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ABSTRACT

While generative models have made significant advancements in recent years, they
also raise concerns such as privacy breaches and biases. Machine unlearning has
emerged as a viable solution, aiming to remove specific training data, e.g., con-
taining private information and bias, from models. In this paper, we study the ma-
chine unlearning problem in Image-to-Image (I2I) generative models. Previous
studies mainly treat it as a single objective optimization problem, offering a soli-
tary solution, thereby neglecting the varied user expectations towards the trade-off
between complete unlearning and model utility. To address this issue, we propose
a controllable unlearning framework that uses a control coefficient ε to control
the trade-off. We reformulate the I2I generative model unlearning problem into
a ε-constrained optimization problem and solve it with a gradient-based method
to find optimal solutions for unlearning boundaries. These boundaries define the
valid range for the control coefficient. Within this range, every yielded solution is
theoretically guaranteed with Pareto optimality. We also analyze the convergence
rate of our framework under various control functions. Extensive experiments
on two benchmark datasets across three mainstream I2I models demonstrate the
effectiveness of our controllable unlearning framework.

1 INTRODUCTION

Generative models have recently made significant progress in fields such as image recognition (Ho
et al., 2020; Dhariwal & Nichol, 2021) and natural language processing (OpenAI, 2023; Touvron
et al., 2023), capturing significant academic interest due to their boundless generative potential. Typ-
ically trained on vast datasets from the Internet, generative models inevitably assimilate latent biases
and expose private information (Schwarz et al., 2021). Existing studies (Kuppa et al., 2021; Tiru-
mala et al., 2022; Carlini et al., 2023) have revealed that generative models have a strong tendency to
recall specific instances encountered during training, raising concerns that the models might output
biases and leak private information when put into practical situations. Machine unlearning (Nguyen
et al., 2022) presents a viable solution to address this issue. It aims to eliminate the knowledge
learned from specific training data (forget set) while preserving the knowledge learned from the
remaining data (retain set).

Implementing unlearning for generative models serves dual objectives, i.e., fulfilling privacy re-
quirements and enhancing model reliability. On the one hand, legislation such as the General Data
Protection Regulation (Voigt & Von dem Bussche, 2017) grants individuals the right to be forgot-
ten. Consequently, service providers must unlearn specific private information from the model in
response to an individual’s request. On the other hand, the data available on the Internet is rife with
biases and inaccuracies, which compromises model performance when used for training. By proac-
tively unlearning the biased and inaccurate data, the service providers can improve the liability of
their models.

In this paper, we focus on the unlearning problem in Image-to-Image (I2I) generative models (Yang
et al., 2023), where unlearning is defined by the model’s incapacity to reconstruct the full image
from a partially cropped one (Li et al., 2024a), as shown in Figure 1. Previous study (Li et al.,
2024a) frames machine unlearning in generative models as a single-objective optimization problem,
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Figure 1: An overview of controllable unlearning. On the left, the first and second rows represent the
forget set and the retain set, respectively. We first present the effect of unlearning in I2I generative
models, followed by a collection of controllable solutions, where ε is the control coefficient. On the
right, we demonstrate that for each ε, our solution is guaranteed with the Pareto optimality.

with the loss defined as a combination of performance on both the forget and retain sets. However,
this approach faces three main challenges: i) First and foremost, this approach offers a fixed result,
ignoring the real-world need for flexible trade-offs between model utility and unlearning complete-
ness aligned with varying user expectations. Regrettably, this challenge remains overlooked in the
majority of current research on unlearning. ii) This approach relies wholly on fine-tuning with
manual terminating conditions, lacking a theoretical guarantee for convergence. iii) This approach
integrates two optimization objectives into a single loss function, which compromises unlearning
efficiency due to the competition or conflict between different objectives.

To address these challenges, we propose a controllable unlearning approach that provides a set
of Pareto optimal solutions to cater to varied user expectations. Users can select a solution based
on the degree of unlearning completeness through a simple control coefficient ε. Specifically, we
reframe machine unlearning of I2I generative models into a bi-objective optimization problem (Kim
& De Weck, 2005), i.e., unlearning the forget set (1st objective, unlearning completeness) while
preserving the retain set (2nd objective, model utility). Due to legislation requirements, the first
objective prioritizes the second objective, meaning that minimizing the negative impact on the retain
set only arises once the unlearning objective is sufficiently optimized. Therefore, we reformulate the
bi-objective optimization problem into a ε-constrained optimization problem, where the unlearning
objective is treated as a constraint (primary to satisfy) and ε is the control coefficient. Utilizing
gradient-based methods to solve this ε-constrained optimization, we can obtain two Pareto optimal
solutions for the boundaries of unlearning with theoretical guarantee, which can be used to deter-
mine the valid range of values for ε. Subsequently, we select the value of ε within its valid range
and relax the constraints on the unlearning objective by increasing ε. As a result, we obtain a set of
solutions that dynamically fulfill user’s varied expectations regarding the trade-off between unlearn-
ing completeness and model utility. Finally, to enhance the efficiency of unlearning, we analyze the
convergence rates of our unlearning framework under various settings of the control function which
is utilized to govern the direction of parameter updates. The main contributions of this paper are
summarized as follows:

