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ABSTRACT

Bilevel optimization is an important class of optimization problems where one
optimization problem is nested within another. This framework is widely used
in machine learning problems, including meta-learning, data hyper-cleaning, and
matrix completion with denoising. In this paper, we focus on a bilevel optimization
problem with a strongly convex lower-level problem and a smooth upper-level
objective function over a compact and convex constraint set. Several methods
have been developed for tackling unconstrained bilevel optimization problems, but
there is limited work on methods for the constrained setting. In fact, for those
methods that can handle constrained problems, either the convergence rate is slow
or the computational cost per iteration is expensive. To address this issue, in this
paper, we introduce a novel single-loop projection-free method using a nested
approximation technique. Our proposed method has an improved per-iteration
complexity, surpassing existing methods, and achieves optimal convergence rate
guarantees matching the best-known complexity of projection-free algorithms for
solving convex constrained single-level optimization problems. In particular, when
the hyper-objective function is convex, our method requires Õ(ϵ−1) iterations
to find an ϵ-optimal solution. Moreover, when the hyper-objective function is
non-convex the complexity of our method is O(ϵ−2) to find an ϵ-stationary point.
We also present numerical experiments to showcase the superior performance of
our method compared with state-of-the-art methods.

1 INTRODUCTION

Many learning and inference problems take a hierarchical form, where one optimization problem is
nested within another. Bilevel optimization is often used to model problems of this kind with two
levels of hierarchy. In this paper, we consider the bilevel optimization problem of the following form

min
x∈X

ℓ(x) := f(x,y∗(x)) s.t. y∗(x) ∈ argmin
y∈Rm

g(x,y). (1)

where n,m ≥ 1 are integers; X ⊂ Rn is a compact and convex set with diameter DX , i.e.,
∥x − y∥ ≤ DX for all x,y ∈ X . Further, f : X × Rm → R and g : X × Rm → R are
continuously differentiable functions with respect to (w.r.t.) x and y on an open set containing
X and Rm, respectively. Problem (1) involves two optimization problems following a two-level
structure. The outer objective f(x,y∗(x)) depends on x both directly and also indirectly through
y∗(x), which is a solution of the lower-level problem of minimizing another function g parameterized
by x. Throughout the paper, we assume that g(x,y) is strongly convex in y, and hence y∗(x) is
uniquely well-defined for all x ∈ X . The application of (1) arises in a number of machine learning
(ML) problems, such as meta-learning (Rajeswaran et al., 2019), continual learning (Borsos et al.,
2020), reinforcement learning (Konda & Tsitsiklis, 1999), hyper-parameter optimization(Franceschi
et al., 2018b; Pedregosa, 2016), and data hyper-cleaning (Shaban et al., 2019).

Several methods have been proposed to solve the general form of the bilevel optimization problems
mentioned in (1). For instance, using the optimality conditions of the lower-level problem, the
works in (Hansen et al., 1992; Shi et al., 2005; Moore, 2010) transformed the bilevel problem into a
single-level constrained problem. However, such an approach includes two major challenges: (i) The
reduced problem will have too many constraints when the inner problem is large-scale; (ii) Unless
the lower-level function g has a specific structure, such as a quadratic form, the optimality condition
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of the lower-level problem introduces nonconvexity into the feasible set of the reduced problem.
Recently, more efficient gradient-based bilevel optimization algorithms have been proposed, which
can be broadly divided into the approximate implicit differentiation (AID) based approach (Pedregosa,
2016; Gould et al., 2016; Domke, 2012; Liao et al., 2018; Ghadimi & Wang, 2018; Lorraine et al.,
2020) and the iterative differentiation (ITD) based approach (Shaban et al., 2019; Maclaurin et al.,
2015; Franceschi et al., 2018a; Grazzi et al., 2020). Nevertheless, with the exception of a few recent
attempts, most of the existing studies have primarily focused on analyzing the asymptotic convergence,
leaving room for the development of novel algorithms that come with guaranteed convergence rates.

Furthermore, most prior studies assume X = Rn, leading to a simpler unconstrained optimization
problem. Nonetheless, X is required to be a strict subset of Rn in several applications including
meta-learning (Franceschi et al., 2018b), personalized federated learning (Fallah et al., 2020), and
coreset selection (Borsos et al., 2020). To deal with such constraint sets, one common approach is to
use projection-based methods such as projected gradient methods. However, they require solving
a nonlinear projection problem on the constraint set and may not be computationally feasible. The
limitations of projection-based techniques led to the development of projection-free algorithms like
Frank Wolfe-based methods (Frank & Wolfe, 1956). Instead of tackling a non-linear projection
problem, as in the case of ℓ1-norm or nuclear norm ball constraints, these Frank Wolfe-based
techniques need to solve a linear minimization problem over X with lower computational cost.

In the context of bilevel optimization problems, numerous studies address constrained settings. How-
ever, most existing methods primarily rely on projection-based algorithms, with limited exploration
of projection-free alternatives. Unfortunately, these methods often exhibit slow convergence rates or
high computational costs per iteration. Notably, the rapid convergence rates observed in methods like
(Ghadimi & Wang, 2018) are achieved by utilizing the Hessian inverse of the lower-level function,
which comes at a steep price, imposing a worst-case computational cost ofO(m3) and limiting its ap-
plicability. To address this issue, an approximation technique for the Hessian inverse was introduced
in (Ghadimi & Wang, 2018) and subsequently used in studies such as (Hong et al., 2020; Akhtar
et al., 2022). This approximation technique introduces a vanishing bias as the number of inner steps
(matrix-vector products) increases, and its computational cost scales with the condition number (κg)
of the lower-level problem. Specifically, it incurs a per-iteration complexity of O(κgm

2 log(K)).

To overcome these issues, we develop a new inexact projection-free method that achieves optimal
convergence rate guarantees for the considered settings while requiring only two matrix-vector
products per iteration leading to a complexity ofO(m2) per iteration. Next, we state our contributions.

Contributions. In this paper, we consider a class of bilevel optimization problems with a strongly
convex lower-level problem and a smooth upper-level objective function over a compact and convex
constraint set. This extends the literature, which has primarily focused on unconstrained problems.
We propose a novel single-loop projection-free method that overcomes the limitations of existing
approaches by offering improved per-iteration complexity and convergence guarantees. Our main
idea is to simultaneously track the trajectories of the lower-level optimal solution as well as the
solution to a time-varying quadratic optimization problem. These estimators are calculated using a
one-step gradient-type step and are used to estimate the hyper-gradient for a Frank Wolfe-type update.
This leads to a scheme that only requires two matrix-vector products at each iteration. Furthermore,
existing methods work under the assumption that ∇yf(x, ·) is uniformly bounded which may not
hold in many applications. To address this limitation, we also analyze our proposed method without
the gradient boundedness assumption. Our theoretical guarantees for the proposed Inexact Bilevel
Conditional Gradient (IBCG) method are as follows:

• When the hyper-objective function ℓ(x) is convex, and ∇yf(x, ·) is uniformly bounded
for any x ∈ X , our IBCG method converges in Õ(κ4

gϵ
−1) iterations to reach an ϵ-optimal

solution. Relaxing the gradient boundedness assumption to assume Lipschitz continuity
results in a convergence rate of Õ(κ5

gϵ
−1).

• When ℓ(x) is non-convex and ∇yf(x, ·) is bounded, IBCG requires O(κ4
gϵ

−2) iterations to
find an ϵ-stationary point. This result changes to O(κ5

gϵ
−2) when the gradient boundedness

assumption is replaced by gradient Lipschitzness.

These results match the best-known complexity of projection-free algorithms for solving convex
constrained single-level optimization problems.
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Table 1: Summary of results for bilevel optimization with a strongly convex lower-level function.
The abbreviations “C”, “NC”, “PO”, “LMO” stand for “convex”, “non-convex”, “projection oracle”,
and “linear minimization oracle” respectively and κg ≜ Lg/µg . † We use poly(κg) because authors
do not provide the explicit dependency on κg . ∗ Note that these works focused on convergence rates
in the stochastic setting, without addressing the rates in the deterministic setting, therefore, the results
are presented for the stochastic setting.

Reference Oracle
Function ℓ Assumption on

Overall Complexity Convergence metric
NC/C ∇yf(x, ·)

Unconstrained

SUSTAIN∗ (Khanduri et al., 2021) —– NC bounded Õ(poly(κg)m
2ϵ−1.5)† E∥∇ℓ(xk∗ )∥2

FSLA∗ (Li et al., 2022) —– NC bounded O(poly(κg)m
2ϵ−2) E∥∇ℓ(xk∗ )∥2

AID-BiO (Ji et al., 2021) —– NC bounded O((κ3.5
g m2 + mκ4

g)ϵ
−1) ∥∇ℓ(xk∗ )∥2

F3SA (Kwon et al., 2023) —– NC bounded Õ(poly(κg)mϵ−1.5) ∥∇ℓ(xk∗ )∥2

RAHGD (Yang et al., 2023) —– NC bounded O(κ3.25
g m2ϵ−0.875) ∥∇ℓ(xk∗ )∥2

Constrained

ABA (Ghadimi & Wang, 2018) PO
NC

bounded
O(κ4.5

g m3ϵ−1 + κ5
gmϵ−1.25) ∥∇ℓ(xk∗ )∥2

C O(κ4.5
g m3ϵ−0.5 + κ5

gmϵ−0.75) ℓ(xK) − ℓ(x∗)

TTSA∗ (Hong et al., 2020) PO
NC

bounded
Õ(poly(κg)m

2ϵ−2.5) E∥xk∗ − proxρℓ(xk∗ )∥2

C Õ(poly(κg)m
2ϵ−4) E[ℓ(xK) − ℓ(x∗)]

SBFW∗ (Akhtar et al., 2022) LMO
NC

bounded
Õ(poly(κg)m

2ϵ−4) E[G(xk∗ )]

C Õ(poly(κg)m
2ϵ−3) E[ℓ(xK) − ℓ(x∗)]

Ours
LMO

NC
Lip. cont.

