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Abstract

Parametric manifold optimization problems frequently arise in various machine learning tasks, where
state functions are defined on infinite-dimensional manifolds. We propose a unified accelerated natural
gradient descent (ANGD) framework to address these problems. By incorporating a Hessian-driven
damping term into the manifold update, we derive an accelerated Riemannian gradient (ARG) flow
that mitigates oscillations. An equivalent first-order system is further presented for the ARG flow,
enabling a unified discretization scheme that leads to the ANGD method. In our discrete update, our
framework considers various advanced techniques, including least squares approximation of the update
direction, projected momentum to accelerate convergence, and efficient approximation methods through
the Kronecker product. It accommodates various metrics, including Hs, Fisher-Rao, and Wasserstein-2
metrics, providing a computationally efficient solution for large-scale parameter spaces. We establish
a convergence rate for the ARG flow under geodesic convexity assumptions. Numerical experiments
demonstrate that ANGD outperforms standard NGD, underscoring its effectiveness across diverse deep
learning tasks.

Keywords— Natural gradient, Parametric manifold, Riemannian optimization, Accelerated flow, Ma-
chine learning

1 Introduction

We focus on the parametric optimization problem of the form

min
θ∈Rp

L(ρθ), (1)

where ρ(·) : Θ → M is a mapping from the parameter space Θ ⊆ Rp to the state space M, which inherently
exhibits the structure of an infinite-dimensional Riemannian manifold. The loss functional is given as L(·) :
M → R. Classical Riemannian optimization treats θ as residing on a specific manifold, while in parametric
manifold optimization, ρ lies on the manifold M and is parameterized by θ. Typically, ρθ is produced by a
deep neural network with input x ∈ Rd and parameters θ ∈ Rp. This framework encompasses a wide range of
machine learning and data analysis problems, where M can be specialized to function spaces such as Sobolev
spaces Hs or probability measures P(Rp). Two classic examples of this problem are the physics-informed
neural networks (PINNs) [22, 23] and variational Monte Carlo (VMC) methods [21] for solving Schrödinger
equations.
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1.1 Literature Review

Gradient flow is helpful in the analysis and design of accelerated optimization algorithms. The con-
tinuous limit of the Nesterov’s acceleration method [19] is known as the accelerated gradient flow [26]. A
Hessian-driven damping term is incorporated into high-resolution ODE in [25]. A convergence analysis of
accelerated ODE with Hessian-driven damping is provided in [5]. The extension of accelerated gradient
flow on Riemannian manifolds has been extensively studied. Gradient flow on the manifold is introduced to
analyze the Riemannian Nesterov accelerated gradient method in [1]. Accelerated information gradient flow
[29] extends it to infinite-dimensional Riemannian manifolds. Minimization of the KL divergence using the
Nesterov acceleration method from a continuous perspective is explored in [14]. The Wasserstein-2 gradient
flow and its parametrization are studied in [12, 30].

Implementing the traditional gradient descent method for high-dimensional nonconvex problems (1) is a
significant challenge. For PDE-based optimization problems, traditional gradient descent algorithms suffer
from pathologies [28, 24]. Natural gradient methods are often used to enhance the performance of the gradient
descent algorithm by incorporating local curvature information, leading to faster convergence [15, 32, 6]. The
natural gradient method pulls back the curvature of θ to the manifold [2]. This adjustment allows for more
efficient search directions, overcoming some of the limitations of traditional gradient descent algorithm,
such as slow convergence or getting stuck in local minima. Several modifications of the natural gradient
method have been explored. The adaptively regularized natural gradient method [31] introduces an adaptive
damping term. General natural gradient descent methods for PDE-based problems are discussed in [20],
which formulates least squares problems for general metrics. The energy natural gradient method [17] is
proposed to accelerate the PINNs training from the perspective of an energy metric.

Recent advancements in natural gradient methods for probability distributions have largely focused on
the Fisher-Rao and Wasserstein-2 metrics. The computation of the natural gradient direction for the Fisher-
Rao metric is reformulated as a least squares problem in [8]. This approach is enhanced by incorporating
the projected momentum [9] (also known as the Kaczmarz method) to refine the solution. In the realm of
Wasserstein-2 natural gradient methods, a computationally efficient modification of the Wasserstein infor-
mation matrix is introduced by [12]. Additionally, Arbel et al. estimate the natural gradient by solving
a regularized mini-max problem [3], whereas the KL divergence is used to approximate the Wasserstein-2
natural gradient [18], thereby avoiding the intractable computation of the Wasserstein information matrix.

