IS ATTENTION REQUIRED FOR ICL? EXPLORING THE RELATIONSHIP BETWEEN MODEL ARCHITECTURE AND IN-CONTEXT LEARNING ABILITY

Ivan Lee, Nan Jiang, Taylor Berg-Kirkpatrick University of California, San Diego {iylee,n3jiang,tberg}@ucsd.edu

ABSTRACT

What is the relationship between model architecture and the ability to perform in-context learning? In this empirical study, we take the first steps toward answering this question. We evaluate thirteen model architectures capable of causal language modeling across a suite of synthetic in-context learning tasks. These selected architectures represent a broad range of paradigms, including recurrent and convolution-based neural networks, transformers, state-space model inspired, and other emerging attention alternatives. We discover that all the considered architectures can perform in-context learning under a wider range of conditions than previously documented. Additionally, we observe stark differences in statistical efficiency and consistency by varying context length and task difficulty. We also measure each architecture's predisposition towards in-context learning when presented with alternative routes for task resolution. Finally, and somewhat surprisingly, we find that several attention alternatives are more robust in-context learners than transformers. Given that such approaches have constant-sized memory footprints at inference time, this result opens the possibility of scaling up in-context learning to accommodate vastly larger numbers of in-context examples.

1 Introduction

In-context learning (ICL) refers to the ability to learn new tasks at inference time, using only inputoutput pair exemplars as guidance. Radford et al. (2019) demonstrate early signs of this ability in GPT-2, a causal transformer (Vaswani et al., 2017). ICL was further popularized by GPT-3 (Brown et al., 2020), a large language model with the same architectural foundation but augmented with greater capacity and trained on large-scale data. By simply adjusting a natural language prompt, it was shown that GPT-3 could adapt to new tasks, such as translation and question answering, without updating any of its parameters. These findings spurred significant interest in the research community to investigate this curious behavior (Zhao et al., 2021; Min et al., 2022; Liu et al., 2022).

Yet, a prevailing uncertainty remains: are large language models genuinely learning from their prompts or simply being conditioned to surface relevant aspects of their training data? To address this, a new line of research emerged that examines ICL in controlled, synthetic environments where task resolution fundamentally depends on prompt utilization (Xie et al., 2021; von Oswald et al., 2022; Garg et al., 2023; Akyürek et al., 2023). However, most of these studies anchor their investigations on the assumption that models utilize an internal attention mechanism (as is the case for transformers). Whether attention mechanisms are necessary for in-context learning to emerge remains an open question.

Notable exceptions to this assumption include Xie et al. (2021) and Chan et al. (2022) who consider recurrent neural networks alongside transformers. The former finds RNNs and LSTMs fail to learn image classification in the ICL setting. In contrast, the latter demonstrate that LSTMs possess ICL abilities in a synthetic language modeling task, where hidden Markov models generate the data. However, whether both findings are specific to their task or indicative of more general behavior remains uncertain.

Task	Prompt	Target	
Associative Recall	a, 1, b, 3, c, 2, b	3	
Linear Regression	$\mathbf{x}_1, y_1, \mathbf{x}_2, y_2, \mathbf{x}_3, y_3, \mathbf{x}_4$	y_4	$\exists \mathbf{w} \text{ such that } \forall i, y_i = \mathbf{x}_i \cdot \mathbf{w}$
Multiclass Classification	$x_1, b, x_2, a, x_3, a, x_4$	b	$x_1, x_4 \sim \mathcal{N}(y_b, I_d) x_2, x_3 \sim \mathcal{N}(y_a, I_d)$
Image Classification	\$4 \$\hat{9} \$\hat{9} \$\pm\$4 \$\pm\$4 \$\hat{9} \$\pm\$	4	bursty training prompt
	$\odot_5 \triangle_8 \stackrel{?}{N}_9 \stackrel{?}{\square}_6 \stackrel{1}{ -}_3 \stackrel{*}{*}_4 \stackrel{?}{ }_9$	2	non-bursty training prompt
	£16060£1£1606	0	evaluation prompt
Language Modeling	Colorless green ideas sleep	furiously	

Table 1: Examples of our synthetic in-context learning tasks.

The community's focus on attention is understandable given the success of transformers. However, the architecture comes with a number of limitations, such as quadratic time and memory complexity. These limitations spurred research into alternative architectures such as efficient self-attention models (Tay et al., 2022a) and state space models (Gu et al., 2021). If these alternatives are to replace transformers as the dominant model architecture, it is natural to wonder if they are capable of ICL. Moreover, some are designed to handle prompts of arbitrary length, potentially introducing a novel ICL form, constrained only by dataset size rather than inherent architectural limitations. Furthermore, classic architectures such as recurrent neural networks and convolutional neural networks were once the backbone of machine learning research before the introduction of transformers and ICL as a concept. Do these classic architectures inherently lack ICL capabilities, or were they simply constrained by the compute and data available during their heyday.

In this study, we set out to address the aforementioned questions. Specifically, we aim to answer the following research questions: Which architectures are capable of ICL, and which exhibit superior ICL performance? Our primary focus lies on the former question. While the latter is more challenging to assess, our experiments provide insights into which families of architectures tend to perform well, even if they do not offer definitive answers. To advance our objectives, we evaluate a diverse range of model architectures that span several design paradigms. This includes both the classical methods previously mentioned and modern approaches such as the transformer, state-space inspired models, and emerging attention alternatives. Our assessment covers the ICL capabilities of each architecture over a wide array of synthetic tasks, spanning different modalities and including both classification and regression, as depicted in Table 1.

Our specific contributions are as follows:

- LARGE-SCALE EMPIRICAL STUDY: We conduct the first large-scale empirical study comparing ICL performance across diverse model architectures, shedding light on their relative strengths and weaknesses. Code is available at https://github.com/ivnle/synth-icl.
- UNIVERSALITY OF ICL: We discover that all the considered architectures can perform in-context learning under a wider range of conditions than previously documented, lending support to the position that ICL is not exclusive to attention-based models.
- EMPIRICAL SUCCESS OF ATTENTION ALTERNATIVES: Our results indicate several attention alternatives are more robust in-context learners than transformers, suggesting the future possibility of a new supervised learning paradigm: scaling up in-context learning to vastly larger datasets of in-context examples.

2 SYNTHETIC IN-CONTEXT LEARNING TASKS

Studying in-context learning in large language models presents inherent challenges. One fundamental question is whether these models are truly learning new predictors during the forward-pass, or

whether in-context examples simply focus the model on specific aspects of the knowledge already acquired during gradient-based pretraining. While from a Bayesian perspective this dichotomy represents endpoints of a spectrum (Xie et al., 2021), it nonetheless clouds interpretation of ICL experimental results. To address this concern, a new line of research has emerged that examines ICL in controlled, synthetic environments where task resolution depends fundamentally on prompt utilization (von Oswald et al., 2022; Garg et al., 2023; Akyürek et al., 2023). In these settings, models must rely on their prompts to solve tasks, eliminating the possibility of memorization: Models are trained from scratch to take a labeled dataset as input and then predict the result of learning from this data directly in the forward-pass of the resulting model. Thus, each train and test example is a unique learning problem but of a consistent type (e.g. linear regression).

In addition to offering a clearer perspective on in-context learning, synthetic tasks have low computational requirements. These decreased barriers allow for more equitable comparisons across model architectures. Utilizing publicly available pretrained models may introduce confounding variables, stemming from disparities in model capacity, training durations, and data quality. By training models from scratch on synthetic tasks, we are given greater control over these factors. Furthermore, a suite of such tasks is a valuable tool for the research community, enabling rapid benchmarking of emerging architectures without the intensive computational overhead typically associated with large language models.

For these reasons, we curate a suite of synthetic in-context learning tasks and summarize them in Table 1. The majority of our tasks take the form

$$\underbrace{x_1, f(x_1), x_2, f(x_2), ..., x_n}_{\text{prompt } P}, \underbrace{f(x_n)}_{\text{completion}}$$

where the goal is to learn function f by observing a prompt, a sequence of input-output pairs $(x_i, f(x_i))$, which ends with a query. The model's objective is to produce an appropriate completion based on the given prompt. We train model M_θ parameterized by θ to minimize the expected loss over all prompts

$$\min_{\theta} \mathbb{E}_{P} \left[\ell \left(M_{\theta}(P), f(x_n) \right) \right], \tag{1}$$

where $\ell(\cdot, \cdot)$ is the appropriate loss function for a given task.

Associative recall (Ba et al., 2016; Fu et al., 2023) is the task of learning key-value mappings from a prompt and can be viewed as the simplest form of in-context learning. Let V be a discrete vocabulary of size k. We consider the class of functions

$$F = \{ f | f : V \xrightarrow{\mathsf{B}} V \}$$

where f is a bijective mapping. These mappings are created by randomly pairing elements of V without replacement, ensuring each element maps to a unique counterpart. We uniformly sample f from F and $x_1, ..., x_n$ from V to construct the prompt as $P = (x_1, f(x_1), x_2, f(x_2), ... x_n)$. Elements of P are mapped to vectors with a simple lookup table, as is standard in language modeling.

Linear regression (Garg et al., 2023) is the task of learning a linear function from a prompt. We consider the class of functions

$$F = \{ f | f(x) = \mathbf{w}^{\top} x, \mathbf{w} \in \mathbb{R}^d \}$$

We sample x_1, \ldots, x_n and w from the isotropic Gaussian distribution $\mathcal{N}(0, I_d)$. We then compute each $y_i = \mathbf{w}^\top x_i$ and construct the prompt as $P = (x_1, y_1, x_2, y_2, \ldots, x_n)$. Since y_i is a scalar, we represent it as a d-dimensional vector, with its first index set to y_i and remaining indices set to zero.

Multiclass Classification is a clustering task in which the items to be clustered are sampled from k distinct Gaussians. For this task, we use the procedure

$$\mu_i \sim U(-1,1)^d$$
, for $i = 1, ..., k$
 $y_j \sim U(\{1,...,k\})$, for $j = 1,..., n$
 $x_j \sim \mathcal{N}(\mu_{y_j}, I_d)$, for $j = 1,..., n$

to construct the prompt as $P = (x_1, y_1, x_2, y_2, \dots, x_n)$. Since $y_j \in \{1, \dots, k\}$, we map each cluster label to a d-dimensional vector with a simple lookup table. We set d to 16 in all experiments.

To facilitate a clearer understanding, we defer detailed discussions of **Image Classification** and **Language Modeling** to Sections 5 and 6, respectively.

3 Model Architectures

Recurrent We consider three common variations of recurrent neural networks: Elman (Rumelhart et al., 1986, **RNN**), long short-term memory (Hochreiter & Schmidhuber, 1997, **LSTM**), and gated recurrent unit (Cho et al., 2014, **GRU**). Recurrent neural networks are characterized by their length-invariant inference cost and theoretically infinite context size, though empirical findings suggest an upper limit on this context size (Khandelwal et al., 2018). Furthermore, since the introduction of transformers, this class of architecture has seen diminished focus within the community, particularly in the ICL setting. We believe revisiting approaches that have fallen out of favor helps counterbalance the community's potential over-reliance on a select few contemporary methodologies.

Convolutional Representing the class of convolutional neural networks (CNN), we focus on the architectures proposed by Wu et al. (2019): lightweight convolutions (LIGHTCONV) and dynamic convolutions (DYNAMICCONV). These architectures, derived as special cases of depthwise convolutions (SIfre & Mallat, 2014), have demonstrated competitive performance with transformers in specific contexts (Tay et al., 2022b). LIGHTCONV is simply a depthwise CNN with weights normalized across the temporal dimension via a softmax. This design means that, unlike in self-attention, its context window is fixed and the importance placed on context elements does not change across time. To remedy this shortcoming, DYNAMICCONV predicts a different convolution kernel at every time-step. However, the kernel is a function of the current time-step only as opposed to the entire context as in self-attention. Similar to the recurrent class, CNNs exhibit length-invariant inference costs. However, they trade infinite context size for training parallelism.

Structured State Space Sequence Models (SSMs) We also examine a category of recently proposed architectures inspired by state space models (Kalman, 1960). These architectures attempt to merge the efficient inference capabilities of RNNs with the parallel training attributes of transformers and CNNs. S4 (Gu et al., 2021) set a new state-of-the-art on long-range sequence modeling, but falls short in language modeling compared to transformers. Subsequently, H3 (Fu et al., 2023), HYENA (Poli et al., 2023), and Mamba (Gu & Dao, 2023) were proposed, each progressively improving upon this language modeling gap. We also include architectures inspired by linear attention (Katharopoulos et al., 2020; Zhai et al., 2021). Specifically, we examine RETNET (Sun et al., 2023) and RWKV (Peng et al., 2023). While not necessarily inspired by state space models, these architectures also strive for efficient inference, parallelizable training, and can be viewed as variants of SSMs.

Transformers Finally, we consider two popular autoregressive transformer designs: **GPT2** (Radford et al., 2019) and **LLAMA2** (Touvron et al., 2023). Their primary differences lie in choice of positional embeddings and activation functions. GPT2 utilizes learned absolute positional embeddings and ReLU activation while LLAMA2 incorporates rotary positional embedding (Su et al., 2022) and SWIGLU activation (Shazeer, 2020). Rotary embeddings endow transformers with both absolute and relative positional information through rotations in complex space.

Note that we train all models from scratch, adopting only the architectural design choices made by the named models' authors. In the following sections, we delve into our experimental methods and findings. Section 4 presents our results for linear regression, associative recall, and multiclass classification. We discuss image classification outcomes in Section 5, and conclude with our language modeling results in Section 6.

4 LEARNING TO LEARN (IN-CONTEXT)

In our initial experiments, we evaluate the capacity of various architectures to in-context learn associative recall, multiclass classification, and linear regression. Results are shown in Figure 1 and experimental details are shown in Appendix A.1. Besides confirming the existence of ICL ability, we are particularly interested in measuring *statistical efficiency*—which models make better use of a fixed amount of data (in-context examples)—and in determining if our trained models demonstrate *consistency*, i.e., whether their performance converges in probability to some ceiling.

Why is consistency of interest? First, a proficient learner, irrespective of the ICL setting, is expected to improve its performance given more i.i.d. training data. Consequently, a rise in in-context examples should lead to regular performance improvements. However, it is unclear if this is true in

the in-context setting, a query we offer clarity on shortly. Second, the emergence of length-invariant inference architectures, rivaling transformers in task performance, paves the way for ICL with a substantially larger number of in-context examples than what is typically used today. One can imagine a new paradigm to replace finetuning: adapting pretrained language models to new tasks by utilizing a precomputed (previous) hidden state without parameter updates.

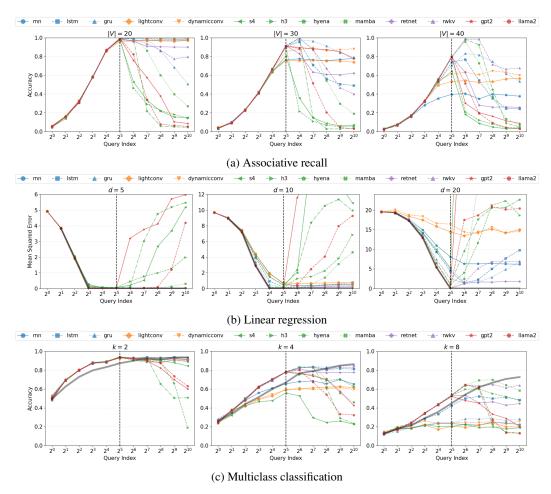


Figure 1: Evaluating various architectures on associative recall, linear regression, and multiclass classification. We plot test accuracy and mean squared error as a function of the number of incontext examples. A query index of $2^5=32$ implies 31 in-context examples, which is also the highest number of in-context examples seen during training (vertical dotted line). Task difficulty increases from left to right. Each line represents the single run that achieved the best validation accuracy or mean squared error at query index 2^5 . See Tables 7, 9, 11 for a tabular view of the same data. See Figure 5 for average performance across training runs. See Appendix B.1 for linear regression with noise. Classical baselines (black) are shown for linear regression (ridge regression) and multiclass classification (logistic regression).

All architectures can in-context learn. We first turn our attention to the left most plots in Figure 1, and specifically the region left of the dashed vertical line. Clearly, all architectures successfully in-context learn the three tasks. This provides an existence proof that ICL is not a unique property of transformers. Differences among the architectures becomes more evident as we increase difficulty and take into account their ability to extrapolate (right of the dotted vertical line).

