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Abstract

Generating adversarial examples for Neu-001
ral Machine Translation (NMT) with single002
Round-Trip Translation (RTT) has achieved003
promising results by releasing the meaning-004
preserving restriction. However, a potential005
pitfall for this approach is that we cannot de-006
cide whether the generated examples are ad-007
versarial to the target NMT model or the aux-008
iliary backward one, as the reconstruction er-009
ror through the RTT can be related to ei-010
ther. To remedy this problem, we propose a011
new definition for NMT adversarial examples012
based on the Doubly Round-Trip Translation013
(DRTT). Specifically, apart from the source-014
target-source RTT, we also consider the target-015
source-target one, which is utilized to pick out016
the authentic adversarial examples for the tar-017
get NMT model. Additionally, to enhance the018
robustness of the NMT model, we introduce019
the masked language models to construct bilin-020
gual adversarial pairs based on DRTT, which021
are used to train the NMT model directly.022
Extensive experiments on both the clean and023
noise test sets (including the artificial and natu-024
ral noise) show that our approach substantially025
improves the robustness of NMT models.1026

1 Introduction027

In recent years, neural machine translation (NMT)028

(Cho et al., 2014; Bahdanau et al., 2014; Vaswani029

et al., 2017) has achieved rapid advancement in030

the translation performance (Yang et al., 2020; Lu031

et al., 2021). However, the NMT model is not al-032

ways stable enough, as its performance can drop033

significantly when small perturbations are added034

into the input sentences (Belinkov and Bisk, 2017;035

Cheng et al., 2020). Such perturbed inputs are often036

referred to as adversarial examples in the literature,037

and how to effectively generate and utilize adver-038

sarial examples for NMT is still an open question.039

1Codes will be publicly available once accepted.
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Figure 1: An example of the source-target-source RTT
process on a perturbed input xδ by replacing “巨大
(huge)” to “轻便 (light)”.

Conventional approaches (Ebrahimi et al., 2018; 040

Cheng et al., 2019) for generating NMT adversarial 041

examples always follow the meaning-preserving 042

assumption, i.e., an NMT adversarial example 043

should preserve the meaning of the source sentence 044

but destroy the translation performance drastically 045

(Michel et al., 2019; Niu et al., 2020). With the 046

meaning-preserving restriction, the researchers try 047

to add perturbations on the source inputs as small 048

as possible to ensure the meaning of the source 049

sentence is unchanged, which severely limits the 050

search space of the adversarial examples. Addi- 051

tionally, it is much problematic to craft a minor 052

perturbation on discrete text data, since some ran- 053

dom transformations (e.g., swap, deletion and re- 054

placement) may change, or even reverse seman- 055

tics of the text data, breaking the aforementioned 056

meaning-preserving assumption. To break this lim- 057

itation, Zhang et al. (2021) introduce a new defi- 058

nition for NMT adversarial examples: an effective 059

NMT adversarial example imposes minor shifting 060

on the source and degrades the translation dramati- 061

cally, would naturally lead to a semantic-destroyed 062

round-trip translation result. Take the case in Fig- 063

ure 1 as an example: xδ reverses the semantics 064

of input x by replacing “巨大 (huge)” to “轻便 065

(light)”. Since the semantics of x and xδ are com- 066
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pletely different, it is unreasonable to use the orig-067