O(κ5
gm

2ϵ−2) G(xk∗ )

C Õ(κ5
gm

2ϵ−1) ℓ(xK) − ℓ(x∗)

LMO
NC

bounded
O(κ4

gm
2ϵ−2) G(xk∗ )

C Õ(κ4
gm

2ϵ−1) ℓ(xK) − ℓ(x∗)

Related work. In this section, we review related work on bilevel optimization; also check Table 1
for a summary. Most of the existing works consider unconstrained bilevel problems, i.e., X = Rn.
In particular, (Khanduri et al., 2021; Li et al., 2022) focused on the stochastic setting and proved an
overall complexity of Õ(m2ϵ−1.5) andO(m2ϵ−2), respectively. In the deterministic setting, (Ji et al.,
2020) carefully analyzed the convergence of bilevel algorithms via AID and proved a complexity
of O((κ3.5

g m2 + mκ4
g)ϵ

−1), where κg denotes the condition number of the lower-level objective.
By incorporating acceleration techniques, a recent work by (Yang et al., 2023) further improved
the complexity to O(κ3.25

g m2ϵ−0.875). Moreover, to avoid expensive Hessian computation, a fully
first-order method is recently proposed by (Kwon et al., 2023) with a complexity of Õ(mϵ−1.5).

In comparison, there are relatively few works on the constrained bilevel optimization problems,
which is the considered setting of this paper. (Ghadimi & Wang, 2018) presented an Accelerated
Bilevel Approximation (ABA) method consisting of two iterative loops. When the hyper-function
is non-convex, it is shown to obtain an overall complexity of O(κ4.5

g m3ϵ−1) and O(κ5
gmϵ−1.25) in

terms of the upper-level and lower-level objective values, respectively. When the hyper-function
is convex, the authors further shaved a factor of O(ϵ−0.5) from the complexities. However, their
computational complexity is expensive as they need to compute the Hessian inverse matrix at each
iteration, incurring a per-iteration cost of O(m3). There have been efforts in designing efficient
single-loop methods in order to reduce the per-iteration cost. In particular, similar to our proposed
IBCG, the methods in (Dagréou et al., 2022; Li et al., 2022) only require two matrix-vector products
per iteration, but these works only considered unconstrained bilevel problems. Built upon the work of
(Ghadimi & Wang, 2018), a Two-Timescale Stochastic Approximation (TTSA) algorithm has been
proposed (Hong et al., 2020) for constrained bilevel problems in the stochastic setting, which is shown
to achieve a complexity of Õ(m2ϵ−2.5) and Õ(m2ϵ−4) when the hyper-function is non-convex and
convex, respectively. Concurrently, a penalty-based bilevel gradient descent (PBGD) algorithm was
introduced by (Shen & Chen, 2023) in which they analyzed the convergence rate guarantee when the
lower-level objective function satisfies the Polyak-Lojasiewicz condition.

It should be noted that the above methods require a projection onto set X at every iteration. In
contrast, our proposed method is projection-free and only requires access to a linear solver, which
is suitable for settings where projection is computationally costly; e.g., when X is a nuclear-norm
ball. A closely related work is (Akhtar et al., 2022), where the authors developed a projection-free
algorithm (SBFW) for stochastic bilevel optimization problems and it is shown that their method
achieves a complexity of O(m2ϵ−4) and O(m2ϵ−3) for nonconvex and convex settings, respectively.

Finally, we also remark that some concurrent papers consider the case where the lower-level problem
can have multiple minima (Liu et al., 2020; Sow et al., 2022; Chen et al., 2023). As they consider a
more general setting that brings more challenges, their theoretical results are also weaker, providing
only asymptotic convergence guarantees or slower convergence rates.
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2 PRELIMINARIES

2.1 MOTIVATING EXAMPLES

The bilevel optimization formulation in (1) finds applications in various ML problems, including
matrix completion (Yokota & Hontani, 2017), meta-learning (Rajeswaran et al., 2019), data hyper-
cleaning (Shaban et al., 2019), hyper-parameter optimization (Franceschi et al., 2018b), and more.
Next, we delve into two specific examples.

Matrix Completion with Denoising: Consider the matrix completion problem, where the objective
is to recover missing items from noisy observations of a subset of the matrix’s entries. Typically,
in noiseless scenarios, the data matrix can be represented as a low-rank matrix, justifying the use
of the nuclear norm constraint. However, in applications like image processing and collaborative
filtering, noisy observations are common, and relying solely on the nuclear norm constraint can
lead to suboptimal results (McRae & Davenport, 2021; Yokota & Hontani, 2017). One approach to
incorporate denoising into the matrix completion problem is by formulating it as a bilevel optimization
problem (Akhtar et al., 2022), expressed as follows

min
∥X∥∗≤α

1

|Ω1|
∑

(i,j)∈Ω1

(Xi,j −Yi,j)
2

s.t. Y ∈ argmin
V

{ 1

|Ω2|
∑

(i,j)∈Ω2

(Vi,j −Mi,j)
2 + λ1R(V) + λ2∥X−V∥2F

}
, (2)

where M ∈ Rn×m is the given incomplete noisy matrix and Ω is the set of observable entries where
Ω1 and Ω2 represent the set of available entries in upper and lower-level respectively. R(V) is a
regularization term to induce sparsity, e.g., ℓ1-norm or pseudo-Huber loss, λ1 and λ2 are regularization
parameters. The presence of the nuclear norm constraint poses a significant challenge in (2). This
constraint renders the problem computationally demanding, often making projection-based algorithms
impractical. Consequently, there is a compelling need to develop and employ projection-free methods
to overcome these computational limitations.

Model-Agnostic Meta-Learning: In meta-learning, our aim is to develop models that can adapt
effectively to multiple training sets to optimize performance for individual tasks. A widely used
formulation for this purpose is model-agnostic meta-learning (MAML) (Finn et al., 2017). MAML
seeks to minimize empirical risk across all training sets through an outer objective while using
a single step of implicit projected gradient as the inner objective (Rajeswaran et al., 2019). This
framework enables efficient model adaptation across various tasks, enhancing performance and
flexibility. Consider collections of training and test datasets {Dtr

i }Ni=1 and {Dtest
i }Ni=1 for N tasks.

Implicit MAML can be formulated as a bilevel optimization problem (Rajeswaran et al., 2019)

min
θ∈Θ

N∑
i=1

ℓ
(
y∗
i (θ),Dtest

i

)
s.t. y∗

i (θ) ∈ argmin
ϕ

{
ℓ(ϕ,Dtr

i ) +
λ

2
∥ϕ− θ∥2

}
. (3)

Here θ is the shared model parameter, ϕ is the adaptation of θ to the ith training set, and ℓ(·) is the
loss function. The set Θ imposes constraints on the model parameter, e.g., Θ = {θ | ∥θ∥1 ≤ r} for
some r > 0 to induce sparsity. It can be verified that for a sufficiently large value of λ the lower-level
problem is strongly convex and (3) can be viewed as a special case of (1).

2.2 ASSUMPTIONS AND DEFINITIONS

In this subsection, we discuss the definitions and assumptions required throughout the paper. We begin
by discussing the assumptions on the upper-level and lower-level objective functions, respectively.

Assumption 1. ∇xf(x,y) and ∇yf(x,y) are Lipschitz continuous w.r.t (x,y) ∈ X × Rm such
that for any x, x̄ ∈ X and y, ȳ ∈ Rm

(i) ∥∇xf(x,y)−∇xf(x̄, ȳ)∥ ≤ Lf
xx∥x− x̄∥+ Lf

xy∥ȳ − y∥,

(ii) ∥∇yf(x,y)−∇yf(x̄, ȳ)∥ ≤ Lf
yx∥x− x̄∥+ Lf

yy∥y − ȳ∥.
Assumption 2. g(x,y) satisfies the following conditions:
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(i) For any given x ∈ X , g(x, ·) is twice continuously differentiable. Moreover, ∇yg(·, ·) is
continuously differentiable.

(ii) For any x ∈ X , ∇yg(x, ·) is Lipschitz continuous with constant Lg ≥ 0. Moreover, for any
y ∈ Rm,∇yg(·,y) is Lipschitz continuous with constant Cg

yx ≥ 0.

(iii) For any x ∈ X , g(x, ·) is µg-strongly convex with modulus µg > 0.

(iv) For any given x ∈ X ,∇2
yxg(x,y) ∈ Rn×m and∇2

yyg(x,y) are Lipschitz continuous w.r.t
(x,y) ∈ X × Rm, and with constant Lg

yx ≥ 0 and Lg
yy ≥ 0, respectively.

Remark 2.1. Considering Assumption 2-(ii), we can conclude that ∥∇2
yxg(x,y)∥ is bounded with

constant Cg
yx ≥ 0 for any (x,y) ∈ X × Rm.

To measure the quality of the solution at each iteration, we use the standard Frank-Wolfe gap function
associated with the single-level variant of problem (1) formally stated in the next assumption.
Definition 1 (Convergence Criteria). When the upper level function f(x,y) is non-convex the
Frank-Wolfe gap is defined as

G(x) ≜ max
s∈X
{⟨∇ℓ(x),x− s⟩}, (4)

which is a standard performance metric for constrained non-convex settings as mentioned in (Zhang
et al., 2020; Reddi et al., 2016). Moreover, in the convex setting, we use the suboptimality gap
function, i.e., ℓ(x)− ℓ(x∗).