Which architectures are consistent? Initially, all architectures appear consistent when considering only prompt lengths encountered during training. However, this perception changes when we introduce prompt lengths well beyond those seen during training. Specifically, the performance degradation is most pronounced in the four state space model inspired architectures and the two

transformers. Interestingly, other architectures with recurrent formulations (such as the RNNs, RETNET, and RWKV) do not exhibit such drastic declines. This also holds true for the CNNs, which are inherently limited to finite context lengths. This behavior in CNNs makes intuitive sense, as long range information that may "confuse" this architecture class are discarded over time. It is possible that, similar to RNNs (Khandelwal et al., 2018), RETNET and RWKV exhibit stronger preference to nearby context relative to the state space model inspired architectures (originally motivated by long sequence modeling) and transformers (which have random access to their entire context). This preference may explain why these architectures are more robust to unseen prompt lengths.

Variations in statistical efficiency. The following summary assumes the most difficult setting for all tasks. For linear regression, the transformers, MAMBA, and RETNET achieve near perfect MSE when given 31 in-context examples. Interestingly, these four architectures match the performance of ridge regression. Beyond 31 examples, however, performance quickly deteriorate, with RETNET showing the most robustness to this deterioration. For associative recall, the top performers were the transformers, H3, HYENA, MAMBA, RETNET, and RWKV when given 31 in-context examples. When considering longer prompt lengths, HYENA, MAMBA, and RWKV achieved near perfect accuracy. Surprisingly, GRU demonstrated competitive performance, especially when extrapolating to unseen prompt lengths. For multiclass classification, the transformers, all the state space model inspired architectures (except for S4), RETNET and RWKV achieved the best accuracy, surpassing logistic regression. In particular, MAMBA scored the highest accuracy when given 255 in-context examples. We also note that LSTM was competitive with the other architectures but did not achieve a top score.

Hyperparameter sensitivity. We now consider *average* performance for each architecture (Figure 5). Earlier, we found that some RNNs, despite not achieving the best scores, were competitive with modern architectures. However, these performances were difficult to replicate and were isolated to a few lucky combination of hyperparameters. For associative recall, the transformers, HYENA, MAMBA, and RETNET were consistently strong performers. In particular, MAMBA achieved an average accuracy of 0.96 when given 63 examples. For linear regression, LLAMA2 was the clear leader for prompt lengths seen during training, followed by RETNET. For multiclass classification, LLAMA2, MAMBA, and RWKV were the top performers, followed by H3 and HYENA. Both RWKV and MAMBA improved in performance as prompt lengths increased beyond those seen during training. Interestingly, multiclass classification was the sole task where GPT2 did not perform well on average.

5 THE INFLUENCE OF TRAINING DATA DISTRIBUTIONAL PROPERTIES

We now study how the distributional properties of training data can influence ICL. We follow the image classification experiments of Chan et al. (2022) who show ICL emerges when training data exhibits particular properties such as burstiness and having large numbers of rarely occurring classes. To manage the number of experiments in this study, we focus exclusively on burstiness, a feature of natural data not found in typical supervised datasets. For example, natural language is temporally 'bursty'. That is, a given entity (e.g., word, person) may appear in clusters rather than uniformly across time (Altmann et al., 2009).

We train models on a mixture of *bursty* and *non-bursty* prompts. See Table 1 and Figure 7 for examples. In bursty prompts, the query class appears 3 times. To prevent the model from simply outputting the most common class in the prompt, a second class also appears 3 times. Bursty prompts can be solved by either leveraging query-label pairs across *different* training prompts (i.e. memorization) or referring to the in-context examples within prompts (i.e., ICL). For non-bursty prompts, the image-label pairs are drawn randomly and uniformly. This implies there is no incentive for a model to utilize the in-context examples. Note that models now have two options to learn how to classify images: memorization or ICL. This stands in contrast to our experiments in Section 4 where ICL was the only option to solve a task. We want to understand if certain architectures are predisposed towards adopting one of these modes.

We evaluate models with standard few-shot sequences containing images from two holdout classes and randomly assign one class to label 0 and the other to label 1. To solve this evaluation task, the model must utilize ICL. Images are sourced from Omniglot (Lake et al., 2019), a dataset of handwritten characters with 1623 classes. We follow Chan et al. (2022) and embed images using a randomly

initialized ResNet (He et al., 2015) that trains alongside the evaluated model. Their corresponding labels are mapped to vectors with a simple lookup table. We perform the same sweep outlined in Section 4 resulting in 1512 training runs. We show our results in Figure 2 with supplementary results in Appendix C. We note that all training runs achieved near perfect training accuracy, confirming that models have indeed learned at least one of the two methods of image classification.

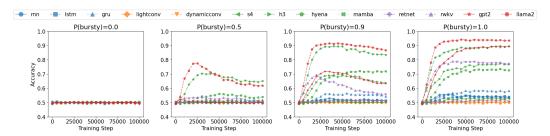


Figure 2: Measuring the effects training data distributional properties on in-context learning. We plot average (over training runs) test accuracy as a function of training steps. P(bursty) indicates the proportion of training prompts that were bursty (with the remainder non-bursty). See Table 14 for a tabular view of the same data. See Figure 8 for training runs that achieved max validation accuracy.

Can ICL emerge given purely non-bursty examples? As shown in the first column of Figure 2, no architectures demonstrate ICL ability when all prompts are non-bursty. This is not surprising given that i.i.d in-context examples rarely provide useful information for classifying the query image.

Are some architectures predisposed towards ICL? After increasing P(bursty) to 0.5, we find that LLAMA2 and HYENA demonstrate a strong preference towards ICL. It is surprising that GPT2 did not share this predisposition as it is similar in design to LLAMA2. We hypothesize that the rotary positional embeddings employed by LLAMA2 provide a stronger inductive bias towards ICL than the absolute learned positional embeddings used by GPT2. Further increasing P(bursty) to 0.9 reveals that ICL ability emerges consistently in GPT2, MAMBA, H3, and RWKV.

Are some architectures predisposed towards memorization? Setting P(bursty) to 1 reveals that a subset of architectures strongly prefer memorization over ICL. In particular, RETNET, S4, the two CNNs and all three RNNs strongly favor memorization. This is not to say that these architectures are incapable of solving this task which we address shortly. We were particularly surprised at the resistance of RETNET to develop ICL ability given that it was one of the top performers in Section 4. ICL emerged in only 2 of 108 training runs for RETNET, and notably, this development occurred after 30K training steps, a window similar to that of the three RNNs. In contrast, the other high-performing architectures from Section 4 developed ICL capabilities in fewer than 10K steps.

Does ICL emerge in all architectures? While average accuracy across training runs is depicted in Figure 2, we also present the training runs that achieved the best validation accuracy in Figure 8. In these analyses, we observe that ICL emerges in all evaluated architectures, except for LIGHTCONV. We hypothesize that the absence of a time-step dependent kernel, a feature present in DYNAMIC-CONV, might be responsible for this outcome. Interestingly, ICL emerges in all three RNNs when P(bursty) is set to 0.9 and 1.0, a finding that contradicts those reported by Chan et al. (2022). Moreover, GRU exhibits the ability to perform ICL even with P(bursty) set as low as 0.5. Given that the RNNs fail at this task *on average*, we credit this finding to luck with our hyperparameter sweep.

6 TOWARDS IN-CONTEXT LEARNING IN THE REAL WORLD

Up until now, our experiments have fallen under the few-shot learning concept of ICL where models are prompted with several in-context examples in a next-token-prediction format. We now consider an alternative perspective on ICL, represented in Kaplan et al. (2020) and Olsson et al. (2022). This approach focuses on observing loss at different token indices to measure improvements in language modeling performance as context length grows. Indeed, this is simply what language models are designed to do. However, as the their ability to predict later tokens based on earlier ones improves, they can be utilized in increasingly interesting ways, such as instruction following.

We report both *in-context learning score* and validation loss in Figure 3. Olsson et al. (2022) define in-context learning score as "the loss of the 500th token in the context minus the average loss of the 50th token in the context, averaged over dataset examples." One can view ICL score as a simple heuristic to measure the statistical efficiency of a given model. Note that this task is distinct from the large language model setting of in-context learning, where models are trained on language modeling and undergo evaluation with few-shot prompts. We assess models on the same task they were trained on: next-token prediction. See Appendix A.2 for experiment details.

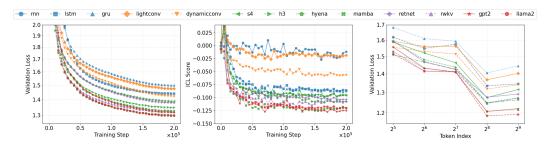


Figure 3: *Evaluating architectures on language modeling*. **Left:** Validation loss during training. **Middle:** ICL score as training progresses. **Right:** Validation loss as a function of context length.

Most architectures exhibit an abrupt improvement in ICL score. This same phenomenon was noted by Olsson et al. (2022) in transformers. They discover that induction heads, which they hypothesize as the key mechanism behind ICL, form during the same window where ICL score abruptly improves. Since most architectures we analyzed do not incorporate the concept of an attention head, an intriguing question emerges: What mechanism, analogous to induction heads in transformers, exists in these alternative architectures that facilitate a similar role in ICL?

Does ICL score correlate with our previous experiments? In Section 4, our top performers included the two transformers, RWKV, RETNET, H3, HYENA, and MAMBA. Section 5 shares this list (except for RETNET). Consistently, these architectures also achieved the highest ICL scores, led by GPT2, LLAMA2, and MAMBA. We noted that DYNAMICCONV and LSTM, despite sharing similar validation loss, exhibited a significant gap in ICL score. We find that, when considering their best training runs, LSTM consistently outperformed DYNAMICCONV in all prior tasks and demonstrated superior extrapolation abilities. Another notable observation was that S4 and H3 shared almost identical ICL scores. However, S4 did not perform as well in our prior tasks as H3. This could be attributed to S4's overall worse validation loss, suggesting that ICL scores should not be considered in isolation. Lastly, it is worth mentioning that RNN, despite its poor ICL score, outperformed the two CNNs in image classification when looking at their best training runs (see Table 13). This suggests that RNN might be more effective at ICL than the CNNs in scenarios with shorter prompt lengths, as our image classification experiments used prompt lengths of 17 versus 512 in language modeling. We also observe that ICL ability in Section 5 appears to emerge during the same window where ICL score dramatically improves, lending credibility to Olsson et al. (2022)'s use of the metric

6.1 A SIMPLE FEW-SHOT NATURAL LANGUAGE TASK

An interesting property of the dataset we use for language model training (Appendix A.2) is that we can produce relatively small models that still result in fluent language generation. To take advantage of this property, we evaluate architectures on a final ICL task that more resembles those used with large language models: in-context examples are composed using only natural language. Specifically, we compose 200 sentence pairs of the following form: "Lilly scrapped her knee. Lily is sad." Given a target number of in-context examples, for each of the 200 pairs, we randomly sample from the remaining 199 pairs without replacement to assemble 200 prompts. We ensure the two classes (happy and sad) are balanced. For example: "Lilly scrapped her knee. Lily is sad. Lilly played with her friends. Lilly is happy. Lilly ate ice cream. Lilly is _____." This procedure is repeated 10 times yielding 2000 prompts for each target number of in-context examples.

We also repeat the experiment but flip the classes, i.e., all instances of "sad" are replaced with "happy" and vice versa, testing if the model can override semantic priors (Wei et al., 2023). We

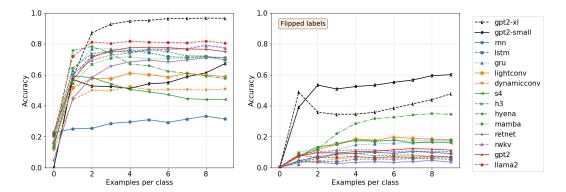


Figure 4: Evaluating various architectures on a simple natural language ICL task. We report accuracy as a function of the number of in-context examples. We use the open sourced weights for GPT2-Small and GPT2-XL and do not fine-tune. All other models are trained from scratch and are no larger than 33M parameters (excluding embedding layers). **Right:** Flipped label setting, i.e., "happy" is replaced with "sad" and vice versa. See Figure 9 for normalized accuracy.

show our results in Figure 4. Note that we include two well known pretrained language models GPT2-small (86M parameters) and GPT2-XL (1.5B parameters) as reference points. We do not train either models.

Accuracy improves with more examples, but quickly plateaus in the unflipped setting. This pattern held true for all architectures, with the exception of S4, H3, and HYENA. These three models showed an initial peak in accuracy, followed by a decline. This decay was also noted in Section 4, when these models encountered prompt lengths unseen during training. However, the prompt lengths in the current context fall well within the sequence lengths encountered during their language model training. As of now, we do not have an explanation for this behavior but hope that highlighting it will inspire further research.

Most architectures fail in the flipped setting. A notable exception was HYENA, which demonstrated steady improvement when given more examples. This suggests that HYENA, among the architectures we considered, might possess a stronger capability to override its semantic priors. However, we are unable to reconcile this with the observed performance decay in the unflipped setting. Another unexpected finding was the reversal in performance between GPT2-small and GPT2-XL. It is conceivable that the smaller model has weaker semantic priors that are more easily overridden. That said, our experiments, which ended at 9 examples per class, showed that the accuracy of GPT2-XL appeared to be increasing at a faster rate than its smaller counterpart.

7 Conclusion

We conducted an extensive empirical study to explore the relationship between model architecture and in-context learning. Our findings show that attention mechanisms are not necessary for the emergence of in-context learning ability. Notably, all architectures examined exhibited the capacity for in-context learning, albeit with varying degrees of proficiency. While our findings justify the dominance of transformers in excelling at ICL tasks, we note that less mainstream architectures like RWKV, MAMBA, RETNET, H3, and HYENA, are competitive and sometimes superior at certain ICL tasks. Furthermore, we find a crucial limitation concerning architectures with theoretically infinite context lengths. Despite their potential, these models struggle to extrapolate beyond the prompt lengths encountered during training. This highlights an area ripe for further exploration and improvement.

REFERENCES

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algorithm is in-context learning? investigations with linear models, 2023.

- Eduardo G. Altmann, Janet B. Pierrehumbert, and Adilson E. Motter. Beyond word frequency: Bursts, lulls, and scaling in the temporal distributions of words. *PLoS ONE*, 4(11):e7678, November 2009. ISSN 1932-6203. doi: 10.1371/journal.pone.0007678. URL http://dx.doi.org/10.1371/journal.pone.0007678.
- Jimmy Ba, Geoffrey Hinton, Volodymyr Mnih, Joel Z. Leibo, and Catalin Ionescu. Using fast weights to attend to the recent past, 2016.
- Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.
- Stephanie C. Y. Chan, Adam Santoro, Andrew K. Lampinen, Jane X. Wang, Aaditya Singh, Pierre H. Richemond, Jay McClelland, and Felix Hill. Data distributional properties drive emergent incontext learning in transformers, 4 2022. URL http://arxiv.org/abs/2205.05055v6.
- Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical machine translation, 2014.
- Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak coherent english?, 2023.
- Daniel Y. Fu, Tri Dao, Khaled K. Saab, Armin W. Thomas, Atri Rudra, and Christopher Ré. Hungry hungry hippos: Towards language modeling with state space models, 2023.
- Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What can transformers learn in-context? a case study of simple function classes, 2023.
- Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2023.
- Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured state spaces, 10 2021. URL http://arxiv.org/abs/2111.00396v3.
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition, 2015.
- Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural Computation*, 9:1735–1780, 1997. URL https://api.semanticscholar.org/CorpusID:1915014.
- Kalman. A new approach to linear filtering and prediction problems. 1960. URL https://api.semanticscholar.org/CorpusID:1242324.
- Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models, 2020.
- Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns: Fast autoregressive transformers with linear attention, 2020.
- Urvashi Khandelwal, He He, Peng Qi, and Dan Jurafsky. Sharp nearby, fuzzy far away: How neural language models use context. In *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 284–294, Melbourne, Australia, July 2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-1027. URL https://aclanthology.org/P18-1027.
- Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. The omniglot challenge: a 3-year progress report, 2019.

- Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. What makes good in-context examples for GPT-3? In *Proceedings of Deep Learning Inside Out (Dee-LIO 2022): The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures*, pp. 100–114, Dublin, Ireland and Online, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.deelio-1.10. URL https://aclanthology.org/2022.deelio-1.10.
- Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work?, 2022.
- Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. In-context learning and induction heads, 9 2022. URL http://arxiv.org/abs/2209.11895v1.
- Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Huanqi Cao, Xin Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, Xuzheng He, Haowen Hou, Przemyslaw Kazienko, Jan Kocon, Jiaming Kong, Bartlomiej Koptyra, Hayden Lau, Krishna Sri Ipsit Mantri, Ferdinand Mom, Atsushi Saito, Xiangru Tang, Bolun Wang, Johan S. Wind, Stansilaw Wozniak, Ruichong Zhang, Zhenyuan Zhang, Qihang Zhao, Peng Zhou, Jian Zhu, and Rui-Jie Zhu. Rwkv: Reinventing rnns for the transformer era, 5 2023. URL http://arxiv.org/abs/2305.13048v1.
- Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y. Fu, Tri Dao, Stephen Baccus, Yoshua Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional language models, 2 2023. URL http://arxiv.org/abs/2302.10866v3.
- Alec Radford, Jeff Wu, Rewon Child, D. Luan, Amodei, Dario and Ilya Sutskever. Language models are unsupervised multitask learn-2019. URL https://www.semanticscholar.org/paper/ ers. Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/ 9405cc0d6169988371b2755e573cc28650d14dfe.
- David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by back-propagating errors. *Nature*, 323:533–536, 1986. URL https://api.semanticscholar.org/CorpusID:205001834.
- Noam Shazeer. Glu variants improve transformer, 2020.
- Laurent SIfre and Stéphane Mallat. Rigid-motion scattering for texture classification, 2014.
- Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer with rotary position embedding, 2022.
- Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and Furu Wei. Retentive network: A successor to transformer for large language models, 7 2023. URL http://arxiv.org/abs/2307.08621v1.
- Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey. *ACM Comput. Surv.*, 55(6), dec 2022a. ISSN 0360-0300. doi: 10.1145/3530811. URL https://doi.org/10.1145/3530811.
- Yi Tay, Mostafa Dehghani, Jai Gupta, Dara Bahri, Vamsi Aribandi, Zhen Qin, and Donald Metzler. Are pre-trained convolutions better than pre-trained transformers?, 2022b.
- Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel

Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent, 12 2022. URL http://arxiv.org/abs/2212.07677v2.

Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen, Hanxiao Liu, Da Huang, Denny Zhou, and Tengyu Ma. Larger language models do in-context learning differently, 2023.

Felix Wu, Angela Fan, Alexei Baevski, Yann N. Dauphin, and Michael Auli. Pay less attention with lightweight and dynamic convolutions, 2019.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context learning as implicit bayesian inference, 2021. URL https://arxiv.org/abs/2111.02080.

Shuangfei Zhai, Walter Talbott, Nitish Srivastava, Chen Huang, Hanlin Goh, Ruixiang Zhang, and Josh Susskind. An attention free transformer, 2021.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving few-shot performance of language models. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 12697–12706. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/zhao21c.html.

A EXPERIMENTAL DETAILS

A.1 EXPERIMENTAL DETAILS FOR LINEAR REGRESSION, MULTICLASS CLASSIFICATION, AND ASSOCIATIVE RECALL

We train each model with prompts containing 32 in-context examples. Training loss is computed for each of the examples and averaged, i.e., models are effectively trained on prompts of varying lengths. We evaluate the trained models on prompts comprising 1024 in-context examples, assessing their ability to extrapolate to unseen prompt lengths. We train each architecture for 100,000 iterations with a batch size of 128. Embedding size is fixed to 64 but we sweep over 3 learning rates, 3 layer depths, 3 seeds, 3 difficulties and 3 tasks, for a total of 243 training runs per architecture (Table 2). Some architectures contain far less parameters per layer than others. For example the largest model trained was RETNET with 530K parameters while the largest GRU was only 200K parameters. To account for this discrepancy, we conduct 81 extra training runs for each of the smaller architectures by adjusting their embedding size and layer depth such that their parameter count is approximately 500K (Table 3).

A.2 EXPERIMENTAL DETAILS FOR LANGUAGE MODELING

We trained each architecture on 5.12 billion tokens of TinyStories (Eldan & Li, 2023), a synthetic dataset of short stories which contain only words that 3 to 4-year-olds typically understand. The stories are generated by GPT-3.5 and GPT-4 and summary statistics are presented in Table 6. All models were approximately 33 million parameters (excluding embedding layers). Unless otherwise specified in Table 5, we set embedding size to 512 and layers to 8. Additional settings and hyperparameters are shown in Table 4.

B SUPPLEMENTARY DATA FOR SECTION 4: ASSOCIATIVE RECALL, LINEAR REGRESSION, MULTICLASS CLASSIFICATION

We show line plots of average performance on associative recall, linear regression, and multiclass classification across all training runs in Figure 5. Tabular views for linear regression are shown in Tables 7, 8, associative recall in Tables 9, 10, and multiclass classification in Tables 11, 12.

B.1 NOISY LINEAR REGRESSION

We repeat the linear regression experiments from Section 4 but add progressively more Gaussian noise ($\mu=0, \sigma\in\{0,0.1,0.5,1\}$) to the outputs of the in-context input-output pairs. As expected, performance degrades with increasing noise. However, the relative performance differences among the architectures remains static. Results are shown in Figure 6.

C SUPPLEMENTARY DATA FOR SECTION 5: IMAGE CLASSIFICATION

We show examples of the sequences used for training and evaluation in Figure 7. The single training run with achieved the best validation accuracy is shown in Figure 8 as as line plot. Tabular views of the experiments in this section are shown in Table 13 and 14.

D SUPPLEMENTARY DATA FOR SECTION 6: LANGUAGE MODELING

E PERMUTATION INVARIANCE EXPERIMENTS

This experiment measures the effects of positional embeddings given that in-context examples in our tasks should be permutation invariant. Results are shown in Figure 10.

Specifically, we consider the following variables:

Token representation scheme: We represent in-context example pairs as a single token (instead of two in our original experiments) which allows us to remove positional embeddings. Specifically, we either sum or concatenate their embeddings. The query label is masked out by setting its embedding to zero

Positional embeddings: whether to use learned absolute positional embeddings or no positional embeddings at all.

Attention mask: encoder-only vs decoder-only transformer. Note that in both scenarios, the query can attend to all in-context examples. In the encoder-only transformer, each example can attend to all other examples since it does not employ a causal mask. Examples in the decoder-only transformer can only attend to examples to its left.

The remaining settings are identical to Section 4 with the following changes: Our hyperparameter sweep covers 2 learning rates, 2 seeds, and 2 layer depths. We train for 50K steps and only take the loss (and evaluate) at the token index 32 (i.e., models are trained to make a single prediction given 31 example pairs and the query). We conducted 768 training runs in total.

We make the following observations:

Token representation scheme sensitivity: Associative recall and multiclass classification are not sensitive to tokenization schemes. However, we observe that concatenating embeddings in linear regression and image classification resulted in noticeably improved performance. We suspect that it is easier for attention heads to discern in-context inputs from outputs if they initially reside in their own subspace. Removing positional embeddings did not impact performance. This makes intuitive sense as in-context examples in this setting are permutation invariant. For most tasks, encoder-only and decoder-only transformers perform on par. The exception was linear regression where the encoder-only outperformed the decoder-only in the more difficult settings (d=20, 30). For image classification, we observed that ICL emerged in both transformers in very similar windows and followed a similar decay scheduled (as discussed in Section 5).

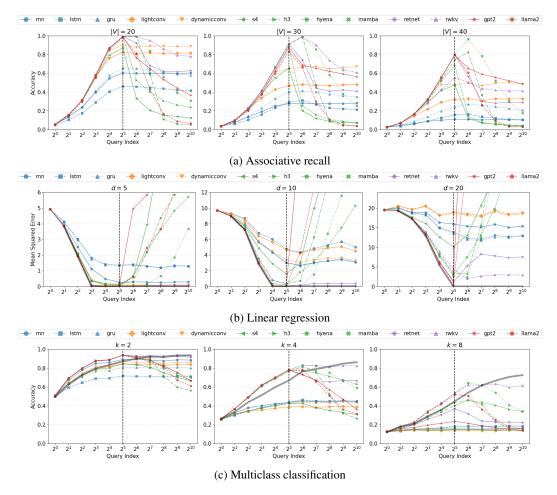


Figure 5: Evaluating various architectures on in-context learning associative recall, linear regression, and multiclass classification. We plot average test accuracy and mean squared error as a function of the number of in-context examples. A query index of $2^5=32$ implies 31 in-context examples, which is also the highest number of in-context examples seen during training (vertical dotted line). Task difficulty increases from left to right. Each line represents an average over all training runs for a given combination of task, difficulty, and architecture. Classical baselines (black) are shown for linear regression (ridge regression) and multiclass classification (logistic regression). See Tables 8, 10, 12 for a tabular view of the same data. See Figure 1 for the training runs that achieved the best performance.

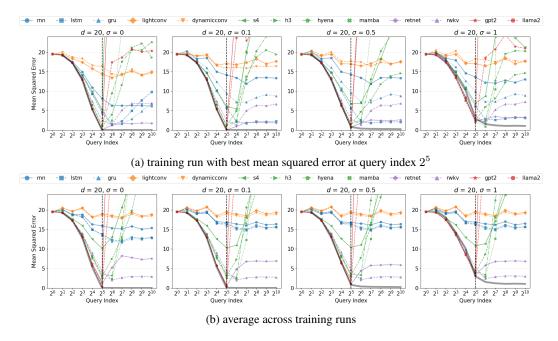


Figure 6: *Linear regression with Gaussian noise.* We plot mean squared error as a function of the number of in-context examples. Ridge regression is shown in black.

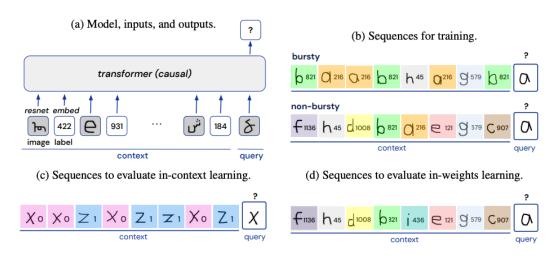


Figure 7: Image classification experimental design as outlined in Section 5. Figure taken from Chan et al. (2022) and included here for the reader's convenience. (a) "transformer" can be replaced with any of our architectures, e.g., RWKV. (d) This subplot can be safely ignored because we do not evaluate in-weights learning.

Table 2: Hyperparameters for linear regression, multiclass classification, associative recall, and image classification experiments.

Optimizer	AdamW
β_1, β_2	0.90, 0.95
Learning rate	{1e-3, 3e-4, 1e-4}
Warmup schedule	linear
Learning rate schedule	cosine decay
Training iterations	100,000
Batch size	128
Layers	{4, 8, 12}
Embedding size	64
Seed	{8, 16, 32}

Table 3: Embedding sizes and layers for normalizing parameters to approximately 500K in linear regression, multiclass classification, associative recall, and image classification experiments.

	Layers	Embedding Size
S4	5	96
DYNAMICCONV	5	96
LSTM	4	128
LIGHTCONV	5	96
GRU	5	128
RNN	5	224

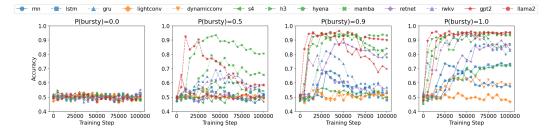


Figure 8: Measuring the effects training data distributional properties on in-context learning. We plot test accuracy as a function of training steps. P(bursty) indicates the proportion of training samples that were bursty. The remaining samples are non-bursty (i.i.d in-context examples). Each line represents the single run that achieved the best validation accuracy. See Table 13 for a tabular view of the same data. See Figure 2 for average test accuracy (across runs).

Table 4: Hyperparameters for language modeling experiments.

Optimizer	AdamW
β_1, β_2	0.90, 0.95
Learning rate	3e-4
Warmup schedule	linear
Learning rate schedule	cosine decay
Training iterations	200,000
Batch size	50
Sequence length	512
Layers	8
Embedding size	512

Table 5: Embedding sizes and layers for normalizing parameters to approximately 33M in language modeling experiments.

	Layers	Embedding Size
GPT2	8	576
RWKV	6	640
HYENA	8	576
Н3	7	1024
S4	6	768
DYNAMICCONV	7	640
LSTM	5	896
LIGHTCONV	5	768
GRU	5	1024
RNN	5	1792

Table 6: Summary statistics for TinyStories dataset used for language modeling.

	Training	Validation
Total stories	2,119,719	21,990
Total tokens	512,274,933	5,151,931
Unique tokens	15,200	8,235
Average tokens	241	234
Median tokens	208	205
Standard deviation	116	109
Shortest story	0	17
Longest story	1,431	1,183

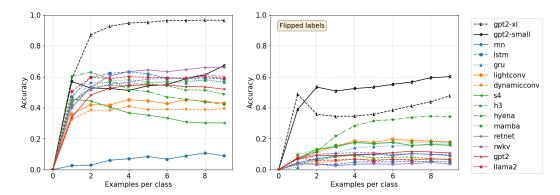


Figure 9: Evaluating various architectures on a simple natural language ICL task. We report accuracy as a function of the number of in-context examples. Accuracy is normalized with respect to accuracy when given 0 examples. We use the open sourced weights released by OpenAI for GPT2-Small and GPT2-XL and do not train them from scratch. All other models are trained from scratch and are no larger than 33M parameters (excluding embedding layers). **Right:** Flipped label setting, i.e., "happy" is replaced with "sad" and vice versa. See Figure 4 for unnormalized accuracy.

	2 ⁰	2^1	2 ²	2 ³	2^4	2 ⁵	2^{6}	2 ⁷	28	2^{9}	2 ¹⁰
gpt2	4.93	3.84	1.92	0.0	0.0	0.0	3.2	3.76	4.12	5.72	5.97
llama2	4.93	3.85	1.92	0.0	0.0	0.0	0.0	0.03	0.09	1.2	4.19
lightconv	4.93	3.84	1.91	0.13	0.01	0.01	0.01	0.01	0.01	0.01	0.01
dynamicconv	4.93	3.83	1.93	0.06	0.01	0.01	0.01	0.01	0.01	0.01	0.01
mn	4.93	3.86	1.92	0.26	0.04	0.02	0.03	0.02	0.02	0.03	0.02
lstm	4.93	3.82	1.95	0.07	0.0	0.0	0.0	0.0	0.0	0.0	0.0
gru	4.93	3.83	1.98	0.04	0.0	0.0	0.0	0.0	0.0	0.0	0.0
s4	4.93	3.86	2.04	0.17	0.07	0.05	0.21	0.52	2.68	3.68	5.19
h3	4.93	3.85	1.97	0.06	0.05	0.05	0.45	0.78	0.99	1.27	1.98
hyena	4.92	3.87	2.05	0.16	0.08	0.07	0.1	3.02	4.77	5.18	5.47
mamba	4.93	3.84	1.93	0.01	0.0	0.0	0.0	0.01	0.04	0.12	0.31
retnet	4.93	3.84	1.93	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
rwkv	4.93	3.85	1.94	0.02	0.0	0.0	0.0	0.0	0.0	0.0	0.0

d = 5, best training run

Query Index

	2 ⁰	2^1	2^2	2 ³	2^4	2 ⁵	2^{6}	2 ⁷	28	2^{9}	2 ¹⁰
gpt2	9.69	8.95	7.23	2.9	0.01	0.0	11.59	14.45	19.56	25.99	25.85
llama2	9.69	8.97	7.22	2.88	0.0	0.0	0.39	2.48	4.08	7.96	9.26
lightconv	9.69	9.02	7.41	4.41	1.85	0.73	0.64	0.66	0.69	0.76	0.69
dynamicconv	9.69	8.99	7.37	4.09	1.51	0.43	0.28	0.31	0.32	0.33	0.33
mn	9.7	9.05	7.46	4.37	1.96	0.6	0.34	0.38	0.43	0.5	0.44
lstm	9.69	9.02	7.23	3.9	0.95	0.17	0.1	0.2	0.45	0.55	0.77
gru	9.69	8.99	7.31	3.37	0.49	0.08	0.06	0.1	0.18	0.39	0.56
s4	9.7	8.96	7.3	4.13	1.48	0.43	2.02	16.72	16.04	13.48	10.91
h3	9.69	8.92	7.27	3.01	0.16	0.09	1.26	1.52	2.25	3.84	6.85
hyena	9.69	8.94	7.23	3.02	0.17	0.14	2.37	8.39	10.55	11.37	9.94
mamba	9.69	8.96	7.23	2.91	0.03	0.01	0.03	0.47	1.39	3.12	4.61
retnet	9.69	8.97	7.21	2.88	0.0	0.0	0.08	0.12	0.11	0.11	0.1
rwkv	9.69	9.01	7.17	2.99	0.1	0.02	0.05	0.14	0.2	0.27	0.26

d = 10, best training run

	20	2 ¹	2 ²	2^3	2^4	2 ⁵	2^{6}	2 ⁷	28	2^{9}	2 ¹⁰
gpt2	19.52	19.28	17.26	12.98	5.44	0.04	56.04	74.17	79.48	83.38	81.58
llama2	19.52	19.3	17.33	12.94	5.37	0.01	17.47	18.69	20.87	20.14	20.4
lightconv	19.63	19.55	18.41	17.46	15.83	14.43	13.44	14.42	15.12	14.19	15.0
dynamicconv	19.5	20.08	18.76	18.4	16.58	16.41	14.39	14.04	15.63	14.18	14.59
mn	19.65	19.44	17.6	14.94	10.96	8.08	6.3	6.28	6.34	6.25	6.17
lstm	19.52	19.21	17.36	14.08	9.33	4.39	1.34	2.25	4.97	7.68	9.8
gru	19.53	19.37	17.3	14.1	9.43	4.94	1.72	1.61	2.88	4.85	6.78
s4	19.52	19.33	17.32	14.19	9.94	5.23	87.99	121.33	71.66	83.56	90.5
h3	19.52	19.37	17.32	13.4	6.39	0.96	4.0	11.63	21.26	22.31	18.68
hyena	19.52	19.33	17.34	13.31	6.49	1.16	9.5	17.6	20.57	20.6	22.66
mamba	19.52	19.27	17.28	12.94	5.54	0.03	2.46	26.73	32.55	38.58	41.25
retnet	19.53	19.27	17.29	12.95	5.39	0.02	1.24	1.65	1.62	1.81	1.77
rwkv	19.52	19.34	17.41	13.51	7.39	2.44	1.38	5.15	6.84	6.78	6.94

d = 20, best training run

Table 7: Linear regression best mean squared error. See Figure 1 for line plots of the same data