inal target sentence of x to evaluate the attacks068

directly. Therefore, Zhang et al. (2021) propose to069

evaluate the BLEU score between xδ and its recon-070

structed sentence x̂δ from the source-target-source071

round-trip translation (RTT), as well as the BLEU072

score between the original sentence x and its re-073

constructed sentence x̂. They take the decrease074

between the two BLEU scores mentioned above075

as the adversarial effect. Specifically, if the BLEU076

decrease exceeds a predefined threshold, xδ is con-077

cluded to be an adversarial example for the target078

NMT model.079

While achieving promising results by breaking080

the meaning-preserving limitation, there are two081

potential pitfalls in the work of Zhang et al. (2021):082

(1) Since the source-target-source RTT involves083

two stages, i.e., the source-to-target translation084

(S2T) performed by the target NMT model and085

target-to-source translation (T2S) performed by an086

auxiliary backward NMT model, we cannot decide087

whether the BLEU decrease is really caused by the088

target NMT model. As we can see from the ex-089

ample in Figure 1, the translation from xδ to y′δ is090

pretty good, but the translation from y′δ to x̂δ is re-091

ally poor. We can conclude that the BLEU decrease092

is actually caused by the auxiliary backward model093

and thus xδ is not the adversarial example for the094

target NMT model. Even if Zhang et al. (2021) try095

to mitigate this problem by fine-tuning the auxil-096

iary backward model on the test sets, we find this097

problem still remains. (2) They only generate the098

monolingual adversarial examples on the source099

side to attack the NMT model, without proposing100

methods on how to defend these adversaries and101

improve the robustness of the NMT model.102

To address the issues mentioned above, we first103

propose a new definition for NMT adversarial ex-104

amples based on Doubly Round-Trip Translation105

(DRTT), which can ensure the examples that meet106

our definition are the authentic adversarial exam-107

ples for the target NMT model. Specifically, apart108

from the source-target-source RTT (Zhang et al.,109

2021), we additionally consider a target-source-110

target RTT on the target side. The main intuition is111

that an effective adversarial example for the target112

NMT model shall cause a large BLEU decrease on113

the source-target-source RTT while maintaining a114

small BLEU decrease on target-source-target RTT.115

Based on this definition, we craft the candidate ad-116

versarial examples with the source-target-source117

RTT as Zhang et al. (2021), and then pick out the 118

authentic adversaries with the target-source-target 119

RTT. Furthermore, to solve the second problem, we 120

introduce the masked language models (MLMs) to 121

construct the bilingual adversarial pairs by perform- 122

ing phrasal replacement on the generated monolin- 123

gual adversarial examples and the original target 124

sentences synchronously, which are then utilized to 125

train the NMT model directly. Experiments on both 126

clean and noise test sets (including five types of 127

artificial and nature noise) show that the proposed 128

approach not only generates effective adversarial 129

examples, but also improves the robustness of the 130

NMT model over all kinds of noises. To conclude, 131

our main contributions are summarized as follows: 132

• We propose a new definition for NMT adversarial 133

examples based on the doubly round-trip transla- 134

tion, which can pick out the authentic adversarial 135

examples for the target NMT model. 136

• We introduce the masked language models to 137

construct the bilingual adversarial pairs, which 138

are then utilized to improve the robustness of the 139

NMT model. 140

• Extensive experiments show that the proposed 141

approach not only improves the robustness of the 142

NMT model on both artificial and natural noise, 143

but also performs well on the clean test sets. 144

2 Related Work 145

2.1 Adversarial Examples for NMT 146

The previous approaches for constructing NMT 147

adversarial examples can be divided into two 148

branches: white-box and black-box. The white- 149

box approaches are based on the assumption that 150

the architecture and parameters of the NMT model 151

are accessible (Ebrahimi et al., 2018; Cheng et al., 152

2019; Chen et al., 2021). These methods usually 153

achieve superior performance since they can con- 154

struct and defend the adversaries tailored for the 155

target NMT model. However, in the real appli- 156

cation scenario, it is always impossible for us to 157

access the inner architecture of the model. On the 158

contrary, the black-box approaches never access 159

to inner architecture and parameters of the model. 160

In this line, Belinkov and Bisk (2017) rely on syn- 161

thetic and naturally occurring language error to 162

generate adversarial examples. Recently, Zhang 163

et al. (2021) craft adversarial examples beyond the 164

meaning-preserving restriction with the round-trip 165
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𝐱: 这种做法比较合理。

𝐱!:这种做法比较实事求是。

𝐲!
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𝐲: this approach is reasonable.

𝐱#:这种做法比较实事求是。 𝐲!: this approach is derving truth from fact.

T-MLM replacement

Figure 2: The overview of the bilingual adversarial pair generation under the definition of DRTT. (x,y) denote
the source and target sentence. (xδ,yδ) denote the generated bilingual adversarial pair.