• We focus on I2I generative models, and propose a controllable unlearning approach that
balances unlearning completeness and model utility, providing a set of solutions to fulfill
varied user expectations. To the best of our knowledge, we are the first to study controllable
unlearning.

• We reformulate the machine unlearning of generative models as a ε-constrained optimiza-
tion problem with unlearning the forget set as the constraint, guaranteeing optimal theoret-
ical solutions for the boundaries of unlearning. By progressively relaxing the unlearning
constraint, we obtain the Pareto set and plot the corresponding Pareto front.

• We utilize gradient-based methods to solve the ε-constrained optimization problem. To
enhance the efficiency of unlearning, we analyze our framework’s performance across dif-
ferent settings of the control function and validate with multiple combinations.

• We conduct extensive experiments to evaluate our proposed method over diverse I2I gen-
erative models. The results from two large datasets demonstrate that the Pareto optimal
solutions yielded by our method significantly outperform baseline methods. Additionally,
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the solution set achieves controllable unlearning to fulfill varied expectations regarding the
trade-off between unlearning completeness and model utility.

2 RELATED WORK

2.1 I2I GENERATIVE MODELS

Many computer vision tasks can be formulated as I2I generation processes, e.g., style transfer (Zhu
et al., 2017), image extension (Chang et al., 2022), restoration (Teterwak et al., 2019), and image
synthesis (Yu et al., 2020). There are mainly three architectures for I2I generative models, i.e., Auto-
Encoders (AEs) (Alain & Bengio, 2014), Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014), and diffusion models (Ho et al., 2020). AEs mainly aim to reduce the mean squared
error between generated and ground truth images but often produce lower-quality outputs (Doso-
vitskiy et al., 2021; Esser et al., 2021). GANs, through adversarial training, significantly improve
generation quality, despite their unstable training (Arjovsky et al., 2017; Gulrajani et al., 2017; Brock
et al., 2019). Diffusion models, which use a diffusion-then-denoising approach, aim for stable train-
ing and high-quality generation by minimizing the distributional distance between generated images
and ground truth images (Ho et al., 2020; Song & Ermon, 2020; Salimans & Ho, 2022). How-
ever, diffusion models require a greater amount of data and computational resources (Saharia et al.,
2022b; Rombach et al., 2022). In this paper, we aim to design a universal unlearning method that
can be applied across different I2I models.

2.2 MACHINE UNLEARNING

Machine unlearning aims to eliminate the influence of specific training data (unlearning target) from
a trained model. A naive approach is to retrain the model from scratch using a modified dataset
that excludes the unlearning target. However, this approach can be computationally prohibitive in
practice. Based on the degree of unlearning completeness, machine unlearning can be categorized
into exact unlearning and approximate unlearning (Xu et al., 2023).

Exact unlearning aims to ensure that the unlearning target is fully unlearned, i.e., as complete
as retraining from scratch (Bourtoule et al., 2021; Yan et al., 2022; Li et al., 2024b). This ap-
proach, which typically relies on retraining, is limited to unlearning specific instances and cannot
be readily extended to generative models with strong feature generalizations. Approximate un-
learning aims to obtain an approximate model, whose performance closely aligns with a retrained
model (Golatkar et al., 2020; Sekhari et al., 2021). This approach estimates the influence of unlearn-
ing targets, and updates the model accordingly, usually through gradient-based updates, avoiding
full retraining (Basu et al., 2021; Li et al., 2023b). However, accurate influence estimation is still
challenging (Graves et al., 2021), reducing the applicability of this approach to generative models.

In generative models, the exploration of unlearning is accomplished by minimizing a composite
loss, which is a combination of training loss on the retain and the forget sets (Li et al., 2024a).
This approach is highly dependent on manual parameter tuning and cannot guarantee unlearning
completeness. As for comparison, the solutions yielded by our proposed controllable unlearning
framework are theoretically guaranteed with Pareto optimality.

