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Abstract

Most works on gender bias focus on intrinsic001
bias — removing traces of information about002
a protected group from the model’s internal003
representation. However, these works are of-004
ten disconnected from the impact of such de-005
biasing on downstream applications, which is006
the main motivation for debiasing in the first007
place. In this work, we systematically test how008
methods for intrinsic debiasing affect neural009
machine translation models, by measuring the010
extrinsic bias of such systems under different011
design choices. We highlight three challenges012
and mismatches between the debiasing tech-013
niques and their end-goal usage, including the014
choice of embeddings to debias, the mismatch015
between words and sub-word tokens debiasing,016
and the effect on different target languages. We017
find that these considerations have a significant018
impact on downstream performance and the019
success of debiasing.020

1 Introduction021

Natural language processing models were shown to022

over-rely and over-represent gender stereotypes.1023

These can typically be found in their internal repre-024

sentation or predictions. For example, consider the025

following sentence:026

(1) The doctor asked the nurse to help her
in the procedure.

coref

027

Inferring that her refers to the nurse rather than the028

doctor may indicate that the model is biased. A029

useful distinction of model’s biases was proposed030

by (Goldfarb-Tarrant et al., 2021a; Cao et al.,031

2022a): Intrinsic bias typically manifests in the032

geometry of the model’s embeddings. For example,033

finding that stereotypically female occupations034

1Throughout this work we refer to morphological gen-
der, and specifically to masculine and feminine pronouns
as captured in earlier work. We note that future important
work can extend our work beyond these pronouns to e.g.,
neo-pronouns (Lauscher et al., 2022).
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Figure 1: A schematic view of a neural machine trans-
lation system, highlighting different possibilities for
applying intrinsic debiasing techniques. We examine
three considerations: (1) where to apply the debiasing;
(2) which tokens to apply the debiasing to (e.g. only
gender-indicative words or the entire vocabulary); and
(3) the effect of different target languages.

(e.g. “nurse”, “receptionist”) are grouped together 035

in the embedding space, while stereotypically male 036

occupations (e.g. “doctor”, “CEO”) are closer to 037

each other (Gonen and Goldberg, 2019). Extrinsic 038

bias on the other hand is measured in downstream 039

tasks. For instance, in machine translation (MT), 040

which is the focus of this work, a biased model may 041

translate Example (1) to Spanish using a masculine 042

inflection for the word “doctor”, even though 043

a human translator is likely to use a feminine 044

inflection (Stanovsky et al., 2019). Intrinsic and 045

extrinsic bias do not necessarily correlate (Cao 046

et al., 2022b; Goldfarb-Tarrant et al., 2021b), and 047

biases might reoccur when applying debiased 048

models on other tasks (Orgad et al., 2022). 049

In this work, we identify a gap in the literature 050

between intrinsic bias mitigation and its influence 051

on downstream tasks. Namely, while extrinsic 052

bias may affect human users in a variety of ap- 053

plications, debiasing techniques often focus only 054
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on intrinsic measures, aiming to obfuscate gen-055