	2 ⁰	2 ¹	2 ²	2 ³	2^4	2 ⁵	2^{6}	2 ⁷	2 ⁸	2^{9}	2 ¹⁰
gpt2	4.93	3.85	1.93	0.05	0.0	0.0	4.94	5.83	7.28	8.85	9.31
llama2	4.93	3.85	1.93	0.03	0.0	0.0	0.6	2.47	3.66	6.14	6.13
lightconv	4.93	3.87	2.06	0.35	0.11	0.08	0.09	0.08	0.08	0.09	0.08
dynamicconv	4.93	3.85	2.04	0.33	0.09	0.06	0.07	0.07	0.06	0.07	0.07
mn	4.94	3.93	2.53	1.12	0.49	0.26	0.29	0.28	0.25	0.28	0.29
lstm	4.93	4.13	3.04	1.82	1.42	1.36	1.39	1.3	1.2	1.33	1.3
gru	4.93	4.12	2.97	1.72	1.37	1.34	1.37	1.28	1.18	1.31	1.28
s4	4.93	3.88	2.11	0.4	0.16	0.13	0.58	3.94	8.85	8.52	8.46
h3	4.93	3.85	1.98	0.09	0.06	0.06	0.66	2.21	3.64	4.83	5.7
hyena	4.93	3.88	2.11	0.34	0.17	0.15	0.3	2.18	4.38	5.84	6.5
mamba	4.93	3.85	1.94	0.06	0.01	0.0	0.02	0.15	0.66	1.86	3.68
retnet	4.93	3.85	1.93	0.02	0.0	0.0	0.01	0.04	0.08	0.09	0.08
rwkv	4.93	3.86	1.96	0.1	0.01	0.01	0.0	0.0	0.0	0.01	0.01

d = 5, average over all training runs

Query Index

	20	21	2^2	2 ³	2^4	2 ⁵	2^{6}	2 ⁷	28	2^9	2 ¹⁰
gpt2	9.69	8.96	7.24	2.94	0.08	0.02	19.28	21.66	22.36	25.43	24.28
llama2	9.69	8.96	7.23	2.95	0.1	0.02	4.33	12.59	16.89	19.21	17.83
lightconv	9.7	9.3	8.52	6.46	5.65	4.65	4.25	4.67	4.91	5.08	4.53
dynamicconv	9.7	9.19	8.16	5.74	4.49	3.4	3.09	3.4	3.57	3.67	3.31
mn	9.73	9.05	7.84	5.64	4.34	3.04	2.68	3.01	3.27	3.41	3.1
lstm	9.69	9.3	8.7	6.82	6.01	4.8	4.35	4.85	5.25	5.7	5.03
gru	9.69	9.14	8.17	5.81	4.37	3.03	2.64	2.98	3.28	3.54	3.16
s4	9.69	9.02	7.67	4.89	2.9	1.62	2.95	9.99	16.05	18.91	19.55
h3	9.69	8.94	7.29	3.23	0.39	0.17	1.8	3.18	5.15	7.51	10.32
hyena	9.69	8.99	7.43	3.58	0.81	0.38	0.7	6.28	13.23	14.44	19.46
mamba	9.69	8.98	7.25	3.16	0.27	0.05	0.14	1.52	6.74	11.57	17.21
retnet	9.69	8.97	7.23	2.9	0.04	0.01	0.15	0.39	0.38	0.38	0.38
rwkv	9.69	8.98	7.31	3.58	0.83	0.2	0.09	0.13	0.14	0.16	0.14

d = 10, average over all training runs

	2 ⁰	2^1	2^2	2 ³	2^4	2 ⁵	2^{6}	2 ⁷	2 ⁸	2 ⁹	2^{10}
gpt2	19.52	19.37	17.4	13.3	6.28	1.48	77.25	69.72	64.41	62.52	60.67
llama2	19.52	19.34	17.29	12.98	5.72	0.42	32.47	57.68	61.33	52.89	49.03
lightconv	19.53	20.5	19.66	20.55	18.21	19.0	18.55	18.08	19.43	18.45	18.85
dynamicconv	19.52	20.51	19.63	20.39	18.05	18.63	18.15	17.74	18.98	18.16	18.5
mn	19.58	20.02	18.89	18.86	16.31	15.94	15.38	15.13	15.82	15.08	15.39
lstm	19.52	20.14	18.82	18.34	15.03	13.79	12.31	12.02	13.01	12.69	12.88
gru	19.52	20.08	18.67	18.22	14.93	13.52	11.95	11.71	12.6	12.5	13.07
s4	19.54	19.57	17.74	16.02	12.58	10.12	13.07	20.66	27.8	32.22	45.0
h3	19.52	19.36	17.36	13.77	7.98	3.01	7.44	13.1	19.79	31.34	41.04
hyena	19.52	19.4	17.38	13.85	8.25	3.44	3.18	15.61	37.28	39.69	37.55
mamba	19.53	19.32	17.31	13.47	7.61	2.55	2.33	12.52		45.98	56.61
retnet	19.53	19.33	17.42	13.31	6.17	1.13	5.25	8.27	7.79	7.32	7.52
rwkv	19.53	19.32	17.34	13.94	8.94	4.37	2.01	2.66	2.95	2.96	2.89

d = 20, average over all training runs

Table 8: Linear regression average mean squared error. See Figure 5 for line plots of the same data.

	2^{0}	2^1	2^2	2^{3}	2^4	2 ⁵	2^6	2 ⁷	2 ⁸	2^{9}	2 ¹⁰
gpt2	0.06	0.16	0.32	0.58	0.86	1.0	0.76	0.58	0.38	0.1	0.09
llama2		0.16	0.31	0.58	0.87	1.0	0.83	0.34	0.08	0.06	0.05
lightconv	0.06	0.16	0.33	0.58	0.86	0.96	0.97	0.97	0.97	0.96	0.97
dynamicconv		0.15	0.32	0.58	0.87	0.98	0.97	0.98	0.98	0.98	0.98
mn		0.16	0.33	0.59	0.86	0.98	0.97	0.97	0.98	0.98	0.98
lstm		0.16	0.32	0.59	0.87	0.99	1.0	1.0	1.0	0.99	0.99
gru	0.06	0.16	0.31	0.58	0.87	0.99	0.99	0.98	0.86	0.69	0.51
s4		0.14	0.33	0.58	0.87	0.98	0.53	0.33	0.22	0.15	0.15
h3	0.05	0.16	0.32	0.58	0.86	0.99	0.46	0.29	0.22	0.18	0.14
hyena		0.16	0.31	0.59	0.87	1.0	1.0	0.22	0.06	0.05	0.04
mamba	0.05	0.16	0.31	0.59	0.87	1.0	1.0	0.87	0.6	0.4	0.27
retnet	0.04	0.16	0.32	0.58	0.86	0.99	0.96	0.91	0.91	0.9	0.9
rwkv	0.04	0.16	0.31	0.58	0.87	1.0	0.99	0.94	0.87	0.78	0.8

|V| = 20, best training run

Query Index

	2 ⁰	2^1	2 ²	2 ³	2^4	2 ⁵	2^6	2 ⁷	2 ⁸	2^{9}	2 ¹⁰
gpt2	0.04	0.09	0.23	0.42	0.67	0.91	0.9	0.88	0.88	0.85	0.78
llama2	0.04	0.09	0.22	0.41	0.67	0.91	0.89	0.52	0.2	0.04	0.03
lightconv	0.05	0.09	0.22	0.41	0.64	0.76	0.76	0.76	0.76	0.75	0.74
dynamicconv	0.04	0.1	0.23	0.41	0.66	0.86	0.88	0.89	0.86	0.87	0.88
mn	0.04	0.1	0.23	0.41	0.65	0.76	0.78	0.77	0.76	0.77	0.78
lstm	0.03	0.1	0.23	0.42	0.66	0.91	0.96	0.71	0.56	0.51	0.49
gru	0.03	0.09	0.23	0.42	0.66	0.9	0.98	0.97	0.91	0.84	0.79
s4	0.03	0.1	0.23	0.41	0.63	0.81	0.36	0.15	0.09	0.06	0.07
h3	0.04	0.1	0.23	0.41	0.66	0.91	0.21	0.11	0.07	0.05	0.06
hyena	0.04	0.09	0.23	0.41	0.67	0.91	1.0	0.15	0.03	0.03	0.04
mamba	0.04	0.09	0.24	0.4	0.67	0.91	1.0	0.88	0.54	0.3	0.19
retnet	0.03	0.1	0.23	0.42	0.66	0.92	0.83	0.63	0.61	0.61	0.62
rwkv	0.04	0.09	0.23	0.42	0.67	0.92	1.0	0.87	0.67	0.47	0.4

|V| = 30, best training run

	20	2 ¹	2^2	2 ³	2^4	2 ⁵	2^{6}	2 ⁷	2 ⁸	2^9	2 ¹⁰
gpt2	0.02	0.08	0.17	0.32	0.55	0.8	0.3	0.2	0.16	0.11	0.09
llama2	0.02	0.07	0.16	0.33	0.55	0.8	0.51	0.19	0.09	0.04	0.03
lightconv	0.03	0.07	0.17	0.32	0.49	0.53	0.54	0.53	0.53	0.56	0.57
dynamicconv	0.03	0.06	0.17	0.32	0.56	0.61	0.63	0.61	0.65	0.63	0.6
mn	0.02	0.07	0.16	0.28	0.35	0.4	0.41	0.35	0.4	0.39	0.38
lstm	0.03	0.07	0.17	0.32	0.53	0.74	0.77	0.55	0.35	0.25	0.24
gru	0.03	0.07	0.16	0.32	0.54	0.71	0.83	0.82	0.75	0.62	0.54
s4	0.03	0.08	0.17	0.32	0.53	0.64	0.18	0.09	0.05	0.03	0.03
h3	0.03	0.07	0.16	0.33	0.55	0.81	0.21	0.12	0.08	0.04	0.04
hyena	0.02	0.06	0.17	0.32	0.56	0.79	0.99	0.93	0.45	0.09	0.05
mamba	0.03	0.08	0.17	0.32	0.56	0.8	0.96	0.73	0.37	0.14	0.07
retnet	0.02	0.07	0.17	0.32	0.55	0.79	0.63	0.28	0.26	0.26	0.26
rwkv	0.02	0.07	0.16	0.32	0.56	0.8	0.99	0.99	0.72	0.67	0.68

|V| = 40, best training run

Table 9: Associative recall best accuracy. See Figure 1 for line plots of the same data

	2 ⁰	2 ¹	2^2	2 ³	2^4	2 ⁵	2^6	2 ⁷	2 ⁸	2^9	2 ¹⁰
gpt2	0.05	0.15	0.31	0.58	0.87	0.99	0.77	0.65	0.53	0.44	0.36
llama2		0.15	0.29	0.56	0.85	0.98	0.81	0.43	0.17	0.09	0.06
lightconv		0.16	0.32	0.55	0.76	0.83	0.81	0.82	0.81	0.82	0.82
dynamicconv		0.15	0.31	0.58	0.84	0.9	0.88	0.89	0.89	0.89	0.89
mn		0.13	0.24	0.4	0.55	0.6	0.6	0.6	0.6	0.6	0.6
lstm		0.1	0.17	0.29	0.4	0.46	0.46	0.45	0.44	0.42	0.41
gru		0.13	0.24	0.41	0.58	0.66	0.65	0.64	0.62	0.59	0.58
s4	0.06	0.16	0.31	0.56	0.8	0.87	0.33	0.21	0.15	0.14	0.12
h3		0.15	0.31	0.58	0.87	0.99	0.53	0.4	0.31	0.26	0.24
hyena		0.15	0.31	0.58	0.87	0.99	1.0	0.59	0.11	0.06	0.05
mamba		0.16	0.31	0.58	0.87	0.99	0.99	0.84	0.56	0.39	0.31
retnet		0.15	0.31	0.58	0.87	0.99	0.92	0.68	0.62	0.62	0.63
rwkv	0.05	0.16	0.31	0.58	0.87	0.99	0.99	0.95	0.86	0.79	0.78

|V| = 20, average over all training runs

Query Index

	20	21	2^2	2 ³	2^4	2 ⁵	2^{6}	2 ⁷	28	2 ⁹	2 ¹⁰
gpt2	0.04	0.09	0.21	0.39	0.63	0.87	0.69	0.65	0.62	0.59	0.56
llama2	0.04	0.09	0.2	0.37	0.6	0.83	0.66	0.3	0.11	0.05	0.04
lightconv	0.04	0.1	0.21	0.34	0.43	0.47	0.48	0.47	0.47	0.48	0.48
dynamicconv	0.03	0.1	0.22	0.41	0.61	0.65	0.67	0.67	0.65	0.66	0.67
mn	0.04	0.08	0.13	0.19	0.25	0.28	0.28	0.27	0.28	0.27	0.28
lstm	0.03	0.06	0.1	0.16	0.23	0.29	0.31	0.27	0.23	0.22	0.21
gru	0.04	0.07	0.14	0.23	0.33	0.4	0.41	0.4	0.38	0.36	0.35
s4	0.04	0.1	0.22	0.39	0.55	0.66	0.2	0.12	0.09	0.07	0.07
h3	0.03	0.1	0.23	0.41	0.66	0.89	0.25	0.16	0.11	0.09	0.07
hyena	0.04	0.1	0.23	0.41	0.67	0.91	0.99	0.48	0.09	0.04	0.04
mamba	0.04	0.1	0.23	0.41	0.66	0.91	0.99	0.86	0.58	0.38	0.25
retnet	0.04	0.1	0.23	0.41	0.66	0.91	0.74	0.44	0.41	0.42	0.41
rwkv	0.03	0.1	0.23	0.41	0.66	0.91	0.99	0.9	0.74	0.64	0.61

|V| = 30, average over all training runs

	2^0	2^1	2^2	2 ³	2^4	2 ⁵	2^{6}	2 ⁷	2 ⁸	2^{9}	2 ¹⁰
gpt2	0.03	0.07	0.16	0.32	0.55	0.79	0.65	0.59	0.56	0.52	0.49
llama2	0.03	0.07	0.16	0.32	0.56	0.8	0.61	0.26	0.09	0.04	0.03
lightconv	0.02	0.07	0.15	0.22	0.29	0.32	0.33	0.31	0.33	0.33	0.33
dynamicconv	0.03	0.07	0.16	0.31	0.48	0.48	0.5	0.47	0.5	0.5	0.49
mn	0.03	0.04	0.06	0.09	0.1	0.11	0.11	0.1	0.11	0.11	0.1
lstm	0.03	0.04	0.06	0.09	0.12	0.16	0.16	0.14	0.12	0.11	0.1
gru	0.03	0.05	0.09	0.14	0.2	0.24	0.27	0.26	0.24	0.22	0.21
s4	0.03	0.07	0.16	0.29	0.42	0.48	0.12	0.07	0.05	0.05	0.04
h3	0.03	0.07	0.16	0.31	0.52	0.69	0.14	0.08	0.06	0.04	0.04
hyena	0.02	0.07	0.16	0.32	0.53	0.74	0.82	0.37	0.07	0.03	0.03
mamba	0.03	0.07	0.17	0.32	0.56	0.8	0.96	0.78	0.52	0.3	0.17
retnet	0.02	0.07	0.17	0.32	0.56	0.8	0.56	0.3	0.28	0.29	0.29
rwkv	0.03	0.07	0.16	0.28	0.43	0.55	0.51	0.44	0.42	0.41	0.41

|V| = 40, average over all training runs

Table 10: Associative recall average accuracy. See Figure 5 for line plots of the same data.