3 PRELIMINARY

3.1 UNLEARNING PRINCIPLES

As outlined in (Chen et al., 2022; Li et al., 2024c), an unlearning task typically has three main
principles: i) unlearning completeness, which involves eliminating the influence of specific data
from an already trained model; ii) unlearning efficiency, which focuses on enhancing the speed of
the unlearning process; and iii) model utility, which aims to ensure that the performance of the
unlearned model remains comparable to that of a model retrained from scratch.

3
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3.2 PARETO OPTIMALITY

Consider a multi-objective optimization problem formulated as: minθ f(θ) =

(f1(θ), f2(θ), · · · , fm(θ))
⊤, where fi(θ) denotes the loss for the i-th objective.

Pareto dominance. Let θa, θb be two points in feasible set Ω, θa is said to dominate θb
(
θa ≺ θb

)
if and only if fi (θa) ≤ fi

(
θb
)
,∀i ∈ {1, . . . ,m} and fj (θa) < fj

(
θb
)
,∃j ∈ {1, . . . ,m}.

Pareto optimality (Lin et al., 2019). A point θ∗ is Pareto optimal if there is no θ̂ ∈ Ω for which
θ̂ ≺ θ∗. The collection of all such Pareto optimal points forms the Pareto set, and the surface of this
set in the loss space is called the Pareto front.

3.3 I2I GENERATIVE MODEL UNLEARNING

Model architecture. Encoder-decoder structures are widely used in I2I models, with: i) an encoder
Eγ reducing images to the latent space, and ii) a decoder Dϕ reconstructing images from the latent
space. For model Iθ with input image x, the output is:

Iθ(x) = Dϕ(Eγ(x)), (1)
where T (x) denotes the cropping operation (such as center cropping or random cropping), and
θ = {γ, ϕ} denotes the full parameter set.

Unlearning objective. Define the unlearning task for an I2I generative model Iθ0 involving data
partitions Df (forget set) and Dr (retain set). Consider an Iθ0 , i.e., the original model, with training
data D = Df ∪Dr. Assume that Iθ0 is proficiently trained to generate satisfactory results on both
Df and Dr. The objective of unlearning is to obtain an unlearned model Iθ that cannot generate
satisfactory results on Df (1st objective, unlearning completeness) while maintaining comparable
performance on DR (2nd objective, model utility). Formally,

max
θ

(
Div

(
P(Xf )∥P(Iθ(T (Xf )))

))
, and min

θ

(
Div

(
P(Xr)∥P(Iθ(T (Xr)))

))
, (2)

where Xf and Xr are the variables for ground truth images in Df and Dr, P(Iθ(X)) is the model
output distribution for input variable X , and Div(·||·) represents distributional distance, measured
by Kullback-Leibler (KL) divergence in this paper.

Following prior work (Kingma et al., 2019; Xia et al., 2022; Wallace et al., 2023), as the model
is proficiently trained, we hypothesize that Iθ0 can approximately replicate the distributions over
both forget and retain sets (Kingma et al., 2019; Xia et al., 2022; Wallace et al., 2023), i.e.,
P(Xf ) ≈ P(Iθ0(T (Xf ))), and P(Xr) ≈ P(Iθ0(T (Xr))). Let PX := P(Iθ0(T (X))) and
PX̂ := P(Iθ(T (X))). Then, Eq. (2) can be simplified to:

max
θ
Div(PXf

||PX̂f
), and min

θ
Div(PXr ||PX̂r), (3)

where PXf
and PX̂f

represent the output distributions of the forget set before and after unlearning
respectively. Similarly, PXr

and PX̂r
represent those for the retain set.

4 METHODOLOGY

In this section, we first introduce a controllable unlearning framework for I2I generative models,
which formulates unlearning as a constrained optimization with the unlearning objective as a con-
straint. We utilize a gradient-based method to obtain the boundaries of unlearning. Then we relax
the constraint within the boundaries to derive a set of Pareto optimal solutions to fulfill varied user
expectations.

4.1 ε-CONSTRAINED OPTIMIZATION FORMULATION

The unlearning task for I2I models is reformulated as a bi-objective optimization (Eq. (3)), with the
first objective to maximizeDiv(PXf

||PX̂f ). Nonetheless, the value ofDiv(·||·) can theoretically be
maximized to infinity, yielding an infinite number of possible PX̂f (Li et al., 2024a), consequently
resulting in extremely diminished model utility. To balance unlearning completeness and model
utility, we bound Div(PXf

||PX̂f
) by Lemma 1.

4
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Lemma 1 (Divergence Upper Bound (Cover & Thomas, 2012)). Assuming the forget set with dis-
tribution PXf

characterized by a zero-mean and covariance matrix Σ, and a signal PX̂f
with the

same statistical properties, the maximal KL divergence is realized when PX̂f
= N (0,Σ).