Various approximation methods have been proposed to reduce the computational cost of the natural
gradient methods. KFAC [16, 10] approximates the layer-wise information matrix using the Kronecker
decomposition, allowing its inverse to be computed efficiently as the product of the inverses of these smaller
matrices. Sketch-based methods [33] reduce the computational cost of matrix multiplication and inversion by
sampling rows or columns, enabling efficient approximations of natural gradient. The quasi-natural gradient
method [11] integrates LBFGS with natural gradient descent method to improve efficiency in statistical
learning problems. Layer-wise block-diagonal approximations [6] are used to approximate the information
matrix.

1.2 Our Contributions

In this paper, we propose a new accelerated natural gradient method to solve (1). Our main contributions
are as follows.

• We derive the natural gradient descent algorithm from a novel two-stage optimization process. The
first stage identifies an update flow on the manifold, while the second projects this flow onto the
parameter space for a discrete update scheme. This separation allows for distinct designs of the
natural gradient method in the manifold and parameter space. Though taking the metric of the
manifold into consideration [15], traditional natural gradient methods do not seek acceleration for the
first stage. We introduce an accelerated Riemannian gradient (ARG) flow to address this. A Hessian-
driven damping term, designed to mitigate oscillations and accelerate convergence, is incorporated into
the analysis of manifold-accelerated gradient flows for the first time. This ODE generalizes different
first-order acceleration methods with different choices of hyper-parameters. Theoretical analysis shows
that the ARG flow achieves a convergence rate of O(t−2) under geodesic convexity, strictly generalizing
Euclidean acceleration mechanisms while maintaining their characteristic decay properties.
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• We present a novel algorithmic framework that unifies projection across different metric spaces in the
second stage. This framework discretizes the update quantity of the ARG flow in the tangent space of
the manifold and maps it to the parameter space, resulting in a unified accelerated natural gradient
descent (ANGD) method. Consequently, the ANGD method achieves faster convergence compared
to traditional natural gradient descent methods [20]. Our approach generalizes several established
methods, including the least squares approximation [33], projected momentum [9], and KFAC [16].
These methods provide increased flexibility in selecting preconditioners and eliminate the need to
estimate metric-specific information matrices, thus improving computational efficiency, particularly for
metrics with intractable information matrices, such as the Hs metric (for s < 0) and the Wasserstein-2
metric. Numerical experiments demonstrate the substantial acceleration of the ANGD method over
non-accelerated natural gradient methods.

1.3 Notation

We use ⟨·, ·⟩ to denote the inner product in Euclidean space. The spatial and parameter gradients are
represented by ∇ and ∂θ, respectively. For a time-varying map and input, we abbreviate ∂tft(x)

∣∣
x=xt

as

∂tft(xt). The divergence of a vector-valued function F is written as ∇ ·F . The symbol ◦ is used to indicate
the composition of two maps. In integrals, we omit the differential notation dx when there is no risk of
ambiguity. We utilize x[i] to refer to the i-th coordinate of the vector x. Given a vector v ∈ Rn, its center
value is denoted by v = v −

∑n
i=1 v[i]/n, where the subtraction is applied element-wise.

1.4 Organization

The rest of this paper is organized as follows. In Section 2, we introduce the ARG flow with Hessian
drive damping. The general discretization scheme and approximation methods on the parameter space are
discussed in Section 3. Four kinds of specific metrics are considered in Section 4. In Section 5, we give the
convergence analysis for the ARG flow. Finally, we show the performance of the ANGD algorithms with
different numerical experiments in Section 6.

2 A Continuous-time Model for Accelerating NGD

In this section, we derive an accelerated gradient flow featuring Hessian-driven damping on the manifold
M. The trajectory of this flow exhibits a faster convergence rate and improved convergence properties com-
pared with gradient flow. This continuous-time model serves as an ideal template for developing accelerated
natural gradient descent methods on manifolds. Before proceeding, we provide a brief review of some basic
concepts related to the Riemannian metric.

