

OBSERVATIONAL SCALING LAWS IN LLM-BASED EM-BODIED DECISION MAKING

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
189

054 from the kitchen,” depends on core skills like natural language understanding and commonsense reasoning. We posit that a model’s downstream performance is a function of a low-dimensional space
 055 of such capabilities. Model families differ only in the efficiency with which they convert training
 056 compute into these capabilities. This relationship implies a log-linear trend from capabilities to
 057 downstream performance across all model families, and a log-linear trend from training compute to
 058 capabilities within each specific family.
 059

060 This observational approach provides key advantages. First, it enables the study of scaling behavior
 061 without retraining models. Second, it combines models from heterogeneous families with different
 062 scaling properties, such as LLaMA (6; 7; 8), Qwen(9; 10; 11; 12), Gemma(13; 14; 15; 16; 17),
 063 and StarCoder (18; 19). This allows an analysis of different scaling strategies and their impact on
 064 downstream performance and algorithmic interventions.
 065

066 In experiments, we validate these scaling laws on the Embodied Agent Interface (EAI) benchmark
 067 using 125 open LLMs from 28 model families. We demonstrate our method’s utility in three settings:
 068 predicting emergent capabilities, quantifying simulation gaps, and measuring the effect of structured
 069 outputs. First, we predict the performance of models larger than 40B parameters using data from
 070 models smaller than 40B. Second, we use the scaling laws to quantify the performance gap between
 071 different simulation environments. Third, we quantify the effect of structured outputs and find they
 072 degrade the model’s decision-making performance.
 073

074 Our contributions are twofold. First, we introduce an observational scaling framework that
 075 unifies scaling laws for embodied tasks. This framework predicts decision-making performance as a
 076 function of model capabilities and scale. Second, using our framework on the EAI benchmark, we
 077 quantify the performance degradation from structured outputs and measure the gap between simu-
 078 lation environments.
 079

080 The paper proceeds as follows. Section 2 reviews related work. Section 3 formulates our problem.
 081 Section 4 presents our method and Section 5 details our experiments. We conclude in Section 6.
 082

083 2 RELATED WORKS

084 **Embodied benchmarks** such as VirtualHome, ALFRED, BEHAVIOR-1K, TEACH, and Habi-
 085 tate evaluate whether agents can map goals and observations into machine-executable action-state
 086 sequences that achieve task goals, enabling step- and goal-level verification of decision making
 087 (20; 21; 22; 23; 24). The Embodied Agent Interface (EAI) formalizes this setting by standardizing
 088 four LLM decision-making modules (goal interpretation, subgoal decomposition, action sequencing,
 089 transition modeling), specifying I/O formats, and adding fine-grained error taxonomies that sup-
 090 port modular, diagnostic evaluation (3). Building on these interfaces, researchers either (i) improve
 091 LLM performance via prompting and planning—e.g., Chain-of-Thought and ReAct—or affordance-
 092 grounded planning for robotics (SayCan), or (ii) extend toward VLA policies that couple vision, lan-
 093 guage, and action for robot control (RT-2; OpenVLA) (25; 26; 27; 28; 29; 30; 31; 32; 33; 34; 35; 36).
 094 Unlike work that augments algorithms or expands tasks, our focus is to analyze scaling behavior of
 095 LLMs within EAI, linking standardized upstream capabilities (reasoning, coding, math) to down-
 096 stream embodied performance via observational scaling principles (5).
 097

098 **Scaling laws** fall into two main categories: compute-based scaling laws and downstream perfor-
 099 mance scaling laws. Standard scaling laws (37; 38; 39; 40; 41; 4; 42), which are compute-based scal-
 100 ing laws, are typically expressed as power-law relationships between a model’s cross-entropy loss
 101 L and compute-scale measures. In this context, “compute scale” refers to training resources such as
 102 the number of training FLOPs (C), model parameters (N), and training tokens (D). Compute-based
 103 scaling laws characterize pretraining behavior within a single model family, linking upstream perfor-
 104 mance to controllable quantities like training compute. In contrast, downstream performance scaling
 105 laws (43; 39; 44; 45; 46; 38) analyze scaling across model families, connecting benchmark results to
 106 compute-related metrics (e.g., model size (47)) or predicting its performance due to appearing rapid
 107 “emergence” (48; 49; 50). Specifically, Researchers (51; 52) have explored both linear and sig-
 108 moidal functional forms to extrapolate downstream performance from pretraining loss or compute
 109 measures. Chen et al. (53) introduced a two-stage approach—first predicting pretraining loss from
 110 compute, then mapping that loss to downstream performance—even when using models from differ-
 111 ent families with varying compute-efficiencies. On the theory front, Arora and Goyal (54) and Ruan
 112

et al. (5) derive theories characterizing how performance on complex skills of LMs can be derived as a composition of base skills. Drawing from these downstream scaling insights including observation scaling laws (5), we aim to identify scaling patterns between embodied decision-making performance and conventional benchmark metrics, emphasizing empirical observation rather than compute-driven modeling.

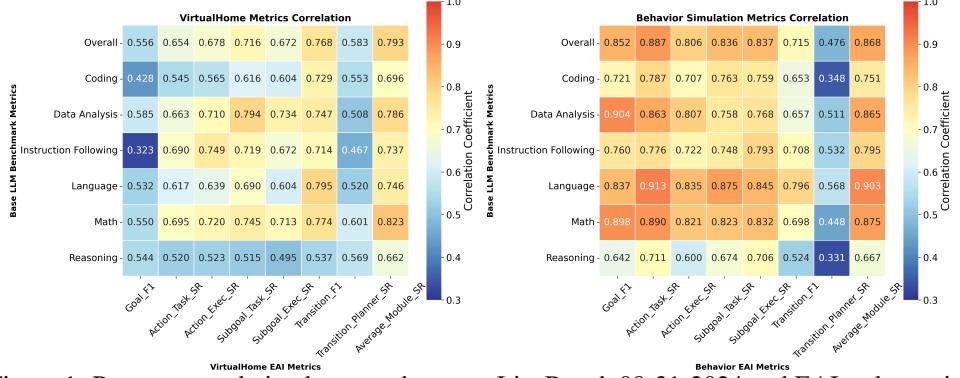


Figure 1: Pearson correlation heatmap between LiveBench 08-31-2024 and EAI task metrics.

Corelation between benchmarks have been investigated in numerous works. Specifically, extensive research has explored the relationship between the out-of-distribution performance and in-distribution performance of machine learning models (55; 56; 57; 58; 59). In NLP and LM evaluations, Qiu et al. (60) and Torregrossa et al. (61) found that multiple evaluation metrics for word embeddings are highly correlated, while Liu et al. (62) observed robust correlations across question-answering benchmarks. Perlitz et al. (63) and Polo et al. (64) further noted that performance is strongly correlated across samples of different LM benchmarks, enabling the design of more efficient evaluation suites. Beyond empirical observations, studies have identified compact latent structures driving performance across tasks. Ilić (65) demonstrated that a single latent factor accounts for 85% of performance variance on the Open LLM Leaderboard (66) and GLUE benchmark (67). Burnell et al. (68) similarly uncovered that three factors explain 82% of variation on the HELM benchmark (69). These findings align with cross-task consistency seen elsewhere: for example, MixEval (70) combines diverse benchmark queries and achieves a high ranking correlation (Pearson 0.96) with human-composed Chatbot Arena (71), demonstrating coherence between aggregated benchmarks and human judgment. In Figure 1, our work observes benchmark correlations (the highest is 91.3%) between LiveBench(72) and EAI, and finds the gap between simulations. This leads to formulating simulation-aware scaling predictions based on benchmark performance.

3 PROBLEM FORMULATION

We formulate scaling laws within the Embodied Agent Interface (EAI) benchmark (3). Our objective is to determine if a smooth scaling relationship exists between general-purpose LLM capabilities and the specialized skills of Goal Interpretation and Action Sequencing.

3.1 EMBODIED AGENT INTERFACE

EAI is a benchmark for embodied decision-making. It uses Linear Temporal Logic (LTL) as a formal language to represent goals and plans, enabling a precise evaluation of an agent’s ability to understand instructions and generate action sequences. For a comprehensive overview of the framework’s formalisms, including its state representation and LTL semantics, we refer the reader to the original EAI paper. In this work, we focus specifically on evaluating the Goal Interpretation and Action Sequencing modules.

Goal Interpretation module \mathcal{G} translates a natural language instruction l_g into a formal LTL goal g , given an initial state s_0 . The **Input-Output** is $\mathcal{G} : (s_0, l_g) \rightarrow g$. Its performance is measured by an F_1 **set-matching score** between the generated goal \hat{g} and the ground truth.

Action Sequencing module Q generates an action sequence \bar{a} to achieve a given LTL goal g from a state s_0 . The **Input-Output** is $Q : (s_0, g) \rightarrow \bar{a}$. It is evaluated on two metrics: **Trajectory**

162 **Feasibility** (whether the sequence \bar{a} is executable in a simulator) and **Goal Satisfaction** (whether
 163 the resulting trajectory achieves g).
 164

165 **3.2 PROBLEM FORMULATION**
 166

167 Let E_m be the normalized performance metric for a given model m on a specific EAI evaluation
 168 task. We focus on key indicators of embodied competence, such as the `task_success_rate` or
 169 `execution_success_rate` for the Action Sequencing module, and the `all_f1` score for the
 170 Goal Interpretation module.

171 Let C_m be the model's m training compute in FLOPs, N_m be parameter size, and D_m be the
 172 pretraining token size. Following Kaplan et al. (4), we estimate C_m using the approximation $C_m \approx$
 173 $6N_m D_m$. This allows us to connect the concrete properties of a model to its performance.

174 Recent studies (51; 52) have found that a predictable scaling relationship holds for models within a
 175 single architectural family (e.g., Llama, Gemma, or Qwen). They observe a sigmoidal relationship
 176 between training compute and task error, formally expressed using a generalized linear model with
 177 a logistic link function (σ^{-1}):
 178

$$\sigma^{-1}(E_m) \approx \lambda_f \log(C_m) + \mu_f. \quad (1)$$

180 Here, λ_f and μ_f are constants that are determined empirically.
 181

182 Our primary goal is to generalize this relationship to better quantify the scaling laws of the EAI
 183 benchmark, potentially finding a more universal framework that holds across different model fami-
 184 lies. A successful generalization would allow for more robust performance forecasting.