	2^0	2^1	2^2	2 ³	2^4	2 ⁵	2^{6}	2 ⁷	28	2^9	2 ¹⁰
gpt2	0.51	0.7	0.8	0.88	0.89	0.94	0.92	0.9	0.82	0.7	0.6
llama2	0.49	0.69	0.8	0.87	0.89	0.93	0.93	0.91	0.88	0.74	0.63
lightconv	0.5	0.7	0.81	0.88	0.89	0.93	0.93	0.92	0.91	0.92	0.92
dynamicconv	0.53	0.69	0.8	0.87	0.89	0.93	0.91	0.9	0.9	0.92	0.91
mn	0.48	0.7	0.8	0.88	0.89	0.93	0.93	0.92	0.91	0.93	0.91
lstm	0.51	0.69	0.8	0.88	0.89	0.94	0.93	0.94	0.93	0.94	0.93
gru	0.5	0.69	0.8	0.87	0.88	0.94	0.93	0.93	0.91	0.93	0.91
s4	0.52	0.7	0.8	0.88	0.9	0.94	0.93	0.92	0.9	0.88	0.85
h3	0.51	0.69	0.8	0.88	0.89	0.94	0.91	0.89	0.89	0.66	0.19
hyena	0.5	0.69	0.8	0.88	0.89	0.94	0.92	0.93	0.66	0.5	0.51
mamba	0.51	0.69	0.79	0.89	0.89	0.94	0.93	0.93	0.91	0.9	0.89
retnet	0.49	0.7	0.8	0.88	0.89	0.93	0.92	0.9	0.88	0.91	0.9
rwkv	0.53	0.7	0.8	0.88	0.89	0.94	0.93	0.94	0.93	0.94	0.93

k = 2, best training run

Query Index

	2 ⁰	2 ¹	2^2	2 ³	2^4	2 ⁵	2^{6}	2 ⁷	2 ⁸	2^{9}	2 ¹⁰
gpt2	0.24	0.38	0.48	0.63	0.7	0.78	0.77	0.74	0.7	0.58	0.43
llama2	0.25	0.38	0.48	0.61	0.71	0.78	0.8	0.67	0.54	0.34	0.32
lightconv	0.25	0.38	0.42	0.49	0.53	0.6	0.6	0.61	0.62	0.62	0.62
dynamicconv	0.24	0.36	0.44	0.49	0.54	0.59	0.61	0.6	0.6	0.62	0.6
mn	0.24	0.37	0.48	0.56	0.61	0.65	0.68	0.68	0.66	0.7	0.65
lstm	0.27	0.36	0.48	0.62	0.69	0.78	0.83	0.83	0.8	0.82	0.81
gru	0.27	0.37	0.49	0.63	0.7	0.78	0.83	0.84	0.83	0.84	0.85
s4	0.24	0.32	0.42	0.47	0.48	0.56	0.53	0.3	0.25	0.26	0.23
h3	0.27	0.36	0.51	0.61	0.71	0.78	0.75	0.75	0.69	0.7	0.63
hyena	0.27	0.35	0.5	0.61	0.7	0.78	0.83	0.83	0.61	0.29	0.23
mamba	0.24	0.35	0.49	0.62	0.7	0.77	0.83	0.83	0.71	0.56	0.46
retnet	0.27	0.37	0.49	0.63	0.7	0.78	0.81	0.79	0.77	0.78	0.78
rwkv	0.28	0.37	0.48	0.62	0.7	0.78	0.82	0.83	0.82	0.83	0.83

k = 4, best training run

	20	2 ¹	2^2	2^3	2^4	2 ⁵	2^{6}	2 ⁷	2 ⁸	2^9	2 ¹⁰
gpt2	0.13	0.18	0.23	0.35	0.43	0.52	0.48	0.45	0.33	0.29	0.2
llama2	0.14	0.17	0.24	0.34	0.43	0.53	0.64	0.62	0.27	0.14	0.13
lightconv	0.12	0.17	0.19	0.22	0.17	0.2	0.19	0.22	0.24	0.2	0.2
dynamicconv	0.15	0.19	0.22	0.26	0.24	0.25	0.24	0.25	0.25	0.23	0.26
mn	0.13	0.17	0.18	0.21	0.23	0.23	0.22	0.22	0.25	0.24	0.22
lstm	0.13	0.17	0.22	0.29	0.33	0.42	0.5	0.52	0.5	0.51	0.48
gru	0.12	0.15	0.19	0.22	0.25	0.24	0.28	0.28	0.28	0.27	0.28
s4	0.13	0.18	0.18	0.22	0.2	0.2	0.22	0.19	0.2	0.18	0.19
h3	0.12	0.18	0.24	0.33	0.44	0.53	0.6	0.6	0.55	0.52	0.48
hyena	0.14	0.2	0.24	0.35	0.43	0.53	0.65	0.6	0.22	0.14	0.13
mamba	0.12	0.17	0.24	0.34	0.44	0.54	0.64	0.69	0.7	0.64	0.59
retnet	0.13	0.17	0.25	0.34	0.44	0.53	0.53	0.45	0.46	0.43	0.45
rwkv	0.12	0.17	0.23	0.35	0.43	0.53	0.64	0.63	0.65	0.61	0.64

k = 8, best training run

Table 11: Multiclass classification best accuracy. See Figure 1 for line plots of the same data

	2 ⁰	2 ¹	2^2	2 ³	2^4	2 ⁵	2^{6}	2 ⁷	2 ⁸	2^9	2 ¹⁰
gpt2	0.51	0.69	0.8	0.88	0.89	0.94	0.91	0.88	0.82	0.75	0.67
llama2	0.51	0.69	0.8	0.88	0.89	0.94	0.92	0.89	0.81	0.67	0.61
lightconv	0.51	0.64	0.73	0.8	0.82	0.85	0.84	0.84	0.83	0.84	0.84
dynamicconv	0.51	0.64	0.74	0.82	0.83	0.87	0.86	0.86	0.85	0.86	0.86
mn	0.5	0.67	0.78	0.85	0.86	0.89	0.9	0.89	0.88	0.89	0.89
lstm	0.5	0.59	0.65	0.69	0.69	0.72	0.71	0.71	0.71	0.72	0.71
gru	0.51	0.63	0.71	0.77	0.78	0.81	0.81	0.81	0.8	0.81	0.8
s4	0.51	0.64	0.72	0.79	0.8	0.85	0.84	0.81	0.75	0.7	0.67
h3	0.51	0.69	0.8	0.88	0.89	0.94	0.91	0.86	0.81	0.73	0.67
hyena	0.5	0.69	0.8	0.88	0.89	0.94	0.93	0.9	0.72	0.6	0.56
mamba	0.51	0.69	0.8	0.88	0.89	0.94	0.93	0.92	0.83	0.75	0.7
retnet	0.51	0.69	0.8	0.88	0.89	0.94	0.93	0.92	0.92	0.93	0.92
rwkv	0.51	0.69	0.8	0.88	0.89	0.94	0.93	0.93	0.93	0.94	0.93

k = 2, average over all training runs

Query Index

	20	2 ¹	2^2	2 ³	2^4	2 ⁵	2^6	2 ⁷	2 ⁸	2^{9}	2 ¹⁰
gpt2	0.26	0.37	0.49	0.62	0.7	0.78	0.73	0.67	0.57	0.47	0.36
llama2	0.26	0.37	0.49	0.62	0.7	0.78	0.78	0.66	0.51	0.36	0.31
lightconv	0.25	0.31	0.34	0.36	0.37	0.39	0.39	0.38	0.39	0.4	0.39
dynamicconv	0.25	0.31	0.35	0.38	0.4	0.42	0.44	0.43	0.44	0.44	0.43
mn	0.25	0.33	0.38	0.4	0.42	0.44	0.45	0.44	0.44	0.45	0.45
lstm	0.26	0.3	0.34	0.38	0.41	0.44	0.46	0.45	0.45	0.46	0.44
gru	0.26	0.3	0.34	0.38	0.41	0.43	0.46	0.45	0.45	0.45	0.44
s4	0.25	0.31	0.35	0.38	0.4	0.42	0.43	0.38	0.35	0.33	0.31
h3	0.26	0.37	0.49	0.61	0.7	0.78	0.77	0.75	0.71	0.68	0.63
hyena	0.27	0.37	0.49	0.6	0.69	0.77	0.81	0.77	0.52	0.32	0.27
mamba	0.25	0.37	0.49	0.62	0.7	0.78	0.83	0.83	0.75	0.66	0.59
retnet	0.26	0.37	0.49	0.62	0.7	0.78	0.73	0.67	0.65	0.67	0.67
rwkv	0.26	0.37	0.49	0.62	0.7	0.78	0.83	0.83	0.81	0.83	0.82

k = 4, average over all training runs

	2 ⁰	2^1	2^2	2 ³	2^4	2 ⁵	2^{6}	2 ⁷	2 ⁸	2^{9}	2 ¹⁰
gpt2	0.12	0.16	0.17	0.19	0.21	0.24	0.21	0.19	0.16	0.15	0.14
llama2	0.13	0.18	0.22	0.33	0.42	0.52	0.5	0.36	0.25	0.18	0.16
lightconv	0.13	0.13	0.14	0.14	0.14	0.14	0.14	0.14	0.13	0.14	0.14
dynamicconv	0.12	0.14	0.15	0.15	0.15	0.15	0.15	0.14	0.15	0.15	0.15
mn	0.12	0.14	0.15	0.15	0.16	0.15	0.16	0.15	0.16	0.16	0.16
lstm	0.12	0.13	0.15	0.16	0.17	0.18	0.18	0.19	0.18	0.19	0.18
gru	0.12	0.13	0.15	0.16	0.16	0.17	0.18	0.18	0.18	0.18	0.18
s4	0.12	0.14	0.15	0.14	0.14	0.15	0.15	0.15	0.14	0.14	0.14
h3	0.12	0.17	0.21	0.29	0.35	0.44	0.46	0.44	0.41	0.36	0.34
hyena	0.13	0.16	0.2	0.28	0.33	0.4	0.46	0.42	0.23	0.16	0.15
mamba	0.13	0.18	0.23	0.34	0.43	0.54	0.64	0.62	0.54	0.41	0.34
retnet	0.12	0.16	0.2	0.26	0.3	0.37	0.31	0.24	0.23	0.23	0.22
rwkv	0.13	0.17	0.23	0.34	0.43	0.53	0.62	0.62	0.63	0.6	0.61

k = 8, average over all training runs

Table 12: Multiclass classification average accuracy. See Figure 5 for line plots of the same data.

