix. Rather
than hand-tuning the constant p, we use the aforementioned
hand-selected sketch size and set p equal to the first index
for which the eigenvalues of the sketched matrix are below
machine precision. As training progresses, the rank r of
G grows, reaching a maximum value before plateauing to
a stable value as the loss reaches the local minima (this
behavior can be observed in Figure 1).

In practice, we have observed that Algorithm 1 is quite
sensitive to the choice of tolerance. Because G scales the
gradient of the loss, this parameter captures the (locally)
important directions in parameter space. There is a tradeoff
between the need to optimize speed of convergence, which
would require tol to be sufficiently large, and the need to
ensure accuracy as stated in Equation (9), which requires
tol to be small. Equation (9) and the exponential decay of
the eigenvalues ensure that the bound on the error will be
smaller than tol. We thus choose tol to be 1E-13, which we
have found to be performant and accurate enough.

5.1. The heat equation

To begin, we consider a simple example: the one-
dimensional heat equation with Dirichlet boundary con-
ditions and a simple source term given by

∂u

∂t
=

1

4

∂2u

∂x2
for (t, x) ∈ Ω = [0, 1]× [0, 1]

u(0, x) = sin(πx) for x ∈ [0, 1]

u(t, x) = 0 for (t, x) ∈ [0, 1]× {0, 1}. (10)

The form for this problem is given by:

F̃(u, v) =

∫
Ω

u(0, x)v(0, x) dx+

∫
I×Ω

uv ds dt.

+

∫ 1

0

∫
Ω

(
∂u

∂t
− 1

4

∂2u

∂x2

)(
∂v

∂t
− 1

4

∂2v

∂x2

)
dx dt.

The related natural energy Gram matrix is6

Gi,j = F

(
∂uθ
∂θi

,
∂uθ
∂θj

)
,

where we again use F to denote the discretization of F̃ ,
where F̃ is related to the form F in that it is the same object
with the linear terms f and g dropped. This is due to the
linearization w.r.t. the parameters that occurs in Equation (6).

We train three different PINN architectures to approximate
the solution u(t, x) = e−(π2t/4) sinπx to Equation (10).
The first network is a one-layer network with 261 parame-
ters, the second is a three-layer network with 5,301 parame-
ters, and the third is a five-layer network with over a million
parameters (referred to as A1, A2, and A3, respectively in
Table 1 and Table 2). The first architecture is selected be-
cause it is similar to the one-layer 257-parameter network
used in Müller & Zeinhofer (2023). The other two archi-
tectures are selected to showcase how SNGD scales as the
number of parameters grows.

As reported in Table 1, SNGD achieves better accuracy than
ENGD, often achieving over a magnitude or, in some cases,
nearly two orders of magnitude smaller error. Compared to
training with ADAM, SNGD is able to improve accuracy
by around three orders of magnitude. In Figure 2 we see
that SNGD is able to reach a better minima than the other
optimizers, including ENGD. Table 1 shows that networks
of around five thousand parameters reach similarly accu-
rate minima compared to networks of around one million
parameters for PINNs approximating the heat equation; we
include results for both networks to showcase the scalability
of SNGD to large parameter spaces.

6G can be expressed in this simpler form because the heat
equation is a linear PDE.

6

https://github.com/MaricelaM/ICML25SNGD.git

Near-optimal Sketchy Natural Gradients for PINNs

Table 1. Relative L2 errors for training a PINN to approximate the
heat equation using different network architectures, averaged over
five random initializations. The first two architectures are trained
for 2,500 iterations for ENGD and SNGD, and 3,000 for BFGS.
The last architecture is trained using SNGD for 1,000 iterations.
For this last example, ENGD and BFGS are infeasible. ADAM is
run for 100,000 iterations for all network sizes.

OPTIMIZER MEDIAN MIN MAX

A1: 261-PARAMETERS

ADAM 1.39E-03 8.69E-04 1.65E-03
BFGS 1.99E-04 5.0E-05 1.77E-01
ENGD 2.78E-06 1.95E-06 8.94E-06
SINGLE-PASS 3.62E-07 8.23E-08 5.62E-06
TWO-PASS 1.49E-07 1.27E-07 4.86E-06

A2: 5,301-PARAMETERS

ADAM 6.13E-05 2.59E-05 1.13E-04
BFGS 3.65E-06 2.32E-06 6.50E-06
ENGD 5.66E-07 2.91E-07 1.36E-06
SINGLE-PASS 7.87E-09 6.00E-09 1.68E-08
TWO-PASS 1.24E-08 8.7E-09 1.698E-08

A3: 1,085761 PARAMETERS

ADAM 1.10E-05 8.42E-06 2.70E-05
SINGLE-PASS 1.484E-08 8.92E-09 2.65E-08
TWO-PASS 1.49E-07 8.63E-09 1.99E-08

0 1000 2000
Iterations

10−12

10−9

10−6

10−3

100

L
os

s

0 25000 50000 75000 100000
Iterations

BFGS

Single-pass

Two-pass

ENGD

ADAM

Figure 2. The loss averaged across five random initializations vs.
iterations for architecture A2 for the heat equation, shown for the
five different optimizers.