185 **4 METHOD: OBSERVATIONAL SCALING LAWS**
 186

187 Our work builds on the Obscaling (5), a framework for creating a universal scaling model for diverse
 188 language models, including those with unknown training compute. This approach allows us to move
 189 beyond the family-specific limitations discussed previously and pursue a more generalizable law.
 190

191 **Hypothesis 1 (Universal Performance Model)** The core hypothesis is that we can predict a model's
 192 (m) performance on a complex task (measured by error $E_m \in \mathbb{R}$) using a universal linear model
 193 based on a latent low-dimensional capability vector $S_m \in \mathbb{R}^K$:

$$\sigma^{-1}(E_m) \approx \beta^\top S_m + \alpha. \quad (2)$$

194 Here, S_m is the capability vector for model m in a K -dimensional space, σ is the logistic function,
 195 $\beta \in \mathbb{R}^K$ is a universal weight vector that maps capabilities to performance, and $\alpha \in \mathbb{R}$ is a scalar
 196 bias.
 197

198 **Hypothesis 2 (Latent Capability Projection)** Then, we hypothesize that a model's latent capabili-
 199 ty, S_m , is a linear projection of its benchmark performance vector, $B_m \in \mathbb{R}^T$. To compute this
 200 capability vector, we apply a projection matrix $\gamma \in \mathbb{R}^{K \times T}$ such that
 201

$$S_m := \gamma B_m. \quad (3)$$

202 We derive this matrix by applying Principal Component Analysis (PCA) to the performance vectors
 203 of all models. The rows of γ consist of the top K principal components, as exemplified in Figure 2b.
 204

205 **Hypothesis 3 (Log-linear Capability Scaling)** Next, if we assume that within a specific model fam-
 206 ily f , capability grows log-linearly with compute (Equation 4), then substituting this into Equation
 207 2 recovers the familiar family-specific scaling law (Equation 1):
 208

$$S_m \approx \theta_f \log(C_m) + \nu_f \quad (4)$$

$$\sigma^{-1}(E_m) \approx w_f \log(C_m) + b_f. \quad (5)$$

209 Here, $\theta_f \in \mathbb{R}^K$ is a family-specific vector, $\nu_f \in \mathbb{R}^K$ is a bias vector, $w_f = \beta^\top \theta_f$ and $b_f =$
 210 $\beta^\top \nu_f + \alpha$. Thus, Equation 5 is consistent with Equation 1

211 **Fitting Observational Scaling Laws** We begin with a set of LMs \mathcal{M} , and four quantities for each
 212 model $m \in \mathcal{M}$: its compute measure FLOPs C_m , its vector of benchmark scores B_m , and its

216 performance on a complex task E_m . From this data, we estimate the scaling relationship through a
 217 multi-stage procedure.
 218

219 Firstly, we estimate the capability vectors S_m via fitting PCA on B_m , and then find the universal
 220 parameters β^* and α^* by minimizing the squared error for the relationship defined in Equation 2:
 221

$$(h^*, \beta^*, \alpha^*) = \underset{h, \beta, \alpha}{\operatorname{argmin}} \sum_{m \in \mathcal{M}} \|(E_m) - h\sigma(\beta^\top S_m + \alpha)\|^2. \quad (6)$$

224 where $\beta \in \mathbb{R}^K$, $\alpha \in \mathbb{R}$ are regression weights and bias. $h \in [0, 1]$ is the sigmoid scale and it results
 225 in $h^* = 1$ in most experiments. This defines a scalar capability score $P_m := (\beta^*)^\top \hat{S}_m + \alpha^*$ for any
 226 model.
 227

228 Secondly, we determine the coefficients w_f^* and b_f^* for the scaling law described in Equation 5.
 229 Specifically, we select a reference family (e.g. llama-2) f , and then fit another linear regression
 230 using only the models from the reference family f :
 231

$$(w_f^*, b_f^*) = \underset{w_f, b_f}{\operatorname{argmin}} \sum_{m \in f} \|P_m - (w_f \log(C_m) + b_f)\|^2, \quad (7)$$

233 This mapping allows us to convert any model’s capability score P_m into an intuitive metric—the
 234 f -equivalent FLOPs, $\tilde{C}_{m,f}$ —by inverting the relation: $\log(\tilde{C}_{m,f}) := (P_m - b_f^*)/w_f^*$. This provides
 235 a single, compute-anchored axis for comparing all models.
 236

237 5 EXPERIMENTS

240 Our experimental evaluation proceeds in four stages. First, we verify the core assumptions underlying
 241 our proposed observational scaling laws. Second, we validate the laws by fitting them to LLM
 242 performance on the EAI benchmark. Third, we apply the validated laws to identify a ”simulation
 243 gap” between distinct EAI environments. Finally, we demonstrate the practical utility of our findings
 244 for model intervention by quantifying the performance impact of structured decoding.
 245

246 **Experimental setup** We evaluate 124 open-source LLMs (listed in Tables 1 and 2) using the llama-
 247 factory (73) with vLLM backend (74) for efficient inference. We measure the target performance
 248 metric (E_m) on two tasks from the EAI benchmark (3): Action Sequencing (task and execution
 249 success rates) and Goal Interpretation (F1 score). To establish a general capability measure (S), we
 250 gather scores from the OpenLLM Leaderboard (66) on benchmarks testing reasoning (e.g., BBH,
 251 MATH), instruction following (IFEval), and expert knowledge (e.g., MMLU-PRO). We then apply
 252 Principal Component Analysis (PCA) with $K = 3$ to these general scores to derive our final
 253 capability measure S . We release the result and code in the supplementary materials.
 254

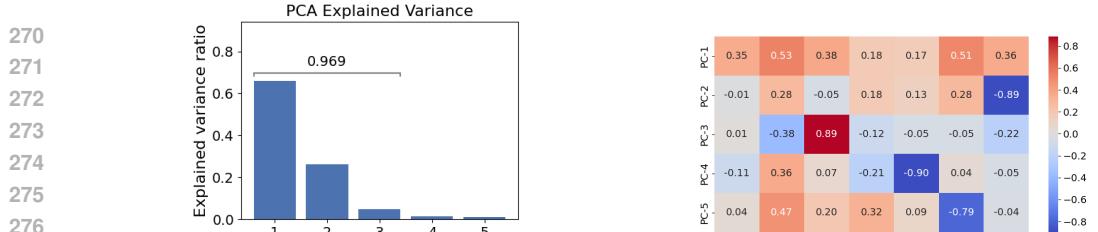
255 5.1 VALIDATION OF ASSUMPTION ON OBSERVATION SCALING LAWS

256 We validate two assumptions including Hypothesis 0 and Hypothesis 1, since we use different met-
 257 rics than the original paper (5).
 258

259 **Hypothesis 0 and 1** posit that a low-dimensional latent variable can effectively represent model
 260 performance. To extract this variable, we apply Principal Component Analysis (PCA with $K = 5$)
 261 to the full suite of benchmark metrics (B). We define the resulting components as the ”principal
 262 capability” (PC) measures, S (see (5) for additional details).
 263

264 Our analysis validates this low-rank assumption. As shown in Figure 2a, the top three PCs capture
 265 approximately 97% of the total variance, with the first PC alone accounting for nearly 70%. Fur-
 266 thermore, these PCs are highly interpretable (Figure 2b). **PC-1** represents a ”**general capability**”,
 267 **PC-2** corresponds to ”**instruction following**”, and **PC-3** reflects ”**mathematical reasoning**”. This
 268 evidence indicates that the complex LM capabilities covered by our benchmarks can be expressed
 269 as a linear combination of a few fundamental principal capabilities S .
 270

271 **Hypothesis 3** proposes a linear relationship between the principal capability measures (S) and log-
 272 scale training compute (C). We use the first principal component (**PC-1**) to represent a model’s
 273 capability S . We estimate the training compute C by collecting the model parameter count (N) and
 274



(a) PCA explained variance

(b) Principle component weights

Figure 2: Just a few capability dimensions explain most variability on a diverse range of standard LM benchmarks. We find that (a) the benchmark-model matrix is low-dimensional with the top 3 PCs explaining $\sim 97\%$ of the variance and (b) the PCs are interpretable: PC-1, PC-2, and PC-3 emphasize LMs’ general, instruction-following, mathematical reasoning capabilities, respectively.

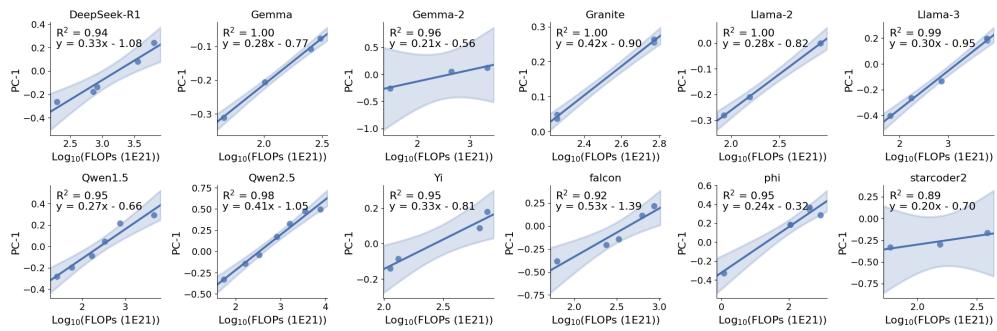


Figure 3: The extracted PC measures linearly correlate with log-compute within each model family. The linearity generally holds for various model families.

pretraining token size (D) from technical reports and project pages, then approximating the training FLOPs as $C \approx 6ND$.

Figure 3 validates this log-linear relationship within specific model families. We find a strong correlation where the PC-1 measure scales linearly with log-training FLOPs, achieving an $R^2 > 0.89$. This trend holds across diverse model architectures, including distilled models like DeepSeek-R1 (75) and code-focused models like StarCoder2 (19). The relationship also extends to lower-ranked components such as PC-2 and PC-3 (Figures 9 and 10). This empirical evidence supports our hypothesis in Equations 3 and 4, which state that different model families convert compute into capabilities at varying efficiencies within a shared capability space.

5.2 VALIDATING OBSERVATIONAL SCALING LAWS

Our objective is to validate that observational scaling laws can predict the performance of large language models on EAI tasks

Experiment setup We filter the dataset to ensure quality, excluding models with (1) zero task performance (e.g., max token length $<$ input length, indicating evaluation failure) or (2) missing benchmark scores. To test extrapolation, we split models by size: those with $< 40B$ parameters form the training set, and larger ones the test set. All preprocessing steps and scaling-law parameters (Equations 7, 6) are fitted on the training data and applied to the test set to avoid information leakage.

Baselines: We compare the observational scaling law against two baselines, fitted by Equation 1: (i) Model Size Scaling: A power-law fit based on the number of model parameters. (ii) Training FLOPs Scaling: A power-law fit based on the estimated floating-point operations used for training.

We present the results in Figure 4, and Figure 13, 14, 15 (appendix). Our method achieves the lowest Mean Squared Error (MSE) on the held-out test set of models with $\geq 40B$ parameters. For instance, on the Task Success Rate (Behavior) metric, the observational law yields a test MSE of 1.3×10^{-3} . This is more than an order of magnitude better than both the Model Size baseline (6.5×10^{-2}) and the Training FLOPs baseline (5.6×10^{-2}). A similar trend holds for the Execution Success Rate (Behavior) task.

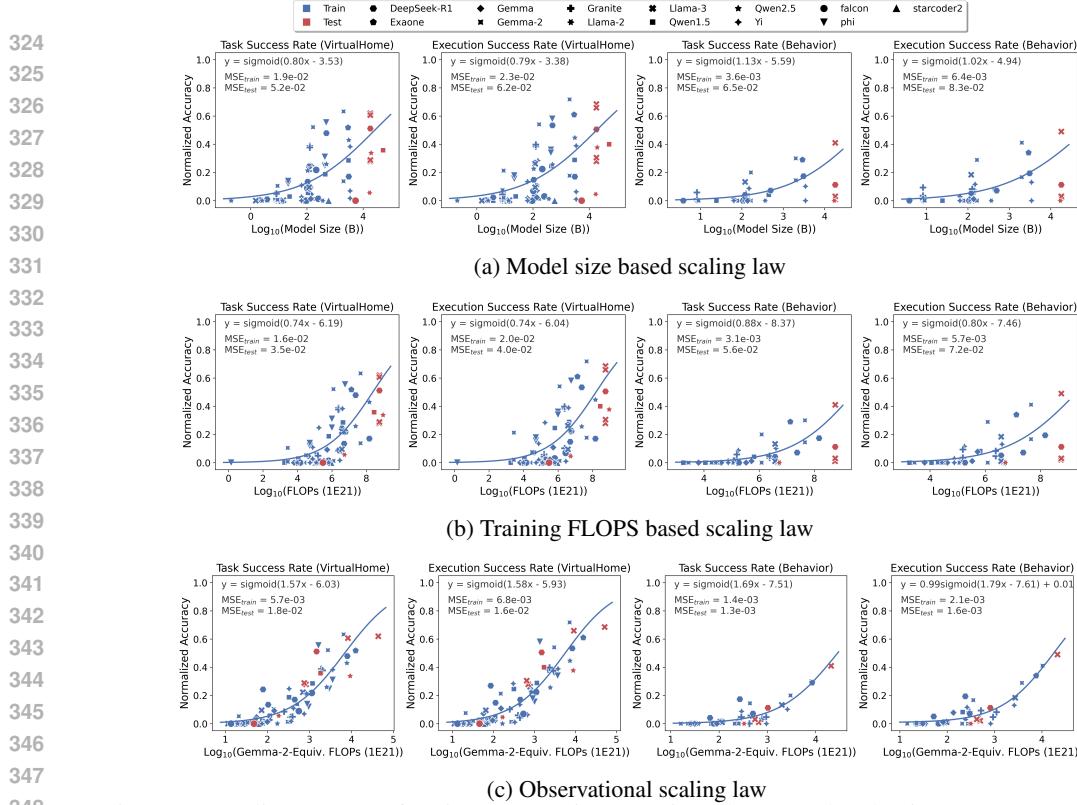


Figure 4: Scaling curves of action sequencing on Virtualhome and Behavior. We compare three scaling laws: (a) Model Size, (b) Training FLOPs, and (c) our proposed Observational scaling law. Each plot shows the training data ($< 40B$ parameters, blue circles), the held-out test data ($\geq 40B$ parameters, red crosses), and the fitted sigmoid curve. The reported Mean Squared Error (MSE) on the train and test sets shows that the observational scaling law consistently achieves the lowest test MSE, indicating its superior ability to extrapolate performance to larger, more capable models. The fitted sigmoid curve is expressed as $y = \text{sigmoid}(n_1 \times n_2)$ where the coefficients n_1, n_2 corresponds to the regression weight w_f^* and the bias b_f^* in Equation 5.