2.1 Background on Riemannian metric

We begin by outlining the definition of Riemannian metrics on an (infinitely dimensional) Riemannian
manifold. Let M be a set of functions that are defined on Ω, a region in Rd. The tangent space of M at
ρ(x) ∈ M is defined as

TρM = {∂tρt(x)|t=0 : ρt(x) : (−1, 1)× Ω → R is a smooth curve in M and ρ0 = ρ}.

In this section, we omit the variable x of the ρ function when there is no risk of ambiguity. The cotangent
space T ∗

ρM is the dual space of TρM, consisting of linear functionals acting on TρM defined via the L2

inner product. The metric tensor G(ρ) : TρM → T ∗
ρM is an invertible and Hermitian linear operator. It

satisfies the following properties: 1)
∫
σ1G(ρ)σ2dx =

∫
σ2G(ρ)σ1dx for all σ1, σ2 ∈ TρM; 2)

∫
σG(ρ)σdx ≥ 0

for all σ ∈ TρM, with equality holding if and only if σ ≡ 0. We then define the Riemannian metric on TρM
as

gρ(σ1, σ2) =

∫
σ1G(ρ)σ2dx =

∫
Φ1G(ρ)−1Φ2dx, ∀σ1, σ2 ∈ TρM,
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where Φi = G(ρ)σi. Given a metric, we can define the Riemannian distance between two elements ρ0, ρ1 ∈ M
as dist(ρ0, ρ1)

2 = inf
∫ 1

0
gρt(∂tρt, ∂tρt)dt, where the infimum is taken over all smooth curves ρt : [0, 1] → M

connecting ρ0 and ρ1.
Then we extend the concept of the Riemannian gradient from finite-dimensional Riemannian manifolds to

the infinite-dimensional case following [7]. We introduce some basic notation about calculus variations. The
L2 first variation for a functional L(ρ) : L2 → R with respect to ρ is as δL

δρ , which is defined as the function

such that lim
ϵ→0

L(ρ+ϵσ)−L(ρ)
ϵ =

∫
δL
δρ σ, holds for any σ ∈ L2. For any given ρ0 ∈ L2, we denote δL

δρ

∣∣∣
ρ=ρ0

by δL
δρ0

when there is no ambiguity. The first order variation with respect to a function h(ρ)(x) : L2 × Rd → R is
given as δh

δρ (x, y) =
δ
δρ

∫
h(y)δ(x− y)dy, where δ is the Dirac delta function. We denote the canonical action

of a tangent field h(ρ)(x) to a smooth functional L(ρ) as h ◦ L(ρ) =
∫
δE
δρ (x) · h(ρ)(x)dx.

Further, we define the directional variational derivative of a smooth linear mapping A(ρ) : TρM → T ∗
ρM.

For any σ ∈ TρM, the directional variational derivative ∂A(ρ)
∂ρ ·σ : TρM → T ∗

ρM is defined as
[
∂A(ρ)
∂ρ · σ

]
τ =

limϵ→0
A(ρ+ϵσ)τ−A(ρ)τ

ϵ , for any fixed τ ∈ TρM. This definition can be naturally extended to smooth linear
mappings A(ρ) : T ∗

ρM → TρM. The Riemannian gradient of a smooth functional L(ρ) on M is given as

gradL(ρ) = G(ρ)−1 δL
δρ .

The objects ρ in this paper fall into two types, with their tangent and cotangent spaces exhibiting different
properties.

1. ρ as a PDE-based model. In this case, we primarily consider ρ ∈ Hs(Ω) (with s being an integer),
where Ω is a bounded open domain or the entire Euclidean space Rd. The Sobolev space M = Hs(Ω)
is a Hilbert space, with the tangent space TρM = Hs(Ω) and the cotangent space T ∗

ρM = L2(Ω).

2. ρ as a probability distribution. Define the set of smooth probability densities on Ω as M =
P(Ω) = {ρ ∈ C∞(Ω) :

∫
Ω
ρdx = 1, ρ ≥ 0}, where Ω is an open set in Rd. Here, C∞(Ω) denotes the

set of smooth functions defined on Ω. In this case, it holds that TρM =
{
σ ∈ C∞(Ω) :

∫
σdx = 0

}
,

T ∗
ρM = C∞(Ω)/R. For this case, we mainly consider the Fisher-Rao and Wasserstein-2 metric.