In Table 2, we report the total computation time averaged
across five different random initializations for the experi-
ments in Table 1. SNGD is comparable in computational
cost to ENGD for very small network sizes but is able to
optimize more realistically sized networks within minutes
of computation time. The network with around 5,000 pa-
rameters takes under two minutes to train using SNGD
compared to nearly four hours for training the same network
via ENGD. For the network with over one million parame-
ters, SNGD takes less than a fourth of the time of ADAM to
achieve an error that is three orders of magnitude better.

Table 2. Total computation times (in minutes) for training the heat
equation using the three PINN architectures averaged over five
random initializations. Training time for ENGD and BFGS for
the third architecture with over a million parameters is omitted
because it is not possible to train this PINN with these methods as
the memory requirements surpass system availability.

OPTIMIZER A1 A2 A3

ADAM 24.87 44.15 64.48
BFGS 1.10 1.86 N/A
ENGD 1.34 221.89 N/A
SINGLE-PASS 1.06 1.56 16.663
TWO-PASS 1.10 1.86 11.283

5.2. Poisson’s equation

The next example is the 2D Poisson equation,

−∇u(x, y) = f(x, y) for (x, y) ∈ Ω = [0, 1]2

u(x, y) = 0 for (x, y) ∈ ∂Ω,
(11)

where, f(x, y) = 2π2 sin(πx) sin(πy) and the solution is
u(x, y) = sin(πx) sin(πy).

0 500 1000 1500 2000
Iterations

10−11

10−7

10−3

101

L
os

s

0 25000 50000 75000 100000
Iterations

BFGS

Single-pass

Two-pass

ENGD

ADAM

Figure 3. The loss averaged across five random initializations vs.
iterations for the poisson equation, shown for the five different
optimizers.

We train a PINN with four hidden layers and 1, 341 parame-
ters to approximate the solution Equation (11). As reported
in Table 3 and Table 4, SNGD reaches an accuracy over
an order of magnitude better than ENGD in significantly
less computation time. We also observe from Figure 3 that
SNGD reaches a different minima in the loss landscape
from ENGD. The loss is smaller under SNGD by the end
of training, and the number of parameters that meaningfully
contribute to optimization is greater for SNGD. The trun-
cated rank is reported in Table 4, this value is a measure
of the eigenvalues of G that are above tol = 1E-13. This
indicates that the minima for SNGD has a different local
curvature than that of ENGD and that more of the dimen-
sions of the parameter space contribute to the shape of the
local curvature.

7

Near-optimal Sketchy Natural Gradients for PINNs

Table 3. Relative L2 errors for training a PINN to approximate
the Poisson’s equation, averaged over five random initializations.
ENGD and SNGD are trained for 2,000 iterations, while BFGS is
trained for 3,000.

OPTIMIZER MEDIAN MIN MAX

ADAM 4.67E-04 2.89E-04 6.95E-04
BFGS 8.0E-06 4.92E-06 1.05E-05
ENGD 5.16E-07 3.78E-07 7.27E-07
SINGLE-PASS 9.46E-09 7.10E-09 1.96E-08
TWO-PASS 1.21E-08 7.58E-09 1.98-E08

Table 4. Loss, total computation time (in minutes), and truncated
rank of the matrix G for training a PINN to approximate Poisson’s
equation averaged over five random initializations. ENGD are
trained for 2,000 iterations, while BFGS is given 3,000. The rank
is truncated at tol = 1E-13 and computed at the end of training.

OPTIMIZER LOSS RUNTIME (MIN) RANK

ADAM 2.38E-05 52.51 N/A
BFGS 1.46E-8 0.96 N/A
ENGD 1.55E-10 8.85 105.6
SINGLE-PASS 1.84E-14 1.52 160.6
TWO-PASS 5.23E-14 1.92 134.6

5.3. A non-linear boundary-value problem

We now consider a non-linear problem:

−u′′ + u3 = π2 cos(πx) cos3(πx) for x ∈ Ω = [−1, 1]

u′(x) = 0 for x ∈ {−1, 1}.
(12)

For this example, a variational formulation of the problem
is used to calculate the form F from Equation (2).