Before proposing our method, we state some important properties related to problem 1 based on the
assumptions above:
(I) A standard analysis reveals that given Assumption 2, the optimal solution trajectory of the lower-
level problem, i.e., y∗(x), is Lipschitz continuous (Ghadimi & Wang, 2018).
(II) One of the required properties to develop a method with a convergence guarantee is to show the
Lipschitz continuity of the gradient of the single-level objective function. In the literature of bilevel
optimization, to show this result it is often required to assume boundedness of ∇yf(x,y) for any
x ∈ X and y ∈ Rm, e.g., see (Ghadimi & Wang, 2018; Ji et al., 2020; Hong et al., 2020; Akhtar
et al., 2022). In contrast, in this paper, we show that this condition is only required for the gradient
map ∇yf(x,y) when restricted to the optimal trajectory of the lower-level problem. In particular,
we demonstrate that it is sufficient to show the boundedness of ∇yf(x,y

∗(x)) for any x ∈ X which
can be proved using the boundedness of constraint set X .
(III) Using the above results we can show that the gradient of the single-level objective function, i.e.,
∇ℓ(x), is Lipschitz continuous. This result is one of the main building blocks of the convergence
analysis of our proposed method in the next section.

The aforementioned results are formally stated in the following Lemma.
Lemma 1. Suppose Assumptions 1 and 2 hold. Then for any x, x̄ ∈ X , the following results hold.
(I) ∥y∗(x)− y∗(x̄)∥ ≤ Ly∥x− x̄∥, where Ly ≜

Cg
yx

µg
.

(II) ∥∇yf(x,y
∗(x))∥ ≤ Cf

y , where Cf
y ≜

(
Lf
yx +

Lf
yyC

g
yx

µg

)
DX + ∥∇yf(x

∗,y∗(x∗))∥.

(III) ∥∇ℓ(x)−∇ℓ(x̄)∥ ≤ Lℓ∥x− x̄∥, where Lℓ ≜ Lf
xx + Lf

xyLy + Cg
yxCv +

Cf
y

µg
Lg
yx(1 + Ly).

3 PROPOSED METHOD

As we discussed in section 1, problem (1) can be viewed as a single minimization problem
minx∈X ℓ(x), however, solving such a problem is a challenging task due to the need for calcu-
lation of the lower-level problem’s exact solution, a requirement for evaluating the objective function
and/or its gradient. In particular, by utilizing Assumptions 1 and 2, it has been shown in (Ghadimi &
Wang, 2018) that the gradient of function ℓ(·) can be expressed as

∇ℓ(x) = ∇xf(x,y
∗(x))−∇2

yxg(x,y
∗(x))[∇2

yyg(x,y
∗(x))]−1∇yf(x,y

∗(x)). (5)

To implement an iterative method to solve this problem using first-order information, at each iteration
k ≥ 0, one can replace y∗(xk) with an estimated solution yk to track the optimal trajectory of the
lower-level problem. Such an estimation can be obtained by taking a single gradient descent step
with respect to the lower-level objective function. Therefore, the inexact Frank-Wolfe method for the
bilevel optimization problem (1) takes the following main steps
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Algorithm 1 Inexact Bilevel Conditional Gradient (IBCG) Method

1: Input: {γk, ηk}k ⊆ R+, α > 0, x0 ∈ X , y0 ∈ Rm

2: Initialization: w0 ← y0

3: for k = 0, . . . ,K − 1 do
4: wk+1←(I − ηk∇2

yyg(xk,yk))wk + ηk∇yf(xk,yk)

5: Fk ← ∇xf(xk,yk)−∇2
yxg(xk,yk)wk+1

6: Compute sk ← argmins∈X ⟨Fk, s⟩
7: xk+1 ← (1− γk)xk + γksk
8: yk+1 ← yk − α∇yg(xk+1,yk)
9: end for

Gk ← ∇xf(xk,yk)−∇2
yxg(xk,yk)[∇2

yyg(xk,yk)]
−1∇yf(xk,yk)

sk ← argmin
s∈X

⟨Gk, s⟩ (6a)

xk+1 ← (1− γk)xk + γksk (6b)
yk+1 ← yk − αk∇yg(xk+1,yk). (6c)

Calculation of Gk involves Hessian matrix inversion which is computationally costly and requires
O(m3) operations. To avoid this, one can reformulate the linear minimization subproblem (6a) as

sk ← argmin
s∈X ,d∈Rm

⟨∇xf(xk,yk), s⟩+ ⟨∇yf(xk,yk),d⟩

s.t. ∇2
yxg(xk,yk)

⊤s+∇2
yyg(xk,yk)d = 0.

When the constraint set X is a polyhedron, the above-reformulated subproblem remains a linear
program (LP) with m additional constraints and m additional variables. The resulting LP can be
solved using existing algorithms such as interior-point (IP) methods (Karmarkar, 1984). However,
there are two primary concerns with this approach. First, if the LMO over X admits a closed-form
solution, the new subproblem may not preserve this structure. Second, when n = Ω(m), IP methods
require at most O(mω log(m/δ)) steps at each iteration, where δ > 0 is the desired accuracy and
O(mω) is the time required to multiply two m×m matrices with 2.37 ≤ ω ≤ 3 (Cohen et al., 2021;
van den Brand, 2020). Hence, the computational would be prohibitive for many practical settings
highlighting the pressing need for a more efficient algorithm.

3.1 MAIN ALGORITHM

As discussed above, there are major limitations in a naive implementation of the FW framework for
solving (1) which makes the method in (6) impractical. To propose a practical conditional gradient-
based method we revisit the problem’s structure. In particular, the gradient of the single-level problem
in (5) can be rewritten as follows

∇ℓ(x) = ∇xf(x,y
∗(x))−∇2

yxg(x,y
∗(x))v(x), (7a)

where v(x) ≜ [∇2
yyg(x,y

∗(x))]−1∇yf(x,y
∗(x)). (7b)

In this formulation, the effect of Hessian inversion is presented in a separate term v(x) which can be
viewed as the solution of the following parametric quadratic programming

v(x) = argmin
v

1

2
v⊤∇2

yyg(x,y
∗(x))v −∇yf(x,y

∗(x))⊤v. (8)

Our main idea is to provide nested approximations for the true gradient in (5) by estimating trajectories
of y∗(x) and v(x). To ensure convergence, we carefully control the algorithm’s progress in terms
of variable x and limit the error introduced by these approximations. More specifically, at each
iteration k ≥ 0, given an iterate xk and an approximated solution of the lower-level problem yk we
first consider an approximated solution ṽ(xk) of (8) by replacing y∗(xk) with its currently available
approximation, i.e., yk, which leads to the following quadratic programming

ṽ(xk) ≜ argmin
v

1

2
v⊤∇2

yyg(xk,yk)v −∇yf(xk,yk)
⊤v.

Then ṽ(xk) is approximated with an iterate wk+1 obtained by taking one step of gradient descent
with respect to the objective function as follows,

wk+1 ← wk − ηk
(
∇2

yyg(xk,yk)wk −∇yf(xk,yk)
)
,
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for some step-size ηk ≥ 0. This generates an increasingly accurate sequence {wk}k≥0 that tracks
the sequence {v(xk)}k≥0. Next, given approximated solutions yk and wk+1 for y∗(xk) and v(xk),
respectively, we can construct a direction to estimate the hyper-gradient ∇ℓ(xk) in (7a). To this
end, we construct a direction Fk = ∇xf(xk,yk)−∇2

yxg(xk,yk)wk+1, which determines the next
iteration xk+1 using a Frank-Wolfe type update, i.e.,

sk ← argmin
s∈X

⟨Fk, s⟩, xk+1 ← (1− γk)xk + γksk.

for some step-size γk ∈ [0, 1]. Finally, having an updated decision variable xk+1 we estimate the
lower-level optimal solution y∗(xk+1) by performing another gradient descent step with respect to
the lower-level function g(xk,yk) with step-size α > 0 to generate a new iterate yk+1 as follows:

yk+1 ← yk − α∇yg(xk+1,yk).

Our proposed inexact bilevel conditional gradient (IBCG) method is summarized in Algorithm 1.

To ensure that IBCG has a guaranteed convergence rate, we introduce the following lemma that
quantifies the error between the approximated direction Fk from the true direction∇ℓ(xk) at each
iteration. This involves providing upper bounds on the errors induced by our nested approximation
technique discussed above, i.e., ∥wk+1 − v(xk)∥ and ∥yk+1 − y∗(xk+1)∥, as well as Lemma 1.

Lemma 2. Suppose Assumptions 1-2 hold and let β ≜ (Lg−µg)/(Lg+µg) and Cv ≜
Lf

yx+Lf
yyLy

µg
+

Cf
yLg

yy

µ2
g

(1 + Ly). Moreover, let {xk,yk,wk}k≥0 be the sequence generated by Algorithm 1 with

step-sizes γk = γ ∈ (0, 1], ηk = η < 1−β
µg

, and α = 2/(µg + Lg). Then, for any k ≥ 0

∥∇ℓ(xk)− Fk∥ ≤ C2

(
βkDy

0 +
γβLy

1− β
DX

)
+ Cg

yx

(
ρk+1∥w0 − v(x0)∥+

γρCv

1− ρ
DX

+
ηC1

ρ− β
ρk+2Dy

0 +
γβC1Ly

(1− ρ)µg
DX

)
(9)

where ρ ≜ 1− ηµg , C1 ≜ Lg
yy

Cf
y

µg
+ Lf

yy, C2 ≜ Lf
xy + Lg

yx
Cf

y

µg
, and Dy

0 ≜ ∥y0 − y∗(x0)∥.

Lemma 2 provides an upper bound on the error of the approximated gradient direction Fk. This
bound encompasses two types of terms: those that decrease linearly and others that are influenced by
the parameter γ. Selecting the parameter γ is a crucial task as larger values can introduce significant
errors in the direction taken by the algorithm, while smaller values can impede proper progress in
the iterations. Therefore, it is essential to choose γ appropriately based on the overall algorithm’s
progress. By utilizing Lemma 2, we establish a bound on the gap function and ensure a convergence
rate guarantee by selecting an appropriate γ.

