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ABSTRACT

We introduce an observational method to derive scaling laws for LLM perfor-
mance in embodied decision-making tasks, allowing us to predict embodied skills,
quantify simulation gaps, and algorithm intervention. In contrast to conventional
scaling research that trains multiple models from scratch at different scales, our
approach bypasses new model training and instead uses publicly available pre-
trained LLMs to model performance trends across different model families and
sizes. Constructing such unified scaling law across diverse model families is chal-
lenging, as these models differ in both training compute efficiency and resulting
capabilities. We address this by employing a generalized scaling framework that
expresses model performance as a function of a low-dimensional capability space.
We first validate such scaling law on the Embodied Agent Interface (EAI) bench-
mark across 125 LLMs, confirming a predictive accuracy that represents at least
a 50% improvement over traditional compute scaling laws. We then find that
an LLM’s decision-making ability is highly predictable—accurately forecasting
the performance of larger models using data from those as small as 40B parame-
ters—which allows us to quantify both the performance gap between simulation
environments and the impact of structured decoding.

1 INTRODUCTION

Large Language Models (LLMs) power embodied agents that interpret goals, plan actions, and
interact with dynamic environments. This progress presents a fundamental question: do classical
scaling laws, which link model size to performance on language benchmarks, hold true for embodied
tasks? These complex tasks demand structured action sequences and sequential decisions (15 [2)),
a clear departure from simple text generation. Answering this question is critical to predict the
capabilities of larger models and to guide the future development of embodied Al

Prior work establishes systematic benchmarks to evaluate LL.Ms in embodied settings, measuring ca-
pabilities like goal interpretation, subgoal decomposition, and action sequencing (3). These bench-
marks reveal what current models can do, but they do not explain how performance scales. A clear
relationship between compute, such as training FLOPs, and downstream embodied success remains
unestablished. This disconnect is critical. Embodied tasks introduce challenges like environmental
interaction and the sim-to-real gap, which are absent from the pure language domains where scaling
laws are well-understood (4). The field currently lacks predictive models for embodied Al perfor-
mance as a function of model scale, leaving a fundamental gap between capability evaluation and
scaling science.

To move beyond evaluating the performance of individual models and toward a systematic study of
their scaling behavior, we introduce an observational scaling approach to predict the performance
of LLMs in embodied tasks. Our method extends observational scaling laws (3)), which use a low-
dimensional representation of a model’s capabilities to forecast success on complex downstream
tasks. This technique allows us to build predictive scaling models without the need for costly, full-
scale retraining, bridging the gap between embodied Al evaluation and scaling science.

Our work starts with the observation of general scaling laws across LM families that relate down-
stream performance to training measures. We test if this relationship extends to complex embodied
skills. An agent’s success in goal interpretation, for example, understanding “bring me the red cup



Under review as a conference paper at ICLR 2026

from the kitchen,” depends on core skills like natural language understanding and commonsense rea-
soning. We posit that a model’s downstream performance is a function of a low-dimensional space
of such capabilities. Model families differ only in the efficiency with which they convert training
compute into these capabilities. This relationship implies a log-linear trend from capabilities to
downstream performance across all model families, and a log-linear trend from training compute to
capabilities within each specific family.

This observational approach provides key advantages. First, it enables the study of scaling behavior
without retraining models. Second, it combines models from heterogeneous families with different
scaling properties, such as LLaMA (6; [7; [8), Qwen(9; [10; 115 12), Gemma(135 [145 [155 [165 [17),
and StarCoder (18} [19). This allows an analysis of different scaling strategies and their impact on
downstream performance and algorithmic interventions.

In experiments, we validate these scaling laws on the Embodied Agent Interface (EAI) benchmark
using 125 open LLMs from 28 model families. We demonstrate our method’s utility in three settings:
predicting emergent capabilities, quantifying simulation gaps, and measuring the effect of structured
outputs. First, we predict the performance of models larger than 40B parameters using data from
models smaller than 40B. Second, we use the scaling laws to quantify the performance gap between
different simulation environments. Third, we quantify the effect of structured outputs and find they
degrade the model’s decision-making performance.

Our contributions are twofold. First, we introduce an observational scaling framework that uni-
fies scaling laws for embodied tasks. This framework predicts decision-making performance as a
function of model capabilities and scale. Second, using our framework on the EAI benchmark, we
quantify the performance degradation from structured outputs and measure the gap between simu-
lation environments.

The paper proceeds as follows. Section 2 reviews related work. Section 3 formulates our problem.
Section 4 presents our method and Section 5 details our experiments. We conclude in Section 6.

2 RELATED WORKS

Embodied benchmarks such as VirtualHome, ALFRED, BEHAVIOR-1K, TEACh, and Habi-
tat evaluate whether agents can map goals and observations into machine-executable action—state
sequences that achieve task goals, enabling step- and goal-level verification of decision making
(205 215 1225 1235 24). The Embodied Agent Interface (EAI) formalizes this setting by standardizing
four LLM decision-making modules (goal interpretation, subgoal decomposition, action sequencing,
transition modeling), specifying I/O formats, and adding fine-grained error taxonomies that sup-
port modular, diagnostic evaluation (3)). Building on these interfaces, researchers either (i) improve
LLM performance via prompting and planning—e.g., Chain-of-Thought and ReAct—or affordance-
grounded planning for robotics (SayCan), or (ii) extend toward VLA policies that couple vision, lan-
guage, and action for robot control (RT-2; OpenVLA) (255 126; [2'7; 2851295 1305 1315 132513351345 1355 136).
Unlike work that augments algorithms or expands tasks, our focus is to analyze scaling behavior of
LLMs within EAI, linking standardized upstream capabilities (reasoning, coding, math) to down-
stream embodied performance via observational scaling principles (3).