der from pretrained embeddings (Bolukbasi et al.,056

2016; Elazar and Goldberg, 2018; Ravfogel et al.,057

2020). These approaches leave many unanswered058

questions when deploying them within a complex059

downstream model for specific tasks.060

As shown in Figure 1, we systemically explore061

three fundamental challenges when integrating in-062

trinsic debiasing techniques within complex open-063

source neural MT architectures. We find that dif-064

ferent design choices lead to a wide difference in065

extrinsic bias as well as task performance.066

First, we explore different approaches to cope067

with discrepancies between different tokenization068

strategies. While intrinsic debiasing is largely per-069

formed over complete words from a fixed dictio-070

nary, modern MT requires mapping those onto sub-071

word elements determined via a data-dependant072

tokenizer. We find that debiasing only complete073

words outperforms a more naive debiasing of all074

sub-word tokens.075

Second, several word embedding tables could be076

debiased within an MT system. Therefore, a pre-077

liminary architectural question is which of them to078

debias. We explore various combinations, finding079

the optimal configuration depends on the intrinsic080

debiasing technique.081

Third, We explore the effects of debiasing a082

translation model over three target languages (He-083

brew, German, and Russian). While all three en-084

code morphological noun gender, they differ in085

script, typology, and morphology. We find that086

an important factor for debiasing efficiency is the087

number of words represented as single tokens, a088

property determined both by the language’s mor-089

phological properties as well as its sampled distri-090

bution in the tokenizer training data.091

Taken together, our results suggest that extrin-092

sic debiasing involves many interdependent chal-093

lenges which cannot be inferred from an intrinsic094

outlook. We hope our work will promote more095

research on combining intrinsic debiasing methods096

to downstream tasks to produce extrinsically fairer097

MT models.098

2 Background099

There is an abundance of debiasing methods in the100

field (Wang et al., 2021; Schick et al., 2021; Shen101

et al., 2021; Dev and Phillips, 2019; Dev et al.,102

2021; Kaneko and Bollegala, 2021; Shao et al.,103

2023). Most of them focus on intrinsic debiasing.104

We focus on three prominent methods, outlined 105

below. Importantly, all of these methods learn a 106

transformation that can be applied to arbitrary vec- 107

tors, once the model has finished training, and all 108

were tested mostly intrinsically. 109

Intrinsic debiasing methods. We experiment 110

with three methods: (1) Hard-Debiasing (Boluk- 111

basi et al., 2016) removes a gender subspace via 112

a Principal Component Analysis (PCA) of pre- 113

determined word pairs which are considered as 114

indicative of gender; (2) INLP (Ravfogel et al., 115

2020) learns the direction of the gender subspace 116

rather than using a predefined list of words; and 117

(3) LEACE (Belrose et al., 2023) which prevents 118

all linear classifiers from detecting a guarded con- 119

cept. A key difference between the methods is that 120

Hard-Debiasing is non-linear and non-exhaustive, 121

leaving stereotypical information after its’ appli- 122

cation (Gonen and Goldberg, 2019). In contrast, 123

INLP and LEACE are linear and exhaustive; after 124

applying INLP, stereotypical information can’t be 125

extracted with a specific linear classifier, and after 126

applying LEACE, it can’t be extracted with any 127

linear classifiers. 128

The effect of debiasing on NMT. Most related 129

to our work, Escudé Font and Costa-jussà (2019) 130

explored the impact of debiasing methods on an 131

English-to-Spanish MT task. However, they tested 132

the MT models only on simple synthetic data, while 133

here we focus on complex data reflecting real bi- 134

ases, and explore various design choices. 135

3 Integrating Intrinsic Debiasing in MT 136

We examine debiasing methods within the popu- 137

lar encoder-decoder approach to MT, as shown in 138

Figure 1. Next, we describe the different research 139

questions addressed in our setup. 140

Which embedding to debias? An encoder- 141

decoder model has multiple embedding tables that 142

can be intrinsically debiased: (1) the input matrix 143

of the encoder; (2) the input matrix of the decoder; 144

and (3) the output of the decoder, usually before 145

the softmax layer.2 We employ different intrinsic 146

debiasing techniques to each of these tables and 147

evaluate their effect on downstream performance. 148

2In a complex system, such as the transformer encoder-
decoder architecture, the representations after each trans-
former layer and within each layer can be debiased as well.
We leave the investigation of such debiasing to future work.
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Language Dataset Name Dataset Size

Russian newstest2019 1997
German newstest2012 3003
Hebrew TED dev 1000

Table 1: Datasets used for evaluating different target
languages. The Dataset Size describes the number of
sentences in the dataset. Russian and German datasets
are described in Choshen and Abend (2021)’s paper.
The Hebrew dataset is based on the Opus TED talks
dataset (Reimers and Gurevych, 2020).