Table 5. Relative L2 errors and total computation time for training
a PINN to approximate the non-linear boundary value problem
averaged over five random initializations. ENGD and SNGD are
trained for 1,000 iterations, BFGS is trained for 3,000, and ADAM
is given 100,000 iterations.

OPTIMIZER MEDIAN MIN MAX

ADAM 2.28E-05 5.32E-06 4.64E-05
BFGS 1.20E-07 3.52E-08 2.43E-07
ENGD 7.39E-08 1.28E-08 2.31E-07
SINGLE-PASS 3.66E-08 1.34E-08 5.56E-08
TWO-PASS 4.02E-08 1.41E-08 6.28E-08

RUNTIME (MIN)

BFGS ADAM ENGD SINGLE-PASS TWO-PASS

1.88 52.51 4.56 1.09 1.32

We train a PINN with four hidden layers and 1,341 pa-

rameters to approximate the solution u(x) = cos(πx) to
Equation (12). We report our results in Table 5. ENGD and
SNGD have similar accuracy for this problem, both an order
of magnitude more accurate than BFGS. However, SNGD is
more accurate than ENGD and requires around one fourth
of the computation time for this network architecture.

5.4. The transport equation

We turn our attention to the one-dimensional transport equa-
tion with periodic boundary conditions and a sine initial
condition,

∂u

∂t
+ c

∂u

∂x
= 0 for (x, t) ∈ Ω

u(0, t) = u(2π, t) for x ∈ ∂Ω

u(x, 0) = sin(x)

(13)

where, Ω = [0, 2π] × [0, 1] and ∂Ω = {0, 2π}. This ex-
ample models straightforward phenomena; it transports (or
convects) the initial condition with speed c in the direction
of the sign of c. The analytical solution to this problem
u(x, t) = sin(x−ct) can be easily found. However, despite
the straightforward nature of Equation (13), for values of
c > 10, PINNs fail to converge (Krishnapriyan et al., 2021;
Daw et al., 2023).

We choose wave-speed c = 30 and train a PINN with four
hidden layers and a total of 1,341 parameters using two-
pass SNGD, ENGD, and BFGS. In Table 6, we present the
relative L2 error and the value of the loss achieved by the
three optimization methods. For SNGD and ENGD, we also
show the rank of the matrix G up to tol = 1E-13.

In Müller & Zeinhofer (2023), small neural networks with
at most 257 parameters are used to train ENGD. Using such
a small network is insufficient for capturing the essential
features of this example. We have observed that both SNGD
and ENGD fail to converge during training for compara-
ble networks. Additionally, in Table 6, we can see that
by the end of training, G has more than 257 significant
eigenvalues. These eigenvalues correspond to directions in
the loss landscape that are scaled by the Gramian matrix
(see Appendix A for insight into how G affects the descent
direction).

As reported in Table 6, ENGD fails to converge for runs 1, 3,
and 4. In run 1, the loss is reduced without making progress
in reducing error, suggesting that the network is converging
to a trivial solution or fixed point for the differential operator
in Equation (13) (Rohrhofer et al., 2022; Wong et al., 2022).
When ENGD succeeds at training, i.e. for runs 2 and 5,
it achieves comparable accuracy to BFGS. These errors
are similar to those achieved in Krishnapriyan et al. (2021)
and Daw et al. (2023) (curriculum regularization and R3
sampling). The loss for ENGD, when it converges, is also
similar to BFGS, as can be seen in Figure 4. SNGD, on the

8

Near-optimal Sketchy Natural Gradients for PINNs

Table 6. Comparison of training a PINN for the transport equation
using SNGD and ENGD for five different random initializations.
Relative L2 errors, the value the loss attains, and the rank of the
matrix G, up a cut-off tolerance of 1E-13 at the end of training are
shown. All methods are trained for 3,000 iterations.

RUN ERROR LOSS RANK

SINGLE-PASS SNGD

1 4.59E-04 1.61E-11 661
2 9.51E-04 1.10E-13 484
3 1.23E-03 1.52E-13 551
4 2.01E-03 9.98E-14 520
5 2.45E-03 7.68E-13 533

TWO-PASS SNGD

1 2.99E-4 2.94E-9 400
2 7.24E-4 2.70E-11 352
3 3.78E-4 9.53E-10 341
4 8.13E-4 2.51E-11 257
5 2.73E-4 4.90E-12 299

ENGD

1 3.33E0 4.68E-7 246
2 2.85E-3 3.36E-8 187
3 1.82E0 7.37E0 89
4 1.79E0 5.03E0 83
5 2.33E-3 2.58E-8 167

BFGS

1 3.32E-3 2.65E-7 N/A
2 7.68E-2 1.14E-10 N/A
3 2.24E-3 1.41E-7 N/A
4 3.67E-2 1.34E-9 N/A
5 7.67E-3 5.29E-9 N/A

ADAM

1 1.29E+00 2.85E-02 N/A
2 1.37E+00 3.03E-02 N/A
3 1.24E+00 2.68E-02 N/A
4 1.35E+00 3.20E-02 N/A
5 1.27E+00 2.77E-02 N/A

other hand, trains to an order of magnitude better accuracy
(or more) across all five random initializations, which, to the
best of our knowledge, is state-of-the-art for this benchmark
problem.