Div(PXf
||PX̂f

) ≤ Div(PXf
||N (0,Σ)). (4)

As image normalization typically involves mean subtraction (Elasri et al., 2022), we can assume
PXf

and PX̂f
follow zero-mean distributions for conciseness without sacrificing generality. Lemma

1 reveals that the upper bound of Div(PXf
||PX̂f ) is achieved when PX̂f

∼ N (0,Σ). This suggests
that maximizing Div(PXf

||PX̂f ) equates to minimizing Div(PX̂f
||N (0,Σ)). Consequently, we

rewrite Eq. (3) as:
min
θ
Div(N (0,Σ)||PX̂f

), and min
θ
Div(PXr

||PX̂r
). (5)

As both terms in Eq. (5) depend on θ, we define f1(θ) := Div(N (0,Σ)||PX̂f ) and f2(θ) :=

Div(PXr
||PX̂r

) for conciseness. However, unlike classification models where their outputs are pre-
cisely univariate discrete distributions (Kurmanji et al., 2024; Zhang et al., 2023), high-dimensional
KL divergence calculations in I2I generative models are intractable. Thus, following (Li et al.,
2024a), we adopt the L2 loss as a surrogate. Due to privacy legal requirements, unlearning objec-
tives typically takes precedence. Thus, we set f1(θ) as the primary constraint and treat Eq. (5) as a
ε-constrained optimization problem:

min
θ∈Rd

f2(θ) s.t. f1(θ) ≤ ε, (6)

where ε is a parameter to control the completeness of unlearning. We minimize f2(θ) inside the
feasible set Ω = {θ : f1(θ) ≤ ε}, which implies that our priority lies in unlearning the forget set
rather than mitigating performance degradation on the retain set.

4.2 SOLVING THE ε-CONSTRAINT OPTIMIZATION

To solve the ε-constrained optimization problem in Eq. (6), approaches such as Sequential Quadratic
Programming (SQP) (Nocedal & Wright; Bonnans et al., 2006), penalty function method (Yeniay,
2005), and interior point method (Renegar, 2001) are commonly employed. Given the extensive
parameter set of the I2I generative model, we select a special variant of the SQP algorithm for its
lower complexity and comparable convergence guarantee (Nocedal & Wright; Gill & Wong, 2011).

Specifically, we employ a gradient-based method to solve Eq. (6), updating the parameter by θt+1 ←−
θt−µtgt. Here, µt > 0 denotes the step size, and gt represents the direction of the parameter update,
which is determined by solving a convex quadratic programming problem w.r.t. g (for a detailed
derivation, please refer to the Appendix B.1):

gt = min
g∈Rd

{
∥∇f2(θt)− g∥2 s.t. ∇f1(θt)⊤g ≥ f1(θt)− ε

}
. (7)

Due to the inability to obtain the effective range of ε in the early stages of unlearning, direct com-
putation of f1(θt) − ε is not feasible. Consequently, we adjust the constraint of Eq. (7) by em-
ploying a control function ψ(θt) (i.e., ∇f1(θt)⊤g ≥ ψ(θt)), which should satisfy sign(ψ(θt)) =
sign(f1(θt) − ε), where sign(x) = x/|x| for x ̸= 0 and sign(0) = 0. This ensures that the di-
rection of updates remains as consistent as possible before and after the substitution. Further, we
provide a summary of our proposed unlearning algorithm in Algorithm 1.

Assumption 1. Assume f1(θ) and f2(θ) are continuously differentiable, and the trajectory {θt :

t ∈ [0,+∞)} follows the continuous-time dynamics θ̇t = −gt, where gt is defined in Eq. (7) and
maxt∈[0,+∞) ηt < +∞.

The convergence analysis of Algorithm 1 regarding Eq. (6) utilizes the continuous-time framework
given by θ̇t = −gt, as mentioned in Assumption 1. Please refer to Theorem 2 in Appendix B.2 for
further details of convergence.

5
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Algorithm 1 Gradient-based Optimization Method

Require: Original model Iθ0 , forget set Df , retain set Dr, control function ψ(θ), step size µ, co-
variance matrix Σ, numerical stability variable ϖ = 1e− 7.