4 CONVERGENCE ANALYSIS

In this section, we analyze the iteration complexity of our IBCG method. We first consider the
case where the objective function of the single-level problem ℓ(·) is convex. Before presenting our
result, we should mention that there are no generic sufficient and necessary conditions to establish the
convexity of ℓ, and thus it needs to be verified on a case-by-case basis as discussed in (Hong et al.,
2020). One sufficient condition for ℓ(x) being convex is when f is jointly convex and y∗(x) is linear
in x. As another example, consider a min-max optimization problem minx∈X maxy∈Rm f(x,y),
where f is convex in x and strongly-concave in y. This problem can be reformulated as a bilevel
optimization problem by letting g(x,y) = −f(x,y), leading to a convex hyper-objective function
ℓ(x) = maxy f(x,y).

Theorem 1 (Convex bilevel). Suppose Assumptions 1 and 2 hold. If ℓ(x) is convex, let {xk}K−1
k=0 be

the sequence generated by Algorithm 1 with step-sizes specified as in Lemma 2. Then, for all K ≥ 1,

ℓ(xK)− ℓ(x∗) ≤ (1− γ)K(ℓ(x0)− ℓ(x∗)) +

K−1∑
k=0

(1− γ)K−kRk(γ) (10)

where
Rk(γ) ≜ γC2β

kDy
0DX +

γ2C2D
2
XLyβ

1− β
+ Cg

yx

[
γDXρk+1∥w0 − v(x0)∥

+
γ2D2

XρCv

1− ρ
+

γDXDy
0C1ηρ

k+2

ρ− β
+

γ2D2
XLyC1βη

(1− β)(1− ρ)

]
+

1

2
Lℓγ

2D2
X . (11)
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Theorem 1 demonstrates that the suboptimality can be reduced using the upper bound presented in
(10), which consists of two components. The first component decreases linearly, while the second
term arises from errors in nested approximations and can be mitigated by reducing the step-size
γ. Thus, by carefully selecting the step-size γ, we can achieve a guaranteed convergence rate as
outlined in the following Corollary. In particular, we establish that setting γ = log(K)/K yields a
convergence rate of O(log(K)/K).

Corollary 1. Let {xk}K−1
k=0 be the sequence generated by Algorithm 1 with step-size γk = γ =

log(K)
K . Under the premises of Theorem 1 we have that ℓ(xK)− ℓ(x∗) ≤ ϵ after O(κ5

gϵ
−1 log(ϵ−1))

iterations. Furthermore, assuming that∇yf(x, ·) is uniformly bounded for any x ∈ X , we have that
ℓ(xk)− ℓ(x∗) ≤ ϵ after O(κ4

gϵ
−1 log(ϵ−1)) iterations.

Now we turn to the case where the objective function of the single-level problem ℓ(·) is non-convex.

Theorem 2 (Non-convex bilevel). Suppose that Assumption 1 and 2 hold. Let {xk}K−1
k=0 be the

sequence generated by Algorithm 1 with step-sizes specified as in Lemma 2. Then,

Gk∗ ≤ ℓ(x0)− ℓ(x∗)

Kγ
+

γC2DXLyβ

1− β
+

γD2
XρCvC

g
yxρ

1− ρ
+

γD2
XCg

yxLyC1βη

(1− β)(1− ρ)
+

1

2
LℓγD

2
X

+
C2D

y
0DXβ

K(1− β)
+

DXCg
yxρ∥w0 − v(x0)∥
K(1− ρ)

+
DXDy

0C
g
yxC1ηρ

2

K(1− β)(1− ρ)
(12)

where Gk∗ is defined as Gk∗ ≜ min0≤k≤K−1 G(xk).

Theorem 2 establishes an upper bound on the Frank-Wolfe gap for the iterates generated by IBCG.
It shows that the Frank-Wolfe gap vanishes when the step-size γ is properly selected. Specifically,
setting γ = O(1/

√
K) as outlined in the next Corollary results in a convergence rate of O(1/

√
K).

Corollary 2. Let {xk}K−1
k=0 be the sequence generated by Algorithm 1 with step-size γk = γ =

κ−2.5
g K−0.5, then there exists k∗ ∈ {0, 1, . . . ,K − 1} such that Gk∗ ≤ ϵ after O(κ5

gϵ
−2) iterations.

Furthermore, assuming that ∇yf(x, ·) is uniformly bounded for any x ∈ X , selecting γk = γ =
κ−2
g K−0.5 implies that Gk∗ ≤ ϵ after O(κ4

gϵ
−2) iterations.

Remark 4.1. It is worth emphasizing that our proposed method requires only two matrix-vector
multiplications, which significantly contributes to its efficiency. Furthermore, our results represent the
state-of-the-art bound for the considered setting, with a near-optimal complexity among projection-
free methods for single-level optimization problems. This is noteworthy as it is known that the
worst-case complexity of such methods is Θ(1/ϵ) (Jaggi, 2013; Lan, 2013). Our complexity result
in the non-convex setting also matches the best-known bound of Θ(1/ϵ2) within the family of
projection-free methods for single-level optimization problems (Jaggi, 2013; Lan, 2013). This
optimality underscores the efficiency and effectiveness of our approach in this particular context.

5 NUMERICAL EXPERIMENTS

In this section, we test our method for solving different bilevel optimization problems. We consider
the matrix completion with the denoising example described in Section 2 and compare our method
with methods proposed in (Hong et al., 2020; Akhtar et al., 2022). All the experiments are performed
in MATLAB R2022a with Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz. Further numerical
experiments are presented in Appendix G.

5.1 MATRIX COMPLETION WITH DENOISING

In this section, we study the performance of our proposed IBCG algorithm for solving matrix
completion with denoising problem in (2) for both synthetic and real dataset.

Synthetic dataset. The experimental setup we adopt is aligned with the methodology used in
(Mokhtari et al., 2020). In particular, we create an observation matrix M = X̂ + E. In this
setting X̂ = WWT where W ∈ Rn×r containing normally distributed independent entries, and
E = n̂(L + LT ) is a noise matrix where L ∈ Rn×n containing normally distributed independent
entries and n̂ ∈ (0, 1) is the noise factor. During the simulation process, we set n = 250, r = 10,

8
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Figure 1: Performance of IBCG vs SBFW and TTSA on problem (2) for synthetic dataset. Plots from
left to right: normalized error (ē), ∥∇yg(xk, yk)∥, and f(xk, yk) over time.

Figure 2: The performance of IBCG (blue) vs SBFW (red) and TTSA (yellow) on problem (2) for
real dataset. Plots from left to right: normalized error (ē), ∥∇yg(xk, yk)∥, and f(xk, yk) over time.

and α = ∥X̂∥∗. Additionally, we establish the set of observed entries Ω by randomly sampling M
entries with a probability of 0.8. Initially, we set n̂ to be 0.5 and employ the IBCG algorithm to solve
the problem described in equation (2). To evaluate the performance of our proposed method, we
compare it with state-of-the-art methods in the literature for constrained bilevel optimization problems,
specifically TTSA (Hong et al., 2020) and SBFW (Akhtar et al., 2022). We set λ1 = λ2 = 0.05,
and set the maximum number of iteration as 104. It should be noted that we consider pseudo-
Huber loss defined by Rδ(V) =

∑
i,j δ

2(
√
1 + (Vij/δ)2 − 1) as a regularization term to induce

sparsity and set δ = 0.9. The performance is analyzed based on the normalized error, defined as
ē =

∑
(i,j)∈Ω(Xi,j − X̂i,j)

2/
∑

(i,j)∈Ω(X̂i,j)
2, where X is the matrix generated by the algorithm.

We note that SBFW algorithm suffers from a slower theoretical convergence rate compared to
projection-based schemes, but our proposed method outperforms other algorithms by achieving lower
values of ∥∇yg(xk, yk)∥ and slightly better performance in terms of the normalized error values –
see Figure 1. This gain comes from the projection-free nature of the proposed algorithm and its fast
convergence since we are no longer required to perform a complicated projection at each iteration.

Real dataset. To evaluate the scalability of IBCG, an experiment was done using the MovieLens
datasets, containing large-size matrices. The datasets consist of user-generated movie ratings, ranging
from 1 to 5. First, we utilized the MovieLens 100k dataset, which consists of 105 ratings collected
from a sample of 1000 individuals encompassing a selection of 1700 movies. This dataset is
represented by the observation matrix M ∈ R1000×1700. Figure 2 shows the performance of different
methods and we observe that our proposed method achieves a faster convergence in terms of the
normalized error ē, lower-level optimality ∥∇yg(xk, yk)∥, and upper-level objective function value
f(xk, yk). In order to emphasize the practical significance of the projection-free bilevel approach,
we conducted additional experiments on a more extensive dataset. The results are in Appendix G.3.

6 CONCLUSION

In this paper, we focused on the constrained bilevel optimization problem that has a wide range of
applications in learning problems. We proposed a novel single-loop projection-free method based
on nested approximation techniques, which offers optimal convergence rate guarantees that match
the best-known complexity of projection-free algorithms for solving convex constrained single-level
optimization problems. In particular, we proved that our proposed method requires approximately
Õ(ϵ−1) iterations to find an ϵ-optimal solution when the hyper-objective function ℓ(x) is convex, and
approximately O(ϵ−2) to find an ϵ-stationary point when ℓ(x) is non-convex. Our numerical results
also showed superior performance of our IBCG algorithm compared to existing algorithms.
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APPENDIX

In section A, we establish technical lemmas based on the assumptions considered in the paper.
These lemmas characterize important properties of problem 1. Notably, Lemma 1 is instrumental in
understanding the properties associated with problem 1. Moving on to section B, we present a series
of lemmas essential for deriving the rate results of the proposed algorithm. Among them, Lemma 2
quantifies the error between the approximated direction Fk and ∇ℓ(xk). This quantification plays
a crucial role in establishing the one-step improvement lemma (see Lemma 7). Next, we provide
the proofs of Theorem 1 and Corollary 1 in sections C and D, respectively, that support the results
presented in the paper for the convex scenario. Finally, in sections E and F we provide the proofs for
Theorem 2 along with Corollary 2 for the nonconvex scenario.