Scaling laws fall into two main categories: compute-based scaling laws and downstream perfor-
mance scaling laws. Standard scaling laws (3751385 139;140; 415 45 42)), which are compute-based scal-
ing laws, are typically expressed as power-law relationships between a model’s cross-entropy loss
L and compute-scale measures. In this context, “compute scale” refers to training resources such as
the number of training FLOPs (C), model parameters (/V), and training tokens (D). Compute-based
scaling laws characterize pretraining behavior within a single model family, linking upstream perfor-
mance to controllable quantities like training compute. In contrast, downstream performance scaling
laws (435139; 14451455 146; [38) analyze scaling across model families, connecting benchmark results to
compute-related metrics (e.g., model size (47) or predicting its performance due to appearing rapid
“emergence” (48} 149; [50). Specifically, Researchers (51} 152)) have explored both linear and sig-
moidal functional forms to extrapolate downstream performance from pretraining loss or compute
measures. Chen et al. (53) introduced a two-stage approach—first predicting pretraining loss from
compute, then mapping that loss to downstream performance—even when using models from differ-
ent families with varying compute-efficiencies. On the theory front, Arora and Goyal (54)) and Ruan
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et al. (5) derive theories characterizing how performance on complex skills of LMs can be derived
as a composition of base skills. Drawing from these downstream scaling insights including ob-
servation scaling laws (3), we aim to identify scaling patterns between embodied decision-making
performance and conventional benchmark metrics, emphasizing empirical observation rather than
compute-driven modeling.

1.0 1.0
VirtualHome Metrics Correlation ' Behavior Simulation Metrics Correlation l

Overall- 0.556 0.654 0.678 0.716 0.672 0.768 0.583 0.793 0.9 Overall- 0.852 0.887 0.806 0.836 0.837 0.715 [0.476 0.868 0.9

Cudmg—w 0.545 0.565 0.616 0.604 0.729 0.553 0.696 Coding- 0.721 0.787 0.707 0.763 0.759 0.653 UEZER 0.751
0
]

Data Analysis- 0.585 0.663 0.710 0.794 0.734 0.747 0.508 0.786

°
©
°
©

Data Analysis - 0.863 0.807 0.758 0.768 0.657 0.511 0.865

°
<
e
<

Correlation Coefficient

H
Instruction Following -JUJEPER 0.690 0.749 0.719 0.672 0.714 0.737 § Instruction Following- 0.760 0.776 0.722 0748 0793 0.708 0532 0.795

°
Y
°
Y

Language- 0.532 0.617 0.639 0.690 0.604 0.795 0.520 0.746 Language - 0.837 0.835 0.875 0.845 0.796 0.568

Base LLM Benchmark Metrics
Correlation Coefficient
LLM Benchmark Met

o
o
Base
°
o

Math- 0.550 0.695 0.720 0.745 0.713 0.774 0.601 0.823 I Math - 0.890 0.821 0.823 0.832 0.698 0.875

Reasoning- 0.544 0.520 0523 0.515 0.495 0537 0.569 0.662 04 Reasoning- 0.642 0.711 0.600 0.674 0.706 0.524 KUEENN 0.667
¢ 5 5 F FL (a‘* <) & g g *_‘3' of‘ «”
? 7 & o 7 ¥
& S S s R 03 & & F P
POV S q\@ ‘\" & o & 0” Q\@
A A P ey S
v v & P 4750 v v & &F ﬁ@

& &
R 56
&9 &9
VirtualHome EAI Metrics Behavior EAl Metrics.

Figure 1: Pearson correlation heatmap between LiveBench 08-31-2024 and EAI task metrics.

Corelation between benchmarks have been investigated in numerous works. Specifically, ex-
tensive research has explored the relationship between the out-of-distribution performance and in-
distribution performance of machine learning models (555 156; 575 1585 159). In NLP and LM eval-
uations, Qiu et al. (60) and Torregrossa et al. (61) found that multiple evaluation metrics for word
embeddings are highly correlated, while Liu et al. (62)) observed robust correlations across question-
answering benchmarks. Perlitz et al. (63) and Polo et al. (64) further noted that performance is
strongly correlated across samples of different LM benchmarks, enabling the design of more efficient
evaluation suites. Beyond empirical observations, studies have identified compact latent structures
driving performance across tasks. Ili¢ (65)) demonstrated that a single latent factor accounts for 85%
of performance variance on the Open LLM Leaderboard (66) and GLUE benchmark (67). Burnell
et al. (68) similarly uncovered that three factors explain 82% of variation on the HELM benchmark
(69). These findings align with cross-task consistency seen elsewhere: for example, MixEval (70)
combines diverse benchmark queries and achieves a high ranking correlation (Pearson 0.96) with
human-composed Chatbot Arena (71), demonstrating coherence between aggregated benchmarks
and human judgment. In Figure[T] our work observes benchmark correlations (the highest is 91.3%)
between LiveBench(72) and EAI, and finds the gap between simulations. This leads to formulating
simulation-aware scaling predictions based on benchmark performance.

3 PROBLEM FORMULATION

We formulate scaling laws within the Embodied Agent Interface (EAI) benchmark (3). Our objective
is to determine if a smooth scaling relationship exists between general-purpose LLM capabilities and
the specialized skills of Goal Interpretation and Action Sequencing.

3.1 EMBODIED AGENT INTERFACE

EAI is a benchmark for embodied decision-making. It uses Linear Temporal Logic (LTL) as a
formal language to represent goals and plans, enabling a precise evaluation of an agent’s ability
to understand instructions and generate action sequences. For a comprehensive overview of the
framework’s formalisms, including its state representation and LTL semantics, we refer the reader
to the original EAI paper. In this work, we focus specifically on evaluating the Goal Interpretation
and Action Sequencing modules.

Goal Interpretation module G translates a natural language instruction [, into a formal LTL goal g,
given an initial state so. The Input-Output is G : (s¢,l,) — g¢. Its performance is measured by an
F set-matching score between the generated goal g and the ground truth.

Action Sequencing module () generates an action sequence @ to achieve a given LTL goal g from
a state sp. The Input-Output is @ : (sg,g) — a. It is evaluated on two metrics: Trajectory
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Feasibility (whether the sequence a is executable in a simulator) and Goal Satisfaction (whether
the resulting trajectory achieves g).