5.3 QUANTIFYING SCALING GAP BETWEEN SIMULATIONS

Interpreting Scaling Law Coefficients Following the validation in Section 5.2, we analyze the fitted regression coefficients from our observational scaling law to understand the relative difficulty of the tasks in different simulations.

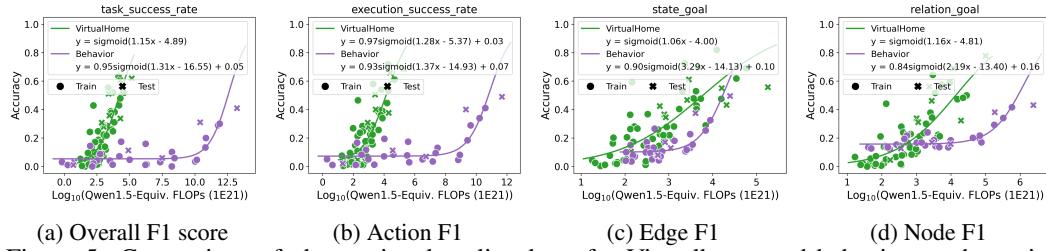
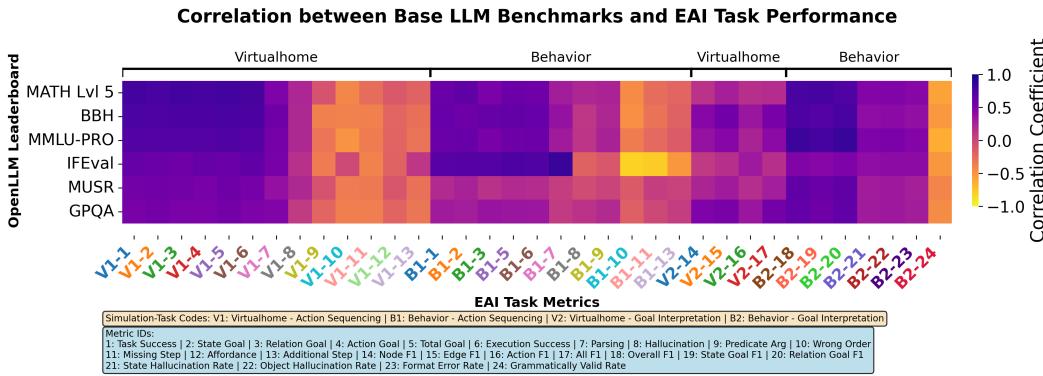


Figure 5: Comparison of observational scaling laws for Virtualhome and behavior on the action sequencing task.

From Figure 5, we observe two key trends: (i) For both the Virtualhome and Behavior environments, the regression weight (w_f^*) for execution success rate is consistently larger than the weight for task success rate. This is consistent with the logical constraint that a successful task execution is a stricter, and therefore more difficult, condition to satisfy than a plan that is merely executable. (ii) When comparing the two environments for the same task, Behavior exhibits a higher regression weight (w_f^*) but a lower bias (b_f^*) than Virtualhome. This suggests

378 that the `Behavior` simulation presents a higher initial barrier to effective performance (lower bias),
 379 but that performance scales more steeply with increasing model capability (higher weight) once a
 380 baseline of competence is achieved.
 381



Correlation with Foundational LLM Capabilities To contextualize the skills required by our EAI benchmarks, we compute the correlation between EAI task performance and scores from the OpenLLM Leaderboard. We present the results in the heatmap in Figure 6 and statistics in Table 3, 5, 4, 6. The analysis reveals that task performance in different simulation environments is associated with distinct underlying LLM capabilities. Specifically, Action Sequencing performance in Virtualhome shows a strong positive correlation with mathematical reasoning benchmarks (MATH Lvl 5). In contrast, the same task in the Behavior environment correlates most strongly with instruction following capabilities (IFEval). This suggests that Virtualhome may test a model’s logical planning and reasoning abilities more heavily, while Behavior emphasizes the precise interpretation and execution of commands. Furthermore, we note that specific error metrics within our benchmark, such as Missing Step (V1-11) and Affordance (V1-12), show weak to no correlation with any of the general OpenLLM benchmarks. This indicates that standard LLM evaluations do not adequately measure a model’s proficiency in these crucial aspects of embodied planning, highlighting a potential gap in existing evaluation practices.

5.4 THE IMPACT OF STRUCTURED DECODING

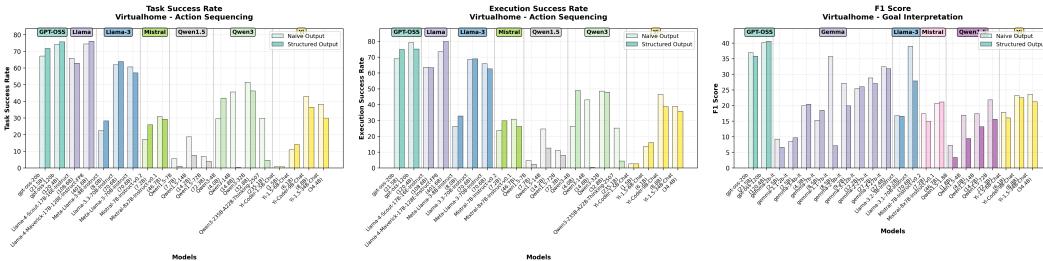


Figure 7: Comparison of observational scaling laws for standard generation (Base Model) versus structured decoding (Model with Decoder Masking) on the Virtualhome goal interpretation task. The plots show performance on action sequencing and goal interpretation tasks on Virtualhome.

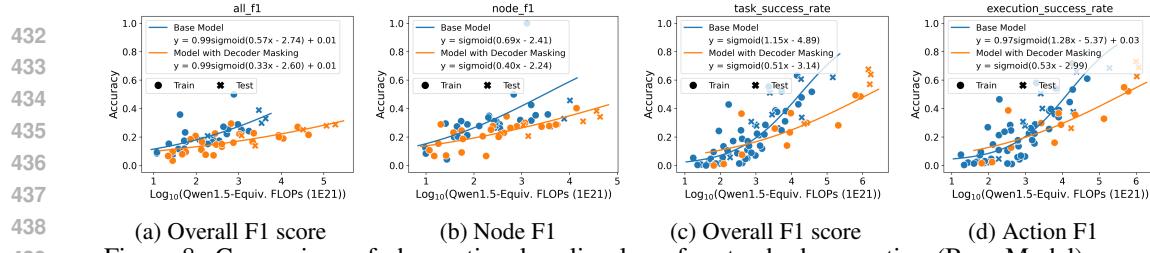


Figure 8: Comparison of observational scaling laws for standard generation (Base Model) versus structured decoding (Model with Decoder Masking). The y axis of first two plot represents metrics of Virtualhome’s goal interpretation task and the last two are the metrics of Virtualhome’s action sequencing task. Blue lines represent the base model and yellow represent the Model with Decoder Masking

In this section, we investigate the impact of enforcing structured outputs on the performance of LLMs in EAI tasks. While compelling models to generate plans in a specific format like JSON guarantees syntactic correctness and eliminates parsing failures, it is unclear whether this constraint helps or hinders the model’s underlying reasoning and planning capabilities.

To quantify this trade-off, we designed a controlled experiment to measure performance differences between standard and constrained decoding. Using vLLM (74) as our inference backend, we evaluated a suite of models on our EAI benchmarks under two conditions: (1) with standard, unconstrained text generation, and (2) with structured decoding enabled via Xgrammar(76) to enforce a strict JSON output schema. The performance in both conditions was measured using the primary success metrics from our benchmark to isolate the effect of the decoding constraint. We report results in Figures 8,12.

A direct model-by-model comparison in Figure 11 reveals that the impact of structured decoding is not uniform and can be difficult to predict. For instance, on the Action Sequencing task, the constraint improves the Task Success Rate for capable models like Llama-3-70B, but it harms the performance of others like Yi-1.5-6B. Similarly, for Goal Interpretation, structured decoding hurts the performance of GPT-4 and Mixtral-8x7B, yet provides a notable benefit to models such as Yi-1.5-34B and Phi-3-mini-128k.

As shown in Figure 8, our results for the Virtualhome goal interpretation task reveal that forcing a structured output consistently hurts model performance. For the main Overall F1 score, models with the output constraint always performed slightly worse than the regular models, even though both improved at a similar rate as they scaled up. This performance gap was much larger on more detailed sub-tasks. For example, on Edge classification F1, the regular model’s performance improved more than four times faster than the constrained model’s (a scaling slope of $w=0.79$ vs. $w=0.19$). This suggests that while structured decoding guarantees a clean output format, these strict rules prevent the model from fully learning the complex relationships needed for the planning task.

6 CONCLUSION

This paper presents an observational method for deriving scaling laws in embodied decision-making, leveraging a large set of public LLMs to avoid costly training. Our generalized scaling law maps performance to a low-dimensional capability space, effectively modeling diverse model families. Validated on the EAI benchmark, our method shows high predictive accuracy, significantly improving on traditional compute-based laws. This framework provides a cost-effective way to forecast model performance, quantify the effects of interventions like structured decoding, and measure simulation gaps. Future work can extend this approach to build a unified model of the simulation gap and to quantify the effects of more complex LM interventions.

486 REFERENCES
487

488 [1] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgeniy Chebotar, Joseph D’Amico,
489 Sudeep Dasari, Byron David, Kurt D’Souza, Chuyuan Fu, Sagi Gleichman, et al. RT-2:
490 Vision-language-action models transfer web knowledge to robotic control. *arXiv preprint
arXiv:2307.15818*, 2023.

492 [2] Michael Ahn, Anthony Brohan, Noah Brown, Yevgeniy Chebotar, Omar Cortes, Byron David,
493 Chelsea Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, et al. Do as i can, not
494 as i say: Grounding language in robotic affordances. *arXiv preprint arXiv:2204.01691*, 2022.