A SUPPORTING LEMMAS

In this section, we provide detailed explanations and proofs for the lemmas supporting the main
results of the paper.

A.1 PROOF OF LEMMA 1

(I) Recall that y∗(x) is the minimizer of the lower-level problem whose objective function is strongly
convex, therefore,

µg ∥y∗(x)− y∗(x̄)∥2 ≤ ⟨∇yg(x,y
∗(x))−∇yg(x,y

∗(x̄)),y∗(x)− y∗(x̄)⟩
= ⟨∇yg(x̄,y

∗(x̄))−∇yg(x,y
∗(x̄)),y∗(x)− y∗(x̄)⟩

Note that∇yg(x,y
∗(x)) = ∇yg(x̄,y

∗(x̄)) = 0. Using the Cauchy-Schwartz inequality we have

µg ∥y∗(x)− y∗(x̄)∥2 ≤ ∥∇yg(x̄,y
∗(x̄))−∇yg(x,y

∗(x̄))∥∥y∗(x)− y∗(x̄)∥
≤ Cg

yx∥x− x̄∥∥y∗(x)− y∗(x̄)∥

where the last inequality is obtained by using the Assumption 2. Therefore, we conclude that
µg ∥y∗(x)− y∗(x̄)∥ ≤ Cg

yx∥x− x̄∥ which leads to the desired result in part (I).

(II) We first show that the function x 7→ ∇yf(x,y
∗(x)) is Lipschitz continuous. To see this, note

that for any x, x̄ ∈ X , we have

∥∇yf(x,y
∗(x))−∇yf(x̄,y

∗(x̄))∥ ≤ Lf
yx∥x− x̄∥+ Lf

yy∥y∗(x)− y∗(x̄)∥

≤
(
Lf
yx +

Lf
yyC

g
yx

µg

)
∥x− x̄∥,

where in the last inequality we used Lemma 1-(I). Since X is bounded, we also have ∥x− x̄∥ ≤ DX .
Therefore, letting x̄ = x∗ in the above inequality and using the triangle inequality, we have

∥∇yf(x,y
∗(x))∥ ≤

(
Lf
yx +

Lf
yyC

g
yx

µg

)
DX + ∥∇yf(x

∗,y∗(x∗))∥.

Thus, we complete the proof by letting Cf
y =

(
Lf
yx +

Lf
yyC

g
yx

µg

)
DX + ∥∇yf(x

∗,y∗(x∗))∥.

Before proceeding to show the result of part (III) of Lemma 1, we first establish an auxiliary lemma
stated next.

Lemma 3. Under the premises of Lemma 1, we have that for any x, x̄ ∈ X , ∥v(x)− v(x̄)∥ ≤
Cv ∥x− x̄∥ for some Cv ≥ 0.
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Proof. We start the proof by recalling that v(x) = ∇2
yyg(x,y

∗(x))−1∇yf(x,y
∗(x)). Next, adding

and subtracting∇2
yyg(x,y

∗(x))∇yf(x̄,y
∗(x̄)) followed by a triangle inequality leads to,

∥v(x)− v(x̄)∥
= ∥[∇2

yyg(x,y
∗(x))]−1∇yf(x,y

∗(x))− [∇2
yyg(x̄,y

∗(x̄))]−1∇yf(x̄,y
∗(x̄))∥

≤ ∥[∇2
yyg(x,y

∗(x))]−1
(
∇yf(x,y

∗(x))−∇yf(x̄,y
∗(x̄))

)
∥+ ∥

(
[∇2

yyg(x,y
∗(x))]−1

− [∇2
yyg(x̄,y

∗(x̄))]−1
)
∇yf(x̄,y

∗(x̄))∥

≤ 1

µg

(
Lf
yx∥x− x̄∥+ Lf

yy∥y∗(x)− y∗(x̄)∥
)
+ Cf

y ∥[∇2
yyg(x,y

∗(x))]−1 − [∇2
yyg(x̄,y

∗(x̄))]−1∥,

(13)
where in the last inequality we used Assumptions 1 and 2-(iii) along with the premises of Lemma 1-
(II). Moreover, for any invertible matrices H1 and H2, we have that

∥H−1
2 −H−1

1 ∥ = ∥H
−1
1

(
H1 −H2

)
H−1

2 ∥ ≤ ∥H
−1
1 ∥∥H

−1
2 ∥∥H1 −H2∥. (14)

Therefore, using the result of Lemma 1-(I) and (14) we can further bound inequality (13) as follows,
∥v(x)− v(x̄)∥

≤ 1

µg

(
Lf
yx∥x− x̄∥+ Lf

yyLy∥x− x̄∥
)
+ Cf

y ∥[∇2
yyg(x,y

∗(x))]−1 − [∇2
yyg(x̄,y

∗(x̄))]−1∥

≤ 1

µg

(
Lf
yx + Lf

yyLy

)
∥x− x̄∥+

Cf
y

µ2
g

Lg
yy

(
∥x− x̄∥+ ∥y∗(x)− y∗(x̄)∥

)
=

(Lf
yx + Lf

yyLy

µg
+

Cf
yL

g
yy

µ2
g

(1 + Ly)
)
∥x− x̄∥.

The result follows by letting Cv =
Lf

yx+Lf
yyLy

µg
+

Cf
yLg

yy

µ2
g

(1 + Ly).

(III) We start proving this part using the definition of ∇ℓ(x) stated in (7a). Utilizing the triangle
inequality we obtain
∥∇ℓ(x)−∇ℓ(x̄)∥

= ∥∇xf(x,y
∗(x))−∇2

yxg(x,y
∗(x))v(x)−

(
∇xf(x̄,y

∗(x̄))−∇2
yxg(x̄,y

∗(x̄))v(x̄)
)
∥

≤ ∥∇xf(x,y
∗(x))−∇xf(x̄,y

∗(x̄))∥+ ∥
[
∇2

yxg(x̄,y
∗(x̄))v(x̄)−∇2

yxg(x̄,y
∗(x̄))v(x)

]
+
[
∇2

yxg(x̄,y
∗(x̄))v(x)−∇2

yxg(x,y
∗(x))v(x)

]
∥ (15)

where the second term of the RHS follows from adding and subtracting the term∇2
yxg(x̄,y

∗(x̄))v(x).
Next, from Assumptions 1-(i) and 2-(v) together with the triangle inequality application we conclude
that

∥∇ℓ(x)−∇ℓ(x̄)∥ ≤ Lf
xx∥x− x̄∥+ Lf

xy∥y∗(x)− y∗(x̄)∥ + Cg
yx∥v(x̄)− v(x)∥

+
Cf

y

µg
∥∇2

yxg(x̄,y
∗(x̄))−∇2

yxg(x,y
∗(x))∥ (16)

It should be that in the last inequality, we use the fact that ∥v(x)∥ =

∥[∇2
yyg(x,y

∗(x))]−1∇yf(x,y
∗(x))∥ ≤ Cf

y

µg
. Combining the result of Lemma 1 part (I)

and (II) with the Assumption 2-(iv) leads to
∥∇ℓ(x)−∇ℓ(x̄)∥ ≤ Lf

xx∥x− x̄∥+ Lf
xyLy∥x− x̄∥+ Cg

yxCv∥x− x̄∥

+
Cf

y

µg
Lg
yx

(
∥x− x̄∥+ ∥y∗(x)− y∗(x̄)∥

)
≤ Lf

xx∥x− x̄∥+ Lf
xyLy∥x− x̄∥+ Cg

yxCv∥x− x̄∥

+
Cf

y

µg
Lg
yx

(
∥x− x̄∥+ Ly∥x− x̄∥

)
≤

(
Lf
xx + Lf

xyLy + Cg
yxCv +

Cf
y

µg
Lg
yx(1 + Ly)

)
∥x− x̄∥ (17)
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The desired result can be obtained by letting Lℓ = Lf
xx + Lf

xyLy +Cg
yxCv +

Cf
y

µg
Lg
yx(1 +Ly).

B REQUIRED LEMMAS FOR THEOREMS 1 AND 2

Before we proceed to the proofs of Theorems 1 and 2, we present the following technical lemmas
which quantify the error between the approximated solution yk and y∗(xk), as well as between wk+1

and v(xk).
Lemma 4. Suppose Assumption 2 holds. Let {(xk,yk)}k≥0 be the sequence generated by Algorithm
1, such that α = 2/(µg + Lg). Then, for any k ≥ 0

∥yk − y∗(xk)∥ ≤ βk∥y0 − y∗(x0)∥+ LyDX

k−1∑
i=0

γiβ
k−i, (18)

where β ≜ (Lg − µg)/(Lg + µg).