2.2 Accelerated Gradient Flow in Riemannian Manifolds

We start with an optimization problem in finite-dimensional Euclidean space:

min
ϱ∈Rp

ℓ(ϱ), (2)

where ℓ is a differentiable function. The gradient descent method updates ϱ by following the steepest
update direction, with the continuous counterpart described by ϱ̇t + ∇ℓ(ϱt) = 0. Nesterov proposed an
accelerated method (NAG) to improve the efficiency of gradient descent method for convex functions [19].
A second-order ODE has been proposed to elucidate the acceleration mechanism corresponding to NAG in
[26] as ϱ̈t + αtϱ̇t + ∇ℓ(ϱt) = 0. A Hessian-driven damping term is introduced to the continuous Nesterov
acceleration ODE by [4, 5], which takes the form:

ϱ̈t + αtϱ̇t + βt∇2ℓ(ϱt)ϱ̇t + γt∇ℓ(ϱt) = 0, (3)

where αt, βt, γt are non-negative functions only depending on t. The Hessian-driven damping term ∇2ℓ(ϱt)ϱ̇t
facilitates faster convergence and reduces oscillations.

We extend these concepts to Riemannian manifolds. The Riemannian gradient flow of the target func-
tional L on Riemannian manifold M is defined as

∂tρt = −gradL(ρt) = −G(ρ)−1 δL

δρ
, (4)

where ρt : [t0,∞) → M is a smooth curve on the manifold. For the accelerated gradient flow on Riemannian
manifolds, note that ϱ̈t =

d
dt

d
dtϱt in the accelerated gradient flow (3) represents taking directional derivatives

of d
dtϱt along d

dtϱt. It holds for the damping term that ∇2f(ϱt)ϱ̇t = d
dt∇f(ϱt). Hence, by replacing the

second-order term d
dt

d
dtϱt and d

dt∇f(ϱt) with the Levi-Civita connection and the Riemannian gradient as
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∇∂tρt∂tρt and ∇∂tρt gradL(ρt), we obtain the accelerated Riemannian gradient flow with Hessian-driven
damping:

∇∂tρt∂tρt + αt∂tρt + βt∇∂tρt gradL(ρt) + γt gradL(ρt) = 0. (5)

Note that Levi-Civita connection in (5) is not straightforward to discrete with respect to time t. To derive
the appropriate first order ODE formulation for numerical discretization, which only contains first order
derivative to time and space, we apply the following transformation.

Proposition 1. Define Φt = Ψt − βt
δL
δρt

and the Riemannian correction term

Rt =
1

2

δ

δρ

[∫
ΦtG(ρ)−1Φt dx

]∣∣∣∣
ρ=ρt

+
βt
2
G(ρt)

[
∂(G(ρt)−1)

∂ρt
· G(ρt)−1Φt

]
δL

δρt
.

The second-order accelerated Riemannian gradient flow (5) is equivalent to
∂tρt − G(ρt)−1

(
Ψt − βt

δL

δρt

)
= 0, (6)

∂tΨt + αtΨt +Rt +
(
γt − β̇t − αtβt

) δL
δρt

= 0, (7)

with initial values ρ0 and Ψ0 = β0
δL
δρ0

.

The proof of this proposition can be found in Section 5.1.
By incorporating the specific metric G into equation (6) and (7), we can derive the accelerated flow

corresponding to each concrete metric. We refer the reader to [20] and [29] for foundational information on
the metrics.

Example 1 (L2 ARG flow). Note that L2 = H0 is a special case of Hs space. Since in L2 space, G(ρt) = Id,
the ARG flow for (ρt,Ψt) in (6) can be greatly simplified as:{

∂tρt = Ψt − βt
δL
δρt
,

∂tΨt + αtΨt − (αtβt − γt + β̇t)
δL
δρt

= 0.
(8)

Example 2 (Hs (s ≥ 0) ARG flow). Hs (s ≥ 0) ARG flow satisfies{
∂tρt −

[∑s
i=0(−∆)i

]−1
(
Ψt − βt

δL
δρt

)
= 0,

∂tΨt + αtΨt − (αtβt − γt + β̇t)
δL
δρt

= 0.
(9)