496 [3] Manling Li, Shiyu Zhao, Qineng Wang, Kangrui Wang, Yu Zhou, Sanjana Sri-
497 vastava, Cem Gokmen, Tony Lee, Li Erran Li, Ruohan Zhang, Weiyu Liu, Percy
498 Liang, Fei-Fei Li, Jiayuan Mao, and Jiajun Wu. Embodied agent interface: Bench-
499 marking llms for embodied decision making. In *Advances in Neural Information
500 Processing Systems 37 (NeurIPS 2024), Datasets and Benchmarks Track*, 2024.
501 URL [https://proceedings.neurips.cc/paper_files/paper/2024/
502 hash/b631da756d1573c24c9ba9c702fde5a9-Abstract-Datasets_and_](https://proceedings.neurips.cc/paper_files/paper/2024/hash/b631da756d1573c24c9ba9c702fde5a9-Abstract-Datasets_and_Benchmarks_Track.html)
503 Benchmarks_Track.html.

504 [4] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon
505 Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural
506 language models. *arXiv preprint arXiv:2001.08361*, 2020.

507 [5] Yangjun Ruan, Chris J. Maddison, and Tatsunori Hashimoto. Observational scaling laws and
508 the predictability of language model performance. In *Advances in Neural Information Process-
509 ing Systems 37 (NeurIPS 2024)*, 2024. URL [https://neurips.cc/virtual/2024/
510 poster/95350](https://neurips.cc/virtual/2024/poster/95350).

511 [6] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
512 Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd
513 of models. *arXiv e-prints*, pages arXiv–2407, 2024.

515 [7] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Tim-
516 othée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
517 and efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

518 [8] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
519 Nikolay Bashlykov, Soumya Batra, Prajwala Bhargava, Shruti Bhosale, et al. Llama 2: Open
520 foundation and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

522 [9] Qwen Team. Qwen1.5 technical release. *Qwen Blog*, 2024. URL <https://qwenlm.github.io/blog/qwen1.5/>. “Introducing Qwen1.5”.

524 [10] An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
525 Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong
526 Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou,
527 Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li,
528 Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie
529 Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong
530 Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan,
531 Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan.
532 Qwen2 technical report. *arXiv preprint arXiv:2407.10671*, 2024. doi: 10.48550/arXiv.2407.
533 10671. [cs.CL].

534 [11] An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
535 Chang Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang,
536 Feng Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei
537 Zhang, Jianxin Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin
538 Bao, Kexin Yang, Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang,
539 Peng Wang, Qin Zhu, Rui Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi
Tang, Wenbiao Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang

540 Fan, Yang Su, Yichang Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu
 541 Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu. Qwen3 technical report. *arXiv preprint*
 542 *arXiv:2505.09388*, 2025. doi: 10.48550/arXiv.2505.09388. [cs.CL].

543

544 [12] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin
 545 Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Junyang Lin, Runji Lin, Dayiheng Liu, Gao
 546 Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren,
 547 Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu,
 548 Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
 549 Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang,
 550 Chang Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. *arXiv*
 551 *preprint arXiv:2309.16609*, 2023. doi: 10.48550/arXiv.2309.16609. [cs.CL].

552

553 [13] Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
 554 Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti,
 555 Léonard Hussenot, Pier Giuseppe Sessa, Aakanksha Chowdhery, Adam Roberts, Aditya
 556 Barua, Alex Botev, Alex Castro-Ros, Ambrose Sloane, Amélie Héliou, Andrea Tacchetti,
 557 Anna Bulanova, Antonia Paterson, Beth Tsai, Bobak Shahriari, Charline Le Lan, Christo-
 558 pher A. Choquette-Choo, Clément Crepy, Daniel Cer, Daphne Ippolito, David Reid, Elena
 559 Buchatskaya, Eric Ni, Eric Noland, Geng Yan, George Tucker, George-Christian Muraru,
 560 Grigory Rozhdestvenskiy, Henryk Michalewski, Ian Tenney, Ivan Grishchenko, Jacob Austin,
 561 James Keeling, Jane Labanowski, Jean-Baptiste Lespiau, Jeff Stanway, Jenny Brennan, Jeremy
 562 Chen, Johan Ferret, Justin Chiu, Justin Mao-Jones, Katherine Lee, Kathy Yu, Katie Millican,
 563 Lars Lowe Sjoesund, Lisa Lee, Lucas Dixon, Machel Reid, Maciej Mikula, Mateo Wirth,
 564 Michael Sharman, Nikolai Chinaev, Nithum Thain, Olivier Bachem, Oscar Chang, Oscar
 565 Wahltinez, Paige Bailey, Paul Michel, Petko Yotov, Rahma Chaabouni, Ramona Comanescu,
 566 Reena Jana, Rohan Anil, Ross McIlroy, Ruibo Liu, Ryan Mullins, Samuel L Smith, Sebas-
 567 tian Borgeaud, Sertan Girgin, Sholto Douglas, Shree Pandya, Siamak Shakeri, Soham De,
 568 Ted Klimenko, Tom Hennigan, Vlad Feinberg, Wojciech Stokowiec, Yu hui Chen, Zafarali
 569 Ahmed, Zhitao Gong, Tris Warkentin, Ludovic Peran, Minh Giang, Clément Farabet, Oriol
 570 Vinyals, Jeff Dean, Koray Kavukcuoglu, Demis Hassabis, Zoubin Ghahramani, Douglas Eck,
 571 Joelle Barral, Fernando Pereira, Eli Collins, Armand Joulin, Noah Fiedel, Evan Senter, Alek
 572 Andreev, and Kathleen Kenealy. Gemma: Open models based on gemini research and tech-
 573 nology. *arXiv preprint arXiv:2403.08295*, 2024. doi: 10.48550/arXiv.2403.08295. [cs.CL].

574

575 [14] Eric Wang, Samuel Schmidgall, Paul F. Jaeger, Fan Zhang, Rory Pilgrim, Yossi Matias, Joelle
 576 Barral, David Fleet, and Shekoofeh Azizi. Txgemma: Efficient and agentic llms for therapeu-
 577 tics. *arXiv preprint arXiv:2504.06196*, 2025. doi: 10.48550/arXiv.2504.06196.

578

579 [15] Gemma Team, Morgane Rivière, et al. Gemma 2: Improving open language models at a prac-
 580 tical size. *arXiv preprint arXiv:2408.00118*, 2024. doi: 10.48550/arXiv.2408.00118. [cs.CL].

581

582 [16] Musashi Hinck, Matthew L. Olson, David Cobbley, Shao-Yen Tseng, and Vasudev Lal. Llava-
 583 gemma: Accelerating multimodal foundation models with a compact language model. *arXiv*
 584 *preprint arXiv:2404.01331*, 2024. doi: 10.48550/arXiv.2404.01331.

585

586 [17] Wenjun Zeng, Yuchi Liu, Ryan Mullins, Ludovic Peran, Joe Fernandez, Hamza Harkous,
 587 Karthik Narasimhan, Drew Proud, Piyush Kumar, Bhaktipriya Radharapu, Olivia Sturman, and
 588 Oscar Wahltinez. Shieldgemma: Generative ai content moderation based on gemma. *arXiv*
 589 *preprint arXiv:2407.21772*, 2024. doi: 10.48550/arXiv.2407.21772.

590

591 [18] Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Noua-
 592 mane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the
 593 stack v2: The next generation. *arXiv preprint arXiv:2402.19173*, 2024.

594

595 [19] Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Noua-
 596 mane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian,
 597 Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov,
 598 Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Armel Zebaze, Chenghao Mou,
 599 Christopher Akiki, Marco Zocca, Chenghao Yang, Gabriel Villalobos, and BigCode-Project.
 600 StarCoder 2 and The Stack v2: The Next Generation, 2024.

594 [20] Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler, and Antonio
 595 Torralba. Virtualhome: Simulating household activities via programs. In *Proceedings of the*
 596 *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 8494–8502,
 597 June 2018. URL https://openaccess.thecvf.com/content_cvpr_2018/html/Puig_VirtualHome_Simulating_Household_CVPR_2018_paper.html.

600 [21] Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roorzbeh
 601 Mottaghi, Luke Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting
 602 grounded instructions for everyday tasks. In *Proceedings of the IEEE/CVF Conference on*
 603 *Computer Vision and Pattern Recognition (CVPR)*, pages 10740–10749, June 2020. URL
 604 https://openaccess.thecvf.com/content_CVPR_2020/html/Shridhar_ALFRED_A_Benchmark_for_Interpreting_Grounded_Instructions_for_Everyday_Tasks_CVPR_2020_paper.html.

607 [22] Chengshu Li, Ruohan Zhang, Josiah Wong, Cem Gokmen, Sanjana Srivastava, Roberto
 608 Martín-Martín, Chen Wang, Gabrael Levine, Michael Lingelbach, Jiankai Sun, Mona Anvari,
 609 Minjune Hwang, Manasi Sharma, Arman Aydin, Dhruva Bansal, Samuel Hunter, Kyu-Young
 610 Kim, Alan Lou, Caleb R. Matthews, Ivan Villa-Renteria, Jerry Huayang Tang, Claire Tang, Fei
 611 Xia, Silvio Savarese, Hyowon Gweon, Karen Liu, Jiajun Wu, and Li Fei-Fei. Behavior-1k: A
 612 benchmark for embodied ai with 1,000 everyday activities and realistic simulation. In Karen
 613 Liu, Dana Kulić, and Jeff Ichnowski, editors, *Proceedings of The 6th Conference on Robot*
 614 *Learning*, volume 205 of *Proceedings of Machine Learning Research*, pages 80–93. PMLR,
 615 Dec 2023. URL <https://proceedings.mlr.press/v205/li23a.html>.

616 [23] Aishwarya Padmakumar, Jesse Thomason, Ayush Shrivastava, Patrick Lange, Anjali Narayan-
 617 Chen, Spandana Gella, Robinson Piramuthu, Gokhan Tur, and Dilek Hakkani-Tür. Teach:
 618 Task-driven embodied agents that chat. In *Proceedings of the AAAI Conference on Artificial*
 619 *Intelligence*, volume 36, pages 2017–2025. AAAI Press, 2022. URL <https://ojs.aaai.org/index.php/AAAI/article/view/20097>.

621 [24] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans,
 622 Bhavana Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and
 623 Dhruv Batra. Habitat: A platform for embodied AI research. In *Proceedings of the*
 624 *IEEE/CVF International Conference on Computer Vision (ICCV)*, pages 9339–9347,
 625 2019. doi: 10.1109/ICCV.2019.00943. URL https://openaccess.thecvf.com/content_ICCV_2019/html/Savva_Habitat_A_Platform_for_Embodied_AI_Research_ICCV_2019_paper.html.

628 [25] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi,
 629 Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large lan-
 630 guage models. In *Advances in Neural Information Processing Systems 35 (NeurIPS 2022)*,
 631 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html.

633 [26] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and
 634 Yuan Cao. React: Synergizing reasoning and acting in language models. In *The Eleventh*
 635 *International Conference on Learning Representations (ICLR)*, 2023. URL https://openreview.net/forum?id=WE_vluYUL-X.

638 [27] Brian Ichter, Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol Hausman, Alex-
 639 ander Herzog, Daniel Ho, Julian Ibarz, Alex Irpan, Eric Jang, Ryan Julian, Dmitry Kalash-
 640 nikov, Sergey Levine, Yao Lu, Carolina Parada, Kanishka Rao, Pierre Sermanet, Alex-
 641 ander T. Toshev, Vincent Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Mengyuan Yan, Noah
 642 Brown, Michael Ahn, Omar Cortes, Nicolas Sievers, Clayton Tan, Sichun Xu, Diego Reyes,
 643 Jarek Rettinghouse, Jornell Quiambao, Peter Pastor, Linda Luu, Kuang-Huei Lee, Yuheng
 644 Kuang, Sally Jesmonth, Nikhil J. Joshi, Kyle Jeffrey, Rosario Jauregui Ruano, Jasmine Hsu,
 645 Keerthana Gopalakrishnan, Byron David, Andy Zeng, and Chuyuan Kelly Fu. Do as i can,
 646 not as i say: Grounding language in robotic affordances. In Karen Liu, Dana Kulić, and
 647 Jeff Ichnowski, editors, *Proceedings of The 6th Conference on Robot Learning*, volume 205
 648 of *Proceedings of Machine Learning Research*, pages 287–318. PMLR, Dec 2023. URL
 649 <https://proceedings.mlr.press/v205/ichter23a.html>.