Proof. We begin the proof by characterizing the one-step progress of the lower-level iterate sequence
{yk}k. Indeed, at iteration k we aim to approximate y∗(xk+1) = argminy g(xk+1,y). According
to the update of yk+1 we observe that

∥yk+1 − y∗(xk+1)∥2 = ∥yk − y∗(xk+1)− α∇yg(xk+1,yk)∥2

= ∥yk − y∗(xk+1)∥2 − 2α⟨∇yg(xk+1,yk),yk − y∗(xk+1)⟩
+ α2∥∇yg(xk+1,yk)∥2. (19)

Moreover, from Assumption 2 and following Theorem 2.1.12 in (Nesterov, 2018), we have that

⟨∇yg(xk+1,yk),yk − y∗(xk+1)⟩ ≥
µgLg

µg + Lg
∥yk − y∗(xk+1)∥2 +

1

µg + Lg
∥∇yg(xk+1,yk)∥2

(20)

The inequality in (19) together with (20) imply that

∥yk+1 − y∗(xk+1)∥2 ≤ ∥yk − y∗(xk+1)∥2 −
2αµgLg

µg + Lg
∥yk − y∗(xk+1)∥2

+
(
α2 − 2α

µg + Lg

)
∥∇yg(xk+1,yk)∥2. (21)

Setting the step-size α = 2
µg+Lg

in (21) leads to

∥yk+1 − y∗(xk+1)∥2 ≤
(µg − Lg

µg + Lg

)2

∥yk − y∗(xk+1)∥2 (22)

Next, recall that β = (Lg − µg)/(Lg + µg). Using the triangle inequality and Part (I) of Lemma 1
we conclude that

∥yk+1 − y∗(xk+1)∥ ≤ β∥yk − y∗(xk+1)∥

≤ β
[
∥yk − y∗(xk)∥+ ∥y∗(xk)− y∗(xk+1)∥

]
≤ β

[
∥yk − y∗(xk)∥+ Ly∥xk − xk+1∥

]
. (23)

Moreover, from the update of xk+1 in Algorithm 1 and boundedness of X we have that
∥xk+1 − xk∥ ≤ γkDX . Therefore, using this inequality within (23) leads to

∥yk+1 − y∗(xk+1)∥ ≤ β ∥yk − y∗(xk)∥+ βγkLyDX .

Finally, the desired result can be deduced from the above inequality recursively.

Previously, in Lemma 4 we quantified how close the approximation yk is from the optimal solution
y∗(xk) of the inner problem. Now, in the following Lemma, we will find an upper bound for the
error of approximating v(xk) via wk+1.

15
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Lemma 5. Let {(xk,wk)}k≥0 be the sequence generated by Algorithm 1, such that γk = γ. Define

ρk ≜ (1− ηkµg) and C1 ≜ Lg
yy

Cf
y

µg
+ Lf

yy . Under Assumptions 1 and 2 we have that for any k ≥ 0,

∥wk+1 − v(xk)∥ ≤ ρk∥wk − v(xk−1)∥+ ρkCvγDX + ηkC1

(
βkDy

0 + Lyγ
β

1− β
DX

)
. (24)

Proof. From the optimality condition of (8) one can easily verify that v(xk) = v(xk) −
ηk
(
∇2

yyg(xk,y
∗(xk))v(xk)−∇yf(xk,y

∗(xk))
)
. Now using definition of wk+1 we can write

∥wk+1 − v(xk)∥ =
∥∥∥(wk − ηk(∇2

yyg(xk,yk)wk −∇yf(xk,yk))
)
−

(
v(xk)

− ηk
(
∇2

yyg(xk,y
∗(xk))v(xk)−∇yf(xk,y

∗(xk))
))∥∥∥

=
∥∥∥(I − ηk∇2

yyg(xk,yk)
)
(wk − v(xk))− ηk

(
∇2

yyg(xk,yk)

−∇2
yyg(xk,y

∗(xk))
)
v(xk) + ηk

(
∇yf(xk,y

∗(xk))−∇yf(xk,yk)
)∥∥∥,

(25)

where the last equality is obtained by adding and subtracting the term (I − ηk∇2
yyg(xk,yk))v(xk).

Next, using Assumptions 1 and 2 along with the application of the triangle inequality we obtain
∥wk+1 − v(xk)∥ ≤ (1− ηkµg)∥wk − v(xk)∥+ ηkL

g
yy∥yk − y∗(xk)∥∥v(xk)∥

+ ηkL
f
yy∥yk − y∗(xk)∥. (26)

Note that ∥v(xk)∥ = ∥[∇2
yyg(x,y

∗(x))]−1∇yf(x,y
∗(x))∥ ≤ Cf

y

µg
. Now, by adding and subtracting

v(xk−1) to the term ∥wk − v(xk)∥ followed by triangle inequality application we can conclude that
∥wk+1 − v(xk)∥ ≤ (1− ηkµg)∥wk − v(xk−1)∥+ (1− ηkµg)∥v(xk−1)− v(xk)∥

+ ηk

(
Lg
yy

Cf
y

µg
+ Lf

yy

)
∥yk − y∗(xk)∥. (27)

Therefore, using the result of Lemma 4, we can further bound inequality (27) as follows
∥wk+1 − v(xk)∥ ≤ (1− ηkµg)∥wk − v(xk−1)∥+ (1− ηkµg)Cv∥xk−1 − xk∥

+ ηkC1∥yk − y∗(xk)∥

≤ ρk∥wk − v(xk−1)∥+ ρkCvγDX + ηkC1

(
βkDy

0 + Lyγ
β

1− β
DX

)
(28)

where the last inequality follows from the boundedness assumption of set X , recalling that Dy
0 =

∥y0 − y∗(x0)∥, and the fact that
∑k−1

i=0 βk−i ≤ β
1−β .

Lemma 6. Let {(xk,wk)}k≥0 be the sequence generated by Algorithm 1 with step-size ηk = η <
1−β
µg

where β is defined in Lemma 4. Suppose that Assumption 2 holds and v(x−1) = v(x0), then
for any K ≥ 1,

∥wK − v(xK−1)∥ ≤ ρK∥w0 − v(x0)∥+
γρCvDX

1− ρ
+

ηC1D
y
0ρ

K+1

ρ− β
+

γηβC1LyDX

(1− ρ)(1− β)
, (29)

where ρ ≜ 1− ηµg .

Proof. Applying the result of Lemma 5 recursively for k = 0 to K − 1, one can conclude that

∥wK − v(xK−1)∥ ≤ ρK∥w0 − v(x0)∥+CvγDX

K∑
i=1

ρi + ηC1

K∑
i=0

(
βiDy

0 + γLyDX
β

1− β

)
ρK−i

≤ ρK∥w0 − v(x0)∥+
ρ

1− ρ
CvγDX + ηC1D

y
0

( K∑
i=0

βiρK−i
)

+
γηβC1LyDX

1− β

K∑
i=0

ρK−i, (30)
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where the last inequality is obtained by noting that
∑K

i=1 ρ
i ≤ ρ

1−ρ . Finally, the choice η < 1−β
µg

implies that β < ρ, hence,
∑K

i=0(
β
ρ )

i ≤ ρ
ρ−β which leads to the desired result.

B.1 PROOF OF LEMMA 2

We begin the proof by considering the definition of∇ℓ(xk) and Fk followed by a triangle inequality
to obtain

∥∇ℓ(xk)− Fk∥ ≤ ∥∇xf(xk,y
∗(xk))−∇xf(xk,yk)∥

+ ∥∇2
yxg(xk,yk)wk+1 −∇2

yxg(xk,y
∗(xk))v(xk)∥ (31)

Combining Assumption 1-(i) together with adding and subtracting∇2
yxg(xk,yk)v(xk) to the second

term of RHS lead to

∥∇ℓ(xk)− Fk∥ ≤ Lf
xy∥yk − y∗(xk)∥+ ∥∇2

yxg(xk,yk)
(
wk+1 − v(xk)

)
+
(
∇2

yxg(xk,yk)

−∇2
yxg(xk,y

∗(xk))
)
v(xk)∥

≤ Lf
xy∥yk − y∗(xk)∥+ Cg

yx∥wk+1 − v(xk)∥+ Lg
yx

Cf
y

µg
∥yk − y∗(xk)∥ (32)

where the last inequality is obtained using Assumption 2 and the triangle inequality. Next, utilizing
Lemma 4 and 6 we can further provide upper-bounds for the term in RHS of (32) as follows

∥∇ℓ(xk)− Fk∥ ≤ C2

(
βkDy

0 +
γβLyDX

1− β

)
+ Cg

yx

(
ρk+1∥w0 − v(x0)∥+

γρCvDX

1− ρ

+
ηC1D

y
0ρ

k+2

ρ− β
+

γηβC1LyDX

(1− ρ)(1− β)

)
.

B.2 IMPROVEMENT IN ONE STEP

In the following, we characterize the improvement of the objective function ℓ(x) after taking one
step of Algorithm 1.
Lemma 7. Let {xk}Kk=0 be the sequence generated by Algorithm 1. Suppose Assumptions 1 and 2
hold and γk = γ, then for any k ≥ 0 we have

ℓ(xk+1) ≤ ℓ(xk)− γG(xk) + γC2β
kDy

0DX +
γ2C2D

2
XLyβ

1− β
+ Cg

yx

[
γDXρk+1∥w0 − v(x0)∥

+
γ2D2

XρCv

1− ρ
+

γDXDy
0C1ηρ

k+2

ρ− β
+

γ2D2
XLyC1βη

(1− β)(1− ρ)

]
+

1

2
Lℓγ

2D2
X . (33)

Proof. Note that according to Lemma 1-(III), ℓ(·) has a Lipschitz continuous gradient which implies
that

ℓ(xk+1) ≤ ℓ(xk) + γ⟨∇ℓ(xk), sk − xk⟩+
1

2
Lℓγ

2∥sk − xk∥2

= ℓ(xk) + γ⟨Fk, sk − xk⟩+ γ⟨∇ℓ(xk)− Fk, sk − xk⟩+
1

2
Lℓγ

2∥sk − xk∥2, (34)

where the last inequality follows from adding and subtracting the term γ⟨Fk, sk − xk⟩ to the RHS.
Define s′k = argmaxs∈X {⟨∇ℓ(xk),xk − s⟩} and observe that G(xk) = ⟨∇ℓ(xk),xk − s′k⟩ by
Definition 1. Using the definition of sk, we can immediately observe that

⟨Fk, sk − xk⟩ = min
s∈X
⟨Fk, s− xk⟩

≤ ⟨Fk, s
′
k − xk⟩

= ⟨∇ℓ(xk), s
′
k − xk⟩+ ⟨Fk −∇ℓ(xk), s

′
k − xk⟩

= −G(xk) + ⟨Fk −∇ℓ(xk), s
′
k − xk⟩. (35)

17



Under review as a conference paper at ICLR 2024

Next, combining (34) with (35) followed by the Cauchy-Schwartz inequality leads to

ℓ(xk+1) ≤ ℓ(xk)− γG(xk) + γ∥∇ℓ(xk)− Fk∥∥sk − s′k∥+
1

2
Lℓγ

2∥sk − xk∥2. (36)

Finally, using the result of the Lemma 2 together with the boundedness assumption of set X we
conclude the desired result.