Example 3 (Hs (s < 0) ARG flow). Hs (s < 0) ARG flow satisfies{
∂tρt −

∑|s|
i=0(−∆)i

(
Ψt − βt

δL
δρt

)
= 0,

∂tΨt + αtΨt − (αtβt − γt + β̇t)
δL
δρt

= 0.
(10)

Example 4 (Fisher-Rao ARG flow). Fisher-Rao ARG flow satisfies
∂tρt −

(
Ψt − βt

δL

δρt
− Eρt

[
Ψt − βt

δL

δρt

])
ρt = 0,

∂tΨt + αtΨt +
1

2
(Φt − Eρt [Φt]) (Ψt − Eρt [Ψt])− (αtβt − γt + β̇t)

δL

δρt
= 0.

(11)

Example 5 (Wasserstein ARG flow). Wasserstein ARG flow satisfies{
∂tρt +∇ ·

(
ρt∇

(
Ψt − βt

δL
δρt

))
= 0,

∂tΨt + αtΨt +
1
2 ∥∇Φt∥2 + βt

2 wt − (αtβt − γt + β̇t)
δL
δρt

= 0,
(12)

where wt is a solution of ∇ ·
(
ht∇ δL

δρt
− ρt∇wt

)
= 0 with ht = ∇ · (ρt∇Φt).
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3 A Discretization Scheme on the Parameter Space

Along the trajectory of the ARG flow (5), L converges to its minimum. However, the discrete updates
are performed in terms of the parameters θ ∈ Θ. Therefore, we need to map the iterations from the manifold
back to the parameters. For some complicated metrics, we transform the original ODE of ∂tρt(x) in (6) as
follows

∂tA(ρt)(x) = ut(x), (13)

where A is a metric-specific map with function output, ut(x) is obtained based on A and the original

G(ρt)−1
(
Ψt − βt

δL
δρt

)
in (6). The purpose of this transformation is to adapt to various problem structures.

For example, when dealing with a normalized probability density ρt(x) = ψt(x)/
∫
ψt(x)dx, the quantity

∂t log ρt(x) = ∂t logψt(x) − Eρt [∂t logψt] can be easily estimated, while ∂tρt(x) is not directly accessible.
Specific examples of (13) are provided in Table 1.

Metric G(ρt)−1Φt A(ρt) S(ρt) B(ρt) ut qt

Fisher-Rao
(
Φt −

∫
Φtρtdx

)
ρt log ρt log ρt log ρt −

(
Φt −

∫
Φtρtdx

)
ρt

Wasserstein-2 −∇ · (ρt∇Φt) log ρt log ρt log ρt −⟨∇logρt,∇Φt⟩ −∆Φt ρt

Hs (s ∈ N)
[∑s

i=0(−∆)i
]−1

Φt ρt
[∑s

i=0(−∆)i
]
ρt Dsρt −

[∑s
i=0(−∆)i

]−1
Φt Leb.

Hs (s ∈ Z−)
[∑|s|

i=0(−∆)i
]
Φt ρt ρt ρt −

[∑s
i=0(−∆)i

]
Φt Leb.

Table 1: Examples of metric-specific transformed ARG flow (13). Leb. denotes the Lebesgue measure in
Euclidean spaces.

3.1 A Unified Discretization Scheme

In this subsection, we discuss a unified discretization scheme for (13) and (7). To clarify the notation,
we use t as a subscript for continuous-time variables, k as a subscript for discrete-time variables. The core
procedure is as follows. We obtain the first-order system corresponding to ∂tρt(x) in (13) and ∂tΨt(x)
in (7). Introducing parameters θ into the update of ρt(x), it yields a parameterized ODE where ρθt(x)
approximates ρt(x). We denote the update direction for θk at the k-th iteration as dk, which can be seen as
an approximation of continuous parameter update ∂tθt at time tk. Denote the step size at the k-th iteration
as hk. The update rule for θk is given as

θk+1 = θk + hkdk. (14)

Sampling both sides of the parameterized ODE for ρθt(x) produces a linear system for the update direction
dk. Moreover, we derive the update rule for Ψt(x) from a direct discretization, which is used to update the
right-hand side of the linear system. We summarize the associated notations in Table 2.

