ENHANCING LLM FACTUALITY FOR STRUCTURED DATA

Anonymous authors

Paper under double-blind review

ABSTRACT

Large language models (LLMs) are typically optimized to process and output high-quality unstructured text, demonstrating remarkable capabilities in a variety of natural language tasks. Yet in practical settings, many domains, such as safety-critical or enterprise applications, rely on structured data. Improving the factuality of contemporary LLMs in these scenarios remains an open challenge, given their propensity to hallucinate or generate incorrect responses. In this work, we propose a methodology to enhance the factuality of LLMs when plugging into structured data. Specifically, we design a method for verbalizing proprietary structured data in a way that it is presented to LLM in longer context paragraphs, with a strong focus on the generation of sophisticated adversarial paragraphs that improve the LLM's resilience to hallucination and help detect factual errors in current solutions.

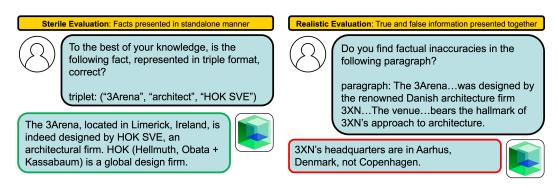


Figure 1: Despite understanding the factual truth under simple evaluation settings, the same large language model may fail to utilize this fact to accurately identify misinformation within context. Note that additionally, the language model's correction (right) is also incorrect - 3XN's headquarters are indeed in Copenhagen.

1 Introduction

The capabilities of large language models (LLMs) have progressed at a rapid pace, becoming integral components for a wide range of applications, tools, and general day-to-day usage (Team, 2024; AI, 2024; Anthropic, 2024; OpenAI, 2023; Li, 2025; Nam et al., 2024; Wu et al., 2024; Yuan et al., 2025). As LLMs are increasingly integrated into enterprise systems, their interaction with structured and proprietary data has emerged as a focal point. Organizations are exploring ways to securely leverage internal databases and confidential datasets to enhance model relevance, while maintaining strict data governance and guaranteeing the correctness and factuality of model outputs – particularly when operating in high-stakes domains such as finance, healthcare, or law, to name a few.

A prominent challenges when relying on LLMs to integrate and deliver proprietary data to consumers is that LLMs face significant difficulties in accurately discerning misinformation, even when accurate data has been included in their training procedure. This issue is not merely a limitation of coverage but stems from the statistical nature of language modeling itself. Since LLMs learn

055

056

057

058

060

061

062

063

064

065

066

067

068

069

070

071

072 073

074

075

076

077

079

081

082

083

084

085

086

087 088

089

091

092

093

094

095

096 097

098

099

100

101

102

103

from patterns in data rather than understanding facts in a human-like way, they may fail to distinguish between high-probability sequences that are accurate and those that are subtly misleading or false (Chen & Shu, 2024). This challenge becomes even more pronounced when misinformation is embedded within longer or complex textual contexts. In such cases, the truth signal may be diluted, allowing falsehoods to blend in and pass as plausible, especially if those falsehoods co-occur with factual statements. Another exacerbating factor is the nature of the data we want to guarantee correctness about. While dealing with common and open source knowledge, assessing its correctness can exploit statistical properties within the data. On the other hand, enterprise data, which is often proprietary, requires a systematic way to test and assess the factuality of a model before deploying it for specific business applications is paramount. Moreover, LLMs are typically more effective at recognizing and reaffirming known correct information than at identifying and rejecting incorrect or misleading statements. This asymmetry arises because confirming known facts often involves retrieving memorized patterns or repeated associations, while detecting plausible misinformation requires more nuanced reasoning and the ability to detect inconsistencies or anomalies (Guo et al., 2022). As a result, even when correct data is present in the training set, its statistical weight may be insufficient to counteract or displace more frequently occurring but incorrect associations. This fundamental vulnerability underscores the need for more robust methods of grounding and factchecking LLM systems. All these challenges make it extremely difficult to assess and guarantee the correctness of the generated data, especially when the target data is proprietary or uncommon, which is not covered by standard factuality benchmarks for LLMs.

Our solution addresses the challenge of factual consistency in LLM outputs by leveraging proprietary structured data known to have been a part of the training distribution. We introduce a systematic methodology that allows the model to self-verify its responses against this structured data, enabling a form of internal correctness assurance without relying on external evaluators. Our method assumes access to a set of proprietary structured data, i.e., database tables, knowledge graph triples, or in general a collection of structured/semi-structured facts. From the proprietary knowledge base, we systematically generate a series of subtly incorrect and/or misleading assertions about the data, relying on Typed Constrained Negative Sampling (TCNS) (Krompaß et al., 2015; Han et al., 2024; Qiu et al., 2024; Bai et al., 2022; Ahrabian et al., 2020; Yang et al., 2024). We use both original (correct) and the perturbed assertions to generate coherent paragraphs, which are then used to (i) fine-tune the model and to (ii) systematically assess the model's capacity to distinguish between accurate and subtly misleading content. Our pipeline can synthetically generate high-quality training data derived from any given proprietary structured data source; this data is designed to reflect the structure, semantics, and critical facts embedded in the data source, ensuring alignment with ground truth. By fine-tuning the model on this curated dataset, we significantly enhance its robustness to misinformation, improving both factual accuracy and resistance to hallucination.

This work makes several contributions. First, we aim to bridge the gap between symbolic data representation and neural language models: we introduce a method to systematically transform structured data into a format that can be effectively processed by LLMs; our novel methodology embeds structured facts into cohesive paragraphs that are conducive to enhancing model robustness. Second, we propose a methodology for improving model robustness through the dynamic generation of challenging benchmarks, leveraging structured data such as knowledge graphs to produce plausibly in-domain false triples that are close enough to the correct facts to challenge the model behaviors. Third, we present a fine-tuning strategy designed to enhance factual accuracy, yielding improved performance in factual consistency tasks.

Our approach is particularly well-suited for poorly covered domains, especially where available data is legacy and private. Its plug-and-play nature makes it highly adaptable, requiring minimal changes to existing pipelines, with the only constraint being the presence of structured data as input. A key advantage of our method lies in its dynamic synthetic data generation, which produces text in a format and style tailored specifically to feed and extend the underlying LLM. This is enabled by the novel verbalization strategy that intelligently selects the most effective way to express each paragraph, thereby maximizing model robustness and performance, even in previously unseen scenarios.