1: Initial: Initialize t = 0, Iθt = Iθ0 ;
2: for t = 0 to T − 1 do
3: Sample {xf}, {xr} and {xn} fromDf ,Dr andN (0, ε) respectively, ensuring that |{xf}| =
|{xr}| = |{xn}|;

4: Compute loss:
5: f1(θt) = ∥Iθt(T (Df ))− Iθ0(T (xn))∥2
6: f2(θt) = ∥Iθt(T (Dr))− Iθ0(T (Dr))∥2
7: Compute gradient: ∇f1(θt), ∇f2(θt);
8: Compute the solution to the dual problem of Eq. (7): ηt = max

(
ψ(θt)−∇f2(θt)⊤∇f1(θt)

∥∇f1(θt)∥2+ϖ
, 0
)

;
9: Compute parameter update direction: gt = ∇f2(θt) + ηt∇f1(θt);

10: Update the parameter of the target model Iθt+1 : θt+1 ←− θt − µtgt;
11: end for
12: Return Unlearned model IθT ;

4.3 A CONTROLLABLE UNLEARNING FRAMEWORK

Our controllable unlearning framework consists of two phases. In Phase I, we reformulate Eq.
(6) into a special form to obtain the solution for the boundaries of unlearning. In Phase II, we
adjust the value ε within its valid range to relax the unlearning constraint and obtain the Pareto
optimal solutions for controllable unlearning. This relaxation of unlearning completeness allows
for a controllable trade-off between completeness and model utility, thereby catering to varied user
expectations.

Phase I: Boundaries of unlearning. The boundaries of unlearning refer to the two Pareto optimal
solutions with the highest and lowest degrees of unlearning completeness.

To obtain the Pareto optimal solutions with the highest degrees of unlearning completeness, we
reformulate Eq. (6)into the following special form:

min
θ∈Rd

f2(θ) s.t. f1(θ) ≤ ε,

where ε = f∗1 , and f∗1 := inf
θ∈Rd

f1(θ). (8)

The solution of this optimization problem can be obtained by Algorithm 1. According to Assump-
tion 1, we need to ensure that ψ(θ) ≥ 0 in Eq. (8) to guarantee the same sign with f1(θ)− ε. In this
paper, we we simply define ψ(θ) = α∥∇f1(θ)∥δ with α > 0 and δ ≥ 1.

Proposition 1 (Boundary of Pareto Set). Under Assumption 1, let f∗1 > −∞ and f∗2 > −∞ be the
infimum of f1(θ), f2(θ), respectively. Further, let ψ(θ) be continuous and ∇f1(θ) be continuously
differentiable. If θt → θ∗ and gt → 0 as t → +∞, with ∇2f1(θ) of constant rank near θ∗ and
f1(θ), f2(θ) being convex near θt, then θ∗ is a Pareto optimal solution and f1(θ∗) = f∗1 .

Proof. The proof can be found in Appendix B.3.

Proposition 1 ensures that the solution θ∗1 obtained by Algorithm 1 for solving Eq. (8) is on the
boundary of the Pareto set, specifically refer to the highest degree of unlearning completeness.
Meanwhile, f1(θ∗1) achieve the infimum of f1(θ).

Obtaining the Pareto optimal solution with the lowest unlearning completeness is similar to the
process mentioned above, with the difference of exchanging the positions of f1(θ) and f2(θ) in
Eq. (8). This new problem is formulated as minθ∈Rd f1(θ), s.t. f2(θ) ≤ ε, where ε = f∗2 , and
f∗2 := infθ∈Rd f2(θ). The solution θ∗2 obtained by solving this problem is another boundary the
Pareto set, i.e., the Pareto optimal solution with the lowest unlearning completeness, with f2(θ∗2)
achieving the infimum of f2(θ).

6
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Figure 2: Pipeline of the controllable unlearning framework. (a) shows the unlearning task of the
I2I generative model which is framed as a ε-constrained optimization problem. (b) shows that
the implementation of controllable unlearning unfolds in two phases: i) initially identifying two
boundary points of unlearning, necessitating a strict reduction in f1(θ) (or f2(θ)) for optimality; and
ii) then locating the given ε’s Pareto optimal point, with strict reduction in f1(θ) when f1(θt) > ε
and permitting an increase when f1(θt) ≤ ε.

Phase II: Controllable unlearning. To adjust the trade-off between unlearning completeness and
model utility, we relax the unlearning constraint by defining f1(θ∗1) < ε < f1(θ

∗
2) in Eq. (6), where

θ∗1 and θ∗2 have already been obtained in Phase I. Then we rewrite Eq. (8) for controllable unlearning:

min
θ∈Rd

f2(θ) s.t. f1(θ) ≤ ε,

where ε > f∗1 , and f∗1 := inf
θ∈Rd

f1(θ), (9)

where ε ∈ R is used to adjust the completeness of unlearning. In Phase II, according to the sign
condition in Assumption 1, we simply set ψ(θ) = β(f1(θ)−ε)δ with β > 0, δ = 2n+1 and n ∈ N.
Proposition 2 (Interior of Paret Set). Under Assumption 1, let f∗2 = infθ∈Rd f2(θ) > −∞ and
supt∈[0,+∞) ηt = ηmax < +∞. If θt is a stationary point with gt = 0 and ηt < +∞, and both
f1(θ) and f2(θ) are convex at θt, then θt is a Pareto optimal solution w.r.t. ε.