We next discuss how to form a linear system to get dk. By the chain rule, it yields

∂tA(ρθt)(x) = (∂θA(ρθt)(x))
⊤∂tθt, (15)

where ∂θA(ρθt)(x) = [∂θ[1]A(ρθt)(x), · · · , ∂θ[p]A(ρθt)(x)]
⊤ are p functions on the tangent space. Hence, we

construct the following parameterized ODE:

(∂θA(ρθt)(x))
⊤∂tθt = ut(x), ∀ x ∈ Rd. (16)

6



Continuous Time Parametrized Discrete Time
Parameters not occurred θt θk

Update Direction not occurred ∂tθt dk
ρ-manifold ρt(x) ρθt(x) ρθk(x)

Ψ-momentum Ψt(x) not used Ψk(x)
Riemannian correction term Rt(x) not used Rk(x)

Table 2: Different notations used for the discretized scheme.

Equation (16) shows that two functions are equal at the tangent space. We can only take a finite set of
sample points {xjk}nj=1 to approximate these functions with matrices and vectors. Therefore, based on these
samples, we build a linear system approximating (16) to find a suitable update direction dk. It can also be
seen as the discretization of ∂tθt at the k-th iteration. The right-hand side of (16) becomes a real number for
a specific sample. For the left-hand side, the function vector ∂θA(ρθt)(x

j
k) turns into a vector in Rp. Given

the complexity of our networks, we can assume that the number of parameters p exceeds the sample size n.
This leads to an underdetermined system as follows:

(∂θA(ρθk)(x
j
k))

⊤dk = uk(x
j
k), ∀ 1 ≤ j ≤ s. (17)

For specific problems, the samples {xjk}nj=1 may be either fixed or changeable. For simplicity, we denote the
following notations:

Ok = [∂θA(ρθk)(x
1
k), ..., ∂θA(ρθk)(x

n
k )]

⊤ ∈ Rn×p,

bk =
[
uk(x

1
k), ..., uk(x

n
k )
]⊤ ∈ Rn×1.

The system (17) can be rewritten as

Okdk = bk. (18)

The method of solving system (18) varies depending on the metric and the optimization problem. We
summarize some general approaches in Section 3.2.

Now we focus on the update rule for Ψk(x
j
k), which is used to update bk. Since Ψt(x) serves as an auxiliary

variable in the ODEs (6) and (7), we approximate ∂tΨt(x) at the k-th step using a forward difference over
the time interval hk at sample points as follows

∂tΨt(x
j
k)
∣∣
t=tk

≈
Ψk(x

j
k)−Ψk−1(x

j
k)

hk
. (19)

For terms in (7) which are not related to the time derivative, we simply use their values at tk. This gives us
the update for Ψk(x

j
k) as follows:

Ψk(x
j
k) = µkΨk−1(x

j
k)− hk

(
Rk(x

j
k) +

(
γk − β̇k − αkβk

) δL

δρθk
(xjk)

)
, (20)

where µk = 1− hkαk. The update scheme for Ψk(x
j
k) may vary between different metrics, which will be

thoroughly discussed when considering specific metrics.
In each iteration, Ψk(x

j
k) is computed using (20), which in turn determines bk. We then solve equation

(18) for the update direction dk, and update the parameters according to equation (14). The general method
of solving (18) is discussed in Section 3.2. For some cases, bk in (18) is hard to get. We discuss methods to
deal with these cases in Section 3.3.

3.2 Direct Methods for Solving (18)

As an underdetermined system, directly solving the pseudo-inverse of Ok for (18) by singular value
decomposition is time-consuming. Without loss of generality, suppose that Ok has full row rank. We
propose three different algorithms to solve this system. We can multiply O⊤

k on both sides of the system

7



(18). Since O⊤
k Ok is a positive semidefinite matrix, it can be inverted by adding a damping term. The

direction is given as

dk = (O⊤
k Ok)

†O⊤
k bk. (21)

From the singular value decomposition, the update (21) is also equivalent to

dk = O⊤
k (OkO

⊤
k )

−1bk. (22)

However, as the norm of the solution in (21) increases with the number of samples, directly selection leads
to significant errors, especially for small sample sizes. To address this issue, we can incorporate momentum
by projecting the historical solution onto the solution set. The parameter update direction dk is computed
iteratively as:

dk = O⊤
k (OkO

⊤
k )

−1bk + η(I −O⊤
k (OkO

⊤
k )

−1Ok)dk−1, (23)

where 0 < η < 1 is the decay rate, and I − O⊤
k (OO

⊤
k )

−1Ok is the projection to the null space of Ok. By
projecting the momentum onto the subspace, we can effectively reduce the error in estimating the true
solution.