2 RELATED WORK

2.1 FACTUALITY IN LLMS

Factuality in LLMs refers to their ability to produce accurate and reliable outputs. Many methodologies and metrics focus on assessing and quantifying the amount of LLM-produced output that is inconsistent with established facts (Wang et al., 2025; Augenstein et al., 2024), using tailored benchmark datasets for misinformation and hallucination detection (Bang et al., 2025; Friel & Sanyal, 2023; chen et al., 2023) and large-scale evaluations (Fu et al., 2023; Wang et al., 2024; He et al., 2024b). Available frameworks/systems (Iqbal et al., 2024; Marinescu et al., 2025) and solutions (Cohen et al., 2025; Lin et al., 2024) aim at LLM factuality alignment. Some methods rely on structured data in the form of KG, either as an external source of factual triples (Xu et al., 2024) or as a source of factual context for LLM prompts (Perozzi et al., 2024). Novel solutions such as Factoscope (He et al., 2024a) leverage the inner states of LLMs for factual detection, as they demonstrate that models exhibit distinguishable patterns in their inner states when generating factual versus non-factual content. While this is a promising approach, it requires access to the model's inner states and is not model-agnostic. The majority of works on factuality focus on the assessment of single facts, and even benchmarks for long-form factuality, such as FactoScope (Wei et al., 2024), break down the long-form response of an LLM into a set of individual facts and evaluate each fact separately. Our approach is interested in methodologies for assessing and improving factuality, in settings where incorrect facts are (i) proprietary, previously unseen by the model structured data, that are (ii) naturally embedded in longer text paragraphs.

2.2 LLMs and Structured Data

LLM's lack of factuality is a clearly and publicly perceived issue in open and general domains. But the problem is exacerbated in business settings when the new wish and trend is to access, interface, and serve proprietary data via LLM's interactions. LLMs have known limitations in truly comprehending structured data, e.g., interpreting tables (Sui et al., 2024) or reasoning over graph data (Guo et al., 2023). Many recent efforts aim at bridging this gap by incorporating structured knowledge to enhance model performance and development. Knowledge graphs have been utilized for factuality assessment (Liu et al., 2024; Luo et al., 2023; Feng et al., 2023), verification (Opsahl, 2024; Vedula & Parthasarathy, 2021; Ribeiro et al., 2022), and dataset creation (Tchechmedjiev et al., 2019; Song et al., 2023), among many more. Another notable example of interactions of LLM with structured data is StructGPT(Jiang et al., 2023) that collects relevant evidence from structured data and lets LLMs concentrate on the reasoning task based on the collected information.

Our method utilizes structured data - in the form of KG - in a novel way, i.e., embedding all the structured triples in longer paragraphs to fine-tune the models. A similar idea was proposed by (Patel et al., 2025) that uses semantic operators to transform structured data using natural language specifications (e.g., filtering, sorting, joining, or aggregating records using natural language criteria). Our major difference with the state of the art is the generation of both correct paragraphs, but also paragraphs containing wrong facts according to the source data, which are very difficult to identify. Unlike prior works, knowledge graphs are only a tool that we use to generate candidate misleading assertions, which are then used as seed exemplars to generate our longer contexts. Embedding these assertions within longer textual contexts results in more realistic and difficult samples for factuality assessment.

2.3 NEGATIVE SAMPLING

Negative sampling is a widespread technique with applications across various fields, including machine learning, inductive logic programming (Sen et al., 2020; Sadeghian et al., 2019), computer vision, natural language processing, data mining, recommender systems, just to mention a few. When it comes to negative sampling over structured data, especially knowledge graphs, the advantage comes from the availability of out-of-the-box typing constraints in the data (Krompaß et al., 2015). Several standard techniques have been explored in literature, including: (i) naively perturbing either the subject or the object with a random entity from the entire KG (Zhang et al., 2019); (ii) contrastive learning, i.e. selecting negative samples that are more difficult to discriminate using either some arbitrary properties of the relations within the graph (Ebisu & Ichise, 2018) or exploit-

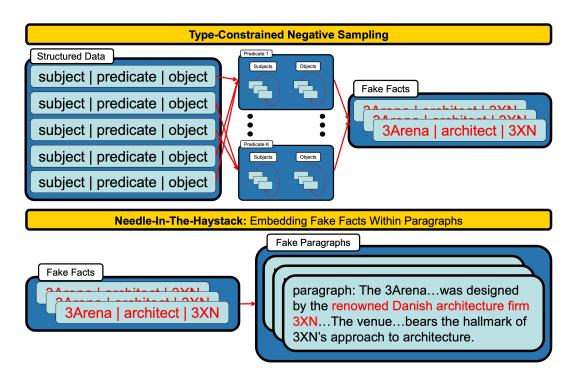


Figure 2: (Top) Using an existing knowledge base, we generate type-constrained negative samples to create plausible but fake facts. (Bottom) Fake facts are used as the seed to embed misinformation into longer paragraph contexts.

ing the the graph topology(Ahrabian et al., 2020); (iii) using type constraints to reduce the scope of the negative sample (Krompaß et al., 2015); (iv) learning adversarial models to generate the negative examples (Cai & Wang, 2018) or (v) exploiting the proximity of entities in their embedding space (Islam et al., 2022). Further sophistication includes pre-filtering easy-to-discriminate negatives (Han et al., 2024) to reduce the number of candidates the model needs to compute during training - the focus in this case is on minimizing computation. Others have proposed an approach designed to synthetically generate open category samples without requiring any prior knowledge or external datasets (Bai et al., 2022). All these mentioned approaches work on a one triple/statement at a time, hence they are very effective for tasks like link prediction (Hubert et al., 2022), but not so suited for general LLMs, where facts, statements, and assertions are always embedded in a larger text context.

The most similar related work also focuses on the perturbation of paragraphs (Qiu et al., 2024). They generate perturbed summaries with a multi-step process: they start from a paragraph, convert it into a graph, inject controlled factual inconsistencies in the graph, and then create negative examples. The multi-step nature of this work is prone to errors, and any mistake made in the graph extraction would be propagated in the subsequent steps, making it hard to systematically track. In contrast, our work combines the systematic nature of the typical typed constrained negative sampling approach, but embeds the fake facts in sophisticated long paragraphs, hence generating robust synthetic data for LLM settings. To the best of our knowledge, we are the first to propose a method combining these two aspects.