6. Conclusion
We have designed SNGD, a tailored randomized algorithm
that exploits the structure of the Gramian matrix G, which
is positive, semi-definite, numerically low rank, and ex-
hibits exponentially decaying eigenvalues. The error bound
(8) suggests that randomized eigenvalue decomposition is
highly suitable for approximating G: both the single-pass
and two-pass methods significantly outperform the tradi-
tional least-squares schemes used in ENGD.

0 1000 2000
Iterations

10−9

10−6

10−3

100

103

L
os

s

0 50000 100000
Iterations

BFGS

Single-pass

Two-pass

ENGD

ENGD (converged)

ADAM

Figure 4. The loss averaged across five random initializations vs.
iterations for the transport equation, shown for the five different
optimizers. The average across all five random initializations for
ENGD is shown in red. Because the loss did not make any progress
for two of the random initializations, the average across the three
random initializations for which the loss converged is also shown
in purple.

Instead of explicitly forming the Gram matrix G and per-
forming a matrix-matrix multiplication with M, we com-
pute it directly by using (7), which only requires storing
|θ| × l entries rather than the full |θ|2 matrix. This memory-
efficient implicit computation of SNGD has enabled us to
train PINNs with millions of parameters, which is otherwise
infeasible for ENGD, which requires storing and computing
the full matrix G. Our method achieves this within a few
minutes, in stark contrast to the several hours of runtime
required by existing approaches. Furthermore, our error is
considerably lower than that of the current state-of-the-art
optimization schemes for PINNs.

Impact Statement
This paper presents work aimed at advancing the field of
Machine Learning. There are many potential societal conse-
quences of our work. We have developed a computationally
efficient technique to promote the training of oscillatory
components (high wave number/frequency) in neural net-
works. Additionally, algorithms that enhance the accuracy
and computational efficiency of PINNs have numerous po-
tential consequences due to the myriad applications of sci-
entific interest.

Acknowledgments
We thank the reviewers for their helpful suggestions, which
improved the clarity of this work. We gratefully acknowl-
edge financial support from the Natural Sciences and Engi-
neering Research Council of Canada (NSERC). CG and AK
were supported by RGPIN-2023-05244.

9

Near-optimal Sketchy Natural Gradients for PINNs

References
Adams, R. Sobolev Spaces. Academic Press, Inc., 1975.

Adcock, B., Brugiapaglia, S., Dexter, N., and Morage,
S. Deep neural networks are effective at learning high-
dimensional Hilbert-valued functions from limited data.
In Bruna, J., Hesthaven, J., and Zdeborova, L. (eds.), Pro-
ceedings of the 2nd Mathematical and Scientific Machine
Learning Conference, volume 145 of Proceedings of Ma-
chine Learning Research, pp. 1–36. PMLR, 16–19 Aug
2022. URL https://proceedings.mlr.press/
v145/adcock22a.html.

Avron, H., Maymounkov, P., and Toledo, S. Blendenpik:
Supercharging LAPACK’s least-squares solver. SIAM
Journal on Scientific Computing, 32(3):1217–1236, 2010.

Babuschkin, I., Baumli, K., Bell, A., Bhupatiraju, S., Bruce,
J., Buchlovsky, P., Budden, D., Cai, T., Clark, A., Dani-
helka, I., Dedieu, A., Fantacci, C., Godwin, J., Jones, C.,
Hemsley, R., Hennigan, T., Hessel, M., Hou, S., Kap-
turowski, S., Keck, T., Kemaev, I., King, M., Kunesch,
M., Martens, L., Merzic, H., Mikulik, V., Norman, T.,
Papamakarios, G., Quan, J., Ring, R., Ruiz, F., Sanchez,
A., Schneider, R., Sezener, E., Spencer, S., Srinivasan, S.,
Stokowiec, W., Wang, L., Zhou, G., and Viola, F. The
DeepMind JAX Ecosystem, 2020.

Baker, N., Alexander, F., Bremer, T., Hagberg, A.,
Kevrekidis, Y., Najm, H., Parashar, M., Patra, A., Sethian,
J., Wild, S. M., and Willcox, K. Workshop report on ba-
sic research needs for scientific machine learning: Core
technologies for artificial intelligence. Technical re-
port, USDOE Office of Science (SC), Washington, DC
(United States), 2019. URL https://www.osti.
gov/servlets/purl/1478744.