3.3 Handling the Unavailability of bk

In some cases, the target function L involves high-order derivatives. Computing δL
δρθk

(xjk) of Φk(x
j
k) in

uk(x
j
k) requires these derivatives, which are often challenging to evaluate directly. Hence, the update (22)

and (23) can not be used here since we can not get the value of bk. To address the unavailability of bk,
we leverage an indirect approach. Although uk(x) cannot be computed directly, it can be approximated
through a composition involving another quantity, S(ρθk(x)), enabling its subsequent use in computations.
We define

Sk =
[
∂θS(ρθk)(x1k), ..., ∂θS(ρθk)(xnk )

]⊤ ∈ Rn×p

and assume it has full row rank. Consequently, for any dk ∈ Rp×1, (18) holds if and only if the following
equation holds

1

n
S⊤
k Okdk =

1

n
S⊤
k bk. (24)

This equivalence enables us to reformulate the problem and solve (18). However, the non-symmetric form of
the precondition matrix on the left-hand side may lead to numerical instability. To address this, we assume
the existence of an equivalent transformation that reformulates the original integral into a semi-definite
form. Assume our samples {xjk} are generated from the distribution qk(x) (see Table 1 for more examples).
Therefore, the summation over samples S⊤

k Ok can be viewed as an expectation as

1

n
S⊤
k Ok ≈Ex∼qk(x)

[
∂θS(ρθk)(x)∂θA(ρθk)(x)

⊤] . (25)

Assume that through integral by parts, the right hand side of (25) can be reformulated into a semi-definite
form using a function-valued map B(ρθk) as:

Ex∼qk(x)
[
∂θS(ρθk)(x)∂θA(ρθk)(x)

⊤] = Ex∼qk(x)
[
∂θB(ρθk)(x)∂θB(ρθk)(x)⊤

]
.

Denote Bk =
[
∂θB(ρθk)(x1k), ..., ∂θB(ρθk)(xnk )

]⊤
as the discretization of ∂θB(ρθk) on samples. It yields the

following approximation

1

n
B⊤
k Bk ≈ Ex∼qk(x)

[
∂θB(ρθk)(x)∂θB(ρθk)(x)⊤

]
.

Consequently, we can use B⊤
k Bk to approximate S⊤

k Ok in (24).
A similar approach is also used to estimate the right hand side of (24) as vk. Further details of practical

methods for certain metric can be found in Table 1 and the following sections. Hence, the remaining task is
to compute the update direction

dk =

(
1

n
B⊤
k Bk

)†

vk, (26)
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where various methods, such as KFAC, can be employed to efficiently handle the matrix-inverse-vector
product.

Remark 1. In most cases, we take S = A directly with Bk = Ok. The update (26) can be seen as a least
squares solution of the original problem (18).

3.4 Approximation Algorithms

Directly calculating (O⊤
k Ok)

† ∈ Rp×p in (21) and
(
B⊤
k Bk

)†
in (26) is complicated due to the huge matrix

size. In this subsection, an approximation technique using the Kronecker decomposition is introduced to
reduce the calculation overhead. We focus on the k-th iteration, and omit the subscript for simplicity.

Consider the state variable ρθ ∈ M is parameterized by a feedforward network with K layers with a

collection of the weight matrices for each layer θ =
(
vec(W1)

⊤, · · · , vec(WK)⊤
)⊤ ∈ Rp. We omit the bias

term since it can be incorporated into the weight matrix. Let θ(l) = vec(Wl) ∈ Rnlnl−1 , bi = ∂θ(l)A(ρθ(l))(x
i)

and Gl =
1
n

∑n
i=1 bib

⊤
i . The preconditioner in (26), (36), and (41) can be approximated as a block diagonal

matrix Diag{G1, G2, · · · , GK}. For certain input xi, we denote the input of the l-th layer by ail−1, and
sil =Wla

i
l−1. It follows that

∂θ(l)A(ρθ(l))(x
i) = vec

(
∂A(ρθ(l))(x

i)