3 Leveraging Knowledge Graphs for Factuality Enhancement

We leverage the presence of an available knowledge base to enhance the factuality performance of language models (LMs). First, we utilize structured data (e.g. knowledge graphs) to generate type-constrained negative samples, which are our fake facts. Second, we embed the generated facts into longer paragraph contexts. Finally, we design a task around these paragraphs and finetune LMs

on this data, demonstrating enhanced factuality performance. An illustration of our data generation procedure is provided in Figure 2, and we describe each component in the following sections.

3.1 GENERATING PERTURBED FACTS

We leverage an existing knowledge base to generate our fake facts. Our objective is to create fake facts that are hard negative samples for the downstream LM, yet are plausible and sound potentially truthful. Given an input knowledge base, we first group all samples in our dataset into various buckets. These buckets are categorized and distinguished by the knowledge graph predicates, or edge relations, in our dataset. Each bucket corresponds to exactly one predicate, and the number of buckets is equal to the number of unique edge relations that exist in our dataset.

In each bucket, we then randomize the list of subjects and objects within each other - this is done by shuffling all subjects and objects within themselves. While we may shuffle subjects with other subjects, and likewise for objects, note that we *do not* shuffle subjects and objects between each other. Finally, we then filter our any generated facts which can be found in the original dataset. This is because since we are shuffling lists of subjects and objects (and not sets), there is the slim possibility that we retain an original truthful fact in our list of generated fake facts.

Our procedure to generate fake facts is done entirely without the use of any LLMs or foundation models, eliminating the possibility of any errors arising due to model hallucinations. Of course, our procedure is based on the assumption that the original dataset contains true facts only with a few errors. We believe that for many domains and applications, particularly safety-critical and enterprise settings, this is a reasonable assumption to make of the datasets.

3.2 THE NEEDLE IN A HAYSTACK

One of the core novelties in our method lies in how we embed our fake facts into longer paragraph contexts. Certainly, this task can be performed in a zero-shot manner with simple LM prompting. However, this (i) does not guarantee that the output paragraphs will still contain the seed fake fact that was used, and (ii) might create trivial paragraphs, where the task of identifying the perturbed facts is very easy for the model. Our aim is to generate paragraphs that clearly contain one fake fact and do an adequate job at camouflaging such a fact, making the identification task difficult for LMs that do not contain the requisite knowledge. For this purpose, we design a procedure to tune an LM as a fake-fact paragraph generator using GRPO (DeepSeek-AI et al., 2025a; Shao et al., 2024) - our goal is to generate a paragraph containing a fake fact, which camouflages the fact in a plausible way. In this manner, models that are not equipped with the fact itself, for example, an off-the-shelf LM, would not be able to accurately identify the fake fact.

We denote our paragraph generator as LM_{gen} and assume this to be initialized from an off-the-shelf LM. We initially generate a paragraph p, containing a fake fact, with simple prompting to LM_{static} . We then use another static instance of the same off-the-shelf LM, LM_{static} , and we prompt it in two different ways: student(p) is a prompt that simply presents the paragraph and asks for fake fact identification, while oracle(p) is a prompt that also tells the model the source fact before asking for fake fact identification within the paragraph.

The main function of oracle(p) is basically ensuring that the fake fact is indeed present in the generated paragraph p. This is important to ensure that the LM does not camouflage the fake fact by simply generating an irrelevant paragraph - a trivial yet erroneous solution. The desired characteristic of p is that it can successfully fool LM_{static} prompted with student(p), but not with oracle(p).

We formulate our reward function for our LM_{gen} paragraph generator as follows:

$$\text{REWARD}(p) = \begin{cases} 1 & \text{LM}_{\text{static}}(\text{student(p)}) = 0, \text{LM}_{\text{static}}(\text{oracle(p)}) = 1 \\ 0 & \text{else} \end{cases}$$

Where $\mathtt{LM}_{\mathtt{static}}(\mathtt{student}(p)) = 0$ indicates that the model - interrogated with a student prompt - was unable to identify the incorrect fact, and $\mathtt{LM}_{\mathtt{static}}(\mathtt{oracle}(p)) = 1$ indicates that the model - interrogated with an oracle prompt - was able to correctly identify the incorrect fact. This reward helps incentivize paragraphs where it is difficult to identify the fake fact, without the paragraph

generator model diverging and generating paragraphs that no longer contain the original source fake fact.

Note that, unlike prior work, by generating the paragraphs only using a single fake fact as a seed, we eliminate the potential of contradictions arising in the generated paragraphs, which can happen when the method starts from a given paragraph and perpetuates some assertions in an unbounded way (i.e., without type constraints).

3.3 Injecting Structured Knowledge

The generated data can be effectively used as a dataset and use-case-specific benchmarking tool, obviously using a determined split of data that remains unseen to the model. Outside of benchmarking and evaluation, we demonstrate that the generated paragraphs are an extremely effective way to pass structured knowledge to LLMs for supervised fine-tuning (SFT), as passing data in context is consonant with the way LLMs learn. We model the factuality alignment procedure as a text generation task, where the model is optimized to generate the source fact that was used to seed the generation of the sample paragraph. One example of our task is seen from the failure mode of the LM in Figure 1.

Unlike baseline approaches, our generated data serves to augment the original knowledge base and create multi-view training data. Training via negative samples has long been used in literature and has been proven to improve model performance for key foundational tasks, such as word2vec (Mikolov et al., 2013). By grouping samples within relation, we are able to ensure that our negative samples are more plausible and harder to distinguish from truthful facts than simple prompt-based approaches.

4 EXPERIMENTAL SETTINGS AND RESULTS

We evaluate the performance of various LMs on structured knowledge factuality. Please refer to the Appendix for model descriptions, prompts, hyperparameters, or other experimental parameters.

4.1 DATASETS

 We employ two RDF¹ triple datasets: WebNLG and Rebel, which contain knowledge graphs about various facts (Gardent et al., 2017; Huguet Cabot & Navigli, 2021). For the WebNLG dataset, we use the English training split as our structured knowledge base, which contains a total of 13211 triples (3501 unique) and 360 unique relations. For the Rebel dataset, we use the training split as our structured knowledge base, and we randomly select 3000 samples containing a total of 7915 triples (7369 unique), and 268 unique relations.

From the WebNLG dataset, we generate a total of 3407 triples corresponding to fake facts, while for the Rebel dataset we generate a total of 6957 triples corresponding to fake facts. We evaluate our experiments considering Granite-3.3-8B-Instruct and also Llama-3.1-8B-Instruct as our static paragraph generator models (LM_{static}).