3.2 PROBLEM FORMULATION

Let F,, be the normalized performance metric for a given model m on a specific EAI evaluation
task. We focus on key indicators of embodied competence, such as the task_success_rate or
execution_success_rate for the Action Sequencing module, and the al1_f1 score for the
Goal Interpretation module.

Let C,, be the model’s m training compute in FLOPs, N,,, be parameter size, and D,, be the
pretraining token size. Following Kaplan et al. (4), we estimate C,,, using the approximation C,,, ~
6N, D,,. This allows us to connect the concrete properties of a model to its performance.

Recent studies (515 152) have found that a predictable scaling relationship holds for models within a
single architectural family (e.g., Llama, Gemma, or Qwen). They observe a sigmoidal relationship
between training compute and task error, formally expressed using a generalized linear model with
a logistic link function (o ~1):

o N Ew) = Aplog(Cr) + - (1)
Here, Ay and piy are constants that are determined empirically.

Our primary goal is to generalize this relationship to better quantify the scaling laws of the EAI
benchmark, potentially finding a more universal framework that holds across different model fami-
lies. A successful generalization would allow for more robust performance forecasting.

4 METHOD: OBSERVATIONAL SCALING LAWS

Our work builds on the Obscaling (3)), a framework for creating a universal scaling model for diverse
language models, including those with unknown training compute. This approach allows us to move
beyond the family-specific limitations discussed previously and pursue a more generalizable law.

Hypothesis 1 (Universal Performance Model) The core hypothesis is that we can predict a model’s
(m) performance on a complex task (measured by error E,, € R) using a universal linear model
based on a latent low-dimensional capability vector S,,, € RX:

o Y Ew) ~ BT Sm + a. )

Here, 5, is the capability vector for model m in a K -dimensional space, o is the logistic function,
B € RX is a universal weight vector that maps capabilities to performance, and o € R is a scalar
bias.

Hypothesis 2 (Latent Capability Projection) Then, we hypothesize that a model’s latent capabil-
ity, Sy, is a linear projection of its benchmark performance vector, B,, € R”. To compute this
capability vector, we apply a projection matrix v € R%*T such that

S = YBp,. 3)

We derive this matrix by applying Principal Component Analysis (PCA) to the performance vectors
of all models. The rows of -y consist of the top K principal components, as exemplified in Figure 2b]

Hypothesis 3 (Log-linear Capability Scaling) Next, if we assume that within a specific model fam-
ily f, capability grows log-linearly with compute (Equation ), then substituting this into Equation
[ recovers the familiar family-specific scaling law (Equation [I:

S = 05 1og(Crn) + vy 4)

o N Ey) ~ wyslog(Cy,) + by 6)

Here, 0; € RX is a family-specific vector, vy € R¥ is a bias vector, wy = B0y and by =
ﬁTuf + «. Thus, Equationis consistent with Equation

Fitting Observational Scaling Laws We begin with a set of LMs M, and four quantities for each
model m € M: its compute measure FLOPs C,,, its vector of benchmark scores B,,, and its
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performance on a complex task F,,. From this data, we estimate the scaling relationship through a
multi-stage procedure.

Firstly, we estimate the capability vectors S, via fitting PCA on B,,, and then find the universal
parameters 5* and «* by minimizing the squared error for the relationship defined in Equation

(h*, 8", a*) = argmin Y [[(E) — ho BT Sy + @)%, ©
h,B,« meM

where 3 € R¥, o € R are regression weights and bias. h € [0, 1] is the sigmoid scale and it results

in h* = 1 in most experiments. This defines a scalar capability score P, := (ﬁ*)Tﬁm + o for any
model.

Secondly, we determine the coefficients w;} and b}i for the scaling law described in Equation E}
Specifically, we select a reference family (e.g. llama-2) f, and then fit another linear regression
using only the models from the reference family f:

(w},b}) = argmin Z | P, — (wylog(Chn) +bp)]I?, (7)
wy,by mef
This mapping allows us to convert any model’s capability score P, into an intuitive metric—the
f-equivalent FLOPs, Cy, —by inverting the relation: log(C, f) := (Pp, — b})/w}. This provides
a single, compute-anchored axis for comparing all models.

5 EXPERIMENTS

Our experimental evaluation proceeds in four stages. First, we verify the core assumptions underly-
ing our proposed observational scaling laws. Second, we validate the laws by fitting them to LLM
performance on the EAI benchmark. Third, we apply the validated laws to identify a ”simulation
gap” between distinct EAI environments. Finally, we demonstrate the practical utility of our findings
for model intervention by quantifying the performance impact of structured decoding.

Experimental setup We evaluate 124 open-source LLMs (listed in Tables[I]and [2)) using the llama-
factory (73) with vLLM backend (74) for efficient inference. We measure the target performance
metric (E,,) on two tasks from the EAI benchmark (3): Action Sequencing (task and execution
success rates) and Goal Interpretation (F1 score). To establish a general capability measure (S), we
gather scores from the OpenLLM Leaderboard (66) on benchmarks testing reasoning (e.g., BBH,
MATH), instruction following (IFEval), and expert knowledge (e.g., MMLU-PRO). We then ap-
ply Principal Component Analysis (PCA) with ' = 3 to these general scores to derive our final
capability measure .S. We release the result and code in the supplementary materials.

5.1 VALIATION OF ASSUMPTION ON OBSERVATION SCALING LAWS

We validate two assumptions including Hypothesis 0 and Hypothesis 1, since we use different met-
rics than the original paper (3).

Hypothesis 0 and 1 posit that a low-dimensional latent variable can effectively represent model
performance. To extract this variable, we apply Principal Component Analysis (PCA with K = 5)
to the full suite of benchmark metrics (B). We define the resulting components as the “principal
capability” (PC) measures, S (see (3) for additional details).

Our analysis validates this low-rank assumption. As shown in Figure [2a] the top three PCs capture
approximately 97% of the total variance, with the first PC alone accounting for nearly 70%. Fur-
thermore, these PCs are highly interpretable (Figure [2b). PC-1 represents a “general capability”,
PC-2 corresponds to “instruction following”’, and PC-3 reflects “mathematical reasoning”. This
evidence indicates that the complex LM capabilities covered by our benchmarks can be expressed
as a linear combination of a few fundamental principal capabilities S.