Proof. The proof can be found in Appendix B.4.

From Proposition 2, Eq. (9) provides a Pareto optimal solution w.r.t. ε. By progressively increasing
ε from f∗1 , which is estimated by f1(θ∗1) in Phase I, we can trace a path of Pareto optimal solutions
for different completeness of unlearning. As a result, this path offers controllable unlearning for
varied user expectations.

4.4 ENHANCING THE EFFICIENCY OF UNLEARNING

To enhance the efficiency of unlearning, we investigate the influence of the control function ψ(θ) on
convergence rates across different phases, as outlined in the proposition below:
Proposition 3. Under Assumption 1, with f∗2 = infθ∈Rd f2(θ) > −∞, then:

1. For Phase I, if ψ(θ) = α∥∇f1(θ)∥δ with α > 0 and δ ≥ 1, the convergence rates of f1(θ)

and f2(θ) are O
(
1/t

1
δ

)
and O

(
1/t

1
2−

1
2δ

)
, respectively.

2. For Phase II, ifψ(θ) = β(f1(θ)−ε)δ with β > 0, δ = 2n+1, n ∈ N, and supt∈[0,+∞) ηt =

ηmax < +∞, the convergence rate of [f1(θ)− ε]+ is O
(
1/t

1
δ

)
.

Proof. The proof can be found in Appendix B.5.
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Proposition 3 demonstrates that the convergence rate depends on the exponent δ in ψ(θ), where
higher values of δ result in a faster convergence rate of f1(θ). However, excessively large δ can also
lead to a slower convergence rate of f2(θ) and instabilities in training. To balance convergence rate
and training stability, we explore various ε in ψ(θ) in both phases with extensive empirical studies.
The results can be found in Section 5.4.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

We evaluate our proposed method on three mainstream I2I generative models, i.e., Masked Autoen-
coder (MAE) (He et al., 2022), Vector Quantized Generative Adversarial Networks (VQ-GAN) (Li
et al., 2023a), and diffusion probabilistic models (Saharia et al., 2022a). Please refer to Appendix C.1
for the settings of hyperparameters.

Datasets: Following (Li et al., 2024a), we conduct experiments on the following two large-scale
datasets: i) ImageNet-1K (Deng et al., 2009), from which we randomly select 200 classes, designat-
ing 100 of these as the forget set and the remaining 100 as the retain set. Each class contains 150
images, with 100 allocated for training and the remaining for validation; and ii) Places-365 (Zhou
et al., 2017), from which we randomly select 100 classes, designating 50 of these as the forget set
and the remaining 50 as the retain set. Each class contains 5500 images, with 5000 allocated for
training and the remaining 500 for validation.

Baselines: We first report the performance of the original model (i.e., before unlearning) as a ref-
erence. Following (Li et al., 2024a), we set the following baselines: i) Max Loss (Warnecke et al.,
2023; Gandikota et al., 2023), which maximizes the training loss on the forget set; ii) Retain La-
bel (Kong & Chaudhuri, 2023), which minimizes training loss by setting the true values of the retain
samples as those of the forget set; iii) Noisy Label (Graves et al., 2021; Gandikota et al., 2023),
which minimizes the training loss by introducing Gaussian noise to the ground truth images of the
forget set; and iv) Composite Loss (Li et al., 2024a), the State-Of-The-Art (SOTA) method, which
builds upon Noisy Label by calculating the loss on the retain set and obtaining their weighted sum,
thereby minimizing this weighted training loss.

Evaluation metrics. We adopt three different types of metrics to comprehensively compare our
method with other baselines: i) Inception Score (IS) of the generated images (Salimans et al., 2016);
ii) the Frechét Inception Distance (FID) between the generated images and the ground truth im-
ages (Heusel et al., 2017); and iii) the cosine similarity between the CLIP embeddings of the gen-
erated images and the ground truth images (Radford et al., 2021). IS evaluates the quality of the
generated images independently, while the FID further measures the similarity between the gener-
ated and ground truth images. On the other hand, the distance of CLIP embeddings assesses whether
the generated images still capture similar semantics. Please refer to Appendix C.2 for more infor-
mation of evaluation metrics.