4.2 RESULTS AND DISCUSSION

[Topline] Factuality Assessment Rather than a *baseline*, in our work we use a *topline* for comparisons. We refer to this setting as *topline*, because, while describing the most basic and easiest evaluation setting, it is the one that theoretically should result in the highest achievable performance: the easier the questions, the higher the likelihood of the LM to get them right.

Our *topline* consists of three straightforward steps. First, we take the original facts expressed in triple form. Next, we construct a simple zero-shot prompt which merely presents the fact and asks "Is this fact correct?" without any additional context or fine-tuning (see the left portion of Figure 1. Finally, we submit this prompt as is to the LLM and verify whether the LLM is capable of accurately assessing the veracity of the given facts. This setup allows us to evaluate the model's reasoning ability in its most direct and unassisted form.

https://www.w3.org/RDF/

Model	Topline	Zero-Shot Generated Paragraphs		GRPO Generated Paragraphs	
	Simple Prompt	Granite-8B	Llama-8B	Granite-8B	Llama-8B
Granite-8B	67.10%	78.16%	77.31%	71.24%	73.44%
Llama-8B	62.67%	65.66%	66.13%	62.81%	69.18%
Qwen3-8B	71.95%	64.25%	77.84%	68.56%	76.99%
Phi-4	62.18%	83.21%	82.80%	80.33%	81.51%
Qwen-72B	49.79%	83.56%	80.92%	76.70%	82.74%

Table 1: LLM fact identification performance on the WebNLG source dataset. The left-most column contains results for correct fact identification (*topline*). The other sections denote results on fake fact identification for zero-shot generated paragraphs (generating paragraphs via prompting LLMs) and GRPO-generated paragraphs (generated paragraphs from our GRPO-tuned model).

Model	Topline	Zero-Shot Generated Paragraphs		GRPO Generated Paragraphs	
	Simple Prompt	Granite-8B	Llama-8B	Granite-8B	Llama-8B
Granite-8B	76.70%	77.02%	69.89%	63.30%	72.86%
Llama-8B	34.25%	64.89%	64.07%	57.38%	70.13%
Qwen3-8B	66.86%	69.95%	66.46%	56.18%	70.48%
Phi-4	66.16%	85.27%	80.72%	79.81%	84.66%
Qwen-72B	47.40%	83.97%	81.14%	77.38%	86.32%

Table 2: LLM fact identification performance on the Rebel source dataset. The left-most column contains results for correct fact identification (*topline*). The other sections denote results on fake fact identification for zero-shot generated paragraphs (generating paragraphs via prompting LLMs) and GRPO-generated paragraphs (generated paragraphs from our GRPO-tuned model).

As observed in Table 1, all tested models perform equivalently on the WebNLG dataset, with an average accuracy of 62.74% (with Qwen3-8B performing the best and Qwen-2.5-72B-Instruct performing the worst). For the Rebel dataset, performance is slightly more diverse, as evidenced by Table 2. In this case, Llama-3.1-8B-Instruct exhibits a notable dip in performance compared to the other models. During testing, we attributed this scenario to a peculiar case: the model will deny that a supplied fact is correct before providing a correction of the supplied information, which is exactly the same as the original input fact.

[In-Paragraph] Factuality Assessment in a Plausible Paragraph In this setting, we investigate to what extent the model can identify a fake fact if it is embedded in a plausible paragraph, and we scrutinize whether the method used to generate the paragraphs impacts the results. Specifically, we compare the performance using paragraphs generated with our GRPO-based method and paragraphs generated with a zero-shot method. Our ultimate question is whether the paragraphs are sophisticated enough (i.e., GRPO-generated), would the LLM be fooled and miss the presence of a fake fact? On an overall glance, our experiments show that indeed all the tested LLMs tend to have more difficulty identifying fake facts within GRPO-generated paragraphs, as opposed to simple zero-shot generated paragraphs.

Table 1 and Table 2 show the degree of degradation in performance accuracy when tested on the Web-NLG and the REBEL datasets, respectively, with similar trends on both. Granite-3.3-8B-Instruct and Phi-4 drop by an average of 5.40% and 2.09%, respectively, compared with zero-shot generated paragraphs. Llama-3.1-8B-Instruct performs worse on Granite-generated paragraphs, dropping by 2.85%, while Qwen-2.5-72B-Instruct drops by 6.86%. On the other hand, Qwen3-8B performs relatively similarly across both scenarios. One interesting observation, however, is that on the Rebel dataset, all models perform worse on our GRPO-generated paragraphs, when the generator model uses Granite-3.3-8B-Instruct, with an average performance drop of 9.41%. Conversely, however, all models actually perform *better* when the generator model uses Llama-3.1-8B-Instruct, with an average performance gain of 4.43%. The usage of different paragraph generator modules may result in varying levels of difficulty in the generated paragraphs.

Model	Topline	Fake Fact Identification Accurac	
1110401	Simple Prompt	Granite-8B	Llama-8B
SFT on Zero-Shot (Granite-8B)	91.30%	87.83%	87.47%
SFT on Zero-Shot (Llama-8B)	90.30%	86.95%	88.99%
SFT on Zero-Shot (Qwen3-8B)	91.40%	98.50%	87.88%
SFT on GRPO (Granite-8B)	93.80%	94.86%	87.03%
SFT on GRPO (Llama-8B)	88.52%	99.18%	89.26%
SFT on GRPO (Qwen3-8B)	79.61%	91.87%	86.41%

Table 3: LLM SFT fact identification performance on the WebNLG source dataset. The left-most column contains results for correct fact identification (topline). The other columns contain results for fake fact identification, with the column denoting the source model that was used to generate the paragraphs (LM_{static}). The top split shows results when we fine-tuned LLMs on zero-shot generated paragraphs. The bottom split shows results when we fine-tuned LLMs on GRPO-generated paragraphs.

[Fine-Tuned-Models] SFT Using GRPO Paragraphs Outside of dynamic factuality evaluation, we also measure the efficacy of our GRPO-generated paragraphs by observing the benefits they bring to models during SFT. Our GRPO-generated paragraphs generally improve the overall performance when compared to SFT on zero-shot paragraphs, on both WebNLG (Table 3) and REBEL (Table 4) datasets

Specifically, on WebNLG (Table 3) we see improvements for Granite-3.3-8B-Instruct in both correct fact recognition as well as misinformation detection on Granite-3.3-8B-Instruct generated paragraphs, improving by 2.50% and 7.03%, respectively. We also see a massive improvement when evaluating Llama-3.1-8B-Instruct on Granite source paragraphs, with performance improving by 12.23%. Interestingly, we see that Qwen3-8B degrades compared to baseline SFT, but this quirk may be due to stochasticity in the training process interfering with its inherent reasoning procedure.