Hypothesis 3 proposes a linear relationship between the principal capability measures (S) and log-
scale training compute (C). We use the first principal component (PC-1) to represent a model’s
capability .S. We estimate the training compute C by collecting the model parameter count (V) and
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(a) PCA explained variance (b) Principle component weights
Figure 2: Just a few capability dimensions explain most variability on a diverse range of standard LM bench-
marks. We find that (a) the benchmark-model matrix is low-dimensional with the top 3 PCs explaining ~ 97%
of the variance and (b) the PCs are interpretable: PC-1, PC-2, and PC-3 emphasize LMs’ general, instruction-
following, mathematical reasoning capabilities, respectively.
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Figure 3: The extracted PC measures linearly correlate with log-compute within each model family. The
linearity generally holds for various model families.

pretraining token size (D) from technical reports and project pages, then approximating the training
FLOPs as C' =~ 6N D.

Figure 3] validates this log-linear relationship within specific model families. We find a strong cor-
relation where the PC-1 measure scales linearly with log-training FLOPs, achieving an R? > 0.89.
This trend holds across diverse model architectures, including distilled models like DeepSeek-
R1 (75) and code-focused models like StarCoder2 (19). The relationship also extends to lower-
ranked components such as PC-2 and PC-3 (Figures 9] and [I0). This empirical evidence supports
our hypothesis in Equations [3|and ] which state that different model families convert compute into
capabilities at varying efficiencies within a shared capability space.

5.2 VALIDATING OBSERVATIONAL SCALING LAWS

Our objective is to validate that observational scaling laws can predict the performance of large
language models on EAI tasks

Experiment setup We filter the dataset to ensure quality, excluding models with (1) zero task per-
formance (e.g., max token length < input length, indicating evaluation failure) or (2) missing bench-
mark scores. To test extrapolation, we split models by size: those with <40B parameters form the
training set, and larger ones the test set. All preprocessing steps and scaling-law parameters (Equa-
tions|[7} [6) are fitted on the training data and applied to the test set to avoid information leakage.

Baselines: We compare the observational scaling law against two baselines, fitted by Eqation [T}
(i)Model Size Scaling: A power-law fit based on the number of model parameters. (ii) Training
FLOPs Scaling: A power-law fit based on the estimated floating-point operations used for training.

We present the results in Figure[d] and Figure[I3] [T4] [I3](appendix). Our method achieves the lowest
Mean Squared Error (MSE) on the held-out test set of models with > 40B parameters. For instance,
on the Task Success Rate (Behavior) metric, the observational law yields a test MSE of 1.3 x 107 3.
This is more than an order of magnitude better than both the Model Size baseline (6.5 x 10~2) and
the Training FLOPs baseline (5.6 x 10~ 2). A similar trend holds for the Execution Success Rate
(Behavior) task.
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(c) Observational scaling law

Figure 4: Scaling curves of action sequencing on Virtualhome and Behavior. We compare three
scaling laws: (a) Model Size, (b) Training FLOPs, and (c) our proposed Observational scaling law.
Each plot shows the training data (< 408 parameters, blue circles), the held-out test data (> 40B
parameters, red crosses), and the fitted sigmoid curve. The reported Mean Squared Error (MSE)
on the train and test sets shows that the observational scaling law consistently achieves the lowest
test MSE, indicating its superior ability to extrapolate performance to larger, more capable models.
The fitted sigmoid curve is expressed as y = sigmoid(n; X ng) where the coefficients nj, no
corresponds to the regression weight w}i and the bias by* in Equationﬁ

5.3 QUANTIFYING SCALING GAP BETWEEN SIMULATIONS

Interpreting Scaling Law Coefficients Following the validation in Section [5.2} we analyze the
fitted regression coefficients from our observational scaling law to understand the relative difficulty
of the tasks in different simluations.
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Figure 5: Comparison of observational scaling laws for Virtualhome and behavior on the action
sequencing task.

From Figure [5] we observe two key trends: (i) For both the Virtualhome and Behavior en-
vironments, the regression weight (w}) for execution success rate is consistently larger
than the weight for task success rate. This is consistent with the logical constraint that a
successful task execution is a stricter, and therefore more difficult, condition to satisfy than a plan
that is merely executable. (i) When comparing the two environments for the same task, Behavior
exhibits a higher regression weight (w}) but a lower bias (b}) than Virtualhome. This suggests
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that the Behavior simulation presents a higher initial barrier to effective performance (lower bias),
but that performance scales more steeply with increasing model capability (higher weight) once a
baseline of competence is achieved.

Correlation between Base LLM Benchmarks and EAI Task Performance
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Figure 6: Correlation heatmap between EAI task metrics (x-axis) and base LLM benchmarks from
the OpenL.LM Leaderboard (y-axis). Dark purple cells indicate positive correlation, and light yel-
low cells indicate negative correlation. The plot reveals that different EAI tasks and environments
draw on different foundational capabilities, such as mathematical reasoning (MATH Lv1 5) for
Virtualhome and instruction following (IFEval) for Behavior.

Correlation with Foundational LLM Capabilities To contextualize the skills required by our EAI
benchmarks, we compute the correlation between EAI task performance and scores from the Open-
LLM Leaderboard. We present the results in the heatmap in Figure [6] and statistics in Table [3]
Bl @l [6l The analysis reveals that task performance in different simulation environments is asso-
ciated with distinct underlying LLM capabilities. Specifically, Action Sequencing performance
in Virtualhome shows a strong positive correlation with mathematical reasoning benchmarks
(MATH Lvl 5). In contrast, the same task in the Behavior environment correlates most strongly
with instruction following capabilities (IFEval). This suggests that Virtualhome may test a
model’s logical planning and reasoning abilities more heavily, while Behavior emphasizes the
precise interpretation and execution of commands. Furthermore, we note that specific error metrics
within our benchmark, such as Missing Step (V1-11) and Affordance (V1-12), show weak
to no correlation with any of the general OpenLLLM benchmarks. This indicates that standard LLM
evaluations do not adequately measure a model’s proficiency in these crucial aspects of embodied
planning, highlighting a potential gap in existing evaluation practices.