translation. Our work builds on top of Zhang et al.166

(2021), and it applies the doubly round-trip transla-167

tion to generate the authentic adversarial examples.168

2.2 Masked Language Model169

Masked Language Model (MLM) (Devlin et al.,170

2018; Conneau and Lample, 2019) has achieved171

state-of-the-art results on many monolingual and172

cross-lingual language understanding tasks. MLM173

randomly masks some of the tokens in the input,174

and then predicts those masked tokens. Recently,175

some work adopt MLM to do word replacement176

as a data augmentation strategy. Jiao et al. (2019)177

leverage an encoder-based MLM to predict word178

replacements for single-piece words. Liu et al.179

(2021) construct augmented sentence pairs by sam-180

pling new source phrases and corresponding target181

phrases with transformer-based MLMs. Following182

Liu et al. (2021), we introduce the transformer-183

based MLMs to construct the bilingual adversarial184

pairs. The main difference between our work and185

Liu et al. (2021) is that we choose to mask the ad-186

versarial phrases or words at each step and Liu et al.187

(2021) mask the words randomly.188

3 Method189

In this section, we first describe our proposed def-190

inition for NMT adversarial examples, and then191

present the way of constructing the bilingual adver-192

sarial pairs.193

3.1 Adversarial Examples for NMT194

For clarity, we first introduce the traditional def-195

initions for NMT adversarial examples, i.e., the196

definitions based on the meaning-preserving and197

RTT, and then elaborate our new definition based 198

on DRTT. We will use the following notations: X 199

and Y refer to the source and target training space, 200

respectively. Mx→y is the target NMT model 201

trained from source-to-target mapping f : X → Y , 202

while My→x is an auxiliary target-to-source model 203

trained from mapping g : Y → X . x ∈ X and y ∈ 204

Y denotes the source and target sentence, respec- 205

tively. xδ and yδ denote the perturbed version of 206

x and y, respectively. y′ = f(x) and y′δ = f(xδ) 207

are the forward translations generated by Mx→y. 208

x̂ = g(f(x)) and x̂δ = g(f(xδ)) are reconstructed 209

sentences generated with the source-target-source 210

RTT. ŷ = f(g(y)) and ŷ′δ = f(g(y′δ)) are recon- 211

structed sentences generated with the target-source- 212

target RTT. sim(·, ·) is a function for evaluating 213

the similarity of two sentences, and we use BLEU 214

(Papineni et al., 2002a) as the similarity function 215

in this paper. 216

Definition based on meaning-preserving. Sup- 217

pose Mx→y translates the input x and its perturbed 218

version xδ to y′ and y′δ, respectively. xδ is an 219

adversarial examples when it meets: 220{
sim(x,xδ) > η,
sim(y,y′)− sim(y,y′δ) > α,

(1) 221

where η is a threshold to ensure a high similarity be- 222

tween xδ and x, so that they can meet the meaning- 223

preserving restriction. A larger α indicates a more 224

strict definition of the NMT adversarial example. 225

Definition based on RTT. Zhang et al. (2021) 226

point out that the perturbation δ may change, even 227

reverse the meaning of x to some extent, so it is in- 228

correct to use y as a target sentence to measure the 229
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semantic destruction on the target side. Therefore,230

they introduce the definition based on RTT which231

gets rid of the meaning-preserving restriction. The232

percentage decrease of similarity between x and xδ233

through the source-target-source RTT is regarded234

as the adversarial effect dsrc(x,xδ), is calculated235

as:236

dsrc(x,xδ) =
sim(x, x̂)− sim(xδ, x̂δ)

sim(x, x̂)
. (2)237

A large dsrc(x,xδ) indicates that the perturbed sen-238

tence xδ can not be well reconstructed by RTT239

when compared to the reconstruction quality of the240

original source sentence x, so xδ is likely to be an241

adversarial example.242

Definition based on DRTT. In Eq.(2), sim(x, x̂)243

is a constant value given the input x and the NMT244

models. Therefore, the dsrc(x,xδ) is actually deter-245

mined by −sim(xδ, x̂δ), which can be interpreted246

as the reconstruction error between xδ and x̂δ.247

As we all known, the reconstruction error can be248

caused by two independent translation processes:249

the forward translation process f performed by the250

target NMT model and the backward translation251

process g performed by the auxiliary backward252

model. Therefore, there may be three occasions253

when we get a large dsrc(x,xδ): 1) A large se-254

mantic destruction in f(xδ) and a small semantic255

destruction in g(y′δ); 2) A large semantic destruc-256

tion in f(xδ) and a large destruction in g(y′δ); 3)257

A small semantic destruction in f(xδ) and a large258

destruction in g(y′δ). We can conclude xδ is an259

adversarial example for the target NMT model in260

occasion 1 and 2, but not in occasion 3. Therefore,261

the definition based on RTT may contain many fake262

adversarial examples.263

To address this problem, we add a target-source-264

target RTT starting from the target side. The per-265

centage decrease of the similarity between y and266

y′δ through the target-source-target RTT, denoted267

as dtgt(y,y
′
δ), is calculated as:268

dtgt(y,y
′
δ) =

sim(y, ŷ)− sim(y′δ, ŷ
′
δ)

sim(y, ŷ)
. (3)269

We take both dsrc(x,xδ) and dtgt(y,y
′
δ) into con-270

sideration and define xδ as an adversarial examples271

when it meets:272 {
dsrc(x,xδ) > β,
dtgt(y,y

′
δ) < γ.