					Tra	aining St	ер				
	0	10000	20000	30000	40000	50000	60000	70000	80000	90000	100000
gpt2	0.49	0.49	0.5	0.5	0.49	0.51	0.49	0.47	0.47	0.48	0.51
llama2	0.5	0.52	0.52	0.52	0.52	0.47	0.5	0.5	0.49	0.48	0.5
lightconv	0.47	0.51	0.51	0.53	0.52	0.46	0.5	0.52	0.49	0.48	0.49
dynamicconv mn	0.51 0.5	0.49	0.48	0.51	0.52 0.51	0.51 0.52	0.52 0.52	0.52	0.51	0.47 0.48	0.51
lstm	0.5	0.49	0.49	0.49	0.51	0.48	0.49	0.5	0.53	0.51	0.53
gru	0.49	0.51	0.49	0.54	0.51	0.5	0.52	0.52	0.5	0.5	0.5
s4	0.51	0.5	0.49	0.5	0.51	0.5	0.49	0.49	0.5	0.5	0.48
h3	0.5	0.49	0.49	0.49	0.48	0.52	0.5	0.49	0.49	0.48	0.48
hyena	0.51	0.51	0.47	0.52	0.52	0.53	0.52	0.5	0.5	0.49	0.48
mamba	0.49	0.5	0.49	0.5	0.5	0.49	0.49	0.5	0.51	0.48	0.48
retnet rwkv	0.52	0.51	0.52	0.5 0.49	0.5	0.5 0.5	0.5 0.51	0.49	0.5	0.49	0.55
	0.0	0.5	51.15						0.10	0.52	0.02
P(bursty)=0.0, best training run											
					Tra	aining St	en				
	0	10000	20000	30000	40000	50000	60000	70000	80000	90000	100000
gpt2	0.49	0.54	0.53	0.5	0.51	0.5	0.52	0.49	0.52	0.5	0.47
llama2	0.5	0.93	0.86	0.79	0.77	0.73	0.64	0.6	0.55	0.59	0.59
lightconv	0.5	0.5	0.5	0.55	0.51	0.49	0.5	0.5	0.51	0.49	0.5
dynamicconv	0.49	0.51	0.52	0.5	0.5	0.52	0.49	0.49	0.52	0.51	0.49
mn	0.47	0.5	0.49	0.49	0.57	0.52	0.5	0.5	0.47	0.46	0.52
Istm	0.49	0.56 0.5	0.55 0.58	0.54 0.61	0.54 0.62	0.57 0.69	0.53 0.61	0.49	0.49	0.49 0.57	0.51
gru s4	0.48 0.49	0.49	0.5	0.61	0.62	0.69	0.51	0.6 0.53	0.6	0.37	0.32
h3	0.47	0.49	0.47	0.56	0.6	0.57	0.65	0.6	0.55	0.55	0.54
hyena	0.51	0.55	0.8	0.89	0.93	0.89	0.88	0.85	0.83	0.81	0.81
mamba	0.49	0.51	0.52	0.65	0.79	0.74	0.73	0.67	0.68	0.66	0.66
		0.51	0.47	0.5	0.51	0.49	0.51	0.5	0.49	0.5	0.5
retnet	0.49	0.51									
retnet rwkv	0.49	0.56	0.52	0.57	0.62	0.62	0.66	0.65	0.57	0.57	0.58
							0.66 training		0.57	0.57	0.58
					ursty)=0	.5, best	training		0.57	0.57	0.58
					ursty)=0		training		0.57	0.57	0.58
rwkv	0.49	10000	20000	P(b)	ursty)=0 Tra 40000	.5, best aining St 50000	training ep 60000	run 70000	80000	90000	100000
rwkv gpt2	0.49	0.56 10000 0.86	20000 0.93	P(b)	ursty)=0 Tra 40000 0.93	.5, best aining St 50000 0.91	training ep 60000 0.8	run 70000 0.78	80000 0.77	90000	100000
rwkv gpt2 llama2	0.49 0 0.49 0.51	10000 0.86 0.94	20000 0.93 0.93	P(b) 30000 0.94 0.94	ursty)=0 Tra 40000 0.93 0.95	.5, best aining St 50000 0.91 0.93	training ep 60000 0.8 0.95	70000 0.78 0.83	80000 0.77 0.91	90000 0.68 0.91	100000 0.7 0.9
rwkv gpt2 llama2 lightconv	0 0 0.49 0.51 0.5	10000 0.86 0.94 0.5	20000 0.93 0.93 0.54	P(b) 30000 0.94 0.94 0.49	ursty)=0 Tra 40000 0.93 0.95 0.48	.5, best aining St 50000 0.91 0.93 0.48	training ep 60000 0.8 0.95 0.51	70000 0.78 0.83 0.49	80000 0.77 0.91 0.52	90000 0.68 0.91 0.53	100000 0.7 0.9 0.5
rwkv gpt2 llama2	0.49 0 0.49 0.51	10000 0.86 0.94	20000 0.93 0.93 0.54 0.55	30000 0.94 0.94 0.49 0.49	ursty)=0 Tra 40000 0.93 0.95 0.48 0.54	.5, best aining St 50000 0.91 0.93 0.48 0.51	ep 60000 0.8 0.95 0.51	70000 0.78 0.83 0.49 0.5	80000 0.77 0.91 0.52 0.52	90000 0.68 0.91 0.53 0.51	100000 0.7 0.9 0.5 0.53
gpt2 Ilama2 Iightconv dynamicconv	0 0 0.49 0.51 0.5 0.51	10000 0.86 0.94 0.5	20000 0.93 0.93 0.54	P(b) 30000 0.94 0.94 0.49	ursty)=0 Tra 40000 0.93 0.95 0.48	.5, best aining St 50000 0.91 0.93 0.48	training ep 60000 0.8 0.95 0.51	70000 0.78 0.83 0.49	80000 0.77 0.91 0.52	90000 0.68 0.91 0.53	100000 0.7 0.9 0.5
gpt2 lama2 ightconv dynamicconv mn	0.49 0 0.49 0.51 0.5 0.51	10000 0.86 0.94 0.5 0.51	20000 0.93 0.93 0.54 0.55	P(b) 30000 0.94 0.94 0.49 0.49 0.68	ursty)=0 Tra 40000 0.93 0.95 0.48 0.54 0.67	.5, best sining St 50000 0.91 0.93 0.48 0.51 0.58	ep 60000 0.8 0.95 0.51 0.5 0.54	70000 0.78 0.83 0.49 0.5	80000 0.77 0.91 0.52 0.52	90000 0.68 0.91 0.53 0.51 0.5	100000 0.7 0.9 0.5 0.53
gpt2 llama2 lightconv dynamicconv mn lstm	0 0,49 0,51 0,5 0,51 0,48 0,51	10000 0.86 0.94 0.5 0.51 0.48	20000 0.93 0.93 0.54 0.55 0.51	P(b) 30000 0.94 0.94 0.49 0.49 0.68 0.67	ursty)=0 Tra 40000 0.93 0.95 0.48 0.54 0.67 0.62	.5, best sining St 50000 0.91 0.93 0.48 0.51 0.58 0.61	ep 60000 0.8 0.95 0.51 0.5 0.54 0.57	70000 0.78 0.83 0.49 0.5 0.54 0.53	80000 0.77 0.91 0.52 0.52 0.5 0.57	90000 0.68 0.91 0.53 0.51 0.5	1000000 0.7 0.9 0.5 0.53 0.53
gpt2 llama2 lightconv dynamicconv mn lstm gru s4 h3	0 0,49 0,51 0,5 0,51 0,48 0,51 0,49 0,51	0.56 10000 0.86 0.94 0.5 0.51 0.48 0.52 0.5 0.5 0.84	0.52 20000 0.93 0.93 0.54 0.55 0.51 0.59 0.69 0.55 0.86	P(b) 30000 0.94 0.94 0.49 0.49 0.68 0.67 0.82 0.56 0.91	ursty)=0 Tra 40000 0.93 0.95 0.48 0.54 0.67 0.62 0.79 0.54 0.93	.5, best 50000 0.91 0.93 0.48 0.51 0.58 0.61 0.73 0.55	ep 60000 0.8 0.95 0.51 0.5 0.54 0.57 0.65 0.52	70000 0.78 0.83 0.49 0.5 0.54 0.53 0.6 0.52	80000 0.77 0.91 0.52 0.52 0.5 0.57 0.58 0.52	90000 0.68 0.91 0.53 0.51 0.5 0.53 0.6 0.54	100000 0.7 0.9 0.5 0.53 0.48 0.57 0.5 0.84
gpt2 llama2 lightconv dynamicconv mn lstm gru s4 h3 hyena	0.49 0.49 0.51 0.5 0.51 0.48 0.51 0.49 0.51	0.56 10000 0.86 0.94 0.5 0.51 0.48 0.52 0.5 0.5 0.84 0.81	0.52 20000 0.93 0.93 0.54 0.55 0.51 0.59 0.69 0.55 0.86 0.93	P(b) 30000 0.94 0.94 0.49 0.49 0.68 0.67 0.82 0.56 0.91 0.95	ursty)=0 Tra 40000 0.93 0.95 0.48 0.54 0.67 0.62 0.79 0.54 0.93 0.94	.5, best 50000 0.91 0.93 0.48 0.51 0.58 0.61 0.73 0.55 0.93	ep 60000 0.8 0.95 0.51 0.5 0.54 0.57 0.65 0.52 0.9	70000 0.78 0.83 0.49 0.5 0.54 0.53 0.6 0.52 0.91	80000 0.77 0.91 0.52 0.52 0.5 0.57 0.58 0.52 0.83 0.86	90000 0.68 0.91 0.53 0.51 0.5 0.53 0.6 0.54 0.83	100000 0.7 0.9 0.5 0.53 0.53 0.48 0.57 0.5 0.84
gpt2 lama2 ightconv dynamicconv mn stm gru s4 h3 hyena mamba	0.49 0.49 0.51 0.5 0.51 0.48 0.51 0.49 0.51 0.47 0.51	0.56 10000 0.86 0.94 0.5 0.51 0.48 0.52 0.5 0.84 0.81 0.5	0.52 20000 0.93 0.93 0.54 0.55 0.51 0.59 0.69 0.86 0.93 0.69	P(b) 30000 0.94 0.94 0.49 0.68 0.67 0.82 0.56 0.91 0.95	40000 0.93 0.95 0.48 0.54 0.67 0.62 0.79 0.54 0.93	.5, best 50000 0.91 0.93 0.48 0.51 0.58 0.61 0.73 0.55 0.93 0.94	training ep 60000 0.8 0.95 0.51 0.5 0.54 0.57 0.65 0.52 0.9 0.94 0.94	70000 0.78 0.83 0.49 0.5 0.54 0.53 0.6 0.52 0.91	80000 0.77 0.91 0.52 0.52 0.5 0.57 0.58 0.52 0.83 0.86 0.94	90000 0.68 0.91 0.53 0.51 0.5 0.53 0.6 0.54 0.83 0.8	100000 0.7 0.9 0.5 0.53 0.53 0.48 0.57 0.5 0.84 0.78 0.93
gpt2 llama2 lightconv dynamicconv mn lstm gru s4 h3 hyena mamba retnet	0.49 0 0.49 0.51 0.5 0.51 0.48 0.51 0.49 0.51 0.47 0.51 0.49	0.56 10000 0.86 0.94 0.5 0.51 0.48 0.52 0.5 0.84 0.81 0.5 0.52	0.52 20000 0.93 0.93 0.54 0.55 0.51 0.59 0.69 0.93 0.69 0.57	P(b) 30000 0.94 0.94 0.49 0.68 0.67 0.82 0.56 0.91 0.95 0.92 0.74	40000 0.93 0.95 0.48 0.54 0.67 0.62 0.79 0.54 0.93 0.94 0.93	.5, best 50000 0.91 0.93 0.48 0.51 0.58 0.61 0.73 0.55 0.93 0.93	ep 60000 0.8 0.95 0.51 0.5 0.54 0.57 0.65 0.52 0.9 0.94 0.94 0.85	70000 0.78 0.83 0.49 0.5 0.54 0.53 0.6 0.52 0.91 0.9	80000 0.77 0.91 0.52 0.52 0.5 0.57 0.58 0.52 0.83 0.86 0.94	90000 0.68 0.91 0.53 0.51 0.5 0.6 0.54 0.83 0.8 0.93	100000 0.7 0.9 0.5 0.53 0.48 0.57 0.5 0.84 0.78 0.93 0.8
gpt2 lama2 ightconv dynamicconv mn stm gru s4 h3 hyena mamba	0.49 0.49 0.51 0.5 0.51 0.48 0.51 0.49 0.51 0.47 0.51	0.56 10000 0.86 0.94 0.5 0.51 0.48 0.52 0.5 0.84 0.81 0.5	0.52 20000 0.93 0.93 0.54 0.55 0.51 0.59 0.69 0.86 0.93 0.69	P(b) 30000 0.94 0.94 0.49 0.68 0.67 0.82 0.56 0.91 0.95 0.92 0.74 0.67	40000 0.93 0.95 0.48 0.67 0.62 0.79 0.54 0.93 0.94 0.93	.5, best 50000 0.91 0.93 0.48 0.51 0.58 0.61 0.73 0.55 0.93 0.94 0.88	ep 60000 0.8 0.95 0.51 0.5 0.54 0.57 0.65 0.52 0.9 0.94 0.94 0.85	70000 0.78 0.83 0.49 0.5 0.54 0.53 0.6 0.52 0.91 0.9 0.91 0.82	80000 0.77 0.91 0.52 0.52 0.5 0.57 0.58 0.52 0.83 0.86 0.94	90000 0.68 0.91 0.53 0.51 0.5 0.53 0.6 0.54 0.83 0.8	100000 0.7 0.9 0.5 0.53 0.48 0.57 0.5 0.84 0.78 0.93
gpt2 llama2 lightconv dynamicconv mn lstm gru s4 h3 hyena mamba retnet	0.49 0 0.49 0.51 0.5 0.51 0.48 0.51 0.49 0.51 0.47 0.51 0.49	0.56 10000 0.86 0.94 0.5 0.51 0.48 0.52 0.5 0.84 0.81 0.5 0.52	0.52 20000 0.93 0.93 0.54 0.55 0.51 0.59 0.69 0.93 0.69 0.57	P(b) 30000 0.94 0.94 0.49 0.68 0.67 0.82 0.56 0.91 0.95 0.92 0.74 0.67	40000 0.93 0.95 0.48 0.67 0.62 0.79 0.54 0.93 0.94 0.93	.5, best 50000 0.91 0.93 0.48 0.51 0.58 0.61 0.73 0.55 0.93 0.94 0.88	ep 60000 0.8 0.95 0.51 0.5 0.54 0.57 0.65 0.52 0.9 0.94 0.94 0.85	70000 0.78 0.83 0.49 0.5 0.54 0.53 0.6 0.52 0.91 0.9 0.91 0.82	80000 0.77 0.91 0.52 0.52 0.5 0.57 0.58 0.52 0.83 0.86 0.94	90000 0.68 0.91 0.53 0.51 0.5 0.6 0.54 0.83 0.8 0.93	100000 0.7 0.9 0.5 0.53 0.48 0.57 0.5 0.84 0.78 0.93 0.8
gpt2 llama2 lightconv dynamicconv mn lstm gru s4 h3 hyena mamba retnet	0.49 0 0.49 0.51 0.5 0.51 0.48 0.51 0.49 0.51 0.47 0.51 0.49	0.56 10000 0.86 0.94 0.5 0.51 0.48 0.52 0.5 0.84 0.81 0.5 0.52	0.52 20000 0.93 0.93 0.54 0.55 0.51 0.59 0.69 0.93 0.69 0.57	P(b) 30000 0.94 0.94 0.49 0.68 0.67 0.82 0.56 0.91 0.95 0.92 0.74 0.67	40000 0.93 0.95 0.48 0.54 0.67 0.62 0.79 0.54 0.93 0.94 0.93 0.87 0.6 ursty)=0	.5, best sining St 50000 0.91 0.93 0.48 0.51 0.58 0.61 0.73 0.93 0.94 0.88 0.62 0.94 0.88 0.62	training ep 60000 0.8 0.95 0.51 0.5 0.54 0.57 0.65 0.52 0.9 0.94 0.94 0.85 0.56 training	70000 0.78 0.83 0.49 0.5 0.54 0.53 0.6 0.52 0.91 0.9 0.91 0.82	80000 0.77 0.91 0.52 0.52 0.5 0.57 0.58 0.52 0.83 0.86 0.94	90000 0.68 0.91 0.53 0.51 0.5 0.6 0.54 0.83 0.8 0.93	100000 0.7 0.9 0.5 0.53 0.48 0.57 0.5 0.84 0.78 0.93 0.8
gpt2 llama2 lightconv dynamicconv mn lstm gru s4 h3 hyena mamba retnet	0.49 0.49 0.51 0.5 0.51 0.49 0.51 0.49 0.55 0.49 0.55 0.55	0.56 10000 0.86 0.94 0.5 0.5 0.5 0.84 0.81 0.5 0.52 0.77	0.52 20000 0.93 0.93 0.54 0.55 0.51 0.59 0.69 0.55 0.86 0.93 0.69 0.57	P(b) 30000 0.94 0.94 0.49 0.68 0.67 0.82 0.56 0.91 0.95 0.92 0.74 0.67	ursty)=0 Tra 40000 0.93 0.95 0.48 0.54 0.67 0.62 0.79 0.93 0.94 0.93 0.97 0.66 ursty)=0	.5, best string St 50000 0.91 0.93 0.48 0.51 0.58 0.61 0.73 0.93 0.94 0.88 0.62 0.9, best string St st string St string St string St	rep ep 60000 0.8 0.95 0.51 0.5 0.54 0.57 0.65 0.9 0.94 0.85 0.56 training	70000 0.78 0.83 0.49 0.5 0.54 0.53 0.6 0.52 0.91 0.9 0.91 0.82 0.56	80000 0.77 0.91 0.52 0.52 0.5 0.58 0.58 0.58 0.94 0.82	90000 0.68 0.91 0.53 0.51 0.5 0.5 0.6 0.64 0.83 0.8 0.93 0.78 0.59	1000000 0.7 0.9 0.5 0.53 0.53 0.48 0.57 0.5 0.84 0.78 0.93 0.8
gpt2 llama2 lightconv dynamicconv mn lstm gru s4 h3 hyena mamba retnet rwkv	0.49 0.49 0.51 0.5 0.51 0.49 0.51 0.47 0.51 0.49 0.52 0.5	0.56 10000 0.86 0.94 0.5 0.51 0.5 0.5 0.84 0.81 0.5 0.52 0.77	20000 0.93 0.93 0.54 0.55 0.51 0.59 0.69 0.55 0.86 0.93 0.69 0.57	P(b) 30000 0.94 0.94 0.49 0.68 0.67 0.82 0.56 0.91 0.95 0.92 0.74 0.67	ursty)=0 Tra 400000 0.93 0.95 0.48 0.54 0.67 0.62 0.79 0.54 0.93 0.94 0.93 0.87 0.6 Tra 40000	.5, best sining St 50000 0.91 0.93 0.48 0.51 0.58 0.61 0.73 0.93 0.94 0.88 0.62 0.9, best sining St 50000	rep 60000 0.8 0.95 0.51 0.5 0.54 0.57 0.65 0.99 0.94 0.98 0.56 training	70000 0.78 0.83 0.49 0.5 0.54 0.53 0.6 0.91 0.9 0.91 0.92 0.56 run	80000 0.77 0.91 0.52 0.52 0.5 0.57 0.58 0.52 0.83 0.86 0.94 0.82 0.54	90000 0.68 0.91 0.53 0.51 0.5 0.6 0.8 0.93 0.78 0.59	1000000 0.7 0.9 0.5 0.53 0.53 0.48 0.57 0.5 0.84 0.78 0.93 0.8