5.4 THE IMPACT OF STRUCTURED DECODING

Task Success Rate Execution Success Rate F1Score
Virtualhome - Action Sequencing Virtualhome - Action Sequencing Virtualhome - Goal Interpretation

Figure 7: Comparison of observational scaling laws for standard generation (Base Model) versus
structured decoding (Model with Decoder Masking) on the Virtualhome goal interpretation task.
The plots show performance on action sequencing and goal interpretation tasks on Virtualhome.
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Figure 8: Comparison of observational scaling laws for standard generation (Base Model) versus
structured decoding (Model with Decoder Masking). The y axis of first two plot represents metrics
of Virtualhome’s goal interpretation task and the last two are the metrics of Virtualhome’s action
sequencing task. Blue lines represent the base model and yellow represent the Model with Decoder
Masking

In this section, we investigate the impact of enforcing structured outputs on the performance of
LLMs in EAI tasks. While compelling models to generate plans in a specific format like JSON
guarantees syntactic correctness and eliminates parsing failures, it is unclear whether this constraint
helps or hinders the model’s underlying reasoning and planning capabilities.

To quantify this trade-off, we designed a controlled experiment to measure performance differences
between standard and constrained decoding. Using vVLLM (74) as our inference backend, we eval-
uated a suite of models on our EAI benchmarks under two conditions: (1) with standard, uncon-
strained text generation, and (2) with structured decoding enabled via Xgrammar(76)) to enforce a
strict JSON output schema. The performance in both conditions was measured using the primary
success metrics from our benchmark to isolate the effect of the decoding constraint. We report

results in Figures [8[12]

A direct model-by-model comparison in Figure [TT] reveals that the impact of structured decoding
is not uniform and can be difficult to predict. For instance, on the Action Sequencing task,
the constraint improves the Task Success Rate for capable models like L1ama-3-70B, but
it harms the performance of others like Yi—1.5-6B. Similarly, for Goal Interpretation,
structured decoding hurts the performance of GPT-4 and Mixtral-8x7B, yet provides a notable
benefit to models such as Yi-1.5-34B and Phi-3-mini-128k.

As shown in Figure 8] our results for the Virtualhome goal interpretation task reveal that forcing a
structured output consistently hurts model performance. For the main Overall F1 score, models
with the output constraint always performed slightly worse than the regular models, even though
both improved at a similar rate as they scaled up. This performance gap was much larger on more
detailed sub-tasks. For example, on Edge classification F1, the regular model’s perfor-
mance improved more than four times faster than the constrained model’s (a scaling slope of w=0.79
vs. w=0.19). This suggests that while structured decoding guarantees a clean output format, these
strict rules prevent the model from fully learning the complex relationships needed for the planning
task.

6 CONCLUSION

This paper presents an observational method for deriving scaling laws in embodied decision-making,
leveraging a large set of public LLMs to avoid costly training. Our generalized scaling law maps
performance to a low-dimensional capability space, effectively modeling diverse model families.
Validated on the EAI benchmark, our method shows high predictive accuracy, significantly improv-
ing on traditional compute-based laws. This framework provides a cost-effective way to forecast
model performance, quantify the effects of interventions like structured decoding, and measure sim-
ulation gaps. Future work can extend this approach to build a unified model of the simulation gap
and to quantify the effects of more complex LM interventions.
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A APPENDIX

A.1 EXPERIMENT MODEL INFORMATION

A.2 PC MEASURES LINEARLY CORRELATED WITH LOG-COMPUTE MEASURES
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Figure 9: Linear relationship between the second principal component (PC-2) and log-compute
across different model families.
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Figure 10: Linear relationship between the third principal component (PC-3) and log-compute
across different model families.