Belkin, M., Hsu, D., Ma, S., and Mandal, S. Reconciling
modern machine-learning practice and the classical bias–
variance trade-off. Proceedings of the National Academy
of Sciences, 116(32):15849–15854, 2019.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: Composable
transformations of Python+NumPy programs, 2018.

Chang, X., Li, Y., Oymak, S., and Thrampoulidis, C. Prov-
able benefits of overparameterization in model compres-
sion: From double descent to pruning neural networks.
In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 35, pp. 6974–6983, 2021.

Ciarlet, P. G. The Finite Element Method for Elliptic Prob-
lems. North-Holland, 1978.

Dabrowski, J. J., Pagendam, D. E., Hilton, J., Sanderson,
C., MacKinlay, D., Huston, C., Bolt, A., and Kuhnert,
P. Bayesian physics informed neural networks for data
assimilation and spatio-temporal modelling of wildfires.
Spatial Statistics, 55:100746, 2023.

Davi, C. and Braga-Neto, U. PSO-PINN: Physics-informed
neural networks trained with particle swarm optimization.
arXiv:2202.01943 [physics], February 2022.

Daw, A., Bu, J., Wang, S., Perdikaris, P., and Karpatne, A.
Mitigating propagation failures in physics-informed neu-
ral networks using retain-resample-release (r3) sampling.
In Proceedings of the 40th International Conference on
Machine Learning, pp. 7264–7302, 2023.

Fletcher, R. Practical Methods of Optimization. John Wiley
& Sons, New York, 2nd edition, 1987. ISBN 978-0-471-
91547-8.

Fridovich-Keil, S., Gontijo Lopes, R., and Roelofs, R. Spec-
tral bias in practice: The role of function frequency in
generalization. Advances in Neural Information Process-
ing Systems, 35:7368–7382, 2022.

Gower, R., Kovalev, D., Lieder, F., and Richtárik, P. RSN:
randomized subspace Newton. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

Halko, N., Martinsson, P. G., and Tropp, J. A. Finding
structure with randomness: Probabilistic algorithms for
constructing approximate matrix decompositions. SIAM
Review, 53(2):217–288, January 2011. ISSN 0036-1445,
1095-7200. doi: 10.1137/090771806.

Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris,
P., Wang, S., and Yang, L. Physics-informed machine
learning. Nature Reviews Physics, 3(6):422–440, 2021.
doi: 10.1038/s42254-021-00314-5.

Kidger, P. and Garcia, C. Equinox: Neural networks in JAX
via callable PyTrees and filtered transformations, October
2021.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. International Conference on Learning Rep-
resentations (ICLR), 2015. https://arxiv.org/
abs/1412.6980.

König, H. and Richter, S. Eigenvalues of integral operators
defined by analytic kernels. Mathematische Nachrichten,
119(1):141–155, 1984. ISSN 0025584X, 15222616. doi:
10.1002/mana.19841190113.

Krishnapriyan, A., Gholami, A., Zhe, S., Kirby, R., and
Mahoney, M. W. Characterizing possible failure modes
in physics-informed neural networks. Advances in neural
information processing systems, 34:26548–26560, 2021.

10

https://proceedings.mlr.press/v145/adcock22a.html
https://proceedings.mlr.press/v145/adcock22a.html
https://www.osti.gov/servlets/purl/1478744
https://www.osti.gov/servlets/purl/1478744
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

Near-optimal Sketchy Natural Gradients for PINNs

Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T.
Visualizing the loss landscape of neural nets. Advances
in neural information processing systems, 31, 2018.

Müller, J. and Zeinhofer, M. Achieving high accuracy with
PINNs via energy natural gradient descent. In Inter-
national Conference on Machine Learning, pp. 25471–
25485. PMLR, 2023.

Nurbekyan, L., Lei, W., and Yang, Y. Efficient natural gradi-
ent descent methods for large-scale PDE-based optimiza-
tion problems. SIAM Journal on Scientific Computing,
45(4):A1621–A1655, 2023.

Rahaman, N., Baratin, A., Arpit, D., Draxler, F., Lin, M.,
Hamprecht, F., Bengio, Y., and Courville, A. On the spec-
tral bias of neural networks. In International conference
on machine learning, pp. 5301–5310. PMLR, 2019.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
Physics, 378:686–707, February 2019. ISSN 0021-9991.
doi: 10.1016/j.jcp.2018.10.045.