gpt2 llama2 lightconv dynamicconv mn lstm gru s4 h3 hyena mamba retnet rwkv	0.49 0.49 0.51 0.5 0.51 0.49 0.51 0.49 0.55 0.49 0.55 0.55	0.56 10000 0.86 0.94 0.5 0.5 0.5 0.84 0.81 0.5 0.52 0.77	0.52 20000 0.93 0.93 0.54 0.55 0.51 0.59 0.69 0.55 0.86 0.93 0.69 0.57	P(b) 30000 0.94 0.94 0.49 0.68 0.67 0.82 0.56 0.91 0.95 0.92 0.74 0.67	ursty)=0 Tra 40000 0.93 0.95 0.48 0.54 0.67 0.62 0.79 0.93 0.94 0.93 0.97 0.66 ursty)=0	.5, best string St 50000 0.91 0.93 0.48 0.51 0.58 0.61 0.73 0.93 0.94 0.88 0.62 0.9, best string St st string St string St string St	rep ep 60000 0.8 0.95 0.51 0.5 0.54 0.57 0.65 0.9 0.94 0.85 0.56 training	70000 0.78 0.83 0.49 0.5 0.54 0.53 0.6 0.52 0.91 0.9 0.91 0.82 0.56	80000 0.77 0.91 0.52 0.52 0.5 0.58 0.58 0.58 0.94 0.82	90000 0.68 0.91 0.53 0.51 0.5 0.5 0.6 0.64 0.83 0.8 0.93 0.78 0.59	1000000 0.7 0.9 0.5 0.53 0.53 0.48 0.57 0.5 0.84 0.78 0.93 0.8
gpt2 llama2 lightconv dynamicconv mn lstm gru s4 h3 hyena mamba retnet rwkv	0.49 0.49 0.51 0.5 0.51 0.49 0.51 0.47 0.51 0.59 0.59	10000 0.86 0.94 0.5 0.51 0.5 0.5 0.5 0.81 0.81 0.5 0.5 0.77	20000 0.93 0.93 0.54 0.55 0.51 0.59 0.69 0.55 0.86 0.93 0.69 0.57 0.79	P(b) 30000 0.94 0.49 0.68 0.67 0.82 0.56 0.91 0.95 0.92 0.74 0.67 P(b)	ursty)=0 Tra 40000 0.93 0.95 0.48 0.54 0.67 0.62 0.79 0.54 0.93 0.94 0.93 0.87 0.6 ursty)=0 Tra 40000 0.93	.5, best sining St 50000 0.91 0.93 0.48 0.51 0.58 0.61 0.73 0.93 0.94 0.88 0.62 0.9, best sining St 50000 0.96	ep 60000 0.8 0.95 0.51 0.5 0.54 0.57 0.65 0.94 0.94 0.85 0.56 training	70000 0.78 0.83 0.49 0.5 0.54 0.53 0.6 0.91 0.91 0.82 0.56 run	80000 0.77 0.91 0.52 0.52 0.57 0.58 0.52 0.83 0.86 0.94 0.82 0.54	90000 0.68 0.91 0.53 0.51 0.5 0.53 0.6 0.54 0.83 0.8 0.93 0.78 0.59	1000000 0.7 0.9 0.5 0.53 0.53 0.48 0.57 0.5 0.84 0.78 0.93 0.8 0.55
gpt2 llama2 lightconv dynamicconv mn lstm gru s4 h3 hyena mamba retnet rnwkv	0.49 0.49 0.51 0.5 0.51 0.49 0.51 0.47 0.51 0.42 0.52 0.52	0.56 10000 0.86 0.94 0.52 0.5 0.5 0.84 0.81 0.52 0.77	20000 0.93 0.93 0.54 0.55 0.59 0.69 0.55 0.86 0.93 0.69 0.57 0.79	9(b) 30000 0.94 0.94 0.49 0.68 0.56 0.91 0.95 0.92 0.74 0.67 P(b)	ursty)=0 Tra 40000 0.93 0.95 0.48 0.54 0.67 0.62 0.79 0.54 0.93 0.94 Tra 40000 0.93 0.94	.5, best 50000 0.91 0.93 0.48 0.51 0.58 0.61 0.73 0.55 0.93 0.94 0.62 0.94 0.62 0.90 0.96	ep 60000 0.8 0.95 0.51 0.5 0.52 0.9 0.94 0.94 0.95 0.56 0.59 0.95 0.90 0.91 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	70000 0.78 0.83 0.49 0.5 0.54 0.66 0.52 0.91 0.9 0.91 0.91 70000 0.92 0.93	80000 0.77 0.91 0.52 0.52 0.57 0.58 0.52 0.83 0.86 0.94 0.94 0.54	90000 0.68 0.91 0.53 0.51 0.5 0.54 0.8 0.93 0.95 90000 0.93 0.95	1000000 0.7 0.9 0.5 0.53 0.53 0.48 0.57 0.5 0.84 0.78 0.93 0.8 0.55
gpt2 llama2 lightconv dynamicconv mn lstm gru s4 h3 hyena mamba retnet rwkv	0.49 0.49 0.51 0.5 0.51 0.49 0.51 0.47 0.51 0.49 0.52 0.5 0.5 0.5 0.5 0.5 0.49	10000 0.86 0.94 0.51 0.52 0.52 0.77 10000 0.66 0.95	0.52 20000 0.93 0.93 0.54 0.55 0.51 0.69 0.55 0.86 0.93 0.69 0.79 20000 0.93 0.93 0.93	9(b) 30000 0.94 0.94 0.68 0.67 0.82 0.56 0.91 0.95 0.92 0.74 0.67 P(b)	ursty)=0 Tra 40000 0.93 0.95 0.48 0.54 0.67 0.62 0.79 0.54 0.93 0.87 0.6 ursty)=0 Tra 40000 0.93 0.94	.5, best sining St 50000 0.91 0.93 0.48 0.51 0.58 0.61 0.73 0.55 0.93 0.94 0.88 0.62 0.95 0.90 0.90	ep 60000 0.8 0.95 0.51 0.5 0.65 0.65 0.90 0.94 0.85 0.56 training	70000 0.78 0.83 0.49 0.5 0.54 0.6 0.52 0.91 0.9 0.91 0.82 0.56 run	80000 0.77 0.91 0.52 0.52 0.57 0.58 0.52 0.83 0.86 0.94 0.82 0.54	90000 0.68 0.91 0.53 0.51 0.5 0.54 0.83 0.78 0.59 90000 0.93 0.93 0.94	1000000 0.7 0.9 0.5 0.53 0.53 0.48 0.57 0.5 0.84 0.78 0.93 0.8 0.55
gpt2 llama2 lightconv dynamicconv mn lstm gru s4 h3 hyena mamba retnet	0.49 0.49 0.51 0.5 0.51 0.48 0.51 0.47 0.51 0.49 0.52 0.5 0 0 0.5 0.49 0.49 0.50 0.49 0.50 0.49 0.49 0.50	0.56 0.86 0.94 0.5 0.51 0.5 0.5 0.84 0.81 0.5 0.5 0.77	20000 0.93 0.93 0.54 0.55 0.51 0.59 0.69 0.55 0.86 0.93 0.69 0.57 0.79	P(b) 30000 0.94 0.94 0.49 0.68 0.67 0.82 0.74 0.67 P(b) 30000 0.94 0.96 0.56 0.72 0.62	ursty)=0 Tra 40000 0.93 0.95 0.48 0.54 0.67 0.62 0.79 0.93 0.94 0.93 0.87 0.6 Tra 40000 0.93 0.94 0.93 0.94 0.93 0.66 0.66	.5, best sining St 50000 0.91 0.93 0.48 0.51 0.58 0.61 0.73 0.94 0.88 0.62 0.96 0.95 0.96 0.95 0.96 0.95 0.96 0.95 0.97 0.98 0.95 0.96 0.95 0.97 0.97 0.98 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63	raining ep 60000 0.8 0.95 0.51 0.5 0.54 0.57 0.65 0.9 0.94 0.94 0.85 0.56 training ep 60000 0.91 0.95 0.56 0.59 0.91 0.95 0.50 0.59 0.71	70000 0.78 0.83 0.49 0.5 0.54 0.53 0.6 0.52 0.91 0.9 0.91 0.82 0.56 run 70000 0.95 0.96 0.48 0.57 0.6 0.71	80000 0.77 0.91 0.52 0.52 0.57 0.58 0.83 0.86 0.94 0.82 0.54	90000 0.68 0.91 0.53 0.51 0.5 0.6 0.8 0.93 0.78 0.59 90000 0.93 0.95 0.48 0.61 0.61 0.67 0.74	1000000 0.7 0.9 0.5 0.53 0.53 0.48 0.57 0.8 0.78 0.93 0.8 0.55
gpt2 llama2 lightconv dynamicconv mn lstm gru s4 h3 hyena mamba retnet rwkv gpt2 llama2 lightconv dynamicconv mn lstm	0.49 0.49 0.51 0.5 0.51 0.49 0.51 0.47 0.51 0.52 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.56 10000 0.86 0.94 0.5 0.5 0.5 0.5 0.8 0.8 0.8 0.9 0.5 0.77	20000 0.93 0.93 0.54 0.55 0.69 0.55 0.86 0.93 0.69 0.79 20000 0.93 0.93 0.49 0.56 0.66 0.57	P(b) 30000 0.94 0.49 0.49 0.68 0.67 0.82 0.56 0.91 0.95 0.91 0.95 0.92 0.74 0.67 0.94 0.96 0.56 0.72 0.662 0.75	ursty)=0 Tra 40000 0.93 0.95 0.48 0.54 0.67 0.62 0.79 0.54 40000 0.93 0.94	.5, best sining St 50000 0.91 0.93 0.48 0.51 0.58 0.61 0.73 0.93 0.94 0.88 0.62 0.9, best sining St 50000 0.96 0.95 0.49 0.63 0.62 0.75	ep 60000 0.8 0.55 0.52 0.94 0.94 0.85 0.56 training ep 60000 0.91 0.95 0.50 0.50 0.50 0.50 0.50 0.50 0.50	70000 0.78 0.83 0.49 0.5 0.54 0.53 0.6 0.52 0.91 0.9 0.91 0.82 0.56 run 70000 0.95 0.96 0.48 0.57 0.6 0.71 0.87	80000 0.77 0.91 0.52 0.55 0.57 0.58 0.83 0.86 0.94 0.82 0.54	90000 0.68 0.91 0.53 0.51 0.5 0.53 0.6 0.54 0.83 0.8 0.93 0.78 0.59 90000 0.93 0.95 0.48 0.91	1000000 0.7 0.9 0.5 0.53 0.53 0.48 0.57 0.5 0.84 0.78 0.93 0.8 0.55 0.95 0.47 0.59 0.47
gpt2 llama2 lightconv dynamicconv mn lstm gru s4 h3 hyena mamba retnet rwkv gpt2 llama2 lightconv dynamicconv dynamicconv mn lstm	0.49 0.49 0.51 0.5 0.51 0.49 0.51 0.47 0.51 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.56 10000 0.86 0.94 0.52 0.51 0.84 0.81 0.52 0.77 10000 0.66 0.95 0.52 0.48 0.52 0.57	20000 0.93 0.93 0.54 0.55 0.51 0.59 0.69 0.55 0.79 20000 0.93 0.93 0.49 0.56 0.66 0.57	9(b) 30000 0.94 0.49 0.68 0.56 0.91 0.95 0.92 0.74 0.67 P(b) 30000 0.94 0.96 0.5 0.56 0.72 0.62	ursty)=0 Tra 40000 0.93 0.95 0.48 0.54 0.67 0.62 0.79 0.54 0.93 0.94 0.93 0.87 0.6 Ursty)=0 Tra 40000 0.93 0.94 0.53 0.66 0.62 0.666 0.662 0.666	.5, best 50000 0.91 0.93 0.48 0.51 0.58 0.93 0.93 0.94 0.62 0.95 0.99 0.95 0.49 0.63 0.62 0.75 0.71	ep 60000 0.8 0.95 0.51 0.5 0.52 0.9 0.94 0.94 0.95 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.6	70000 0.78 0.83 0.49 0.5 0.54 0.66 0.52 0.91 0.9 0.91 0.95 0.96 0.82 0.56 rrun 70000 0.95 0.96 0.48 0.57 0.6 0.71 0.87 0.7	80000 0.77 0.91 0.52 0.52 0.57 0.58 0.52 0.83 0.86 0.94 0.82 0.54	900000 0.68 0.91 0.53 0.51 0.5 0.66 0.54 0.83 0.79 0.79 0.99 0.993 0.995 0.48 0.61 0.57 0.74 0.85 0.72	1000000 0.7 0.9 0.5 0.53 0.53 0.48 0.57 0.5 0.84 0.78 0.95 0.95 0.95 0.47 0.96 0.95 0.47 0.96
gpt2 llama2 lightconv dynamicconv mn lstm gru s4 h3 hyena mamba retnet rwkv gpt2 llama2 lightconv dynamicconv mn lstm gru s4 h3	0.49 0.49 0.51 0.50 0.51 0.49 0.51 0.47 0.51 0.49 0.52 0.5 0.48 0.5 0.49 0.48 0.51 0.49 0.48 0.51 0.49 0.48 0.51 0.49 0.48	0.56 10000 0.86 0.94 0.5 0.51 0.48 0.52 0.55 0.84 0.81 0.52 0.777 10000 0.66 0.95 0.52 0.48 0.5 0.51 0.51 0.82	20000 0.93 0.93 0.54 0.55 0.51 0.69 0.55 0.86 0.93 0.69 0.57 0.79 20000 0.93 0.93 0.49 0.56 0.66 0.57	P(b) 30000 0.94 0.49 0.68 0.67 0.82 0.56 0.91 0.95 0.92 0.74 0.67 P(b) 30000 0.94 0.96 0.5 0.56 0.72 0.62 0.62 0.83	ursty)=0 Tra 40000 0.93 0.95 0.48 0.54 0.67 0.62 0.79 0.54 0.93 0.87 0.6 ursty)=0 Tra 40000 0.93 0.94 0.03 0.94 0.03 0.94 0.03 0.94 0.60 0.60 0.62 0.69 0.66	.5, best sining St 50000 0.91 0.93 0.48 0.51 0.58 0.61 0.73 0.55 0.93 0.94 0.88 0.62 0.9, best sining St 0.63 0.62 0.70 0.75 0.95 0.95 0.99 0.63 0.62 0.70 0.71 0.93	ep 60000 0.8 0.95 0.51 0.5 0.65 0.65 0.90 0.91 0.95 0.64 0.95 0.64 0.59 0.71 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67	70000 0.78 0.83 0.49 0.5 0.54 0.53 0.6 0.52 0.91 0.9 0.91 0.82 0.56 run 70000 0.95 0.96 0.48 0.57 0.6 0.71 0.87 0.71	80000 0.77 0.91 0.52 0.52 0.57 0.58 0.52 0.83 0.86 0.94 0.82 0.54	90000 0.68 0.91 0.53 0.51 0.5 0.54 0.83 0.78 0.59 90000 0.93 0.95 0.48 0.61 0.57 0.72 0.85	1000000 0.7 0.9 0.5 0.53 0.53 0.57 0.5 0.84 0.78 0.93 0.85 0.55 1000000 0.96 0.95 0.47 0.59 0.58 0.73 0.83 0.72
gpt2 llama2 lightconv dynamicconv mn lstm gru s4 h3 hyena mamba retnet rwkv gpt2 llama2 lightconv dynamicconv mn lstm gru s4 h3 hyena	0.49 0.49 0.51 0.5 0.51 0.49 0.51 0.47 0.51 0.49 0.52 0.5 0.49 0.48 0.5 0.49 0.48 0.51 0.49 0.51 0.47 0.51 0.49	10000 0.86 0.94 0.5 0.5 0.5 0.84 0.81 0.5 0.52 0.777	20000 0.93 0.93 0.54 0.55 0.51 0.59 0.69 0.57 0.79 20000 0.93 0.93 0.93 0.49 0.56 0.66 0.57 0.55 0.69	9(b) 30000 0.94 0.49 0.68 0.67 0.82 0.56 0.91 0.95 0.72 0.66 0.72 0.62 0.56 0.72 0.62 0.56 0.62 0.83 0.87	ursty)=0 Tra 40000 0.93 0.95 0.48 0.54 0.67 0.62 0.79 0.54 0.93 0.94 0.93 0.87 0.6 Tra 40000 0.94 0.093 0.94 0.093 0.94 0.060 0.662 0.669 0.662 0.69 0.89	.5, best sining St 50000 0.91 0.93 0.48 0.51 0.58 0.61 0.73 0.55 0.93 0.94 0.88 0.62 0.70 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.9	ep 60000 0.8 0.95 0.51 0.55 0.65 0.65 0.52 0.9 0.94 0.85 0.56 0.55 0.56 0.56 0.56 0.91 0.95 0.71 0.87 0.91 0.95 0.71 0.87 0.71 0.71 0.87 0.71 0.71 0.87 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.7	70000 0.78 0.83 0.49 0.5 0.54 0.53 0.6 0.52 0.91 0.9 0.91 0.82 0.56 run 70000 0.95 0.96 0.48 0.57 0.6 0.71 0.87 0.7 0.94 0.92	80000 0.77 0.91 0.52 0.55 0.55 0.58 0.58 0.94 0.82 0.54 80000 0.95 0.95 0.95 0.66 0.71 0.83	900000 0.68 0.91 0.53 0.51 0.5 0.53 0.66 0.54 0.83 0.78 0.59 900000 0.93 0.95 0.48 0.61 0.57 0.74 0.85 0.72 0.86 0.95	1000000 0.7 0.9 0.5 0.53 0.53 0.57 0.5 0.84 0.78 0.93 0.8 0.55 0.95 0.95 0.95 0.95 0.95 0.95 0.95
gpt2 llama2 lightconv dynamicconv mn lstm gru s4 h3 hyena mamba retnet rwkv gpt2 llama2 lightconv dynamicconv mn lstm gru s4 h3	0.49 0.49 0.51 0.50 0.51 0.49 0.51 0.47 0.51 0.49 0.52 0.5 0.48 0.5 0.49 0.48 0.51 0.49 0.48 0.51 0.49 0.48 0.51 0.49 0.48	0.56 10000 0.86 0.94 0.5 0.51 0.48 0.52 0.55 0.84 0.81 0.52 0.777 10000 0.66 0.95 0.52 0.48 0.5 0.51 0.51 0.82	20000 0.93 0.93 0.54 0.55 0.51 0.69 0.55 0.86 0.93 0.69 0.57 0.79 20000 0.93 0.93 0.49 0.56 0.66 0.57	P(b) 30000 0.94 0.49 0.68 0.67 0.82 0.56 0.91 0.95 0.92 0.74 0.67 P(b) 30000 0.94 0.96 0.5 0.56 0.72 0.62 0.62 0.83	ursty)=0 Tra 40000 0.93 0.95 0.48 0.54 0.67 0.62 0.79 0.54 0.93 0.87 0.6 ursty)=0 Tra 40000 0.93 0.94 0.03 0.94 0.03 0.94 0.03 0.94 0.60 0.60 0.62 0.69 0.66	.5, best sining St 50000 0.91 0.93 0.48 0.51 0.58 0.61 0.73 0.55 0.93 0.94 0.88 0.62 0.9, best sining St 0.63 0.62 0.70 0.75 0.71 0.75 0.71	ep 60000 0.8 0.95 0.51 0.5 0.65 0.65 0.90 0.91 0.95 0.64 0.95 0.64 0.59 0.71 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67	70000 0.78 0.83 0.49 0.5 0.54 0.53 0.6 0.52 0.91 0.9 0.91 0.82 0.56 run 70000 0.95 0.96 0.48 0.57 0.6 0.71 0.87 0.71	80000 0.77 0.91 0.52 0.52 0.57 0.58 0.52 0.83 0.86 0.94 0.82 0.54	90000 0.68 0.91 0.53 0.51 0.5 0.54 0.83 0.78 0.59 90000 0.93 0.95 0.48 0.61 0.57 0.72 0.85	1000000 0.7 0.9 0.5 0.53 0.53 0.57 0.5 0.84 0.78 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95