A.3 DETAIL CORRELATION VALUE BETWEEN OPENLLM LEADERBOARD AND EAI SKILLS
A.4 IMPACT OF STRUCTURING OUTPUT
A.5 OTHERS

add obscaling for goal interpretation on virtualhome and behavior
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Model Family Size (B) Tokens (T) FLOPs (1E21) OpenLLM metric
Baichuan-7B Baichuan — 1.20 — No
Baichuan2-7B-Base Baichuan 7 2.60 109.20 No
Baichuan2-7B-Chat Baichuan 7 2.60 109.20 No
DeepSeek-V3 DeepSeek 684.5 14.80 60783.60 No
deepseek-coder-1.3b-base DeepSeek-Coder 1.3 2.00 15.60 No
deepseek-coder-1.3b-instruct DeepSeek-Coder 1.3 2.00 15.60 No
deepseek-coder-33b-base DeepSeek-Coder  33.3 2.00 396.00 No
deepseek-coder-33b-instruct DeepSeek-Coder  33.3 2.00 399.60 No
deepseek-coder-6.7b-base DeepSeek-Coder 6.7 2.00 80.40 No
deepseek-coder-6.7b-instruct DeepSeek-Coder 6.7 2.00 80.40 No
deepseek-coder-7b-base-v1.5 DeepSeek-Coder 6.9 2.00 82.80 No
deepseek-coder-7b-instruct-v1.5 DeepSeek-Coder 6.9 2.00 82.80 No
DeepSeek-R1 DeepSeek-R1 684.5 14.80 60783.60 No
DeepSeek-R1-Distill-Llama-70B DeepSeek-R1 70.6 15.00 6354.00 Yes
DeepSeek-R1-Distill-Llama-8B DeepSeek-R1 8 15.00 720.00 Yes
DeepSeek-R1-Distill-Qwen-1.5B DeepSeek-R1 1.8 18.00 194.40 Yes
DeepSeek-R1-Distill-Qwen-14B DeepSeek-R1 14.8 18.00 1598.40 Yes
DeepSeek-R1-Distill-Qwen-32B DeepSeek-R1 32.8 18.00 3542.40 Yes
DeepSeek-R1-Distill-Qwen-7B DeepSeek-R1 7.6 18.00 820.80 Yes
EXAONE-3.5-32B-Instruct Exaone 32 6.50 1248.00 Yes
EXAONE-Deep-32B Exaone 32 6.50 1248.00 No
gpt-0ss-120b GPT-0OSS 120.4 — — No
gpt-0ss-20b GPT-OSS 21.5 — — No
gemma-1.1-2b-it Gemma 2.5 3.00 45.00 Yes
gemma-1.1-7b-it Gemma 8.5 6.00 306.00 Yes
gemma-7b Gemma 8.5 6.00 252.00 Yes
gemma-7b-it Gemma 8.5 2.00 102.00 Yes
gemma-2-27b Gemma-2 27.2 13.00 2121.60 Yes
gemma-2-27b-it Gemma-2 27.2 13.00 2121.60 Yes
gemma-2-2b Gemma-2 2.6 2.00 31.20 Yes
gemma-2-2b-it Gemma-2 2.6 2.00 31.20 Yes
gemma-2-9b Gemma-2 9.2 8.00 441.60 Yes
gemma-2-9b-it Gemma-2 9.2 8.00 441.60 Yes
gemma-2b Gemma-2 2.5 6.00 72.00 Yes
gemma-2b-it Gemma-2 2.5 6.00 90.00 Yes
gemma-3-12b-it Gemma-3 12.2 12.00 878.40 No
gemma-3-12b-pt Gemma-3 12.2 12.00 878.40 No
gemma-3-27b-it Gemma-3 27.4 14.00 2301.60 No
gemma-3-4b-it Gemma-3 4.3 4.00 103.20 No
gemma-3-4b-pt Gemma-3 4.3 4.00 103.20 No
granite-3.1-2b-base Granite 2.5 12.00 180.00 Yes
granite-3.1-2b-instruct Granite 2.5 12.00 180.00 Yes
granite-3.1-8b-base Granite 8.2 12.00 590.40 Yes
granite-3.1-8b-instruct Granite 8.2 12.00 590.40 Yes
granite-3.2-2b-instruct Granite 2.5 12.00 180.00 Yes
granite-3.2-8b-instruct Granite 8.2 12.00 590.40 Yes
granite-3.3-2b-base Granite 2.5 12.00 180.00 No
granite-3.3-2b-instruct Granite 2.5 12.00 180.00 No
granite-3.3-8b-base Granite 8.2 12.00 590.40 No
granite-3.3-8b-instruct Granite 8.2 12.00 590.40 No
Kimi-K2-Instruct Kimi 1000 15.50 93000.00 No
Llama-4-Maverick-17B-128E-Instruct-FP8  Llama 401.6 22.00 53011.20 No
Llama-4-Scout-17B-16E-Instruct Llama 108.6 40.00 26064.00 No
llama3_8B_o04-mini-2025-04-16 Llama — — — No
Llama-2-13b-hf Llama-2 13 2.00 156.00 Yes
Llama-2-70b-hf Llama-2 69 2.00 840.00 Yes
Llama-2-7b-hf Llama-2 6.7 2.00 84.00 Yes
Llama-3.1-70B Llama-3 70.6 15.00 6354.00 Yes
Llama-3.2-1B Llama-3 1.2 9.00 64.80 Yes
Llama-3.2-3B Llama-3 32 9.00 172.80 Yes
Llama-3.3-70B-Instruct Llama-3 70.6 15.00 6354.00 Yes
Meta-Llama-3-70B Llama-3 70.6 15.00 6300.00 Yes
Meta-Llama-3-70B-Instruct Llama-3 70.6 15.00 6354.00 Yes
Meta-Llama-3-8B Llama-3 8 15.00 720.00 Yes
Meta-Llama-3-8B-Instruct Llama-3 8 15.00 720.00 Yes