Which words to debias? Tokenization poses a149

challenge for extrinsic debiasing as it may intro-150

duce discrepancies between the intrinsically debi-151

ased elements (complete words) and the MT input152

model (sub-word tokens) (Iluz et al., 2023). We153

experiment with three different configurations: (1)154

all-tokens: debiases embeddings of all tokens in155

the model’s vocabulary; (2) n-token-profession: de-156

biases all embeddings of words that appear in a157

predefined set of professions, even if they are split158

across multiple tokens, and (3) 1-token-profession:159

debiases only the embeddings of a predefined set160

of professions that align with the vocabulary of the161

debiasing technique, e.g., “nurse” is debiased only162

if it appears as a single token.163

How does debiasing affect different languages?164

We experiment with three target languages that165

encode morphological gender for nouns, represent-166

ing different typological features: (1) Hebrew, a167

Semitic language with abjad script, (2) Russian, a168

Slavic language with a Cyrillic script, and (3) Ger-169

man, a Germanic language with Latin alphabet.170

4 Evaluation171

4.1 Experimental Setup172

MT model. We make use of OPUS-MT (Tiede-173

mann and Thottingal, 2020),3 a transformer-based174

MT model built of 6 self-attention layers and 8 at-175

tention heads in the encoder and the decoder. The176

model was trained on Opus,4 an open-source web-177

text dataset, which uses SentencePiece tokeniza-178

tion (Kudo and Richardson, 2018).179

Metrics and datasets. For extrinsic debiasing180

measurement, we employ the automatic accuracy181

metric from Stanovsky et al. (2019), assessing182

the percentage of instances where the target en-183

3https://github.com/Helsinki-NLP/Opus-MT
4https://opus.nlpl.eu

Target Language German Hebrew Russian

no-debiasing 57.7 45.6 41.0

n-token-profession 60.9 48.3 41.0
1-token-profession 61.9 48.4 41.2

Table 2: Accuracy on different target languages when
varying the tokens debiasing strategy. Presenting re-
sults for applying (1) the baseline (no-debiasing), (2)
n-token-profession, debiasing tokens corresponding to
professions that are tokenized into one or more tokens,
and (3) 1-token-profession, debiasing only professions
that are tokenized into a single token. For brevity, each
cell presents the the best performing choice of embed-
ding table and debiasing method.

tity retains its original gender from the English 184

sentence, using morphological markers in the tar- 185

get language. We focus on the performance on 186

the anti-stereotypical set of 1584 sentences from 187

WinoMT (Stanovsky et al., 2019). These consist 188

of anti-stereotypical gender role assignments, such 189

as the female doctor in Example 1. In addition, we 190

approximate the translation quality before and after 191

debiasing using BLEU (Papineni et al., 2002) on 192

several parallel corpora described in Table 1, and 193

manually evaluate the translations to corroborate 194

our findings. Finally, all results are statistically sig- 195

nificant with p-value < 0.05, see Appendix C for 196

details. 197

4.2 Results 198

Debiasing 1-token-profession professions outper- 199

forms other approaches. Table 2 shows the gen- 200

der translation accuracy when applying debiasing 201

methods on different tokens. 5 For the three tested 202

languages, debiasing only professions that are to- 203

kenized into single tokens improved the gender 204

prediction the most. This hints that the sub-word 205

tokens that compose a profession word do not hold 206

the same gender information as the whole word. 207

The optimal embedding table to debias depends 208

on the debiasing method. Table 3 shows the im- 209

provement in gender prediction averaged across 210

languages when applied on different embedding ta- 211

bles. Hard-Debiasing improves gender prediction 212

only when debiasing the encoder’s inputs, while 213

INLP and LEACE improves gender prediction ac- 214

curacy the most when applied to the decoder output. 215

5Excluding results for debiasing all tokens, as it led to
garbled translations where automatic debiasing measures are
irrelevant.