648 [28] Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul
 649 Wohlhart, Stefan Welker, Ayzaan Wahid, Quan Vuong, Vincent Vanhoucke, Huong Tran, Radu
 650 Soricut, Anikait Singh, Jaspiar Singh, Pierre Sermanet, Pannag R. Sanketi, Grecia Salazar,
 651 Michael S. Ryoo, Krista Reymann, Kanishka Rao, Karl Pertsch, Igor Mordatch, Henryk
 652 Michalewski, Yao Lu, Sergey Levine, Lisa Lee, Tsang-Wei Edward Lee, Isabel Leal, Yuheng
 653 Kuang, Dmitry Kalashnikov, Ryan Julian, Nikhil J. Joshi, Alex Irpan, Brian Ichter, Jasmine
 654 Hsu, Alexander Herzog, Karol Hausman, Keerthana Gopalakrishnan, Chuyuan Fu, Pete Flo-
 655 rence, Chelsea Finn, Kumar Avinava Dubey, Danny Driess, Tianli Ding, Krzysztof Marcin
 656 Choromanski, Xi Chen, Yevgen Chebotar, Justice Carbajal, Noah Brown, Anthony Bro-
 657 han, Montserrat Gonzalez Arenas, and Kehang Han. Rt-2: Vision-language-action mod-
 658 els transfer web knowledge to robotic control. In Jie Tan, Marc Toussaint, and Kourosh
 659 Darvish, editors, *Proceedings of The 7th Conference on Robot Learning*, volume 229 of
 660 *Proceedings of Machine Learning Research*, pages 2165–2183. PMLR, Nov 2023. URL
 661 <https://proceedings.mlr.press/v229/zitkovich23a.html>.

662 [29] Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
 663 Rafael Rafailev, Ethan Foster, Grace Lam, Pannag Sanketi, Quan Vuong, Thomas Kollar, Ben-
 664 jamin Burchfiel, Russ Tedrake, Dorsa Sadigh, Sergey Levine, Percy Liang, and Chelsea Finn.
 665 Openvla: An open-source vision-language-action model. *arXiv preprint arXiv:2406.09246*,
 666 2024. URL <https://arxiv.org/abs/2406.09246>.

667 [30] Rui Yang, Hanyang Chen, Junyu Zhang, Mark Zhao, Cheng Qian, Kangrui Wang, Qineng
 668 Wang, Teja Venkat Koripella, Marziyeh Movahedi, Manling Li, et al. Embodiedbench:
 669 Comprehensive benchmarking multi-modal large language models for vision-driven embod-
 670 ied agents. *arXiv preprint arXiv:2502.09560*, 2025.

671 [31] Shiduo Zhang, Zhe Xu, Peiju Liu, Xiaopeng Yu, Yuan Li, Qinghui Gao, Zhaoye Fei,
 672 Zhangyue Yin, Zuxuan Wu, Yu-Gang Jiang, et al. Vlabench: A large-scale benchmark for
 673 language-conditioned robotics manipulation with long-horizon reasoning tasks. *arXiv preprint
 674 arXiv:2412.18194*, 2024.

675 [32] Zhili Cheng, Yuge Tu, Ran Li, Shiqi Dai, Jinyi Hu, Shengding Hu, Jiahao Li, Yang Shi, Tianyu
 676 Yu, Weize Chen, et al. Embodiedeval: Evaluate multimodal llms as embodied agents. *arXiv
 677 preprint arXiv:2501.11858*, 2025.

678 [33] Kaiyuan Chen, Shuangyu Xie, Zehan Ma, Pannag R Sanketi, and Ken Goldberg. Robo2vilm:
 679 Visual question answering from large-scale in-the-wild robot manipulation datasets. *arXiv
 680 preprint arXiv:2505.15517*, 2025.

681 [34] Enyu Zhao, Vedant Raval, Hejia Zhang, Jiageng Mao, Zeyu Shangguan, Stefanos Nikolaidis,
 682 Yue Wang, and Daniel Seita. Manipbench: Benchmarking vision-language models for low-
 683 level robot manipulation. *arXiv preprint arXiv:2505.09698*, 2025.

684 [35] Weichen Zhang, Yiyou Sun, Pohao Huang, Jiayue Pu, Heyue Lin, and Dawn Song. Mirage-
 685 bench: Llm agent is hallucinating and where to find them. *arXiv preprint arXiv:2507.21017*,
 686 2025.

687 [36] Xuecheng Wu, Jiaxing Liu, Danlei Huang, Xiaoyu Li, Yifan Wang, Chen Chen, Liya
 688 Ma, Xuezhi Cao, and Junxiao Xue. Vic-bench: Benchmarking visual-interleaved chain-of-
 689 thought capability in mllms with free-style intermediate state representations. *arXiv preprint
 690 arXiv:2505.14404*, 2025.

691 [37] Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma. Explaining
 692 neural scaling laws. *arXiv preprint arXiv:2102.06701*, 2021.

693 [38] Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Hee-
 694 woo Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive
 695 generative modeling. *arXiv preprint arXiv:2010.14701*, 2020.

696 [39] Danny Hernandez, Jared Kaplan, Tom Henighan, and Sam McCandlish. Scaling laws for
 697 transfer. *arXiv preprint arXiv:2102.01293*, 2021.

702 [40] Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kia-
 703 ninejad, Md Mostafa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is
 704 predictable, empirically. *arXiv preprint arXiv:1712.00409*, 2017.

705 [41] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 706 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
 707 Training compute-optimal large language models. *arXiv preprint arXiv:2203.15556*, 2022.

708 [42] Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Alek-
 709 sandra Piktus, Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling data-constrained
 710 language models. *Advances in Neural Information Processing Systems*, 36, 2024.

711 [43] Samira Abnar, Mostafa Dehghani, Behnam Neyshabur, and Hanie Sedghi. Exploring the limits
 712 of large scale pre-training. *arXiv preprint arXiv:2110.02095*, 2021.

713 [44] Yi Tay, Mostafa Dehghani, Samira Abnar, Hyung Won Chung, William Fedus, Jinfeng Rao,
 714 Sharan Narang, Vinh Q Tran, Dani Yogatama, and Donald Metzler. Scaling laws vs model ar-
 715 chitectures: How does inductive bias influence scaling? In *The 2023 Conference on Empirical
 716 Methods in Natural Language Processing*, 2023.

717 [45] Ethan Caballero, Kshitij Gupta, Irina Rish, and David Krueger. Broken neural scaling laws.
 718 *arXiv preprint arXiv:2210.14891*, 2022.

719 [46] Behrooz Ghorbani, Orhan Firat, Markus Freitag, Ankur Bapna, Maxim Krikun, Xavier Garcia,
 720 Ciprian Chelba, and Colin Cherry. Scaling laws for neural machine translation. *arXiv preprint
 721 arXiv:2109.07740*, 2021.

722 [47] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
 723 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language mod-
 724 els are few-shot learners. *Advances in neural information processing systems*, 33:1877–1901,
 725 2020.

726 [48] Deep Ganguli, Danny Hernandez, Liane Lovitt, Amanda Askell, Yuntao Bai, Anna Chen, Tom
 727 Conerly, Nova Dassarma, Dawn Drain, Nelson Elhage, et al. Predictability and surprise in large
 728 generative models. In *Proceedings of the 2022 ACM Conference on Fairness, Accountability,
 729 and Transparency*, pages 1747–1764, 2022.

730 [49] Mirac Suzgun, Nathan Scales, Nathanael Sch”arli, Sebastian Gehrmann, Yi Tay, Hyung Won
 731 Chung, Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-
 732 bench tasks and whether chain-of-thought can solve them. *arXiv preprint arXiv:2210.09261*,
 733 2022.

734 [50] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
 735 Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large
 736 language models. *Transactions on Machine Learning Research*, 2022.

737 [51] Lukas Finnveden. Extrapolating gpt-n performance. [https://www.lesswrong.com/
 738 posts/k2SNji3jXaLGhBeYP/extrapolating-gpt-n-performance](https://www.lesswrong.com/posts/k2SNji3jXaLGhBeYP/extrapolating-gpt-n-performance), 2020. Accessed: 2024-05-07.

739 [52] David Owen. How predictable is language model benchmark performance? *arXiv preprint
 740 arXiv:2401.04757*, 2024.

741 [53] Yangyi Chen, Binxuan Huang, Yifan Gao, Zhengyang Wang, Jingfeng Yang, and Heng
 742 Ji. Scaling laws for predicting downstream performance in llms. *arXiv preprint
 743 arXiv:2410.08527*, 2024.

744 [54] Sanjeev Arora and Anirudh Goyal. A theory for emergence of complex skills in language
 745 models. *arXiv preprint arXiv:2307.15936*, 2023.

746 [55] John P Miller, Rohan Taori, Aditi Raghunathan, Shiori Sagawa, Pang Wei Koh, Vaishaal
 747 Shankar, Percy Liang, Yair Carmon, and Ludwig Schmidt. Accuracy on the line: on the
 748 strong correlation between out-of-distribution and in-distribution generalization. In *Inter-
 749 national conference on machine learning*, pages 7721–7735. PMLR, 2021.

756 [56] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do cifar-10 clas-
 757 sifiers generalize to cifar-10? *arXiv preprint arXiv:1806.00451*, 2018.
 758

759 [57] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet
 760 classifiers generalize to imagenet? In *International conference on machine learning*, pages
 761 5389–5400. PMLR, 2019.

762 [58] Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini, Benjamin Recht, and Ludwig
 763 Schmidt. Measuring robustness to natural distribution shifts in image classification. *Advances
 764 in Neural Information Processing Systems*, 33:18583–18599, 2020.

765 [59] Chhavi Yadav and Léon Bottou. Cold case: The lost mnist digits. *Advances in neural infor-
 766 mation processing systems*, 32, 2019.

767 [60] Yuanyuan Qiu, Hongzheng Li, Shen Li, Yingdi Jiang, Renfen Hu, and Lijiao Yang. Revisit-
 768 ing correlations between intrinsic and extrinsic evaluations of word embeddings. In *Chinese
 769 Computational Linguistics and Natural Language Processing Based on Naturally Annotated
 770 Big Data: 17th China National Conference, CCL 2018, and 6th International Symposium,
 771 NLP-NABD 2018, Changsha, China, October 19–21, 2018, Proceedings 17*, pages 209–221.
 772 Springer, 2018.

773 [61] François Torregrossa, Vincent Claveau, Nihel Kooli, Guillaume Gravier, and Robin Allesiardo.
 774 On the correlation of word embedding evaluation metrics. In *Proceedings of the 12th Confer-
 775 ence on Language Resources and Evaluation (LREC 2020)*, pages 4789–4797, 2020.

776 [62] Nelson F Liu, Tony Lee, Robin Jia, and Percy Liang. Do question answering modeling im-
 777 provements hold across benchmarks? *arXiv preprint arXiv:2102.01065*, 2021.

778 [63] Yotam Perlitz, Elron Bandel, Ariel Gera, Ofir Ariviv, Liat Ein-Dor, Eyal Shnarch, Noam
 779 Slonim, Michal Shmueli-Scheuer, and Leshem Choshen. Efficient benchmarking (of language
 780 models). *arXiv preprint arXiv:2308.11696*, 2023.

781 [64] Felipe Maia Polo, Lucas Weber, Leshem Choshen, Yuekai Sun, Gongjun Xu, and Mikhail
 782 Yurochkin. tinybenchmarks: Evaluating llms with fewer examples. *arXiv preprint
 783 arXiv:2402.14992*, 2024.

784 [65] David Ilić. Unveiling the general intelligence factor in language models: A psychometric
 785 approach. *arXiv preprint arXiv:2310.11616*, 2023.