Table 1: Model summary (part 1 of 2). Models sorted by family then name; OpenLLM metric =
non-NA ‘Average*.
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Model Family Size (B) Tokens (T) FLOPs (1E21) OpenLLM metric
Mistral-7B-Instruct-v0.2 Mistral 7.2 — — Yes
Mixtral-8x7B-Instruct-v0.1 Mistral 46.7 — — Yes
Qwen-14B Qwen 14.2 3.00 252.00 No
Qwen-72B Qwen 72.3 3.00 1296.00 No
Qwen-7B Qwen 7.7 2.40 100.80 No
Qwenl.5-1.8B Qwenl.5 1.8 2.40 25.92 Yes
Qwenl.5-110B Qwenl.5 111.2 7.00 4670.40 Yes
Qwenl.5-14B Qwenl.5 14.2 4.00 336.00 Yes
Qwenl.5-32B Qwenl.5 32.5 4.00 768.00 Yes
Qwenl.5-4B Qwenl.5 4 2.40 57.60 Yes
Qwenl.5-72B Qwenl.5 72.3 3.00 1296.00 No
Qwenl.5-7B Qwenl.5 7.7 4.00 168.00 Yes
Qwen2.5-0.5B Qwen2.5 0.5 18.00 54.00 Yes
Qwen2.5-1.5B Qwen2.5 1.5 18.00 162.00 Yes
Qwen2.5-14B Qwen2.5 14.8 18.00 1598.40 Yes
Qwen2.5-32B Qwen2.5 32.8 18.00 3542.40 Yes
Qwen2.5-3B Qwen2.5 3.1 18.00 334.80 Yes
Qwen2.5-72B Qwen2.5 727 18.00 7851.60 Yes
Qwen2.5-7B Qwen2.5 7.6 18.00 820.80 Yes
Qwen3-0.6B Qwen3 0.8 36.00 172.80 No
Qwen3-1.7B Qwen3 2 36.00 432.00 No
Qwen3-14B Qwen3 14.8 36.00 3196.80 No
Qwen3-235B-A22B-Thinking-2507  Qwen3 235.1 36.00 50781.60 No
Qwen3-32B Qwen3 32.8 36.00 7084.80 No
Qwen3-4B Qwen3 4 36.00 864.00 No
Qwen3-8B Qwen3 8.2 36.00 1771.20 No
Yi-1.5-34B Yi 344 3.60 743.04 Yes
Yi-1.5-34B-Chat Yi 344 3.60 743.04 Yes
Yi-1.5-6B Yi 6.1 3.60 131.76 Yes
Yi-1.5-6B-Chat Yi 6.1 3.60 131.76 Yes
Yi-1.5-9B Yi 8.8 3.60 190.08 Yes
Yi-34B Yi 344 3.10 639.84 Yes
Yi-6B Yi 6.1 3.10 113.46 Yes
Yi-Coder-1.5B Yi 1.5 2.40 21.60 No
Yi-Coder-1.5B-Chat Yi 1.5 2.40 21.60 No
Yi-Coder-9B Yi 8.8 2.40 126.72 No
Yi-Coder-9B-Chat Yi 8.8 2.40 126.72 Yes
Falcon3-10B-Base falcon 10.3 14.00 865.20 Yes
Falcon3-7B-Base falcon 7.5 14.00 630.00 Yes
falcon-11B falcon 11.1 5.00 333.00 Yes
falcon-40b falcon 41.8 1.00 240.00 Yes
falcon-7b falcon 7.2 1.50 63.00 Yes
gpt-4.1-2025-04-14 gpt-4.1-2025-04-14 — — — No
gpt-4.1-mini-2025-04-14 gpt-4.1-mini-2025-04-14 — — — No
gpt-4.1-nano-2025-04-14 gpt-4.1-nano-2025-04-14 — — — No
04-mini-2025-04-16 04-mini-2025-04-16 — — — No
Phi-3-medium-128k-instruct phi 14 4.80 403.20 Yes
Phi-3-medium-4k-instruct phi 14 4.80 403.20 Yes
Phi-3-mini-128k-instruct phi 38 4.90 111.72 Yes
Phi-3-mini-4k-instruct phi 3.8 4.90 111.72 Yes
phi-1.5 phi 14 0.15 1.17 Yes
phi-4 phi 14.7 9.80 864.36 Yes
starcoderbase starcoder 15.5 1.00 93.00 No
starcoderbase-1b starcoder 15.5 1.00 6.00 No
starcoderbase-3b starcoder 15.5 1.00 18.00 No
starcoderbase-7b starcoder 15.5 1.00 42.00 No
starcoder2-15b starcoder2 16 4.30 387.00 Yes
starcoder2-3b starcoder2 3 3.30 59.40 Yes
starcoder2-7b starcoder2 7.2 3.70 155.40 Yes

Table 2: Model summary (part 2 of 2). Models sorted by family then name; OpenL.LM metric =
non-NA ‘Average*.
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Table 3: Correlation between Base LLM Benchmarks and Virtualhome Action Sequencing Task
Performance. Bold values indicate strong correlations (|r| > 0.7), italic values indicate moderate
correlations (0.5 < |r| < 0.7).

EAI Task Metrics  GPQA MUSR IFEval MMLU-PRO BBH MATHLvlS5

Task Success 0.525 0.558 0.618 0.714 0.754 0.782
State Goal 0.554 0.564 0.589 0.706 0.742 0.761
Relation Goal 0.521 0.558 0.577 0.707 0.743 0.783
Action Goal 0.514 0.531 0.622 0.704 0.746 0.779
Total Goal 0.552 0.571 0.608 0.725 0.764 0.792
Execution Success  0.507 0.532 0.648 0.701 0.747 0.773
Parsing 0.480 0.382 0.530 0.535 0.574 0.496
Hallucination 0.081 0.212 0.152 0.217 0.217 0.227
Predicate Arg -0.204  -0.085 -0.345 -0.308 -0.382 -0.080
Wrong Order -0.369  -0.350 -0.016 -0.485 -0.388 -0.417
Missing Step -0.360 -0.329 -0.386 -0.355 -0.380 -0.255
Affordance -0.198  -0.102  -0.189 -0.199 -0.205 -0.122
Additional Step -0.317 -0.286  0.112 -0.304 -0.277 -0.190

Table 4: Correlation between Base LLM Benchmarks and Behavior Action Sequencing Task Per-
formance. Bold values indicate strong correlations (|| > 0.7), italic values indicate moderate
correlations (0.5 < |r| < 0.7).

EAI Task Metrics  GPQA MUSR IFEval MMLU-PRO BBH MATHLvIS5

Task Success 0.311 0.203 0.689 0.601 0.613 0.604
State Goal 0.282 0.264 0.702 0.613 0.581 0.649
Relation Goal 0.355 0.148 0.709 0.526 0.620 0.510
Total Goal 0.340 0.196 0.740 0.578 0.629 0.589
Execution Success  0.333 0.184 0.726 0.587 0.615 0.574
Parsing 0.081 0.062 0.838 0.307 0.372 0.295
Hallucination 0.137 -0.035 -0.187 0.120 0.111 0.225
Predicate Arg 0.201 0.016 -0.112 0.256 0.220 0.247
Wrong Order -0.171  -0.131  -0.816 -0.356 -0.469 -0.444
Missing Step -0.010  0.069 -0.783 -0.229 -0.296 -0.254
Additional Step 0.063 0.027 -0.515 -0.147 -0.180 -0.208

Table 5: Correlation between Base LLM Benchmarks and Virtualhome Goal Interpretation Task
Performance. Bold values indicate strong correlations (|r| > 0.7), italic values indicate moderate
correlations (0.5 < |r| < 0.7).

EAI Task Metrics GPQA MUSR IFEval MMLU-PRO BBH MATHLvIS

Node F1 0.495 0.237 0.087 0.372 0.459 0.136
Edge F1 0.531 0.305 0.163 0.456 0.567 0.274
Action F1 0.339 0.175 0.314 0.250 0.343 0.163
AllF1 0.554 0.289 0.162 0.427 0.526 0.187

Table 6: Correlation between Base LLM Benchmarks and Behavior Goal Interpretation Task Per-
formance. Bold values indicate strong correlations (|r| > 0.7), italic values indicate moderate
correlations (0.5 < |r| < 0.7).