3
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Embedding Table Baseline Hard-Debiasing INLP LEACE

Encoder Input 48.1 49.6 43.2 43.4
Decoder Input 48.1 48.0 50.0 53.8
Decoder Output 48.1 48.0 50.7 53.8

Table 3: Opus MT’s gender prediction accuracy with
intrinsic debiasing methods applied on different em-
bedding tables. Each cell is averaged across our tar-
get languages (de, he, ru). Bold numbers represent
best per debiasing method. The accuracy is measured
by Stanovsky et al. (2019)’s method on their WinoMT
dataset

This may be explained by INLP’s and LEACE’s216

linearity, which therefore works best at the end of217

the decoder, after all nonlinear layers, while Hard-218

Debiasing employs a non-linear PCA component.6219

Results vary between languages. Debiasing has220

a positive impact on the accuracy of gender trans-221

lation in both German and Hebrew, with German222

improving by 3.7 points and Hebrew by 2.8 points.223

In contrast, Russian did not see as much improve-224

ment (Table 2). The difference may be due to225

Russian’s relatively rich morphology (e.g., it has 7226

cases compared to 4 in German (Dryer and Haspel-227

math, 2013)), resulting in much fewer single-token228

professions (59% in Russian compared to 65% in229

Hebrew, and 83% in German).230

LEACE and Hard-Debiasing do not significantly231

harm BLEU scores. Figure 2 shows the relation-232

ship between the difference in the gender prediction233

and the difference in BLEU. Hard-Debiasing and234

LEACE both have a small negative effect to the235

BLEU scores, while in comparison, INLP presents236

a trade-off between the improvement in gender237

prediction and the translation quality according to238

BLEU scores. This shows that INLP removes infor-239

mation which is important for the translation model,240

while LEACE (which was proved to be the minimal241

transformation needed to remove gender informa-242

tion) and Hard-Debiasing indeed preserve more243

of the information. In terms of the gender predic-244

tion accuracy, the best setting of Hard-Debiasing245

is when applied to the encoder, while INLP and246

LEACE improve the gender prediction the most247

when applied to the decoder outputs. LEACE per-248

forms better than INLP when applied on the de-249

coder as it was designed to prevent all linear clas-250

sifiers from detecting the guarded concept, while251

INLP learns to obfuscate only one linear classifier.252

6We tested debiasing all 8 combinations of the three em-
bedding tables, but this did not change our findings.

Figure 2: The relation between gender prediction ac-
curacy difference (orange) and the BLEU difference
(blue) between the original model (without any interven-
tion) and the debiased model. The left part presents the
results with Hard-Debiasing, INLP in the middle, and
LEACE on the right. For each method, we present the
results per each location (Encoder, Decoder-input, and
Decoder-output), as well as each language).

Human evaluation shows that gender prediction 253

is indeed improved with Hard-Debiasing. We 254

manually annotate a portion of the translation to 255

assess how well the automatic gender prediction 256

metrics estimate real bias. We annotate the con- 257

figuration of Hard-Debiasing which changes the 258

translations the most compared to other methods: 259

applying Hard-Debiasing to the encoder’s input 260

with the 1-token-profession paradigm. Out of the 261

1584 sentences in the dataset, 184 (11%) changed 262

after the debiasing. 32% out of all the sentences 263

that changed after the debiasing corrected the pro- 264

fession’s gender prediction. These numbers are 265

somewhat higher than what the automatic metrics 266

suggest (26% improvement on the same setup). See 267

Appendix A for additional details. 268

5 Conclusions and Future Work 269

We systematically explore different challenges and 270

design choices when integrating intrinsic debiasing 271

methods within complex machine translation sys- 272

tems. We find that it is better to debias only words 273

representative of gender and correspond to single 274

tokens, that it is important to couple the debias- 275

ing method with the specific embedding table (e.g., 276

encoder versus decoder), and that different target 277

languages lead to vastly different results. Future 278

work can evaluate additional debiasing methods on 279

additional tasks, that may require other considera- 280

tions when applying such methods. 281
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Limitations282