(4)273

The interpretation is intuitive: if dtgt(y,y
′
δ) is274

lower than the threshold γ, we can conclude that275

the reconstruction error between y′δ and ŷ′δ is very 276

low. Namely, we can ensure a small semantic 277

destruction of g(y′δ). Therefore, if dsrc(x,xδ) is 278

larger than β, we can conclude the BLEU decrease 279

through the source-target-source RTT is caused by 280

the target NMT model, so that we can conclude xδ 281

is an authentic adversarial example. 282

3.2 Bilingual Adversarial Pair Generation 283

Since the proposed definition breaks the meaning- 284

preserving restriction, the adversarial examples 285

may be semantically distant from the original 286

source sentence. Thus, we cannot directly pair the 287

adversarial examples with the original target sen- 288

tences. In this section, we propose our approach 289

for generating bilingual adversarial pairs, which 290

performs the following three steps: 1) Training 291

Masked Language Models: using monolingual and 292

parallel data to train masked language models; 2) 293

Phrasal Alignment: obtaining alignment between 294

the source and target phrases; 3) Phrasal Replace- 295

ment: generating bilingual adversarial pairs by per- 296

forming phrasal replacement on the source and 297

target sentences synchronously with the trained 298

masked language models. The whole procedure is 299

illustrated in Figure 2. 300

Training Masked Language Models. We train 301

two kinds of masked language models, namely 302

monolingual masked language model (M-MLM) 303

and translation masked language model (T-MLM), 304

for phrasal replacement on the source and target 305

sentence, respectively. The M-MLM introduces 306

a special [MASK] token which randomly masks 307

some of the tokens from the input in a certain prob- 308

ability, and the objective is to predict the original 309

masked words. Following Liu et al. (2021), we 310

train the M-MLM on monolingual datasets and use 311

an encoder-decoder Transformer model (Vaswani 312

et al., 2017) to tackle the undetermined number 313

of tokens during generation. The T-MLM takes 314

the identical model structure and similar training 315

process as the M-MLM. The main difference is 316

that T-MLM relies on the parallel corpus. T-MLM 317

concatenates parallel sentences by a special token 318

[SEP] and only masks words on the target side. 319

The objective of T-MLM is to predict the original 320

masked words on the target side. 321

Phrasal Alignment. Phrasal alignment projects 322

each phrase in the source sentence x to its align- 323

ment phrase in the target sentence y. We first gen- 324

erate the alignment between x and y using FastAl- 325
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ign2. Then we extract the phrase-to-phrase align-326