Rathore, P., Lei, W., Frangella, Z., Lu, L., and Udell, M.
Challenges in training PINNs: A loss landscape perspec-
tive. In Salakhutdinov, R., Kolter, Z., Heller, K., Weller,
A., Oliver, N., Scarlett, J., and Berkenkamp, F. (eds.),
Proceedings of the 41st International Conference on Ma-
chine Learning, volume 235 of Proceedings of Machine
Learning Research, pp. 42159–42191. PMLR, 21–27 Jul
2024. URL https://proceedings.mlr.press/
v235/rathore24a.html.

Rohrhofer, F. M., Posch, S., Gößnitzer, C., and Geiger,
B. C. On the role of fixed points of dynamical systems in
training physics-informed neural networks. Transactions
on Machine Learning Research, 2022. URL https:
//openreview.net/forum?id=56cTmVrg5w.

Saibaba, A. K., Lee, J., and Kitanidis, P. K. Randomized al-
gorithms for generalized Hermitian eigenvalue problems
with application to computing Karhunen–Loève expan-
sion. Numerical Linear Algebra with Applications, 23(2):
314–339, 2016. ISSN 1099-1506. doi: 10.1002/nla.2026.

Sejnowski, T. J. The unreasonable effectiveness of deep
learning in artificial intelligence. Proceedings of the Na-
tional Academy of Sciences, 117(48):30033–30038, 2020.

Trefethen, L. N. and Bau, D. Numerical Linear Algebra.
SIAM, 1997. ISBN 0898713617.

Tropp, J. A., Yurtsever, A., Udell, M., and Cevher, V. Practi-
cal sketching algorithms for low-rank matrix approxima-
tion. SIAM Journal on Matrix Analysis and Applications,
38(4):1454–1485, 2017.

van der Meer, R., Oosterlee, C. W., and Borovykh, A. Op-
timally weighted loss functions for solving PDEs with
Neural Networks. Journal of Computational and Applied
Mathematics, 405:113887, May 2022. ISSN 0377-0427.
doi: 10.1016/j.cam.2021.113887.

Wang, S., Teng, Y., and Perdikaris, P. Understanding and
mitigating gradient flow pathologies in physics-informed
neural networks. SIAM Journal on Scientific Computing,
43(5):A3055–A3081, January 2021. ISSN 1064-8275.
doi: 10.1137/20M1318043.

Wang, S., Yu, X., and Perdikaris, P. When and why PINNs
fail to train: A neural tangent kernel perspective. Journal
of Computational Physics, 449:110768, January 2022.
ISSN 0021-9991. doi: 10.1016/j.jcp.2021.110768.

Wang, S., Sankaran, S., and Perdikaris, P. Respect-
ing causality for training physics-informed neural net-
works. Computer Methods in Applied Mechanics and
Engineering, 421:116813, 2024. doi: 10.1016/j.cma.
2024.116813. URL https://doi.org/10.1016/
j.cma.2024.116813.

Weinan, E. et al. The dawning of a new era in applied
mathematics. Notices of the American Mathematical
Society, 68(4):565–571, 2021.

Wong, J. C., Ooi, C. C., Gupta, A., and Ong, Y.-S. Learning
in sinusoidal spaces with physics-informed neural net-
works. IEEE Transactions on Artificial Intelligence, 5(3):
985–1000, 2022.

Wu, C., Zhu, M., Tan, Q., Kartha, Y., and Lu, L. A
comprehensive study of non-adaptive and residual-based
adaptive sampling for physics-informed neural networks.
Computer Methods in Applied Mechanics and Engineer-
ing, 403:115671, January 2023. ISSN 0045-7825. doi:
10.1016/j.cma.2022.115671.

Yang, M., Xu, D., Wen, Z., Chen, M., and Xu, P. Sketch-
based empirical natural gradient methods for deep learn-
ing. Journal of Scientific Computing, 92(3):94, 2022.

Zeng, Q., Bryngelson, S. H., and Schaefer, F. T. Competitive
physics informed networks. In ICLR 2022 Workshop on
Gamification and Multiagent Solutions, April 2022.

Zhang, S., Zhao, H., Zhong, Y., and Zhou, H. Why shal-
low networks struggle with approximating and learning
high frequency: A numerical study. (arXiv:2306.17301),
November 2023. doi: 10.48550/arXiv.2306.17301.

Zhu, C., Byrd, R. H., Lu, P., and Nocedal, J. Algorithm 778:
L-BFGS-B: Fortran subroutines for large-scale bound-
constrained optimization. ACM Trans. Math. Softw., 23
(4):550–560, December 1997. ISSN 0098-3500. doi:
10.1145/279232.279236.