C PROOF OF THEOREM 1

Since ℓ is convex, from the definition of G(xk) in (4) we have

G(xk) = max
s∈X
{⟨∇ℓ(xk),xk − s}⟩ ≥ ⟨∇ℓ(xk),xk − x∗⟩ ≥ ℓ(xk)− ℓ(x∗). (37)

We assume a fixed step-size in Theorem 1 and we set γk = γ. Combining the result of Lemma 7 with
(37) leads to

ℓ(xk+1) ≤ ℓ(xk)− γ(ℓ(xk)− ℓ(x∗)) + γC2β
kDy

0DX +
γ2C2D

2
XLyβ

1− β
+ Cg

yx

[
γDXρk+1∥w0 − v(x0)∥

+
γ2D2

XρCv

1− ρ
+

γDXDy
0C1ηρ

k+2

ρ− β
+

γ2D2
XLyC1βη

(1− β)(1− ρ)

]
+

1

2
Lℓγ

2D2
X . (38)

Subtracting ℓ(x∗) from both sides, we get

ℓ(xk+1)− ℓ(x∗) ≤ (1− γ)(ℓ(xk)− ℓ(x∗)) +Rk(γ), (39)

where

Rk(γ) ≜ γC2β
kDy

0DX +
γ2C2D

2
XLyβ

1− β
+ Cg

yx

[
γDXρk+1∥w0 − v(x0)∥

+
γ2D2

XρCv

1− ρ
+

γDXDy
0C1ηρ

k+2

ρ− β
+

γ2D2
XLyC1βη

(1− β)(1− ρ)

]
+

1

2
Lℓγ

2D2
X . (40)

Continuing (39) recursively leads to the desired result.

D PROOF OF COROLLARY 1

We start the proof by using the result of the Theorem 1, i.e.,

ℓ(xK)− ℓ(x∗) ≤ (1− γ)K(ℓ(x0)− ℓ(x∗)) +

K−1∑
k=0

(1− γ)K−kRk(γ). (41)

Note that
K−1∑
k=0

(1− γ)K−kRk(γ)

= C2D
y
0DX

[K−1∑
k=0

(1− γ)K−kγβk
]
+

C2D
2
XLyβ

1− β

[K−1∑
k=0

(1− γ)K−kγ2
]

+ Cg
yx

(
ρDX ∥w0 − v(x0)∥

[K−1∑
k=0

(1− γ)K−kγρk
]
+

D2
XρCv

1− ρ

[K−1∑
k=0

(1− γ)K−kγ2
]

+
DXDy

0C1ηρ
2

ρ− β

[K−1∑
k=0

(1− γ)K−kγρk
]
+

D2
XLyC1βη

(1− β)(1− ρ)

[K−1∑
k=0

(1− γ)K−kγ2
])

+
1

2
LℓD

2
X

[K−1∑
k=0

(1− γ)K−kγ2
]
.
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Moreover, one can easily verify that
∑K−1

k=0 (1−γ)K−kγ2 ≤ γ(1−γ) and
∑K−1

k=0 (1−γ)K−kγρk ≤
γ(1−γ)
|1−γ−ρ| from which together with the above inequality we conclude that

K−1∑
k=0

(1− γ)K−kRk(γ)

≤ C2D
y
0DXγ(1− γ)

|1− γ − β|
+

C2D
2
XLyβγ(1− γ)

1− β
+ Cg

yx

(DXργ(1− γ)

|1− γ − ρ|
∥w0 − v(x0)∥

+
D2

XCvργ(1− γ)

1− ρ
+

DXDy
0C1ηρ

2γ(1− γ)

(ρ− β) |1− γ − ρ|
+

D2
XLyC1ηβγ(1− γ)

(1− β)(1− ρ)

)
+

1

2
LℓD

2
Xγ(1− γ)

= O
(

Cvρ

1− ρ
γ +

LyC1β

(1− β)(1− ρ)
γ

)
. (42)

Using the above inequality within (41) we conclude that ℓ(xK) − ℓ(x∗) ≤ (1 − γ)K(ℓ(x0) −
ℓ(x∗)) + O(Cvρ

1−ρ γ +
LyC1β

(1−β)(1−ρ)γ) where Cv = O(κ3
g), C1 = O(κ2

g), Ly = O(κg) as shown in
Lemma 3 and min{1− ρ, 1− β} = Ω( 1

κg
) as shown in Lemma 2. Next, we show that by selecting

γ = log(K)/K we have that (1 − γ)K ≤ 1/K. In fact, for any x > 0, log(x) ≥ 1 − 1
x which

implies that log( 1
1−γ ) ≥ γ = log(K)/K, hence, ( 1

1−γ )
K ≥ K. Putting the pieces together we

conclude that ℓ(xK)− ℓ(x∗) = O((1− γ)K(ℓ(x0)− ℓ(x∗)) + γκ5
g) = Õ(κ5

g/K), which leads to
an iteration complexity of Õ(κ5

gϵ
−1).

Furthermore, assuming that ∇yf(x, ·) is uniformly bounded for any x ∈ X , we conclude that
Cf

y = O(1), hence, C1 = O(κg) from which we have that ℓ(xK)− ℓ(x∗) = O((1− γ)K(ℓ(x0)−
ℓ(x∗))+ γκ4

g). Therefore, selecting γ = log(K)/K implies that ℓ(xK)− ℓ(x∗) = O(κ4
g/K) which

leads to an iteration complexity of O(κ4
gϵ

−1).

E PROOF OF THEOREM 2

Recall that from Lemma 7 we have

G(xk) ≤
ℓ(xk)− ℓ(xk+1)

γ
+C2β

kDy
0DX +

γC2D
2
XLyβ

1− β
+ Cg

yx

[
DXρk+1∥w0 − v(x0)∥

+
γD2

XρCv

1− ρ
+

DXDy
0C1ηρ

k+2

ρ− β
+

γD2
XLyC1βη

(1− β)(1− ρ)

]
+

1

2
LℓγD

2
X .

Summing both sides of the above inequality from k = 0 to K − 1, we get
K−1∑
k=0

G(xk) ≤
ℓ(x0)− ℓ(xK)

γ
+

C2D
y
0DX

1− β
+K

γC2D
2
XLyβ

1− β
+ Cg

yx

[ρDX ∥w0 − v(x0)∥
1− ρ

+K
γD2

XρCv

1− ρ
+

DXDy
0C1ηρ

2

(1− ρ)(ρ− β)
+K

γD2
XLyC1βη

(1− β)(1− ρ)

]
+

K

2
LℓγD

2
X ,

where in the above inequality we use the fact that
∑K

i=0 β
i ≤ 1

1−β . Next, dividing both sides of
the above inequality by K and denoting the smallest gap function over the iterations from k = 0 to
K − 1, i.e.,

Gk∗ ≜ min
0≤k≤K−1

G(xk) ≤
1

K

K−1∑
k=0

G(xk),

imply that

Gk∗ ≤ ℓ(x0)− ℓ(xK)

Kγ
+

γC2DXLyβ

1− β
+

γD2
XρCvC

g
yxρ

1− ρ
+

γD2
XCg

yxLyC1βη

(1− β)(1− ρ)
+

1

2
LℓγD

2
X

+
C2D

y
0DXβ

K(1− β)
+

DXCg
yxρ∥w0 − v(x0)∥
K(1− ρ)

+
DXDy

0C
g
yxC1ηρ

2

K(1− β)(1− ρ)
. (43)
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F PROOF OF COROLLARY 2

We begin the proof by using the result of the Theorem 2.

Gk∗ ≤ ℓ(x0)− ℓ(xK)

Kγ
+

γC2DXLyβ

1− β
+

γD2
XρCvC

g
yxρ

1− ρ
+

γD2
XCg

yxLyC1βη

(1− β)(1− ρ)
+

1

2
LℓγD

2
X

+
C2D

y
0DXβ

K(1− β)
+

DXCg
yxρ∥w0 − v(x0)∥
K(1− ρ)

+
DXDy

0C
g
yxC1ηρ

2

K(1− β)(1− ρ)

= O
(

1

Kγ
+

γC2Lyβ

1− β
+

γLyC1β

(1− β)(1− ρ)

)
The desired result follows immediately from (43) and the fact that ℓ(x∗) ≤ ℓ(xK). Moreover,
similar to the proof of Corollary 1 we have that Cv = O(κ3

g), C1 = O(κ2
g), Ly = O(κg),

and min{1 − ρ, 1 − β} = Ω( 1
κg

). Hence, by choosing γ = 1/(κ2.5
g

√
K), we obtain that G∗k =

O( 1
Kγ + γκ5

g) = O(κ2.5
g /
√
K), which leads to an iteration complexity of O(κ5

gϵ
−2).

Furthermore, assuming that∇yf(x, y) is uniformly bounded, we conclude that Cf
y = O(1), hence,

C1 = O(κg) from which we have that Gk∗ = O( 1
Kγ + γκ4

g). Therefore, selecting γ = 1/(κ2
g

√
K)

implies that Gk∗ = O(κ2
g/
√
K) which leads to an iteration complexity of O(κ4

gϵ
−2).