ment through running the phrase extraction algo-327

rithm of NLTK3, and get a mapping function p.328

Phrasal Replacement. Given the source sen-329

tence x = {s1, s2, . . . , sn} and the target sentence330

y = {t1, t2, . . . , tm}, si is the i-th phrase in x, tp(i)331

is the p(i)-th phrase in y which is aligned to si by332

the mapping function p. we construct the candidate333

bilingual adversarial pairs (xδ,yδ) by performing334

the phrasal replacement on (x,y) repeatedly until335

c percentage phrases in x have been replaced.336

Here, we take the replacing process for si and337

tp(i) as an example. Considering the not attacked338

yet phrase si in x, we first build a candidate set339

Ri = {r1i , r2i , . . . , rki } for si with the prepared340

M-MLM. Specifically, we extract the k candidate341

phrases with top k highest predicted probabilities342

by feeding x\i into M-MLM, where x\i is the343

masked version of x by masking si. We select344

the best candidate r∗i for si as:345

r∗i = arg max
j∈{1,··· ,k}

dsrc(x,x
\i:j), (5)346

where x\i:j is the noised version by replacing si347

with rji . With si being replaced, we need to replace348

tp(i) to ensure they are still semantically aligned.349

To this end, we feed the concatenation of x\i:∗ and350

y\p(i) into T-MLM, and choose the output phrase351

with the highest predicted probability as the substi-352

tute phrase for tp(i).353

Finally, to decide whether (xδ,yδ) is an authen-354

tic bilingual adversarial pair for the target NMT355

model, we perform a target-source-target RTT start-356

ing from the target side and calculate dtgt(y,y
′
δ)357

between y′δ and its reconstruction sentence ŷ′δ ac-358

cording to Eq.(4). We take (xδ,yδ) as an authentic359

bilingual adversarial pair if dsrc(x,xδ) is greater360

than β and dtgt(y,y
′
δ) is less than γ. We formalize361

these steps in Algorithm 1 in Appendix A.362

4 Experimental Settings363

We evaluate our model under artificial noise in364

Zh→En and En→De translation tasks, and under365

natural noise in En→Fr translation task. The details366

of the experiments are elaborated in this section.367

2https://github.com/clab/fast_align
3https://github.com/nltk/nltk/blob/

develop/nltk/translate/phrase_based.py

4.1 Dataset 368

For the Zh→En task, we use the LDC corpus with 369

1.25M sentence pairs for training4, NIST06 for val- 370

idation, and NIST 02, 03, 04, 05, 08 for testing. 371

For the En→De task, we use the publicly available 372

dataset WMT’17 En-De (5.85M) for training, and 373

take the newstest16 and newstest17 for validation 374

and testing, respectively. In En→Fr task, we follow 375

Liu et al. (2021) to combine the WMT’19 En→Fr 376

(36k) robustness dataset with Europarl-v7 (2M) En- 377

Fr pairs for training. We take the development set 378

of the MTNT (Michel and Neubig, 2018) for val- 379

idation and the released test set of the WMT’19 380

robustness task for testing. As for MLMs, we use 381

the Chinese sentences of the parallel corpus to train 382

the Chinese M-MLM, and use the whole parallel 383

corpus to train Zh-En T-MLM. We train the English 384

M-MLM with News Commentary and News Crawl 385

2010 (7.26M in total) monolingual corpus follow- 386

ing Liu et al. (2021). T-MLM for En-De and En-Fr 387

are trained with their original parallel corpus. 388

4.2 Model Configuration and Pre-processing 389

The MLMs and NMT models in this paper take 390

Transformer-base (Vaswani et al., 2017) as the 391

backbone architecture. We implement all mod- 392

els base on the open-source toolkit Fairseq5. As 393

for hyper-parameters, β is set to 0.01 and γ is set 394

to 0.5 for Zh→En. For En→De and En→Fr, β 395

and γ is set to 0.5 and 0.5, respectively. The re- 396

placement ratio c is set to 0.2 following Liu et al. 397

(2021), and the candidate number k is set to 1. 398

The details of model configuration and the number 399

of the generated adversarial examples are shown 400

in the Appendix B. Following previous work, the 401

Zh→En performance is evaluated with the BLEU 402

(Papineni et al., 2002b) score calculated by multi- 403

bleu.perl script. For En→De and En→Fr, we use 404

SacreBLEU (Post, 2018) for evaluation6. 405

4.3 Comparison Methods 406

To test the effectiveness of our model, we take the 407

following three systems as comparison methods: 408

Baseline: The vanilla Transformer model for 409

NMT (Vaswani et al., 2017). In our work, we 410

4It is extracted from LDC data, including LDC 2002E18,
2003E07, 2003E14, 2004T08 and 2005T06.

5https://github.com/pytorch/fairseq
6nrefs:1 | case:mixed | eff:no | tok:intl | smooth:exp | ver-

sion:2.0.0
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Noise Model Zh→En En→De
0.1 0.2 0.3 AVG 0.1 0.2 0.3 AVG

Deletion

baseline 32.98 26.59 20.54 26.70 19.82 13.71 9.33 14.29
+TCWR 34.47 27.76 21.38 27.87 19.61 13.77 9.08 14.15
+RTT 33.84 27.43 20.74 27.33 19.61 13.48 9.27 14.12
+DRTT(ours) 35.10∗∗ 28.12∗ 22.07∗∗ 28.43 19.83 14.22 9.48 14.51

Swap

baseline 36.14 32.88 30.21 33.08 21.47 16.97 13.21 17.22
+TCWR 37.67 34.15 31.47 34.43 20.52 16.31 12.80 16.54
+RTT 37.14 34.34 31.42 34.30 20.23 15.47 11.52 15.74
+DRTT(ours) 37.90∗ 34.65 31.92∗ 34.82 21.51∗∗ 17.36∗∗ 12.91∗∗ 17.26

Insertion

baseline 39.96 39.10 38.41 39.16 26.86 26.54 25.48 25.96
+TCWR 41.32 40.07 39.60 40.33 26.27 25.55 24.33 25.38
+RTT 41.75 40.82 39.90 40.82 26.18 25.06 23.68 24.97
+DRTT(ours) 41.98 40.90 40.34∗ 41.07 27.32∗∗ 26.40∗∗ 25.71∗∗ 26.48

Rep src

baseline 35.25 29.69 24.64 29.86 21.65 17.40 14.45 17.83
+TCWR 35.73 30.48 25.65 30.62 21.57 17.71 14.95 18.08
+RTT 35.63 30.17 25.86 30.55 21.06 17.01 14.36 17.48
+DRTT(ours) 35.81 30.18 25.70 30.56 21.51∗ 17.22 14.33 17.69

Rep both

baseline 22.33 18.77 15.98 19.03 25.52 22.68 20.07 22.76
+TCWR 22.98 19.69 17.14 19.94 25.44 22.64 20.43 22.84
+RTT 22.92 19.56 16.76 19.75 25.30 22.76 20.66 22.91
+DRTT(ours) 23.37∗∗ 20.23∗∗ 17.37∗∗ 20.32 26.19∗ 23.31∗∗ 20.98 23.49

Table 1: The BLEU scores (%) for forward-translation on noise test sets with noise ratio 0.1, 0.2 and 0.3, and ‘AVG’
denotes the average BLEU (%) on all noise ratios. We re-implement all baselines to eliminate the discrepancy
caused by MLMs and the auxiliary backward model. ‘∗/∗∗’: significantly (Koehn, 2004) better than the RTT with
p < 0.05 and p < 0.01, respectively.