786 [66] Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert, Nazneen
 787 Rajani, Omar Sanseviero, Lewis Tunstall, and Thomas Wolf. Open llm leaderboard. https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard, 2023.

788 [67] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
 789 Glue: A multi-task benchmark and analysis platform for natural language understanding. In
 790 *International Conference on Learning Representations*, 2018.

791 [68] Ryan Burnell, Han Hao, Andrew RA Conway, and Jose Hernandez Orallo. Revealing the
 792 structure of language model capabilities. *arXiv preprint arXiv:2306.10062*, 2023.

793 [69] Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Ya-
 794 sunaga, Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evaluation
 795 of language models. *arXiv preprint arXiv:2211.09110*, 2022.

796 [70] Jinjie Ni, Fuzhao Xue, Xiang Yue, Yuntian Deng, Mahir Shah, Kabir Jain, Graham Neubig,
 797 and Yang You. Mixeval: Deriving wisdom of the crowd from llm benchmark mixtures. *arXiv
 798 preprint arXiv:2406.06565*, 2024.

799 [71] Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li,
 800 Dacheng Li, Banghua Zhu, Hao Zhang, Michael Jordan, Joseph E Gonzalez, et al. Chatbot
 801 arena: An open platform for evaluating llms by human preference. In *Forty-first International
 802 Conference on Machine Learning*, 2024.

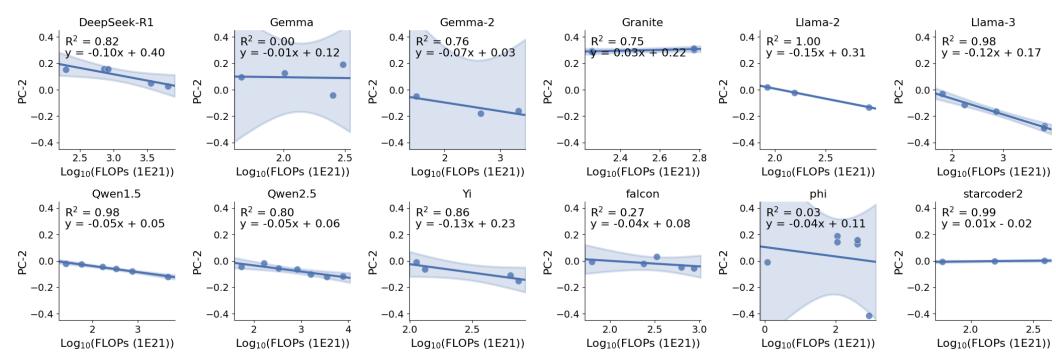
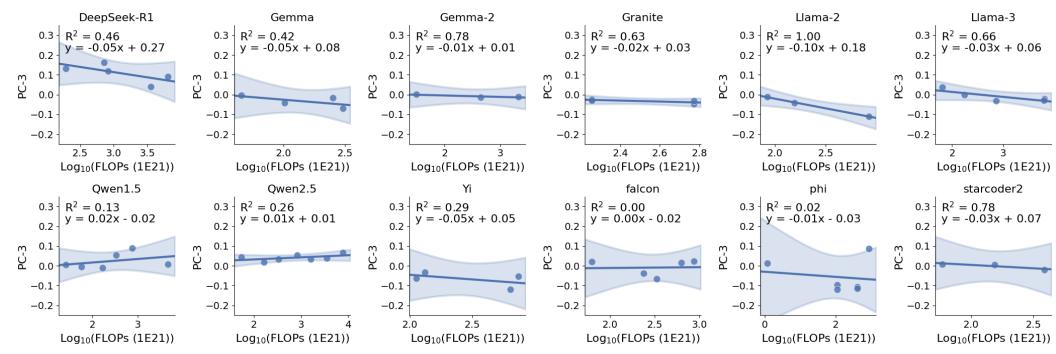
810 [72] Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Benjamin Feuer, Siddhartha
 811 Jain, Ravid Shwartz-Ziv, Neel Jain, Khalid Saifullah, Sreemanti Dey, Shubh-Agrawal,
 812 Sandeep Singh Sandha, Siddartha Venkat Naidu, Chinmay Hegde, Yann LeCun, Tom Gold-
 813 stein, Willie Neiswanger, and Micah Goldblum. Livebench: A challenging, contamination-free
 814 LLM benchmark. In *The Thirteenth International Conference on Learning Representations*,
 815 2025.

816 [73] Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, Zhangchi Feng, and
 817 Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In
 818 *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics*
 819 (*Volume 3: System Demonstrations*), Bangkok, Thailand, 2024. Association for Computational
 820 Linguistics. URL <http://arxiv.org/abs/2403.13372>.

821 [74] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,
 822 Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large
 823 language model serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Sym-
 824 posium on Operating Systems Principles*, 2023.

825 [75] DeepSeek AI. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement
 826 Learning, 2025.

827 [76] Yixin Dong, Charlie F Ruan, Yaxing Cai, Ruihang Lai, Ziyi Xu, Yilong Zhao, and Tianqi
 828 Chen. Xgrammar: Flexible and efficient structured generation engine for large language mod-
 829 els. *arXiv preprint arXiv:2411.15100*, 2024.

864 **A APPENDIX**865 **A.1 EXPERIMENT MODEL INFORMATION**866 **A.2 PC MEASURES LINEARLY CORRELATED WITH LOG-COMPUTE MEASURES**867 **Figure 9: Linear relationship between the second principal component (PC-2) and log-compute**
868 **across different model families.**869 **Figure 10: Linear relationship between the third principal component (PC-3) and log-compute**
870 **across different model families.**871 **A.3 DETAILED CORRELATION VALUE BETWEEN OPENLLM LEADERBOARD AND EAI SKILLS**872 **A.4 IMPACT OF STRUCTURING OUTPUT**873 **A.5 OTHERS**874 **add obscaling for goal interpretation on virtualhome and behavior**

918

919

920

921

Model	Family	Size (B)	Tokens (T)	FLOPs (1E21)	OpenLLM metric
Baichuan-7B	Baichuan	—	1.20	—	No
Baichuan2-7B-Base	Baichuan	7	2.60	109.20	No
Baichuan2-7B-Chat	Baichuan	7	2.60	109.20	No
DeepSeek-V3	DeepSeek	684.5	14.80	60783.60	No
deepseek-coder-1.3b-base	DeepSeek-Coder	1.3	2.00	15.60	No
deepseek-coder-1.3b-instruct	DeepSeek-Coder	1.3	2.00	15.60	No
deepseek-coder-33b-base	DeepSeek-Coder	33.3	2.00	396.00	No
deepseek-coder-33b-instruct	DeepSeek-Coder	33.3	2.00	399.60	No
deepseek-coder-6.7b-base	DeepSeek-Coder	6.7	2.00	80.40	No
deepseek-coder-6.7b-instruct	DeepSeek-Coder	6.7	2.00	80.40	No
deepseek-coder-7b-base-v1.5	DeepSeek-Coder	6.9	2.00	82.80	No
deepseek-coder-7b-instruct-v1.5	DeepSeek-Coder	6.9	2.00	82.80	No
DeepSeek-R1	DeepSeek-R1	684.5	14.80	60783.60	No
DeepSeek-R1-Distill-Llama-70B	DeepSeek-R1	70.6	15.00	6354.00	Yes
DeepSeek-R1-Distill-Llama-8B	DeepSeek-R1	8	15.00	720.00	Yes
DeepSeek-R1-Distill-Qwen-1.5B	DeepSeek-R1	1.8	18.00	194.40	Yes
DeepSeek-R1-Distill-Qwen-14B	DeepSeek-R1	14.8	18.00	1598.40	Yes
DeepSeek-R1-Distill-Qwen-32B	DeepSeek-R1	32.8	18.00	3542.40	Yes
DeepSeek-R1-Distill-Qwen-7B	DeepSeek-R1	7.6	18.00	820.80	Yes
EXAONE-3.5-32B-Instruct	Exaone	32	6.50	1248.00	Yes
EXAONE-Deep-32B	Exaone	32	6.50	1248.00	No
gpt-oss-120b	GPT-OSS	120.4	—	—	No
gpt-oss-20b	GPT-OSS	21.5	—	—	No
gemma-1.1-2b-it	Gemma	2.5	3.00	45.00	Yes
gemma-1.1-7b-it	Gemma	8.5	6.00	306.00	Yes
gemma-7b	Gemma	8.5	6.00	252.00	Yes
gemma-7b-it	Gemma	8.5	2.00	102.00	Yes
gemma-2-27b	Gemma-2	27.2	13.00	2121.60	Yes
gemma-2-27b-it	Gemma-2	27.2	13.00	2121.60	Yes
gemma-2-2b	Gemma-2	2.6	2.00	31.20	Yes
gemma-2-2b-it	Gemma-2	2.6	2.00	31.20	Yes
gemma-2-9b	Gemma-2	9.2	8.00	441.60	Yes
gemma-2-9b-it	Gemma-2	9.2	8.00	441.60	Yes
gemma-2b	Gemma-2	2.5	6.00	72.00	Yes
gemma-2b-it	Gemma-2	2.5	6.00	90.00	Yes
gemma-3-12b-it	Gemma-3	12.2	12.00	878.40	No
gemma-3-12b-pt	Gemma-3	12.2	12.00	878.40	No
gemma-3-27b-it	Gemma-3	27.4	14.00	2301.60	No
gemma-3-34b-it	Gemma-3	4.3	4.00	103.20	No
gemma-3-4b-pt	Gemma-3	4.3	4.00	103.20	No
granite-3.1-2b-base	Granite	2.5	12.00	180.00	Yes
granite-3.1-2b-instruct	Granite	2.5	12.00	180.00	Yes
granite-3.1-8b-base	Granite	8.2	12.00	590.40	Yes
granite-3.1-8b-instruct	Granite	8.2	12.00	590.40	Yes
granite-3.2-2b-instruct	Granite	2.5	12.00	180.00	Yes
granite-3.2-8b-instruct	Granite	8.2	12.00	590.40	Yes
granite-3.3-2b-base	Granite	2.5	12.00	180.00	No
granite-3.3-2b-instruct	Granite	2.5	12.00	180.00	No
granite-3.3-8b-base	Granite	8.2	12.00	590.40	No
granite-3.3-8b-instruct	Granite	8.2	12.00	590.40	No
Kimi-K2-Instruct	Kimi	1000	15.50	93000.00	No
Llama-4-Maverick-17B-128E-Instruct-FP8	Llama	401.6	22.00	53011.20	No
Llama-4-Scout-17B-16E-Instruct	Llama	108.6	40.00	26064.00	No
llama-3B_04-mini-2025-04-16	Llama	—	—	—	No
Llama-2-13b-hf	Llama-2	13	2.00	156.00	Yes
Llama-2-70b-hf	Llama-2	69	2.00	840.00	Yes
Llama-2-7b-hf	Llama-2	6.7	2.00	84.00	Yes
Llama-3.1-70B	Llama-3	70.6	15.00	6354.00	Yes
Llama-3.2-1B	Llama-3	1.2	9.00	64.80	Yes
Llama-3.2-3B	Llama-3	3.2	9.00	172.80	Yes
Llama-3.3-70B-Instruct	Llama-3	70.6	15.00	6354.00	Yes
Meta-Llama-3-70B	Llama-3	70.6	15.00	6300.00	Yes
Meta-Llama-3-70B-Instruct	Llama-3	70.6	15.00	6354.00	Yes
Meta-Llama-3-8B	Llama-3	8	15.00	720.00	Yes
Meta-Llama-3-8B-Instruct	Llama-3	8	15.00	720.00	Yes

Table 1: Model summary (part 1 of 2). Models sorted by family then name; OpenLLM metric = non-NA ‘Average’.