11

https://proceedings.mlr.press/v235/rathore24a.html
https://proceedings.mlr.press/v235/rathore24a.html
https://openreview.net/forum?id=56cTmVrg5w
https://openreview.net/forum?id=56cTmVrg5w
https://doi.org/10.1016/j.cma.2024.116813
https://doi.org/10.1016/j.cma.2024.116813

Near-optimal Sketchy Natural Gradients for PINNs

A. Natural gradients for two simple problems
We consider two basic problems

min
u∈L2

1

2

∫ 1

−1

(u(x)− f(x))2dx (14)

and

min
u∈H0

1

∫ 1

−1

[
1

2
(du/dx)2(x)− u(x)f(x)

]
dx (15)

where L2 is the space of measurable, square integrable functions and H0
1 is the space of functions u whose derivatives

are square integrable and u(−1) = 0. For details on these spaces and some of the results used below, see the classic text
(Adams, 1975). In both cases, the data function f is given. For completeness, we show some results that are standard in the
finite element literature (Ciarlet, 1978).

Problem (14) is a basic data fitting problem. Here, we have assumed infinite training data and access to every function in
the space L2. In practice, limited data is available for training, the space of allowable approximating functions is finite
dimensional, and the integral is replaced by a quadrature rule on the data. However, in the following theoretical discussion
we will keep the infinite data assumption. Problem (15) solves an ODE boundary value problem. The minimizer satisfies

d2u

dx2
= f

with boundary conditions u(−1) = 0 and u′(1) = 0.

We consider now the minimization problems with functions u restricted to a linear, N dimensional subspace S, with basis
functions {ψi(x)}. The optimal solution U∗ ∈ S to problem (14) satisfies the linear system

MU∗ = F

where U is the vector of coefficients of the optimal u(x):

u(x) =

N∑
i=1

Uiψi(x),

M is the symmetric, positive definite matrix with entries

Mi,j =

∫ 1

−1

ψi(x)ψj(x)dx,

and F is the vector

Fj =

∫ 1

−1

f(x)ψj(x)dx.

These are standard results from the finite element literature (Ciarlet, 1978) where M is called the mass matrix. We consider

g(U) =

∫ 1

−1

(
N∑
i=1

Uiψi(x)− f(x)

)2

dx

and consider finding the optimal solution U∗ via gradient descent (GD). The gradient of g is

MU− F.

By considering the error E = U−U∗ we can write gradient descent in terms of the error with direction

ME

and with this standard trick we can neglect the RHS f and F and consider U∗ = 0.

12

Near-optimal Sketchy Natural Gradients for PINNs

Figure 5. Contours of a well-conditioned energy landscape (left) such as achieved for a data fitting problem with a finite element basis. A
poorly behaved energy landscape (right) in which the steep vertical gradients limit the learning rate and lead to slow convergence in the
horizontal modes. For simple Neural Networks applied to a data fitting problem, it is demonstrated that the slowly converging modes are
oscillatory (high wavenumber). The use of the Gram Matrix in the NEG method in an idealized setting moves the landscape from the right
to the left. In our practical implementation, it promotes convergence in a finite number of modes.

We consider now whether M is well conditioned (Trefethen & Bau, 1997) and the impact this has on the convergence of
GD. We calculate

g(U) :=

∫ 1

−1

(u(x))2 =

∫ 1

−1

(
N∑
i=1

Uiψi(x)

)2

= (U,MU)

where the LHS (·, ·) is the Euclidean inner product and see that the matrixM relates the L2 metric (energy) of the underlying
problem to the Euclidean metric of the subspace basis coefficients. We can consider the orthonormal basis of eigenvectors of
M , {Vj} with corresponding eigenvalues λj > 0. If we write

U =

N∑
j=1

vjVj

then the gradient has the simple form

MU =

N∑
j=1

λjvjVj

and the level sets of energy E = (U,MU) simplify to ellipsoids aligned with the coordinate axes

E =

N∑
j=1

λj(vj)
2.

The gradient is perpendicular to the level sets, which gives a graphical addition to the ideas below.

If {φi} is an orthonormal set in L2, then M is the identity matrix, and GD iterations will tend straight to the optimal solution
U∗ = 0, as shown in Figure 5 (left). The condition number κ of M is defined as

κ(M) = λmax/λmin.

If M has a small condition number, GD convergence is almost uniform in energy. If M has a large condition number, then
the learning rate for GD is limited by the large eigenvalues and the small eigenvalue components converge slowly, see
Figure 5 (right). It is well known that PINNs and neural networks, in general, suffer from spectral bias; training proceeds
slowly in wavenumber (oscillatory) components. We show this explicitly in Section B below, following the ideas in (Zhang
et al., 2023).
Remark A.1. The linear subspace discussion has relevance to nonlinear approximations u(Θ) such as approximations by
neural networks if we consider the tangent spaces of these approximations.