use the baseline model to perform the forward and411

backward translation in the round-trip translation.412

TCWR: Liu et al. (2021) propose the approach413

of translation-counterfactual word replacement414

which creates augmented parallel translation cor-415

pora by random sampling new source and target416

phrases from the masked language models.417

RTT: Zhang et al. (2021) propose to generate ad-418

versarial examples with the single round-trip trans-419

lation. However, they do not provide any approach420

for generating the bilingual adversarial pairs. To421

make a fair comparison, we generate the bilingual422

adversarial pairs from their adversarial examples423

in the same way as ours.424

5 Results and Analysis425

5.1 Main Results426

Artificial Noise. To test robustness on noisy in-427

puts, we follow Cheng et al. (2018) to construct five428

types of synthetic perturbations with different noise429

ratios on the standard test set7: 1) Deletion: some430

words in the source sentence are randomly deleted;431

2) Swap: some words in the source sentence are432

randomly swapped with their right neighbors; 3) In-433

sertion: some words in the source sentence are ran-434

7For each test set, we report three results with noise ratio
as 0.1, 0.2 and 0.3, respectively. Noise ratio 0.1 means 10
percent of the words in the source sentence are perturbed.

domly repeated; 4) Rep src: short for ‘replacement 435

on src’. Some words in the source sentence are ran- 436

domly replaced with their relevant word according 437

to the similarity of word embeddings8; 5) Rep both: 438

short for ‘replacement on both’. Some words in the 439

source sentence and their aligned target words are 440

randomly replaced by masked language models 9. 441

Table 1 shows the BLEU scores of forward trans- 442

lation results on Zh→En and En→De noise test 443

sets. For Zh→En, our approach achieves the best 444

performance on 4 out of 5 types of noise test sets. 445

Compared to RTT, DRTT achieves the improve- 446

ment up to 1.1 BLEU points averagely on deletion. 447

For En→De, DRTT also performs best results on 448

all types of noise except Rep src. We suppose the 449

reason is Rep src sometimes reverses the semantics 450

of the original sentence as we claimed above. 451

Since the perturbations we introduced above may 452

change the semantics of the source sentence, it may 453

be problematic for us to calculate the BLEU score 454

against the original reference sentence in Table 1. 455

Therefore, following Zhang et al. (2021), we also 456

report the BLEU score between the source sentence 457

and its reconstructed version through the source- 458

target-source RTT, which is named as RTT BLEU. 459

8https://github.com/Embedding/
Chinese-Word-Vectors
https://nlp.stanford.edu/projects/glove/

9Each sentence has four references on NIST test sets, we
only choose sb0 for replacement.
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Noise Model Zh→En En→De
0.1 0.2 0.3 AVG 0.1 0.2 0.3 AVG

Deletion

baseline 35.31 31.53 28.22 31.69 21.42 19.90 17.42 19.58
+TCWR 35.02 31.74 28.45 31.74 22.45 20.48 18.66 20.53
+RTT 35.23 32.12 28.03 31.79 23.34 22.30 20.36 22.00
+DRTT(ours) 36.63∗ 32.96∗ 29.94∗∗ 33.18 24.06∗∗ 23.02∗∗ 21.18∗∗ 22.75

Swap

baseline 28.63 22.82 18.21 23.22 19.01 15.92 14.25 16.39
+TCWR 31.01 26.03 22.25 26.43 19.56 16.65 14.95 17.05
+RTT 31.07 26.06 22.08 26.40 20.51 17.63 16.17 18.10
+DRTT(ours) 32.03∗ 26.95∗∗ 23.71∗∗ 27.56 21.40∗∗ 18.68∗∗ 17.53∗∗ 19.20

Insertion

baseline 30.13 23.57 17.95 23.88 19.57 16.24 13.12 16.31
+TCWR 30.12 23.76 18.02 23.97 20.73 17.27 14.12 17.37
+RTT 29.72 22.75 17.87 23.45 20.79 16.81 13.80 17.13
+DRTT(ours) 31.84∗∗ 24.42∗∗ 19.43∗∗ 25.23 21.24∗∗ 17.53∗∗ 14.12∗ 17.63

Rep src

baseline 33.02 28.15 23.26 28.14 20.56 18.40 16.53 18.50
+TCWR 32.83 28.11 23.38 28.11 21.43 19.22 17.10 19.25
+RTT 32.65 27.23 23.05 27.65 22.25 20.14 18.45 20.28
+DRTT(ours) 34.76∗∗ 29.04∗∗ 25.06∗∗ 29.62 22.74∗ 20.59∗ 18.87∗ 20.73

Rep both

baseline 38.25 36.17 35.48 36.63 23.62 23.23 22.13 22.99
+TCWR 38.38 36.92 35.44 36.91 24.84 24.77 23.34 24.32
+RTT 39.13 36.92 35.23 37.09 25.51 24.77 24.12 24.80
+DRTT(ours) 40.07∗ 38.34∗∗ 37.22∗∗ 38.54 26.28∗∗ 25.26∗ 24.87∗∗ 25.47

Table 2: The RTT BLEU scores (%) for round-trip translation on noise test sets. ‘∗/ ∗ ∗’: significantly better than
RTT with p < 0.05 and p < 0.01, respectively.