970

971

972
973
974
975
976

977	Model	Family	Size (B)	Tokens (T)	FLOPs (1E21)	OpenLLM metric
978	Mistral-7B-Instruct-v0.2	Mistral	7.2	—	—	Yes
979	Mistral-8x7B-Instruct-v0.1	Mistral	46.7	—	—	Yes
980	Qwen-14B	Qwen	14.2	3.00	252.00	No
981	Qwen-72B	Qwen	72.3	3.00	1296.00	No
982	Qwen-7B	Qwen	7.7	2.40	100.80	No
983	Qwen1.5-1.8B	Qwen1.5	1.8	2.40	25.92	Yes
984	Qwen1.5-110B	Qwen1.5	111.2	7.00	4670.40	Yes
985	Qwen1.5-14B	Qwen1.5	14.2	4.00	336.00	Yes
986	Qwen1.5-32B	Qwen1.5	32.5	4.00	768.00	Yes
987	Qwen1.5-4B	Qwen1.5	4	2.40	57.60	Yes
988	Qwen1.5-72B	Qwen1.5	72.3	3.00	1296.00	No
989	Qwen1.5-7B	Qwen1.5	7.7	4.00	168.00	Yes
990	Qwen2.5-0.5B	Qwen2.5	0.5	18.00	54.00	Yes
991	Qwen2.5-1.5B	Qwen2.5	1.5	18.00	162.00	Yes
992	Qwen2.5-14B	Qwen2.5	14.8	18.00	1598.40	Yes
993	Qwen2.5-32B	Qwen2.5	32.8	18.00	3542.40	Yes
994	Qwen2.5-3B	Qwen2.5	3.1	18.00	334.80	Yes
995	Qwen2.5-72B	Qwen2.5	72.7	18.00	7851.60	Yes
996	Qwen2.5-7B	Qwen2.5	7.6	18.00	820.80	Yes
997	Qwen3-0.6B	Qwen3	0.8	36.00	172.80	No
998	Qwen3-1.7B	Qwen3	2	36.00	432.00	No
999	Qwen3-14B	Qwen3	14.8	36.00	3196.80	No
1000	Qwen3-235B-A22B-Thinking-2507	Qwen3	235.1	36.00	50781.60	No
1001	Qwen3-32B	Qwen3	32.8	36.00	7084.80	No
1002	Qwen3-4B	Qwen3	4	36.00	864.00	No
1003	Qwen3-8B	Qwen3	8.2	36.00	1771.20	No
1004	Yi-1.5-34B	Yi	34.4	3.60	743.04	Yes
1005	Yi-1.5-34B-Chat	Yi	34.4	3.60	743.04	Yes
1006	Yi-1.5-6B	Yi	6.1	3.60	131.76	Yes
1007	Yi-1.5-6B-Chat	Yi	6.1	3.60	131.76	Yes
1008	Yi-1.5-9B	Yi	8.8	3.60	190.08	Yes
1009	Yi-34B	Yi	34.4	3.10	639.84	Yes
1010	Yi-6B	Yi	6.1	3.10	113.46	Yes
1011	Yi-Coder-1.5B	Yi	1.5	2.40	21.60	No
1012	Yi-Coder-1.5B-Chat	Yi	1.5	2.40	21.60	No
1013	Yi-Coder-9B	Yi	8.8	2.40	126.72	No
1014	Yi-Coder-9B-Chat	Yi	8.8	2.40	126.72	Yes
1015	Falcon3-10B-Base	falcon	10.3	14.00	865.20	Yes
1016	Falcon3-7B-Base	falcon	7.5	14.00	630.00	Yes
1017	falcon-11B	falcon	11.1	5.00	333.00	Yes
1018	falcon-40b	falcon	41.8	1.00	240.00	Yes
1019	falcon-7b	falcon	7.2	1.50	63.00	Yes
1020	gpt-4.1-2025-04-14	gpt-4.1-2025-04-14	—	—	—	No
1021	gpt-4.1-mini-2025-04-14	gpt-4.1-mini-2025-04-14	—	—	—	No
1022	gpt-4.1-nano-2025-04-14	gpt-4.1-nano-2025-04-14	—	—	—	No
1023	o4-mini-2025-04-16	o4-mini-2025-04-16	—	—	—	No
1024	Phi-3-medium-128k-instruct	phi	14	4.80	403.20	Yes
1025	Phi-3-medium-4k-instruct	phi	14	4.80	403.20	Yes
1026	Phi-3-mini-128k-instruct	phi	3.8	4.90	111.72	Yes
1027	Phi-3-mini-4k-instruct	phi	3.8	4.90	111.72	Yes
1028	phi-1_5	phi	1.4	0.15	1.17	Yes
1029	phi-4	phi	14.7	9.80	864.36	Yes
1030	starcoderbase	starcoder	15.5	1.00	93.00	No
1031	starcoderbase-1b	starcoder	15.5	1.00	6.00	No
1032	starcoderbase-3b	starcoder	15.5	1.00	18.00	No
1033	starcoderbase-7b	starcoder	15.5	1.00	42.00	No
1034	starcoder2-15b	starcoder2	16	4.30	387.00	Yes
1035	starcoder2-3b	starcoder2	3	3.30	59.40	Yes
1036	starcoder2-7b	starcoder2	7.2	3.70	155.40	Yes

Table 2: Model summary (part 2 of 2). Models sorted by family then name; OpenLLM metric = non-NA ‘Average’.

1026
 1027 Table 3: Correlation between Base LLM Benchmarks and Virtualhome Action Sequencing Task
 1028 Performance. Bold values indicate strong correlations ($|r| \geq 0.7$), italic values indicate moderate
 1029 correlations ($0.5 \leq |r| < 0.7$).

EAI Task Metrics	GPQA	MUSR	IFEval	MMLU-PRO	BBH	MATH Lvl 5
Task Success	0.525	0.558	0.618	0.714	0.754	0.782
State Goal	0.554	0.564	0.589	0.706	0.742	0.761
Relation Goal	0.521	0.558	0.577	0.707	0.743	0.783
Action Goal	0.514	0.531	0.622	0.704	0.746	0.779
Total Goal	0.552	0.571	0.608	0.725	0.764	0.792
Execution Success	0.507	0.532	0.648	0.701	0.747	0.773
Parsing	0.480	0.382	0.530	0.535	0.574	0.496
Hallucination	0.081	0.212	0.152	0.217	0.217	0.227
Predicate Arg	-0.204	-0.085	-0.345	-0.308	-0.382	-0.080
Wrong Order	-0.369	-0.350	-0.016	-0.485	-0.388	-0.417
Missing Step	-0.360	-0.329	-0.386	-0.355	-0.380	-0.255
Affordance	-0.198	-0.102	-0.189	-0.199	-0.205	-0.122
Additional Step	-0.317	-0.286	0.112	-0.304	-0.277	-0.190

1043
 1044 Table 4: Correlation between Base LLM Benchmarks and Behavior Action Sequencing Task Per-
 1045 formance. Bold values indicate strong correlations ($|r| \geq 0.7$), italic values indicate moderate
 1046 correlations ($0.5 \leq |r| < 0.7$).

EAI Task Metrics	GPQA	MUSR	IFEval	MMLU-PRO	BBH	MATH Lvl 5
Task Success	0.311	0.203	0.689	<i>0.601</i>	<i>0.613</i>	<i>0.604</i>
State Goal	0.282	0.264	0.702	<i>0.613</i>	<i>0.581</i>	<i>0.649</i>
Relation Goal	0.355	0.148	0.709	<i>0.526</i>	<i>0.620</i>	<i>0.510</i>
Total Goal	0.340	0.196	0.740	<i>0.578</i>	<i>0.629</i>	<i>0.589</i>
Execution Success	0.333	0.184	0.726	<i>0.587</i>	<i>0.615</i>	<i>0.574</i>
Parsing	0.081	0.062	0.838	0.307	0.372	0.295
Hallucination	0.137	-0.035	-0.187	0.120	0.111	0.225
Predicate Arg	0.201	0.016	-0.112	0.256	0.220	0.247
Wrong Order	-0.171	-0.131	-0.816	-0.356	-0.469	-0.444
Missing Step	-0.010	0.069	-0.783	-0.229	-0.296	-0.254
Additional Step	0.063	0.027	-0.515	-0.147	-0.180	-0.208

1059 Table 5: Correlation between Base LLM Benchmarks and Virtualhome Goal Interpretation Task
 1060 Performance. Bold values indicate strong correlations ($|r| \geq 0.7$), italic values indicate moderate
 1061 correlations ($0.5 \leq |r| < 0.7$).

EAI Task Metrics	GPQA	MUSR	IFEval	MMLU-PRO	BBH	MATH Lvl 5
Node F1	0.495	0.237	0.087	0.372	0.459	0.136
Edge F1	<i>0.531</i>	0.305	0.163	0.456	<i>0.567</i>	0.274
Action F1	0.339	0.175	0.314	0.250	0.343	0.163
All F1	0.554	0.289	0.162	0.427	<i>0.526</i>	0.187

1069 Table 6: Correlation between Base LLM Benchmarks and Behavior Goal Interpretation Task Per-
 1070 formance. Bold values indicate strong correlations ($|r| \geq 0.7$), italic values indicate moderate
 1071 correlations ($0.5 \leq |r| < 0.7$).

EAI Task Metrics	GPQA	MUSR	IFEval	MMLU-PRO	BBH	MATH Lvl 5
Overall F1	0.627	0.642	0.484	0.821	0.742	0.761
State Goal F1	0.576	<i>0.605</i>	0.459	0.777	0.707	0.780
Relation Goal F1	<i>0.646</i>	0.652	<i>0.500</i>	0.837	0.765	0.727
State Hallucinati...	0.309	0.300	0.402	0.493	0.403	0.466
Object Hallucinat...	0.325	0.324	0.420	<i>0.511</i>	0.422	0.490
Format Error Rate	0.295	0.280	0.419	0.473	0.384	0.460
Grammatically Val...	-0.446	-0.412	-0.515	-0.634	-0.518	-0.574

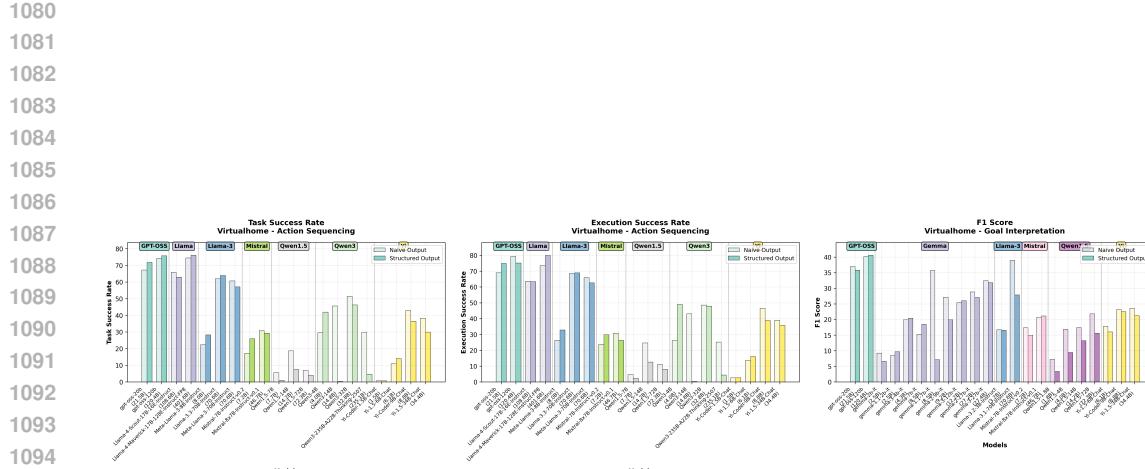


Figure 11: Comparison of observational scaling laws for standard generation (Base Model) versus structured decoding (Model with Decoder Masking) on the Virtualhome goal interpretation task. The plots show performance on action sequencing and goal interpretation tasks on Virtualhome.