5.2 UNLEARNING PERFORMANCE

We test our method on image extension, inpainting, and reconstruction tasks. We report the results
for center uncropping (i.e., inpainting) in Tabel 1, and the others in Appendix G.1.

Baseline comparison: As shown in Table 1, compared to the original model, our method retains
almost the same performance on the retain set or only exhibits minor degradation. Meanwhile, there
is a significant reduction in the three metrics on the forget set. In contrast, these baselines generally
cannot perform well simultaneously on both the forget set and the retain set. For instance, in MAE,
Composite Loss has the least performance degradation on the retain set, but its performance on the
forget set is also the worst. We also observe similar findings for Max Loss in VQ-GAN. Furthermore,
we provide some examples of generated images in Figure 3, and more images in Appendix E.

T-SNE analysis: Following (Li et al., 2024a), we conduct a T-SNE analysis (Van der Maaten &
Hinton, 2008) to further analyze our method’s effectiveness. Using our unlearned model, we gen-
erate 50 images for both the retain set and the forget set. We then calculate the CLIP embedding
vectors for these images and their corresponding ground truth images. As illustrated in Figure 4,
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Table 1: Results of center cropping 50% of the images. ‘F’ and ‘R’ stand for the forget set and retain
set, respectively. Here, ”Ours” refers to the boundary points of unlearning obtained in Phase I, that
is, the solution with the highest degree of unlearning completeness. The best results are highlighted
in bold, and secondary results are highlighted with underline.

MAE VQ-GAN Diffusion Models

IS FID CLIP IS FID CLIP IS FID CLIP

F ↓ R ↑ F ↑ R ↓ F ↓ R ↑ F ↓ R ↑ F ↑ R ↓ F ↓ R ↑ F ↓ R ↑ F ↑ R ↓ F ↓ R ↑
Original 21.59 21.83 16.28 14.87 0.88 0.88 23.74 24.06 21.80 18.17 0.78 0.85 16.90 19.65 82.12 81.51 0.89 0.91

Max Loss 15.42 16.55 129.54 87.13 0.72 0.72 19.20 21.23 23.52 43.88 0.77 0.75 17.27 18.10 95.93 108.70 0.83 0.79
Retain Label 20.74 14.14 90.62 103.72 0.71 0.73 14.44 19.24 106.01 46.25 0.47 0.75 17.02 19.08 86.10 89.18 0.87 0.83
Noisy Label 15.38 17.97 135.47 63.89 0.71 0.77 15.95 20.63 93.55 47.03 0.49 0.74 17.15 18.36 125.99 121.55 0.72 0.76

Composite Loss 13.96 15.71 149.78 74.14 0.70 0.72 14.34 21.60 103.17 37.92 0.48 0.77 14.33 17.80 149.22 98.82 0.64 0.80
Ours 12.33 17.47 154.60 68.453 0.69 0.75 13.23 22.55 139.21 26.39 0.46 0.82 11.84 18.47 165.05 95.42 0.55 0.81

Forget 
Set

Retain
Set

Ground Truth Input Original Model Max Loss Retain Label Noisy Label Composite Loss Ours

Figure 3: Generated images of cropping 50% at the center of the image on VQ-GAN. From left to
right, the images generated by baselines are presented. Our method results in the highest degree of
unlearning completeness while maintaining a minimal reduction in model utility.

after unlearning, the embeddings of retain set are close to that of the ground truth images, while
most of the generated images on the forget set diverge significantly from the ground truth one.

Unlearning robustness: We validate the performance of our controllable unlearning framework
in different image generation tasks by changing the cropping patterns. The results indicate that
our framework is robust to various image generation tasks and generally outperforms baselines,
with detailed results provided in Appendix G.1. Moreover, we examine the unlearning effects of
our controllable unlearning framework under different crop ratios. The results in Appendix G.3
demonstrate that our framework is robust to different crop ratios. Furthermore, we find that the
visual effects of unlearning control are more prominent with larger crop ratios.

Summary: These results validate the effectiveness of our proposed method, which is universally
applicable to mainstream I2I generative models as well as a variety of image generation tasks, con-
sistently achieving favorable outcomes across all these tasks.

Before Unlearning: Forget Set Before Unlearning: Retain Set Unlearning: Forget Set× Unlearning: Retain Set×

(c) Diffusion Model(b) VQ-GAN(a) MAE

Figure 4: T-SNE analysis between images generated by our method and ground truth images.
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Table 2: Results of center cropping 50% of the images under different unlearning completeness.
“Highest” and “Lowest” respectively represent the two boundary points of unlearning identified in
Phase I. ε is a coefficient used to control the unlearning completeness in Phase II.