The intuition behind it is that: a robust NMT model460

translates noisy inputs well and thus has minor461

shifting on the round-trip translation, resulting in462

a high BLEU between inputs and their round-trip463

translation results. Following Zhang et al. (2021),464

we fine-tune the backward model with its test set to465

minimize the impact of the T2S process. As shown466

in Table 2, DRTT outperforms the other methods467

on all types of noise on Zh→En and En→De tasks.468

Considering the results of Table 1 and Table 2 to-469

gether, DRTT significantly improves the robustness470

of NMT models under various artificial noises.471

Natural Noise. In addition to the artificial noise,472

we also test the performance of our model on473

WMT’19 En→Fr robustness test set which con-474

tains various noise in real-world text, e.g., exhibits475

typos, grammar errors, code-switching, etc. As476

shown in Table 3, DRTT yields improvements of477

1.25 BLEU compared to the baseline, it proves478

that our approach also performs well in real noise479

scenario. Besides, DRTT achieves 0.63 BLEU im-480

provement over RTT by filtering out 10% of fake481

adversarial examples (according to Table 6 in Ap-482

pendix B), which demonstrates that filtering out483

fake adversarial examples further improves the ro-484

bustness of the model.485

5.2 Effectiveness of Adversarial Examples486

In this sub-section, we evaluate the effectiveness487

of the generated adversarial examples on attacking488

the victim NMT model (i.e., the target NMT model489

Method En→Fr BLEU∆

baseline 35.11
+TCWR 35.64 +0.53
+RTT 35.73 +0.62

+DRTT(ours) 36.36∗ +1.25

Table 3: The BLEU scores (%) on the WMT’19
En→Fr robustness task. ‘BLEU∆’ denotes the gain of
BLEU compared to baseline. ‘∗/∗∗’: significantly bet-
ter than RTT with p < 0.05 and p < 0.01, respectively.

without being trained on the generated adversarial 490

pairs). In our approach, γ in Eq.(4) is a hyper- 491

parameter to control the strictness of our definition 492

on generating adversarial examples. Thus, we eval- 493

uate the effectiveness of adversarial examples by 494

studying the translation performance of the victim 495

NMT model on the set of adversarial pairs gener- 496

ated with different γ. That is to say, if a sample 497

is an adversary, it should destroy the translation 498

performance drastically, resulting in a low BLEU 499

score between the translation result and its paired 500

target sentence. The average BLEU scores of the 501

victim model on the different adversarial pair sets 502

(generated with γ from -10 to 1 on NIST 06) are 503

shown in Figure 3. Specifically, the average BLEU 504

on the adversarial sets generated with γ = −10 is 505

8.0. When we remove the restriction of γ, i.e., the 506

DRTT is degenerated into RTT, the average BLEU 507

for the constructed adversarial examples reaches 508

up to 11.2. This shows that the adversarial exam- 509

ples generated with lower γ (more strict restriction) 510
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Model Zh→En En→De
MT06 MT02 MT03 MT04 MT05 MT08 AVG newstest16 newstest17

baseline 44.59 44.38 43.65 45.37 44.42 35.80 42.72 29.11 27.94
+TCWR 44.55 45.99 44.68 45.77 44.16 34.98 43.12 29.13 27.98
+RTT 44.62 45.13 44.01 46.00 44.96 35.18 43.06 29.06 27.42

+DRTT(ours) 44.76 45.01 45.16∗∗ 46.63∗∗ 44.78 35.82∗ 43.48 29.30 28.37∗∗

Table 4: The BLEU scores (%) on NIST Zh→En and WMT17 En→De. ‘∗/ ∗ ∗’: significantly better than RTT
with p < 0.05 and p < 0.01 , respectively.