Model	Topline	Fake Fact Identification	
1120401	Simple Prompt	Granite-8B	Llama-8B
SFT on Zero-Shot (Granite-8B)	91.46%	90.97%	80.43%
SFT on Zero-Shot (Llama-8B)	83.70%	91.18%	82.57%
SFT on Zero-Shot (Qwen3-8B)	92.06%	84.45%	79.12%
SFT on GRPO (Granite-8B)	93.84%	93.34%	81.64%
SFT on GRPO (Llama-8B)	13.27%	93.65%	81.82%
SFT on GRPO (Qwen3-8B)	86.12%	86.58%	75.79%

Table 4: LLM SFT fact identification performance on the REBEL source dataset. The left-most column contains results for correct fact identification (topline). The other columns contain results for fake fact identification, with the column denoting the source model used to generate the paragraphs (LM_{static}). The top split shows results when we fine-tuned LLMs on zero-shot generated paragraphs. The bottom split shows results when we fine-tuned LLMs on GRPO-generated paragraphs.

On the REBEL dataset (Table 4), we observe the same trends, with Granite-3.3-8B-Instruct improving across the board, while Llama-3.1-8B-Instruct is able to improve by 2.47% on Granite-generated source paragraphs, as well as Qwen3-8B. We note that the poor correct fact performance of Llama-3.1-8B-Instruct is attributed to a peculiar behavior where it will state that the correct fact is wrong, but then it will state that it is correct. We evaluated model performance using a standard 80/20 split of the generated paragraphs as our train and test datasets, respectively.

5 CONCLUSION

In our work, we presented a methodology to dynamically generate negative samples from an input structured knowledge base. The data generation procedure, which does not require LLMs or any foundation models, generates negative samples via fake facts, exploiting the structure of the data

to group samples and generate plausible falsehoods. Additionally, we also formulated a novel task paradigm and injection scheme, using fake facts as seeds to embed misinformation into longer text contexts. We show the challenges of LLMs when it comes to identifying factual information in longer paragraph contexts, and also demonstrate the utility and effectiveness of our GRPO paragraph generation schema.

Several promising directions emerge from our study. We foresee exploring whether the same methodology can generalize effectively across diverse knowledge sources, in particular, temporal or multi-modal knowledge bases, which may yield new challenges and opportunities. We also plan on extending the evaluation to multilingual settings and low-resource languages. Another, more practical future work will involve positioning this technology within a comprehensive model guardrail pipeline, as well as the deployment for realistic applications, such as enterprise fact-checking and general enterprise information retrieval tasks. Studying how misinformation propagates within multi-turn conversations or across document networks may further illuminate the challenges of trust-worthy AI in real-world deployments.

REFERENCES

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar, Michael Harrison, Russell J. Hewett, Mojan Javaheripi, Piero Kauffmann, James R. Lee, Yin Tat Lee, Yuanzhi Li, Weishung Liu, Caio C. T. Mendes, Anh Nguyen, Eric Price, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Xin Wang, Rachel Ward, Yue Wu, Dingli Yu, Cyril Zhang, and Yi Zhang. Phi-4 technical report, 2024. URL https://arxiv.org/abs/2412.08905.

Kian Ahrabian, Aarash Feizi, Yasmin Salehi, William L. Hamilton, and Avishek Joey Bose. Structure aware negative sampling in knowledge graphs. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 6093–6101, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.492. URL https://aclanthology.org/2020.emnlp-main.492/.

Meta AI. The llama 3 herd of models, 2024.

Anthropic. Introducing the next generation of claude, 2024. URL https://www.anthropic.com/news/claude-3-family.

Isabelle Augenstein, Timothy Baldwin, Meeyoung Cha, Tanmoy Chakraborty, Giovanni Luca Ciampaglia, David Corney, Renee DiResta, Emilio Ferrara, Scott Hale, Alon Halevy, Eduard Hovy, Heng Ji, Filippo Menczer, Ruben Miguez, Preslav Nakov, Dietram Scheufele, Shivam Sharma, and Giovanni Zagni. Factuality challenges in the era of large language models and opportunities for fact-checking. *Nature Machine Intelligence*, 6(8):852–863, 2024. doi: 10.1038/s42256-024-00881-z. URL https://doi.org/10.1038/s42256-024-00881-z.

Ke Bai, Guoyin Wang, Jiwei Li, Sunghyun Park, Sungjin Lee, Puyang Xu, Ricardo Henao, and Lawrence Carin. Open world classification with adaptive negative samples. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*, pp. 4378–4392, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main. 295. URL https://aclanthology.org/2022.emnlp-main.295/.

Yejin Bang, Ziwei Ji, Alan Schelten, Anthony Hartshorn, Tara Fowler, Cheng Zhang, Nicola Cancedda, and Pascale Fung. Hallulens: Llm hallucination benchmark, 2025. URL https://arxiv.org/abs/2504.17550.

Liwei Cai and William Yang Wang. KBGAN: Adversarial learning for knowledge graph embeddings. In Marilyn Walker, Heng Ji, and Amanda Stent (eds.), *Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)*, pp. 1470–1480, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1133. URL https://aclanthology.org/N18-1133/.

487

488

489

490

491

492

493

494

495 496

497

498

499

500

501

504 505

506

507

509

510

511

512

513

514

515

516

517

519

521

522

523

524

527

528

529

530

531 532

533

534

536

538

Canyu Chen and Kai Shu. Can llm-generated misinformation be detected?, 2024. URL https://arxiv.org/abs/2309.13788.

shiqi chen, Yiran Zhao, Jinghan Zhang, I-Chun Chern, Siyang Gao, Pengfei Liu, and Junxian He. Felm: Benchmarking factuality evaluation of large language models. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems, volume 36, pp. 44502–44523. Curran Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/8b8a7960d343e023a6a0afe37eee6022-Paper-Datasets_and_Benchmarks.pdf.

Cheng-Han Chiang and Hung-yi Lee. Can large language models be an alternative to human evaluations? In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 15607–15631, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.870. URL https://aclanthology.org/2023.acl-long.870/.