Our work explores the integration of debiasing283

within a complex machine translation system. As284

such, the space of possible combinations to explore285

is very large, including the embedding table to de-286

bias, the choice of target languages, their corre-287

sponding test corpora, the debiasing method to ex-288

plore and their hyperparameter settings, and more.289

We systematically explore a subset of these options,290

which may hinder the generalizability of our spe-291

cific results, e.g., which tokenization scheme works292

best. We encourage future work to re-examine293

our findings in other settings and possibly refine294

or amend them, while our main takeaway is the295

broader set of considerations which should be taken296

into account when debiasing complex, real-world297

systems. Additionally, to solve this task, machine298

translation systems need to also improve their coref-299

erence resolution abilities, which we did not exam-300

ine here (Yehudai et al., 2023). Additionally, our301

work focuses on gender bias, but certain debiasing302

techniques are broad and can be used for other pro-303

tected attributes, thus we aspire that our work will304

pave the way for exploring other attributes in future305

works.306
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The evaluation proposed by Stanovsky et al. (2019) 496

is automatic and thus bound to introduce some 497

noise. To mitigate this concern, we perform a hu- 498

man evaluation which complements the automatic 499

metric and provides a more thorough analysis of 500
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the results. The evaluation was applied to transla-501

tions into Hebrew which were debiased according502

to the 1-token-profession words (see Section 3),503

when specifically applied on encoder’s input. We504

only analyze the sentences that changed in any way505

compared to the original (non debiased) transla-506

tions. There were 184 out of 1584 sentences which507

changed (11%). 32% of the changed sentences im-508

proved the gender prediction (i.e the gender of a509

profession was incorrect in the original translation510

and correct in the debiased translation), 3% of the511

changed sentences were detracted (i.e the gender of512

a profession was correct in the original translation513

and incorrect in the debiased translation), and in514

the rest 65% the change did not affect the gender515

of the profession. In 23% out of the 65% of unaf-516

fected sentences, the gender of the other profession517

in the sentence was changed, for example in the518

sentence “The salesperson talked to the auditor be-519

cause she was worried about the audit” the gender520

of salesperson did not change in the debiased trans-521

lations, but the gender of the auditor was changed522

from male to female form. Note that this is not a523

mistake since the gender of auditor is unknown in524

the source sentence. This shows that the debias-525

ing method affects a larger amount of professions526

which are not counted in the improvement of the527

model.528

B Human Annotations529

To define the gender direction in the target language530

for both debias methods, we needed the translations531

of the 10 representative gender word pairs for each532

language. To get those pairs, we asked a native533

speaker of each of these languages to translate them534

into their language. In the case of a pair that is535

irrelevant to the target language (like Mary and536

John which are common male and female names in537

English but not in other languages), we asked them538

to adapt the pair to represent gender pairs in their539

language. The set of professions that we debias was540

also translated into the target languages by three541

native speakers in each language. The professions542

annotations were taken from Iluz et al. (2023). The543

translations of the 10 pairs were collected for four544

languages, German, Hebrew, Russian, and Spanish.545
7546

7link for the 10 pairs datasets will be released upon publi-
cation.

C Statistical Significance 547

In order to determine the statistical significance of 548

our findings, we employed McNemar’s test, as rec- 549

ommended by Dror et al. (2018). McNemar’s test 550

is designed for models with binary labels, therefore 551

it is suitable to test the gender bias scores where 552

each sentence is classified as correct if the gender 553

is accurately identified in the translation and incor- 554

rect otherwise. The null hypothesis for this test 555

states that the marginal probability for each out- 556

come is equal between the two algorithms being 557

compared, indicating that the models are identical. 558

In our case, the two models being compared are the 559

original translation model and the debiased version. 560

When concatenating results per debias method, we 561

get that the results of Hard Debias are significant 562

with p-value of 3.01E-07, and the results of INLP 563

are significant with p-value of 9.65E-06. When 564

comparing the results per embedding table to de- 565

bias, we get that debiasing the encoder inputs is 566

significant with p-value of 5.42E-10, debiasing the 567

decoder inputs is significant with p-value of 0.016 568

and debiasing the decoder outputs is significant 569

with p-value of 0.014. finally when concatenating 570

all the results, we get that comparing the outputs 571

of a debiased model to a the original model, the 572

results are significant with p-value of 0.01. 573
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