Adversarial Examples BLEU

𝜸 = 1
𝜸 = -1

𝜸 = -2
𝜸 = -3

𝜸 = -5
𝜸 = -10

Figure 3: Black spots represent the distribution of ad-
versarial samples. The darker color indicates more ef-
fective adversarial examples generated with lower γ.

attack the model more successfully. Therefore,511

We can select more effective adversarial examples512

compared to Zhang et al. (2021) by lowering the513

threshold γ to create a more strict definition.514

5.3 Clean Test set515

Adding a large amount of noisy parallel data to516

clean training data may harm the NMT model per-517

formance on the clean test sets seriously (Khayral-518

lah and Koehn, 2018). In this sub-section, we test519

the performance of the proposed model on the clean520

test sets and the results are presented in Table 4.521

DRTT achieves the best translation performance522

on Zh→En and En→De clean test sets. It demon-523

strates that our approach not only improves the524

robustness of the NMT model, but also maintains525

its good performance on clean test sets.526

5.4 Case Study527

In Table 5, we present some cases from Zh-En ad-528

versarial pairs generated by our approach. From the529

case 1, we can see “拥护” in the source sentence530

is replaced by its antonym “反对”, which reverse531

the meaning of the original sentence, and DRTT532

makes a corresponding change in the target sen-533

tence by replacing “support” with “oppose”. In the534

other case, DRTT replaces “良好” by its synonym535

“不错”, thus, “satisfactory” in the target sentence536

x : 我们坚决拥护政府处理这一事件所采取的措施。
y : we resolutely support measures taken by our
government in handling this incident.
xδ : 我们坚决反对政府处理这一案件所采取的举措。
yδ : we resolutely oppose measures taken by our
government in handling this case.

x : 中美双方认为,当前世界经济形势是良好的。通货膨胀

继续保持低水平,大多数新兴市场经济体的经济增长强劲。

y : china and the united states agreed that the present
economic situation in the world is satisfactory, with
inflation kept at a low level and most of the new market
economies growing strong.
xδ : 俄美双方认为,当前世界贸易势头是不错的。通货膨胀

继续保持低速度,大多数新兴市场经济体的经济发展强劲。

yδ : russia and the united states agreed that the present
trade trend in the world is satisfactory, with inflation
kept at a low rate and most of the new market economies
developing strong.

Table 5: Case study for the proposed approach. The
words in red and blue color represents the augmented
words on the source and target side, respectively.

remains unchanged. From these cases, we find that 537

DRTT can reasonably substitute words in source se- 538

quences based on the contexts and correctly modify 539

the corresponding target words synchronously. 540

6 Conclusion and Future Work 541

We propose a new definition for NMT adversarial 542

examples based on Doubly Round-Trip Translation, 543

which can ensure the examples that meet our def- 544

inition are the authentic adversarial examples for 545

the target NMT model. Additionally, based on this 546

definition, we introduce the masked language mod- 547

els to generate bilingual adversarial pairs, which 548

can be used to improve the robustness of the NMT 549

model substantially. Extensive experiments on both 550

the clean and noise test sets (including artificial and 551

nature noise) show that our approach not only im- 552

proves the robustness of the NMT model but also 553

performs well on the clean test sets. We will ex- 554

plore improving the robustness of target and back- 555

ward models simultaneously in the future. 556
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A Bilingual Adversarial Pair Generation692

Algorithm 1: Bilingual Adversarial Pair
Generation
Input: A sequence pair (x, y), a sampling

probability c, an alignment mapping
p, candidate words k, masked
language models M-MLM and
T-MLM, thresholds β and γ.

Output: A bilingual adversarial pair
(xδ, yδ)

1 Function BilAdvGen(x, y):
2 while i ≤ len(x) ∗ c do
3 rji ←M-MLM (x\i);
4 x\i:j ← Replace(x, rji )

5 r∗i ← arg max dsrc(x, x
\i:j) (2);

6 x\i:∗ ← Replace(x, r∗i )
7 Get aligned index p(i);
8 wp(i) ← T-MLM (x\i:∗, y\p(i));
9 yδ ← Replace(y, wp(i))

10 i← i+ 1;
11 end
12 if dsrc(x, xδ) > β and dtgt(y, yδ) < γ then
13 return xδ, yδ
14 end

B Implementation Details693

As for Zh→En, we apply the separate byte-pair694

encoding (BPE) (Sennrich et al., 2016) encoding695

with 30K merge operations for Zh and En, respec-696

tively, the peak learning rate of 5e-4, and the train-697

ing step is 100K. For En→De and En→Fr, we ap-698

ply the joint BPE with 32K merge operations, the699

learning rate of 7e-4 and the training step is 200K.700

The dropout ratio is 0.1. We use Adam optimizer701

(Kingma and Ba, 2014) with 4k warm-up steps.

Method Zh→En En→De En→Fr

original 1252977 5859951 2037962
-RTT 1236485 2670044 1639661
-DRTT(ours) 956308 2336285 1466756

Table 6: The statistics of the number of adversarial
examples generated by different method. RTT denotes
generated with Eq.(2). DRTT denotes generated with
Eq.(4).
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