Roi Cohen, Russa Biswas, and Gerard de Melo. Infact: Informativeness alignment for improved llm factuality, 2025. URL https://arxiv.org/abs/2505.20487.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in Ilms via reinforcement learning, 2025a. URL https://arxiv.org/abs/2501.12948.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan

Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan. Deepseek-v3 technical report, 2025b. URL https://arxiv.org/abs/2412.19437.

Takuma Ebisu and Ryutaro Ichise. Toruse: knowledge graph embedding on a lie group. In *Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence*, AAAI'18/IAAI'18/EAAI'18. AAAI Press, 2018. ISBN 978-1-57735-800-8.

Shangbin Feng, Vidhisha Balachandran, Yuyang Bai, and Yulia Tsvetkov. FactKB: Generalizable factuality evaluation using language models enhanced with factual knowledge. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 933–952, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.59. URL https://aclanthology.org/2023.emnlp-main.59/.

Robert Friel and Atindriyo Sanyal. Chainpoll: A high efficacy method for llm hallucination detection, 2023. URL https://arxiv.org/abs/2310.18344.

Xue-Yong Fu, Md Tahmid Rahman Laskar, Cheng Chen, and Shashi Bhushan Tn. Are large language models reliable judges? a study on the factuality evaluation capabilities of LLMs. In Sebastian Gehrmann, Alex Wang, João Sedoc, Elizabeth Clark, Kaustubh Dhole, Khyathi Raghavi Chandu, Enrico Santus, and Hooman Sedghamiz (eds.), *Proceedings of the Third Workshop on Natural Language Generation, Evaluation, and Metrics (GEM)*, pp. 310–316, Singapore, December 2023. Association for Computational Linguistics. URL https://aclanthology.org/2023.gem-1.25/.

Claire Gardent, Anastasia Shimorina, Shashi Narayan, and Laura Perez-Beltrachini. The WebNLG challenge: Generating text from RDF data. In Jose M. Alonso, Alberto Bugarín, and Ehud Reiter (eds.), *Proceedings of the 10th International Conference on Natural Language Generation*, pp. 124–133, Santiago de Compostela, Spain, September 2017. Association for Computational Linguistics. doi: 10.18653/v1/W17-3518. URL https://aclanthology.org/W17-3518/.

Jiayan Guo, Lun Du, Hengyu Liu, Mengyu Zhou, Xinyi He, and Shi Han. Gpt4graph: Can large language models understand graph structured data? an empirical evaluation and benchmarking, 2023. URL https://arxiv.org/abs/2305.15066.

Zhijiang Guo, Michael Schlichtkrull, and Andreas Vlachos. A survey on automated fact-checking. *Transactions of the Association for Computational Linguistics*, 10:178–206, 02 2022. ISSN 2307-387X. doi: 10.1162/tacl_a_00454. URL https://doi.org/10.1162/tacl_a_00454.

Janghoon Han, Dongkyu Lee, Joongbo Shin, Hyunkyung Bae, Jeesoo Bang, Seonghwan Kim, Stanley Jungkyu Choi, and Honglak Lee. Efficient dynamic hard negative sampling for di-

alogue selection. In Elnaz Nouri, Abhinav Rastogi, Georgios Spithourakis, Bing Liu, Yun-Nung Chen, Yu Li, Alon Albalak, Hiromi Wakaki, and Alexandros Papangelis (eds.), *Proceedings of the 6th Workshop on NLP for Conversational AI (NLP4ConvAI 2024)*, pp. 89–100, Bangkok, Thailand, August 2024. Association for Computational Linguistics. URL https://aclanthology.org/2024.nlp4convai-1.6/.

- Jinwen He, Yujia Gong, Zijin Lin, Cheng'an Wei, Yue Zhao, and Kai Chen. LLM factoscope: Uncovering LLMs' factual discernment through measuring inner states. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics:* ACL 2024, pp. 10218–10230, Bangkok, Thailand, August 2024a. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.608. URL https://aclanthology.org/2024.findings-acl.608/.
- Jinwen He, Yujia Gong, Zijin Lin, Cheng'an Wei, Yue Zhao, and Kai Chen. LLM factoscope: Uncovering LLMs' factual discernment through measuring inner states. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics:* ACL 2024, pp. 10218–10230, Bangkok, Thailand, August 2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.608. URL https://aclanthology.org/2024.findings-acl.608/.
- Nicolas Hubert, Pierre Monnin, Armelle Brun, and Davy Monticolo. Knowledge graph embeddings for link prediction: Beware of semantics! In *CEUR Workshop Proceedings*, 10 2022.
- Pere-Lluís Huguet Cabot and Roberto Navigli. Rebel: Relation extraction by end-to-end language generation. In *Findings of the Association for Computational Linguistics: EMNLP 2021*, Online and in the Barceló Bávaro Convention Centre, Punta Cana, Dominican Republic, November 2021.

 Association for Computational Linguistics. URL https://github.com/Babelscape/rebel/blob/main/docs/EMNLP_2021_REBEL__Camera_Ready_.pdf.
- Hasan Iqbal, Yuxia Wang, Minghan Wang, Georgi Nenkov Georgiev, Jiahui Geng, Iryna Gurevych, and Preslav Nakov. OpenFactCheck: A unified framework for factuality evaluation of LLMs. In Delia Irazu Hernandez Farias, Tom Hope, and Manling Li (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations*, pp. 219–229, Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-demo.23. URL https://aclanthology.org/2024.emnlp-demo.23/.
- Md Kamrul Islam, Sabeur Aridhi, and Malika Smail-Tabbone. Negative sampling and rule mining for explainable link prediction in knowledge graphs. *Knowledge-Based Systems*, 250, 8 2022. ISSN 09507051. doi: 10.1016/j.knosys.2022.109083.
- Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Xin Zhao, and Ji-Rong Wen. StructGPT: A general framework for large language model to reason over structured data. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 9237–9251, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.574. URL https://aclanthology.org/2023.emnlp-main.574/.
- Denis Krompaß, Stephan Baier, and Volker Tresp. Type-constrained representation learning in knowledge graphs. In Marcelo Arenas, Oscar Corcho, Elena Simperl, Markus Strohmaier, Mathieu d'Aquin, Kavitha Srinivas, Paul Groth, Michel Dumontier, Jeff Heflin, Krishnaprasad Thirunarayan, Krishnaprasad Thirunarayan, and Steffen Staab (eds.), *The Semantic Web ISWC 2015*, pp. 640–655, Cham, 2015. Springer International Publishing. ISBN 978-3-319-25007-6.
- Xinzhe Li. A review of prominent paradigms for LLM-based agents: Tool use, planning (including RAG), and feedback learning. In Owen Rambow, Leo Wanner, Marianna Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio, and Steven Schockaert (eds.), *Proceedings of the 31st International Conference on Computational Linguistics*, pp. 9760–9779, Abu Dhabi, UAE, January 2025. Association for Computational Linguistics. URL https://aclanthology.org/2025.coling-main.652/.