EAI Task Metrics GPQA MUSR IFEval MMLU-PRO BBH MATHLvVI5

Overall F1 0.627 0.642 0.484 0.821 0.742 0.761
State Goal F1 0.576 0.605 0.459 0.777 0.707 0.780
Relation Goal F1 0.646 0.652 0.500 0.837 0.765 0.727
State Hallucinati... 0.309 0.300 0.402 0.493 0.403 0.466
Object Hallucinat... 0.325 0.324 0.420 0.511 0.422 0.490
Format Error Rate 0.295 0.280 0.419 0.473 0.384 0.460
Grammatically Val... -0.446 -0412 -0.515 -0.634 -0.518 -0.574
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Figure 11: Comparison of observational scaling laws for standard generation (Base Model) versus
structured decoding (Model with Decoder Masking) on the Virtualhome goal interpretation task.
The plots show performance on action sequencing and goal interpretation tasks on Virtualhome.
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Figure 12: Comparison of observational scaling laws for standard generation (Base Model) versus
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The plots show performance on four different F1 metrics as a function of model scale. While over-
all performance is comparable, structured decoding significantly degrades scaling performance on
granular sub-tasks, particularly for Edge F1, suggesting that output constraints can hinder the learn-
ing of complex relational structures.
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Figure 13: Scaling curves of action sequencing on Vritualhome.

22



Under review as a conference paper at ICLR 2026

B Train @ DeepSeek-Rl & Gemma + Granite % Llama-3 + i
W Test ® Exaone % Gemma2  # Lama2 ® Qwenls5
Total Goal (Behavior) State Goal (Behavior) Relation Goal (Behavior) Action Goal (Behavior)
1.01 y = sigmoid(0.37x - 2.55) 1.01 y = sigmoid(0.72x - 3.90) 1.01 y = sigmoid(0.28x - 2.19) 1.07 y = sigmoid(- 0.37x - 7.25)
> MSEqain = 2.4e-03 > MSEqin = 3.26-03 > MSEqin = 2.86-03 > MSE roin = 1.4€-07
® 0.81 MSEre = 2.3e-02 ® 0.8{ MSEies = 5.0e-02 ® 0.81 MSEis = 1.7e-02 ® 0.81 MSEis = 2.2e-08
S 5 5 5
3 3 3 3
K06 K06 {06 {06
o o x | © o
@ x @ @ x @
Noa Noa Noa * Noa
@ @ s . ®
£ 0.2 £ 0.2 £ 0.2 £ 0.2
207 s 2| 2° . |2 RN
0.0 0.0 0.0 0.0] o——n—srtor0——w0—u
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Logio(Model Size (B)) Logio(Model Size (B)) Log;o(Model Size (B)) Log;o(Model Size (B))
(a) Model size based scaling law
W Train ® DeepSeek-R1 ¢ Gemma # Granite # Llama-3 + i
W Test ®  Exaone X Gemma-2 % Llama2 ~® Qwenls5
Total Goal (Behavior) State Goal (Behavior) Relation Goal (Behavior) Action Goal (Behavior)
1.0 y = sigmoid(0.26x - 3.29) 1.0 y = sigmoid(0.56x - 5.64) 1.0 y = sigmoid(0.18x - 2.66) 1.0 y = sigmoid(- 1.45x - 2.40)
> MSEqin = 2.4€-03 > MSEqain = 2.8€-03 > MSEqin = 2.9¢-03 > MSEyqin = 4.6€-08
@ 0.81 MSEcest = 1.9-02 3 0.81 MSEres = 4.0e-02 3 0.81 MSErese = 1.42-02 3 0.81 MSErese = 5.4e-12
H H H H
3 3 I+ I+
06 206 £06 £06
o o x | o °
[ x o [ x @
Noa N Noa Noa * Noa
& . < < . ®
€ € 13 - £
502 . 502 502 502
= 3 z z i z
0.0 0.0 0.0 0.0 —Sn—mnrdtr 8ot ntr—00n—0—H—
4 6 8 4 6 8 4 6 8 4 6 8
Log0(FLOPs (1E21)) Log0(FLOPs (1E21)) Log0(FLOPs (1E21)) Log;0(FLOPs (1E21))
(b) Training FLOPS based scaling law
W Train @ DeepSeek-Rl & Gemma + Granite % Llama-3 + i
W Test ® Exaone X Gemma2  # Lama2 ® Qwenls5
Total Goal (Behavior) State Goal (Behavior) Relation Goal (Behavior) Action Goal (Behavior)
1.0 y = 0.90sigmoid(1.72x - 7.78) + 0.10| 1.0 y = 0.96sigmoid(1.55x - 7.20) + 0.04| 1.0 y = 0.86sigmoid(2.00x - 8.88) + 0.14| 1.0 y = sigmoid( - 7.57)
> MSEyain = 4.8-04 > MSEqi = 1.2€-03 > MSEqin = 5.0e-04 > MSE roip = 2.7€-07
® 0.81 MSEres = 7.9e-04 ® 0.8{ MSErs = 2.1e-03 ® 0.81 MSErs = 1.5e-03 ® 0.81 MSEis = 2.6e-07
S S S 5
3 3 3 3
K06 K06 06 06
o o o o
Q Q o o
Noa Noa Noa Noa
] ] ® ®
£ € £ £
502 502 502 502
=z =z =z =z
0.0 0.0 0.0 0.0 | —o—#-0-000m 0 —mrens—r et

1 2 1 2 3 4 -5 0 5 10
Log;0(Gemma-2-Equiv. FLOPs (1E21)) Log;0(Gemma-2-Equiv. FLOPs (1E21)) Log10(Gemma-2-Equiv. FLOPs (1E21)) Logi0(Gemma-2-Equiv. FLOPs (1E21)

(c) Observational scaling law

Figure 14: Scaling curves of action sequencing on Behavior. Action goal is all 0 in behacior simual-
tion.
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Figure 15: Scaling curves of action sequencing on Behavior.
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