Table 13: Image classification max accuracy. See Figure 8 for line plots of the same data.

P(bursty)=1.0, best training run

gru

s4 h3

hyena

mamba

retnet rwkv

					Tra	aining St	tep				
	0	10000	20000	30000	40000	50000	60000	70000	80000	90000	100000
gpt2	0.5	0.5	0.5	0.5	0.49	0.5	0.5	0.5	0.5	0.5	0.49
llama2	0.49	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
lightconv	0.49	0.49	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
dynamicconv	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
mn	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
lstm gru	0.5 0.5	0.5 0.5	0.5 0.5	0.5 0.5	0.5 0.5	0.5 0.5	0.49	0.5 0.5	0.5 0.5	0.5 0.5	0.5 0.5
s4	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
h3	0.49	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.51
hyena	0.5	0.5	0.5	0.51	0.5	0.5	0.5	0.5	0.5	0.5	0.5
mamba	0.49	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
retnet	0.5	0.5	0.5	0.49	0.51	0.5	0.5	0.5	0.5	0.5	0.5
rwkv	0.51	0.5	0.5	0.5	0.49	0.5	0.5	0.5	0.5	0.5	0.5
			P(bursty)=	=0.0, ave	rage ov	er all tra	aining ru	ns		
					Tra	aining St	tep				
	0	10000	20000	30000	40000	50000	60000	70000	80000	90000	100000
gpt2	0.5	0.52	0.51	0.51	0.5	0.5	0.5	0.5	0.5	0.5	0.5
llama2	0.49	0.67	0.77	0.75	0.71	0.69	0.66	0.64	0.63	0.62	0.62
lightconv	0.49	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
dynamicconv	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
mn	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
lstm	0.5	0.5	0.5	0.5	0.51	0.5	0.5	0.5	0.5	0.5	0.5
gru s4	0.5 0.5	0.5 0.5	0.51	0.51	0.51	0.51	0.51 0.5	0.52	0.52	0.52	0.52
h3	0.49	0.5	0.5	0.5	0.51	0.43	0.52	0.51	0.51	0.51	0.51
hyena	0.5	0.56	0.66	0.7	0.7	0.69	0.68	0.66	0.65	0.65	0.65
mamba	0.49	0.51	0.51	0.54	0.55	0.56	0.55	0.55	0.54	0.53	0.54
retnet	0.5	0.5	0.5	0.5	0.51	0.5	0.5	0.5	0.5	0.5	0.49
rwkv	0.51	0.53	0.54	0.54	0.53	0.53	0.53	0.53	0.52	0.51	0.51
			P(bursty)=	=0.5, ave	rage ov	er all tra	ining ru	ns		
					Tra	aining St	tep				
	0	10000	20000	30000	40000	50000	60000	70000	80000	90000	100000
gpt2	0.5	0.59	0.68	0.72	0.71	0.7	0.69	0.67	0.65	0.63	0.63
llama2	0.49	0.77	0.9	0.91	0.91	0.91	0.9	0.9	0.89	0.88	0.87
lightconv	0.49	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
dynamicconv mn	0.5 0.5	0.5 0.5	0.5 0.51	0.5 0.52	0.5 0.52	0.5 0.52	0.51 0.52	0.5 0.52	0.5 0.52	0.5 0.52	0.49
lstm	0.5	0.51	0.51	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.51
gru				0.56	0.56	0.56	0.56	0.56	0.56	0.55	0.54
-	0.5	0.5	0.53						0.5	0.51	0.5
s4	0.5 0.5	0.5 0.5	0.53	0.51	0.5	0.51	0.5	0.5	0.5		
s4 h3					0.5 0.69	0.51 0.69	0.5 0.68	0.5	0.66	0.65	0.64
	0.5	0.5	0.5	0.51			_		_	0.65 0.84	0.64 0.83
h3	0.5 0.49	0.5 0.55	0.5 0.64	0.51 0.69	0.69	0.69	0.68	0.68	0.66		
h3 hyena mamba retnet	0.5 0.49 0.5 0.49	0.5 0.55 0.69 0.52 0.5	0.5 0.64 0.85 0.58 0.51	0.51 0.69 0.89 0.66 0.51	0.69 0.9 0.69 0.52	0.69 0.89 0.7 0.52	0.68 0.88 0.72 0.51	0.68 0.85 0.72 0.52	0.66 0.85 0.72 0.51	0.84 0.72 0.51	0.83 0.72 0.51
h3 hyena mamba	0.5 0.49 0.5 0.49	0.5 0.55 0.69 0.52	0.5 0.64 0.85 0.58	0.51 0.69 0.89 0.66	0.69 0.9 0.69	0.69 0.89 0.7	0.68 0.88 0.72	0.68 0.85 0.72	0.66 0.85 0.72	0.84 0.72	0.83 0.72
h3 hyena mamba retnet	0.5 0.49 0.5 0.49	0.5 0.55 0.69 0.52 0.5	0.5 0.64 0.85 0.58 0.51 0.69	0.51 0.69 0.89 0.66 0.51 0.66	0.69 0.9 0.69 0.52 0.65	0.69 0.89 0.7 0.52 0.62	0.68 0.88 0.72 0.51	0.68 0.85 0.72 0.52 0.59	0.66 0.85 0.72 0.51 0.57	0.84 0.72 0.51	0.83 0.72 0.51
h3 hyena mamba retnet	0.5 0.49 0.5 0.49	0.5 0.55 0.69 0.52 0.5	0.5 0.64 0.85 0.58 0.51 0.69	0.51 0.69 0.89 0.66 0.51 0.66	0.69 0.9 0.69 0.52 0.65	0.69 0.89 0.7 0.52 0.62	0.68 0.88 0.72 0.51 0.6	0.68 0.85 0.72 0.52 0.59	0.66 0.85 0.72 0.51 0.57	0.84 0.72 0.51	0.83 0.72 0.51
h3 hyena mamba retnet	0.5 0.49 0.5 0.49	0.5 0.55 0.69 0.52 0.5	0.5 0.64 0.85 0.58 0.51 0.69	0.51 0.69 0.89 0.66 0.51 0.66	0.69 0.9 0.69 0.52 0.65	0.69 0.89 0.7 0.52 0.62 erage ov	0.68 0.88 0.72 0.51 0.6	0.68 0.85 0.72 0.52 0.59	0.66 0.85 0.72 0.51 0.57	0.84 0.72 0.51 0.56	0.83 0.72 0.51 0.56
h3 hyena mamba retnet	0.5 0.49 0.5 0.49 0.5 0.51	0.5 0.55 0.69 0.52 0.5 0.64	0.5 0.64 0.85 0.58 0.51 0.69	0.51 0.69 0.89 0.66 0.51 0.66 bursty)=	0.69 0.9 0.69 0.52 0.65 =0.9, ave	0.69 0.89 0.7 0.52 0.62 erage ov	0.68 0.88 0.72 0.51 0.6 ver all tra	0.68 0.85 0.72 0.52 0.59 aining ru	0.66 0.85 0.72 0.51 0.57	0.84 0.72 0.51 0.56	0.83 0.72 0.51 0.56
h3 hyena mamba retnet rwkv	0.5 0.49 0.5 0.49 0.5 0.51	0.5 0.55 0.69 0.52 0.5 0.64	0.5 0.64 0.85 0.58 0.51 0.69 P(0.51 0.69 0.89 0.66 0.51 0.66 bursty)=	0.69 0.9 0.69 0.52 0.65 =0.9, ave	0.69 0.89 0.7 0.52 0.62 erage ov	0.68 0.88 0.72 0.51 0.6 eer all tra	0.68 0.85 0.72 0.52 0.59 aining ru	0.66 0.85 0.72 0.51 0.57	0.84 0.72 0.51 0.56	0.83 0.72 0.51 0.56
h3 hyena mamba retnet rwkv gpt2 llama2 lightconv	0.5 0.49 0.5 0.49 0.5 0.51	0.5 0.55 0.69 0.52 0.5 0.64	0.5 0.64 0.85 0.58 0.51 0.69 P(0 20000 0.75	0.51 0.69 0.89 0.66 0.51 0.66 bursty)= 30000 0.81 0.93	0.69 0.9 0.69 0.52 0.65 =0.9, ave Tra 40000 0.86	0.69 0.89 0.7 0.52 0.62 erage ov	0.68 0.88 0.72 0.51 0.6 eer all tra	0.68 0.85 0.72 0.52 0.59 aining ru	0.66 0.85 0.72 0.51 0.57 ns	0.84 0.72 0.51 0.56 90000 0.9	0.83 0.72 0.51 0.56
h3 hyena mamba retnet rwkv gpt2 llama2 lightconv dynamicconv	0.5 0.49 0.5 0.49 0.5 0.51	0.5 0.55 0.69 0.52 0.5 0.64 10000 0.62 0.78 0.5	0.5 0.64 0.85 0.58 0.51 0.69 P(0 20000 0.75 0.91 0.5 0.51	0.51 0.69 0.89 0.66 0.51 0.66 bursty)= 30000 0.81 0.93 0.5 0.51	0.69 0.9 0.69 0.52 0.65 =0.9, ave 40000 0.86 0.94 0.5	0.69 0.89 0.7 0.52 0.62 erage ov aining St 50000 0.88 0.94 0.5 0.51	0.68 0.88 0.72 0.51 0.6 eer all trades tep 60000 0.88 0.94 0.5 0.51	0.68 0.85 0.72 0.52 0.59 sining ru 70000 0.89 0.94 0.49	0.66 0.85 0.72 0.51 0.57 ns 80000 0.89 0.94 0.5 0.5	0.84 0.72 0.51 0.56 90000 0.9 0.94 0.5 0.5	0.83 0.72 0.51 0.56 100000 0.89 0.94 0.5 0.5
h3 hyena mamba retnet rwkv gpt2 llama2 lightconv dynamicconv mn	0.5 0.49 0.5 0.49 0.5 0.51 0 0.5 0.49 0.49 0.5 0.5	0.5 0.55 0.69 0.52 0.5 0.64 10000 0.62 0.78 0.5 0.5	0.5 0.64 0.85 0.58 0.51 0.69 P(0 20000 0.75 0.91 0.5 0.51 0.55	0.51 0.69 0.89 0.66 0.51 0.66 bursty)= 30000 0.81 0.93 0.5 0.51 0.56	0.69 0.9 0.69 0.52 0.65 =0.9, ave Tra 40000 0.86 0.94 0.5 0.5	0.69 0.89 0.7 0.52 0.62 erage ov sining St 50000 0.88 0.94 0.5 0.51	0.68 0.88 0.72 0.51 0.6 eer all trades tep 60000 0.88 0.94 0.5 0.51	0.68 0.85 0.72 0.52 0.59 aining ru 70000 0.89 0.94 0.49 0.5	0.66 0.85 0.72 0.51 0.57 ns 80000 0.89 0.94 0.5 0.5	0.84 0.72 0.51 0.56 90000 0.9 0.94 0.5 0.5	0.83 0.72 0.51 0.56 100000 0.89 0.94 0.5 0.5
h3 hyena mamba retnet rwkv gpt2 llama2 lightconv dynamicconv	0.5 0.49 0.5 0.49 0.5 0.51	0.5 0.55 0.69 0.52 0.5 0.64 10000 0.62 0.78 0.5	0.5 0.64 0.85 0.58 0.51 0.69 P(0 20000 0.75 0.91 0.5 0.51	0.51 0.69 0.89 0.66 0.51 0.66 bursty)= 30000 0.81 0.93 0.5 0.51	0.69 0.9 0.69 0.52 0.65 =0.9, ave 40000 0.86 0.94 0.5	0.69 0.89 0.7 0.52 0.62 erage ov aining St 50000 0.88 0.94 0.5 0.51	0.68 0.88 0.72 0.51 0.6 eer all trades tep 60000 0.88 0.94 0.5 0.51	0.68 0.85 0.72 0.52 0.59 sining ru 70000 0.89 0.94 0.49	0.66 0.85 0.72 0.51 0.57 ns 80000 0.89 0.94 0.5 0.5	0.84 0.72 0.51 0.56 90000 0.9 0.94 0.5 0.5	0.83 0.72 0.51 0.56 100000 0.89 0.94 0.5 0.5

0.79 P(bursty)=1.0, average over all training runs

0.75

0.88

0.58

0.75

0.88

0.73

0.79

0.77

0.89

0.73

0.78

0.77

0.89

0.73

0.77

0.89

0.77

0.9 0.73

0.77

Table 14: Image classification average accuracy. See Figure 2 for line plots of the same data.

0.74

0.87

0.79

0.67

0.83

0.73

		mean squared error					
		d=	5	10	20	30	
token scheme	use pos embed	model					
concat	False	decoder	0.000	0.000	0.003	3.166	
		encoder	0.000	0.000	0.000	0.138	
	True	decoder	0.000	0.000	0.002	5.038	
		encoder	0.000	0.000	0.000	0.165	
sum	False	decoder	0.752	1.096	2.818	6.479	
		encoder	0.724	1.087	2.281	5.537	
	True	decoder	0.741	1.139	2.618	6.142	
		encoder	0.720	1.100	2.388	5.605	

		mean squared error				
		d=	5	10	20	30
token scheme	use pos embed	model				
concat	False	decoder	0.000	0.003	0.196	6.373
		encoder	0.000	0.000	0.008	3.386
	True	decoder	0.000	0.002	0.105	6.967
		encoder	0.000	0.000	0.013	3.710
sum	False	decoder	1.270	1.329	3.356	7.193
		encoder	1.243	1.282	2.736	6.147
		decoder	1.251	1.323	3.212	6.995
		encoder	1.248	1.290	2.772	6.196

(a) Linear regression (best run)

			accuracy		
		V =	20	30	40
token scheme	use pos embed	model			
concat	False	decoder	0.999	0.929	0.822
		encoder	0.999	0.933	0.820
	True	decoder	0.998	0.927	0.817
		encoder	0.999	0.931	0.820
sum	False	decoder	0.999	0.928	0.824
		encoder	0.999	0.934	0.820
	True	decoder	0.999	0.934	0.824
		encoder	0.999	0.935	0.817

(b) Linear regression (average)

(0)	(b) Ellieur regression (uverage)								
		accuracy							
		V =	20	30	40				
token scheme	use pos embed	model							
concat	False	decoder	0.998	0.924	0.812				
	True	encoder	0.998	0.928	0.812				
		decoder	0.997	0.922	0.811				
		encoder	0.997	0.925	0.815				
sum	False	decoder	0.998	0.924	0.813				
		encoder	0.998	0.927	0.813				
	True	decoder	0.998	0.926	0.815				
		encoder	0.998	0.929	0.811				

(c) Associative recall (best run)

			accuracy		
		k=	2	4	8
token scheme	use pos embed	model			
concat	False	decoder	0.931	0.784	0.553
		encoder	0.934	0.780	0.556
	True	decoder	0.930	0.785	0.552
		encoder	0.934	0.780	0.560
sum	False	decoder	0.928	0.782	0.549
		encoder	0.931	0.778	0.557
	True	decoder	0.932	0.781	0.553
		encoder	0.932	0.778	0.558

(d) Associative recall (average)

			accuracy		
		k=	2	4	8
token scheme	use pos embed	model			
concat	False	decoder	0.929	0.779	0.549
		encoder	0.931	0.777	0.551
	True	decoder	0.927	0.777	0.547
		encoder	0.931	0.776	0.551
sum	False	decoder	0.926	0.772	0.541
		encoder	0.929	0.770	0.545
	True	decoder	0.925	0.772	0.538
		encoder	0.930	0.771	0.544

(e) Multiclass classification (best run)

			accuracy		
		P(bursty)=	0.9	1.0	
token scheme	use pos embed	model			
concat	False	decoder	0.945	0.951	
		encoder	0.950	0.945	
	True	decoder	0.942	0.950	
		encoder	0.938	0.950	
sum	False	decoder	0.820	0.952	
		encoder	0.845	0.946	
	True	decoder	0.792	0.963	
		encoder	0.756	0.957	

(f) Multiclass classification (average)

			accura	су
		P(bursty)=	0.9	1.0
token scheme	use pos embed	model		
concat	False	decoder	0.842	0.928
	True	encoder	0.853	0.928
		decoder	0.914	0.933
		encoder	0.915	0.931
sum	False	decoder	0.680	0.879
		encoder	0.666	0.855
	True	decoder	0.678	0.927
		encoder	0.670	0.886

(g) Image classification (best run)

(h) Image classification (average)

Figure 10: Permutation invariance experiments.