G ADDITIONAL EXPERIMENTS

In this section, we provide more details about the experiments conducted in section 5 as well as some
additional experiments.

G.1 EXPERIMENT DETAILS

In this section, we include more details of the numerical experiments in Section 5. The MATLAB
code is also included in the supplementary material.

For completeness, we briefly review the update rules of SBFW (Akhtar et al., 2022) and TTSA (Hong
et al., 2020) for the setting considered in problem (1). In the following, we use PX (·) to denote the
Euclidean projection onto the set X .

Each iteration of SBFW has the following updates:

yk = yk−1 − δk∇yg(xk−1,yk−1),

dk = (1− ρk)(dk−1 − h(xk−1,yk−1)) + h(xk,yk),

sk = argmin
s∈X

⟨s,dk⟩,

xk+1 = (1− ηk)xk + ηksk

Based on the theoretical analysis in (Akhtar et al., 2022), ρk = 2
k1/2 , ηk = 2

(k+1)3/4
, and δk = a0

k1/2

where a0 = min
{

2
3µg

,
µg

2L2
g

}
. Moreover, h(xk,yk) is a biased estimator of the surrogate ℓ(xk)

which can be computed as follows

h(xk,yk) = ∇xf(xk,yk)−M(xk,yk)∇yf(xk,yk),

where the term M(xk,yk) is a biased estimation of [∇2
yyg(xk,yk)]

−1 with bounded variance whose
explicit form is

M(xk,yk) = ∇2
yxg(xk,yk)×

[ k

Lg
Πl

i=1

(
I − 1

Lg
∇2

yyg(xk, yk)
)]

,

and l ∈ {1, . . . , k} is an integer selected uniformly at random.
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Figure 3: The performance of IBCG (blue) vs SBFW (red) on Problem (44) when µg = 1. Plots from
left to right are trajectories of θk and f(λk, θk)− f∗.

The steps of TTSA algorithm are given by

yk+1 = yk − βhg
k,

xk+1 = PX (xk − αhf
k),

hg
k = ∇yg(xk,yk),

hf
k = ∇xf(xk,yk)−∇2

yxg(xk,yk)×
[ tmax(k)ch

Lg
Πp

i=1

(
I − ch

Lg
∇2

yyg(xk,yk)
)]
∇yf(xk,yk),

where based on the theory we define L = Lf
x +

Lf
yC

g
yx

µg
+ Cf

y

(
Lg

yx

µg
+

Lg
yyC

g
yx

µ2
g

)
, and Ly =

Cg
yx

µg
,

then set α = min
{

µ2
g

8LyLL2
g
, 1
4LyL

K−3/5
}

, β = min
{

µg

L2
g
, 2
µg

K−2/5
}

, tmax(k) =
Lg

µg
log(k + 1),

p ∈ {0, . . . , tmax(k)− 1}, and ch ∈ (0, 1].

G.2 TOY EXAMPLE

Here we consider a variation of coreset problem in a two-dimensional space to illustrate the numerical
stability of our proposed method. Given a point x0 ∈ R2, the goal is to find the closest point to x0

such that under a linear map it lies within the convex hull of given points {x1, x2, x3, x4} ⊂ R2. Let
A ∈ R2×2 represents the linear map, X ≜ [x1, x2, x3, x4] ∈ R2×4, and ∆4 ≜ {λ ∈ R4|⟨λ, 1⟩ =
1, λ ≥ 0} be the standard simplex set. This problem can be formulated as the following bilevel
optimization problem

min
λ∈∆4

1

2
∥θ(λ)− x0∥2 s.t. θ(λ) ∈ argmin

θ∈R2

1

2
∥Aθ −Xλ∥2. (44)

We set the target x0 = (2, 2) and choose starting points as θ0 = (0, 0) and λ0 = 14/4. We
implemented our proposed method and compared it with SBFW (Akhtar et al., 2022). It should
be noted that in the SBFW method, they used a biased estimation for [∇2

yyg(λ, θ)]
−1 = (A⊤A)−1

whose bias is upper bounded by 2
µg

(see (Ghadimi & Wang, 2018, Lemma 3.2)). Figure 3 illustrates
the iteration trajectories of both methods for µg = 1 and K = 102. The step-sizes for both methods
are selected as suggested by their theoretical analysis. We observe that our method converges to the
optimal solution while SBFW fails to converge. This situation for SBFW exacerbates for smaller
values of µg .

Figure 4 illustrates the iteration trajectories of both methods for µg = 0.1 and K = 103 in which we
also included SBFW method whose Hessian inverse matrix is explicitly provided in the algorithm.
The step-sizes for both methods are selected as suggested by their theoretical analysis. Despite
incorporating the Hessian inverse matrix in the SBFW method, the algorithm’s effectiveness is com-
promised by excessively conservative step-sizes, as dictated by the theoretical result. Consequently,
the algorithm fails to converge to the optimal point effectively. Regarding this issue, we tune their
step-sizes, i.e., scale the parameter δ and η in their method by a factor of 5 and 0.1, respectively. By
tuning the parameters we can see in Figure 5 that the SBFW with Hessian inverse matrix algorithm
has a better performance and converges to the optimal solution. In fact, using the Hessian inverse as
well as tuning the step-sizes their method converges to the optimal solution while our method always
shows a consistent and robust behavior.
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Figure 4: The performance of IBCG (blue) vs SBFW (red) and SBFW with Hessian inverse (green)
on Problem (44) when µg = 0.1. Plots from left to right are trajectories of θk and f(λk, θk)− f∗.

Figure 5: The performance of IBCG (blue) vs SBFW (red) and SBFW with Hessian inverse (green)
on Problem (44) when µg = 0.1 and the SBFW parameters are tuned. Plots from left to right are
trajectories of θk and f(λk, θk)− f∗.

G.3 MATRIX COMPLETION WITH DENOISING

G.3.1 SYNTHETIC DATASET

Dataset Generation. We create an observation matrix M = X̂ + E. In this setting X̂ = WWT

where W ∈ Rn×r containing normally distributed independent entries, and E = n̂(L + LT ) is a
noise matrix where L ∈ Rn×n containing normally distributed independent entries and n̂ ∈ (0, 1) is
the noise factor. During the simulation process, we set n = 250, r = 10, and α = ∥X̂∥∗.

Initialization. All the methods start from the same initial point x0 and y0 which are generated
randomly. We terminate the algorithms either when the maximum number of iterations Kmax = 104

or the maximum time limit Tmax = 2× 102 seconds are achieved.

Implementation Details. For our method IBCG, we choose the step-sizes as γ = 1
4
√
K

to avoid

instability due to large initial step-sizes, and set α = 2/(µg + Lg) and η = 0.9× 1−β
µg

. We tuned the
step-size ηk in the SBFW method by multiplying it by a factor of 0.8, and for the TTSA method, we
tuned their step-size β by multiplying it by a factor of 0.25.

G.3.2 REAL DATASET

In order to emphasize the importance of projection-free bilevel algorithms in practical applications,
we conducted further experiments using a larger dataset known as MovieLens 1M. This dataset
consists of 1 million ratings provided by 6000 individuals for a total of 4000 movies. In Figure 6
the inferior performance of TTSA algorithm in actual computation time, especially when dealing
with large datasets becomes more evident. The observed difference can be attributed to the utilization
of the projection operation in contrast to the projection-free algorithms. TTSA requires performing
projections over nuclear norm at each iteration which is computationally expensive due to the
computation of full singular value decomposition. In contrast, projection-free algorithms IBCG
and SBFW solve a linear minimization at each iteration, which only requires the computation of
singular vectors corresponding to the largest singular value. On the other hand, considering the slow
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Figure 6: The performance of IBCG (blue) vs SBFW (red) and TTSA (yellow) on Problem (2) for
real dataset. Plots from left to right are trajectories of normalized error (ē), ∥∇yg(xk, yk)∥, and
f(xk, yk) over time.

Figure 7: The performance of IBCG on Problem (2) for fixed step-sizes η and α. Plots from left to
right are trajectories of normalized error (ē), ∥∇yg(xk, yk)∥, and f(xk, yk) over time.

convergence rate of SBFW, when the size of the dataset increases, the improved performance of our
proposed method becomes more evident compared to SBFW.

Moreover, in the following we utilized the MovieLens 100k dataset to implement matrix completion
with denoising example for different step-sizes. These experiments will be designed to explore how
different step-size selections impact the performance of the IBCG algorithm. We fix the step-sizes
α = 2/(µg + Lg) and η = 0.5 × 1−β

µg
and systematically alter γ = c1 × 1√

K
with constants

c1 ∈ {0.75, 0.5, 0.25, 0.1} as depicted in Figure 7. We observe that larger values of γ directly
affect the performance of the algorithm. This observation matches with our theoretical result as
demonstrated in Lemma 6. In particular, the error of approximating the lower-level solution and
its Jacobian is directly related to the step-size γ and larger values of γ contributing to larger errors
affecting the upper-level objective value.

In Figure 8, we fixed the step-sizes α = 2/(µg + Lg) and γ = 0.1× 1√
K

and changed the value of

step-size η = c2 × 1−β
µg

with constants c2 ∈ {0.75, 0.5, 0.25, 0.1}. The performance of the IBCG is
robust due to the various values of step-size η. This indicates that the choice of η does not significantly
affect the convergence rate, suggesting that the IBCG method is not overly sensitive to this parameter

Figure 8: The performance of IBCG on Problem (2) for fixed step-sizes γ and α. Plots from left to
right are trajectories of normalized error (ē), ∥∇yg(xk, yk)∥, and f(xk, yk) over time.

23



Under review as a conference paper at ICLR 2024

within the tested range. The algorithm achieves comparable accuracy levels in the end, regardless of
the initial choice of c2, signifying a level of stability that can be beneficial in practical applications
where the optimal step-size may not be known at first.
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