Sheng-Chieh Lin, Luyu Gao, Barlas Oguz, Wenhan Xiong, Jimmy Lin, Wen-tau Yih, and Xilun Chen. Flame: Factuality-aware alignment for large language models. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information Processing Systems*, volume 37, pp. 115588–115614. Curran Associates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/d16152d53088ad779ffa634e7bf66166-Paper-Conference.pdf.

- Xiaoze Liu, Feijie Wu, Tianyang Xu, Zhuo Chen, Yichi Zhang, Xiaoqian Wang, and Jing Gao. Evaluating the factuality of large language models using large-scale knowledge graphs, 2024. URL https://arxiv.org/abs/2404.00942.
- Linhao Luo, Trang Vu, Dinh Phung, and Reza Haf. Systematic assessment of factual knowledge in large language models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2023*, pp. 13272–13286, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.885. URL https://aclanthology.org/2023.findings-emnlp.885/.
- Radu Marinescu, Debarun Bhattacharjya, Junkyu Lee, Tigran Tchrakian, Javier Carnerero Cano, Yufang Hou, Elizabeth Daly, and Alessandra Pascale. Factreasoner: A probabilistic approach to long-form factuality assessment for large language models, 2025. URL https://arxiv.org/abs/2502.18573.
- Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations of words and phrases and their compositionality. In C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger (eds.), Advances in Neural Information Processing Systems, volume 26. Curran Associates, Inc., 2013. URL https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf.
- Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu, and Brad Myers. Using an Ilm to help with code understanding. In *Proceedings of the IEEE/ACM 46th International Conference on Software Engineering*, ICSE '24, New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400702174. doi: 10.1145/3597503.3639187. URL https://doi.org/10.1145/3597503.3639187.
- OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
- Tobias A. Opsahl. Fact or fiction? improving fact verification with knowledge graphs through simplified subgraph retrievals, 2024. URL https://arxiv.org/abs/2408.07453.
- Liana Patel, Siddharth Jha, Melissa Pan, Harshit Gupta, Parth Asawa, Carlos Guestrin, and Matei Zaharia. Semantic operators: A declarative model for rich, ai-based data processing, 2025. URL https://arxiv.org/abs/2407.11418.
- Bryan Perozzi, Bahare Fatemi, Dustin Zelle, Anton Tsitsulin, Mehran Kazemi, Rami Al-Rfou, and Jonathan Halcrow. Let your graph do the talking: Encoding structured data for llms, 2024. URL https://arxiv.org/abs/2402.05862.
- Haoyi Qiu, Kung-Hsiang Huang, Jingnong Qu, and Nanyun Peng. AMRFact: Enhancing summarization factuality evaluation with AMR-driven negative samples generation. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 594–608, Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.33. URL https://aclanthology.org/2024.naacl-long.33/.
- Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL https://arxiv.org/abs/2412.15115.

Leonardo F. R. Ribeiro, Mengwen Liu, Iryna Gurevych, Markus Dreyer, and Mohit Bansal. Fact-Graph: Evaluating factuality in summarization with semantic graph representations. In Marine Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz (eds.), *Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pp. 3238–3253, Seattle, United States, July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.236. URL https://aclanthology.org/2022.naacl-main.236/.

- Ali Sadeghian, Mohammadreza Armandpour, Patrick Ding, and Daisy Zhe Wang. Drum: End-to-end differentiable rule mining on knowledge graphs. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/0c72cb7ee1512f800abe27823a792d03-Paper.pdf.
- Prithviraj Sen, Marina Danilevsky, Yunyao Li, Siddhartha Brahma, Matthias Boehm, Laura Chiticariu, and Rajasekar Krishnamurthy. Learning explainable linguistic expressions with neural inductive logic programming for sentence classification. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 4211–4221, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.345. URL https://aclanthology.org/2020.emnlp-main.345/.
- Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.03300.
- Linfeng Song, Ante Wang, Xiaoman Pan, Hongming Zhang, Dian Yu, Lifeng Jin, Haitao Mi, Jinsong Su, Yue Zhang, and Dong Yu. Openfact: Factuality enhanced open knowledge extraction. *Transactions of the Association for Computational Linguistics*, 11:686–702, 06 2023. ISSN 2307-387X. doi: 10.1162/tacl_a_00569. URL https://doi.org/10.1162/tacl_a_00569.
- Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han, and Dongmei Zhang. Table meets llm: Can large language models understand structured table data? a benchmark and empirical study. In *WSDM* 2024 *Proceedings of the 17th ACM International Conference on Web Search and Data Mining*, pp. 645–654. Association for Computing Machinery, Inc, 3 2024. ISBN 9798400703713. doi: 10.1145/3616855.3635752.
- Andon Tchechmedjiev, Pavlos Fafalios, Katarina Boland, Malo Gasquet, Matthäus Zloch, Benjamin Zapilko, Stefan Dietze, and Konstantin Todorov. Claimskg: A knowledge graph of fact-checked claims. In Chiara Ghidini, Olaf Hartig, Maria Maleshkova, Vojtěch Svátek, Isabel Cruz, Aidan Hogan, Jie Song, Maxime Lefrançois, and Fabien Gandon (eds.), *The Semantic Web ISWC 2019*, pp. 309–324, Cham, 2019. Springer International Publishing.
- IBM Granite Team. Granite 3.0 language models, 2024.
- Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.
- Nikhita Vedula and Srinivasan Parthasarathy. Face-keg: Fact checking explained using knowledge graphs. In *Proceedings of the 14th ACM International Conference on Web Search and Data Mining*, WSDM '21, pp. 526–534, New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450382977. doi: 10.1145/3437963.3441828. URL https://doi.org/10.1145/3437963.3441828.
- Cunxiang Wang, Xiaoze Liu, Yuanhao Yue, Qipeng Guo, Xiangkun Hu, Xiangru Tang, Tianhang Zhang, Cheng Jiayang, Yunzhi Yao, Xuming Hu, Zehan Qi, Wenyang Gao, Yidong Wang, Linyi Yang, Jindong Wang, Xing Xie, Zheng Zhang, and Yue Zhang. Survey on factuality in large language models. *ACM Comput. Surv.*, June 2025. ISSN 0360-0300. doi: 10.1145/3742420. URL https://doi.org/10.1145/3742420. Just Accepted.