MAE VQ-GAN Diffusion Models

IS FID CLIP IS FID CLIP IS FID CLIP

F ↓ R ↑ F ↑ R ↓ F ↓ R ↑ F ↓ R ↑ F ↑ R ↓ F ↓ R ↑ F ↓ R ↑ F ↑ R ↓ F ↓ R ↑
Original 21.59 21.83 16.28 14.87 0.88 0.88 23.74 24.06 21.80 18.17 0.78 0.85 16.90 19.65 82.12 81.51 0.89 0.91

Highest 12.33 17.47 154.60 68.453 0.69 0.75 13.23 22.55 139.21 26.39 0.46 0.82 11.84 18.47 165.05 95.42 0.55 0.81
ε-25% 17.93 20.55 85.36 59.09 0.74 0.77 14.14 22.65 130.71 24.57 0.46 0.82 15.12 19.27 137.95 84.21 0.60 0.81
ε-50% 19.47 21.42 57.81 50.99 0.77 0.79 14.60 22.25 123.32 22.65 0.47 0.83 15.92 18.70 118.76 71.43 0.66 0.83
ε-75% 20.68 22.87 42.51 31.80 0.80 0.82 15.20 22.53 116.59 20.63 0.47 0.84 16.33 19.53 104.21 63.62 0.73 0.83
Lowest 21.23 22.92 31.28 25.83 0.82 0.84 15.77 22.75 109.28 20.26 0.48 0.84 16.36 20.78 90.03 52.96 0.77 0.84

5.3 CONTROLLABLE UNLEARNING

We also evaluate the controllability of our method which provides a set of solutions for varied
user expectations. First, we obtain two boundary points of unlearning, thereby establishing the
valid range of values for ε. We linearly increase the value of ε within this range, adding 25% of
the range interval each time, to obtain optimum solutions corresponding to different ε values. We
provide some generated images corresponding to these solutions in Figure 1. Due to the space limit,
please refer to Appendix F for more examples. For results of more fine-grained control (i.e., smaller
increments of the linear increase of ε), please refer to Appendix G.2.

We verify the unlearned models at different ε values, and report results in Table 2. As ε increases,
we observe a trade-off: the unlearning completeness decreases, while the generated images’ perfor-
mance on the forget set progressively improves, and, simultaneously, the performance on the retain
set also improves. This observation clearly demonstrates the controllability of our proposed method,
which can cater to varied user expectations. Please refer to Appendix H for additional results of the
generated images and T-SNE analysis, which corroborates the above numerical results.

5.4 UNLEARNING EFFICIENCY

To enhance the efficiency of our controllable unlearning framework, we modify the selections of
control function ψ(θ) during various phases. Specifically, we empirically examine the convergence
under these conditions to assess the framework’s unlearning performance of efficiency. In Phase I,
with the control function satisfying ψ(θ) = α∥∇f1(θ)∥δ , we manipulate the value of the exponent
δ to change the control function. Additionally, we verify the changes in the convergence rates of
f1(θ) and f2(θ) under four different δ values across three models, with results shown in Appendix
I. It is evident that f1(θ) and f2(θ) achieve an optimal balance in convergence rates when δ =
2, and the overall rate of convergence is fastest. In Phase II, where the control function satisfies
ψ(θ) = β(f1(θ) − ε)δ , we test the changes in the convergence rates of f1(θ) and f2(θ) for two
different δ values on three models. To stabilize the optimization process, we scale the form of the
control function (i.e., ψ(θ) = β(f1(θ) − ε)δ∥∇f1(θ)∥2), selecting two different δ values, with
results presented in Appendix I. It can be observed that at δ = 1 the overall rate of convergence was
optimized.

6 CONCLUSION

In this paper, we propose a controllable unlearning framework for I2I generative models to over-
come the limitation of the existing method’s incapability to fulfill varied user expectations. Our
approach allows for a controllable trade-off between unlearning completeness and model utility by
introducing a control coefficient ε to control the degrees of unlearning completeness. We reformu-
late unlearning as a ε-constrained optimization problem and solve it with a gradient-based method
to find two boundary points that guide the valid range for ε. Within this range, every chosen value of
ε will lead to a Pareto optimal solution, addressing the existing method’s issue of lacking theoretical
guarantee. Extensive experiments on two large datasets (i.e., ImageNet-1K and Places-365) across
three mainstream I2I models (i.e., MAE, VQ-GAN, diffusion model) demonstrate significant advan-
tages of our method over the SOTA methods with higher unlearning efficiency, and a controllable
balance between the unlearning completeness and model utility.
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