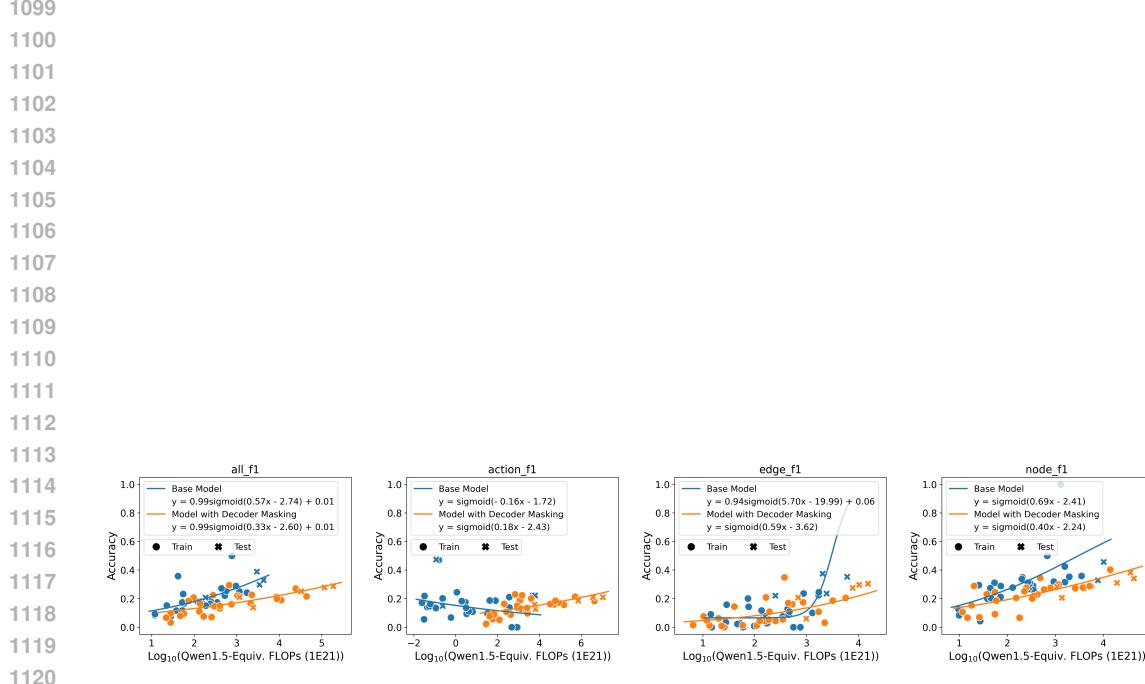


Figure 12: Comparison of observational scaling laws for standard generation (Base Model) versus structured decoding (Model with Decoder Masking) on the Virtualhome goal interpretation task. The plots show performance on four different F1 metrics as a function of model scale. While overall performance is comparable, structured decoding significantly degrades scaling performance on granular sub-tasks, particularly for Edge F1, suggesting that output constraints can hinder the learning of complex relational structures.

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

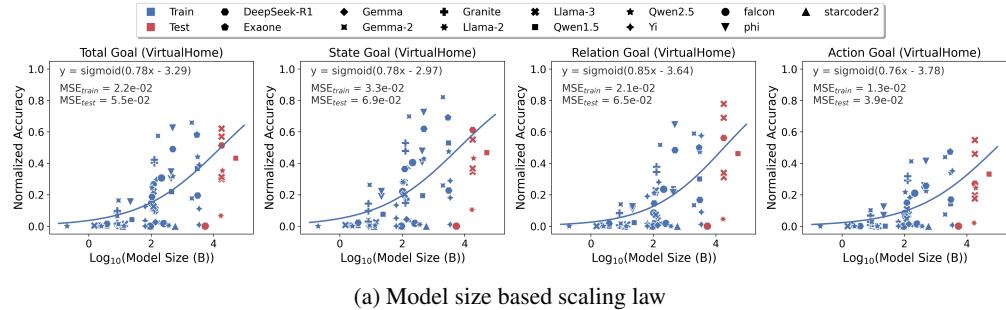
1183

1184

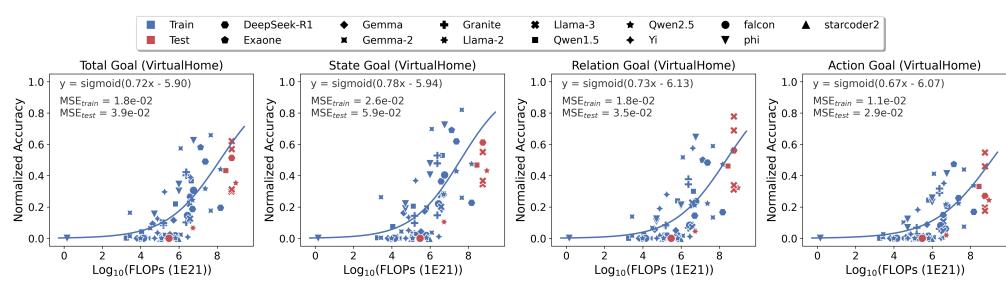
1185

1186

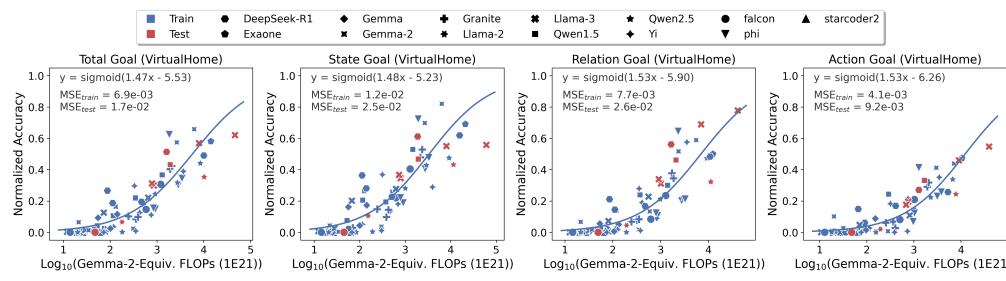
1187



(a) Model size based scaling law



(b) Training FLOPS based scaling law



(c) Observational scaling law

Figure 13: Scaling curves of action sequencing on Virtualhome.

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

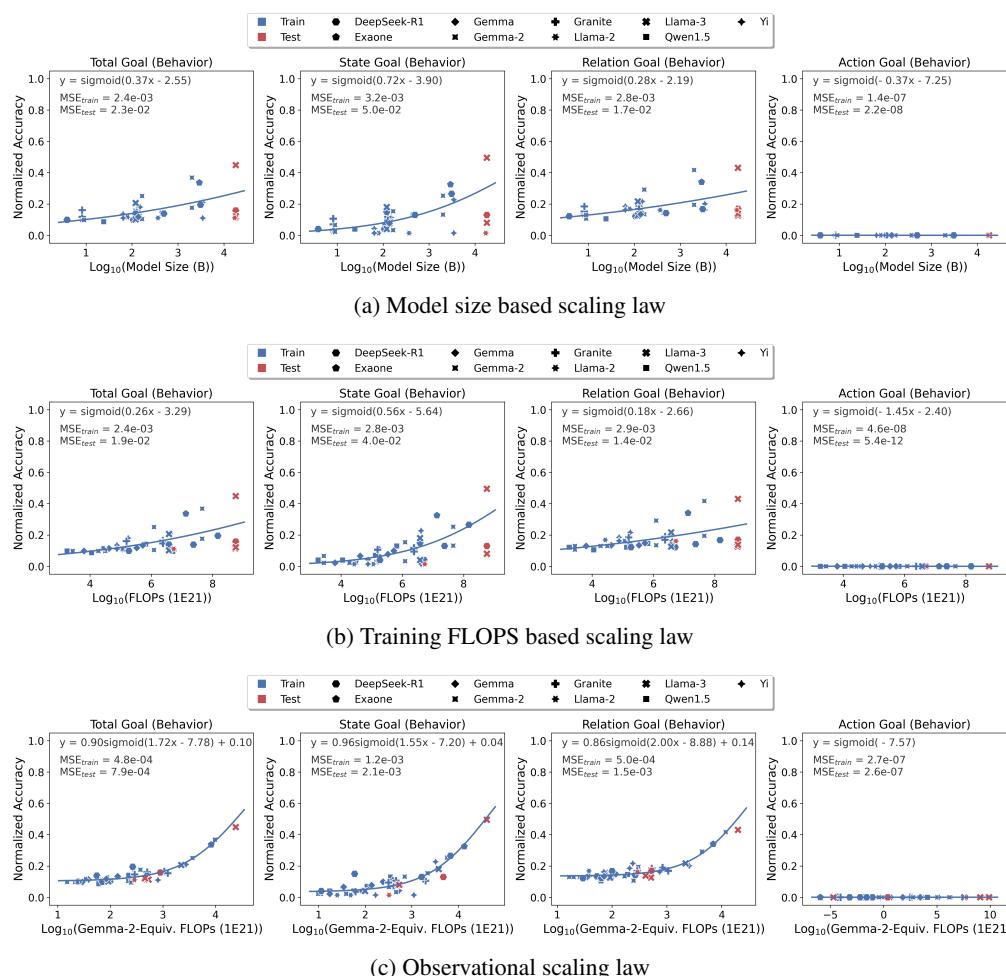


Figure 14: Scaling curves of action sequencing on Behavior. Action goal is all 0 in behcior simualtion.

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

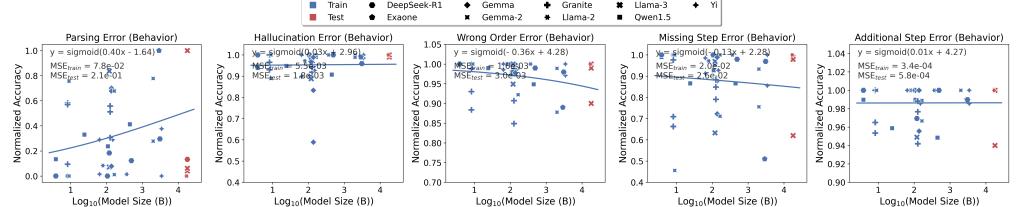
1291

1292

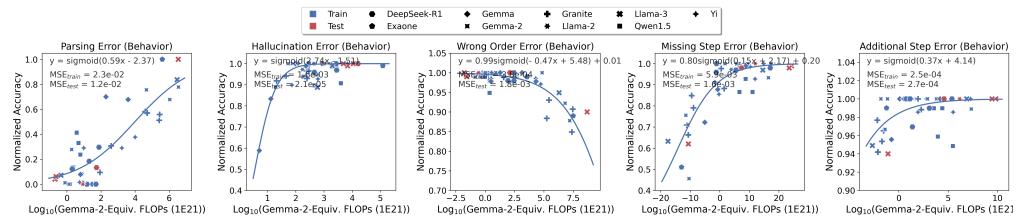
1293

1294

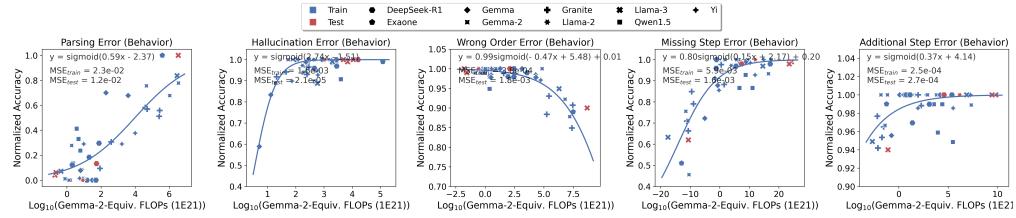
1295



(a) Model size based scaling law



(b) Training FLOPs based scaling law



(c) Observational scaling law

Figure 15: Scaling curves of action sequencing on Behavior.