Weixuan Wang, Barry Haddow, Alexandra Birch, and Wei Peng. Assessing factual reliability of large language model knowledge. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 805–819, Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.46. URL https://aclanthology.org/2024.naacl-long.46/.

Jerry Wei, Chengrun Yang, Xinying Song, Yifeng Lu, Nathan Hu, Jie Huang, Dustin Tran, Daiyi Peng, Ruibo Liu, Da Huang, Cosmo Du, and Quoc V. Le. Longform factuality in large language models. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information Processing Systems*, volume 37, pp. 80756–80827. Curran Associates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/937ae0e83eb08d2cb8627feldef8c751-Paper-Conference.pdf.

Shirley Wu, Shiyu Zhao, Qian Huang, Kexin Huang, Michihiro Yasunaga, Kaidi Cao, Vassilis N. Ioannidis, Karthik Subbian, Jure Leskovec, and James Zou. Avatar: Optimizing llm agents for tool usage via contrastive reasoning. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Information Processing Systems, volume 37, pp. 25981–26010. Curran Associates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/2db8ce969b000fe0b3fb172490c33ce8-Paper-Conference.pdf.

Yao Xu, Shizhu He, Jiabei Chen, Zihao Wang, Yangqiu Song, Hanghang Tong, Guang Liu, Jun Zhao, and Kang Liu. Generate-on-graph: Treat LLM as both agent and KG for incomplete knowledge graph question answering. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 18410–18430, Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.1023. URL https://aclanthology.org/2024.emnlp-main.1023/.

Zhen Yang, Ming Ding, Tinglin Huang, Yukuo Cen, Junshuai Song, Bin Xu, Yuxiao Dong, and Jie Tang. Does negative sampling matter? a review with insights into its theory and applications. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 46:5692–5711, 2024. ISSN 19393539. doi: 10.1109/TPAMI.2024.3371473.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Yongliang Shen, Kan Ren, Dongsheng Li, and Deqing Yang. EASYTOOL: Enhancing LLM-based agents with concise tool instruction. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 951–972, Albuquerque, New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025. naacl-long.44. URL https://aclanthology.org/2025.naacl-long.44/.

Yongqi Zhang, Quanming Yao, Yingxia Shao, and Lei Chen. Nscaching: Simple and efficient negative sampling for knowledge graph embedding. In *Proceedings - International Conference on Data Engineering*, volume 2019-April, pp. 614–625. IEEE Computer Society, 4 2019. ISBN 9781538674741. doi: 10.1109/ICDE.2019.00061.

A MODELS

In our evaluations, we tested a total of 5 models, with 1 model as our LLM judge. These models are listed below:

Granite-8B denotes the Granite-3.3-8B-Instruct model, an 8B parameter dense decoder language model (Team, 2024).

Llama-8B denotes the Llama-3.1-8B-Instruct model, an 8B parameter dense decoder language model (AI, 2024).

Qwen3-8B is an 8.2B parameter dense decoder language model (Team, 2025).

Prompts (Topline Prompt) To the best of your knowledge, is the following fact, represented in triple format, cor-rect? Please ONLY answer 'yes' or 'no'. triplet: $\{\mathcal{T}\}$ (LLM Judge Prompt) Given an associated fact, please answer if that fact is reasonably mentioned in the answer. Please ignore whether the fact is actually correct or not; only answer if it can be reasonably found in the provided answer. associated fact: $\{\mathcal{T}\}$ answer: $\{A\}$ Please output only 'yes' or 'no' in your answer. Additionally, if the provided answer states that the given fact is correct, also answer 'no'. (Zero-Shot Paragraph Generation Prompt) You are given a triple of the form [subject, relation, object]. Generate a paragraph that contains the information within the triplet. triplet: $\{\mathcal{T}\}$ Your response should use the following format and include only the paragraph. The paragraph should be written in a factual tone. Do not mention the presence of the original triplet in your response. paragraph: <paragraph> (GRPO Oracle Template) Given the following paragraph, as well as an associated fact, please answer if that fact can be found in the paragraph. $\{\mathcal{P}\}$ triplet: $\{\mathcal{T}\}$ Please output ONLY 'yes' or 'no' in your answer.

Table 5: All prompts that are used and/or relevant for our work. Note that \mathcal{T} denotes the input triplet, \mathcal{A} denotes an input answer (for the judge prompt), and \mathcal{P} denotes an input paragraph (for the oracle prompt).

 Phi-4 is a 14B parameter dense decoder language model (Abdin et al., 2024).

Qwen-72B denotes the Qwen-2.5-72B-Instruct model, a 72B parameter dense decoder language model (Qwen et al., 2025).

Deepseek-V3 is a mixture-of-experts transformer containing 671B total parameters, with only 37B parameters activated during inference per token (DeepSeek-AI et al., 2025b).

Note that for evaluating answer correctness, we employ LLM-as-a-judge for scalability and simplicity (Chiang & Lee, 2023). We use Deepseek-V3 as our judge model.

B MODEL PROMPTS

We detail all relevant prompts to our evaluation and data generation methodology in this section. Please refer to Table 5 for the collection of any relevant model prompts.

C EXPERIMENTAL SETTINGS

In this section, we detail any additional experimental settings that may provide benefit. For paragraph generation, we use sampling, with a maximum new tokens at 1024 and a minimum new tokens at 10, with a temperature of 0.7. For GRPO, we use a default of 1 epoch, with a learning rate of 2e-5, weight decay of 0.01, warmup ratio of 0.01, temperature of 0.7, top_p of 0.8, top_k of 50, with 4 iterations and 4 generations. Furthermore, we set the maximum prompt length to 256 and the maximum completion length to 512. For GRPO, we use a batch size of 2, with our gradient accumulation set at 8 steps, and a beta parameter of 0.04. For SFT, we use a default of 5 training epochs, with a learning rate of 2e-5, weight decay of 0.01, warmup ratio of 0.01, a maximum sequence length of 2048, and a batch size of 4 with 8 gradient accumulation steps. We use 42 for the value of any random seed.