13

Near-optimal Sketchy Natural Gradients for PINNs

We can now describe the purpose of the natural energy update in Equation (5) . For the linear subspace data fitting problem
above, parameters θi are just the basis coefficients Ui, and

∇θL = MU

where we have again neglected the term from the data function f . The operator F in Equation (2) is the identity operator, in
this case, and ∂uθ/∂θi is the basis function ψi(x). Thus, the Gram matrix G is the mass matrix M , and the natural energy
gradient is

M†MU.

If the exact M† were used, we would obtain the identity operator, with uniform convergence in the span of S. By using an
efficiently computed, approximate M†, we are preconditioning GD to increase the convergence rate of some components of
the solution. In the case of neural networks and PINNs, we are increasing the convergence rate of medium wave-number
components of the solution.

For completeness and use in the next section, we consider the ODE problem (14). Here, we look for an optimal solution in
the same subspace, and again neglecting the data f , we have a gradient KU where

Ki,j =

∫ 1

−1

dψi
dx

dψj
dx

dx,

known as the stiffness matrix in the FE community. We reuse the previous notation and write

g(U) :=

∫ 1

−1

(
du

dx

)2

=

∫ 1

−1

(
N∑
i=1

Ui
dψi
dx

)2

= (U,KU)

and see that the matrix K relates the natural (Dirichlet) energy∫ 1

−1

(
du

dx

)2

to the Euclidean coefficient metric. If the condition number of K is large, then convergence in the small eigenvalue
components will be slow in GD iterations. Following the same approach as above, the natural energy gradient for this
problem is

K†KU

and an efficiently calculated approximate K† improves convergence in some of the components.

B. Condition number of the Gramian for Neural Networks and PINNs
We consider a specific subspace S and two different bases for it. We take S to be the set of piecewise linear functions U(x)
on N equal subintervals of length h = 2/N of x ∈ [−1, 1] with U(0) = 0. We can represent U(x) with a standard FEM
basis ψi(x) (i = 1, . . . N), which has value one at one grid point xi = −1 + ih and zero at other grid points. We could also
represent U(x) with a basis φi(x) (i = 0, . . . N − 1) given by

φi(x) = σ(x− xi)

where σ is the ReLU activation function. It is shown in (Zhang et al., 2023) that there is a nice reduction from a general
one-layer neural network that leads to this expression. In practice, the positions xi vary in the optimization; however,
following (Zhang et al., 2023), for the sake of tractability, we keep them fixed and continue in the linear subspace framework.
We can write U(x) ∈ S in either basis with different coefficients

U(x) =
∑

Uiψi(x) =
∑

Viφi(x).

The optimal solution can similarly be expressed in either basis as

M1U = F and M2V = G, (16)

14

Near-optimal Sketchy Natural Gradients for PINNs

where

M1,ij =

∫ 1

−1

ψiψjdx

M2,ij =

∫ 1

−1

φiφjdx

Fj =

∫ 1

−1

ψj(x)f(x)dx (17)

Gj =

∫ 1

−1

φj(x)f(x)dx. (18)

Direct calculation shows that

D2φj = hψj and D2Ui = hVj

at interior grid points where

D2φj := φj−1 − 2φj + φj+1.

There are modifications at the boundary grid points that we will not be careful with here. With this result, we see from (17
and 18) that

F = hD2G

and from (16)

D2M2D2U = D2G = F

from which can be read

M1 = D2M2D2

or M2 = D−1
2 M1D

−1
2 . It is known that M1 is well conditioned. An explicit computation using discrete Fourier transform

techniques gives

κ(M1) = 3

for all N . The operator D2 is similarly known to have condition number N2 with large eigenvalues associated with
large wavenumber components. Thus, M2 has condition number O(N4) and has slow convergence for these oscillatory
components in an GD optimizer. The O(N4) condition number for this reduced NN is shown more generally in (Zhang
et al., 2023).

We can apply the same approach to the ODE boundary value problem using stiffness matrices K1 and K2 leading with the
same algebra to

K2 = D−1
2 K1D

−1
2 .

Since K1 = −D2/h, we have

K2 = −N
2
D−1

2 ,

a somewhat unexpected result. Careful handling of the boundary terms shows that the exact result above applies with
modified

D2c0 = c1 − c0
and

D2cN−1 = 2cN−1 − cN−2.

The result above gives evidence that the Gram matrix for the PINN approximation of the model problem (15) does have a
large condition number, and that the use of the approximate natural energy gradient will promote the training of oscillatory
modes of the solution. The work in (König & Richter, 1984) gives some evidence that the exponential decay in the
eigenvalues of a PINN Gram matrix observed computationally is expected when an analytic activation function such as
swish is used.

15