∂sil
ail−1

⊤
)

= ail−1 ⊗
∂A(ρθ(l))(x

i)

∂sil
. (27)

Assuming that al−1 and
∂A(ρ

θ(l)
)

∂sl
are independent with respect to the sample distribution, we can approxi-

mate Gl by

Gl =
1

n

n∑
i=1

(ail−1(a
i
l−1)

⊤)⊗

(
∂A(ρθ(l))(x

i)

∂sil

⊤
∂A(ρθ(l))(x

i)

∂sil

)

≈

(
1

n

n∑
i=1

ail−1(a
i
l−1)

⊤

)
︸ ︷︷ ︸

Al−1

⊗

(
1

n

n∑
i=1

∂A(ρθ(l))(x
i)

∂sil

⊤
∂A(ρθ(l))(x

i)

∂sil

)
︸ ︷︷ ︸

Sl

.
(28)

It yields G†
l ≈ (Al−1 ⊗ Sl)

† = A†
l−1 ⊗ S†

l . This approximation efficiently reduces the computation overhead
for the matrix inverse from O((nlnl−1)

3) to O(n3l + n3l−1).

4 Accelerated Natural Gradient Methods with Specific Metrics

4.1 L2 Metric

The L2 metric mainly serves for PDE-based optimization problems, where the functional mapping A(ρ)
and metric tensor G(ρ) are both the identity. In this case, we focus on working with fixed sampled points,
thus omitting the subscripts for the samples. We have

bk =

[(
Ψk − βk

δL

δρθk

)
(x1), ...,

(
Ψk − βk

δL

δρθk

)
(xn)

]⊤
.

From (8) and (20), the update rule for each Ψk(x
j) is given as

Ψk(x
j) = µkΨk−1(x

j)− hk

(
γk − β̇k − αkβk

) δL

δρθk
(xj). (29)

In this case, bk is not available since calculating δL
δρθk

(xj) involves high order derivatives, which are difficult

to obtain. Hence, we apply (26) with Bk = Ok to get dk for L2 metric. For vk = O⊤
k bk in (26), the following

9



equation holds

vk = O⊤
k bk =

n∑
j=1

∂θρθk(x
j) ·Ψk(xj)︸ ︷︷ ︸

(A)

−βk
n∑
j=1

∂θρθk(x
j) · δL

δρθk
(xj)︸ ︷︷ ︸

(B)

. (30)

We cannot obtain the (A) and (B) parts in equation (30) through direct multiplication. However, notice
that by the chain rule, it holds

∂θL(ρθk) =

∫
∂θρθk(x)

δL

δρθk
(x)dx ≈ 1

n

n∑
j=1

∂θρθk(x
j) · δL

δρθk
(xj). (31)

The approximation arises from the correlation between the continuous integral in the inner product and the
discrete summation over the samples. From (31), we directly use ∂θL(ρθk) to calculate (B) in (30). The
calculation of ∂θL(ρθk) can be done by automatic differentiation and is easy to get. For (A) in (30), we
introduce an iterative approximation technique to establish an iterative update rule for vk from vk−1 and
the gradient towards θ of the target function L. From (29) and (30), it yields

vk[i] =

n∑
j=1

∂θ[i]ρθk(x
j)

(
µkΨk−1(x

j)−
(
µkβk + hk(γk − β̇k)

) δL

δρθk
(xj)

)
. (32)

For the last line in (32), we can only approximate
∑n
j=1 ∂θ[i]ρθk−1

(xj)Ψk−1(x
j) from the last vk−1. Assuming

that the discrete step size is small enough on the manifold, ρθk and ρθk−1
are not far away on the tangent

space. Hence, we can approximate ∂θiρθk−1
with ∂θ[i]ρθk . We employ the following approximation

n∑
j=1

∂θ[i]ρθk(x
j)Ψk−1(x

j) ≈
n∑
j=1

∂θ[i]ρθk−1
(xj)Ψk−1(x

j).

Further we can get the following equation:

n∑
j=1

∂θ[i]ρθk−1
(xj)Ψk−1(x

j) = vk−1[i] +

n∑
j=1

βk−1∂θ[i]ρθk−1
(xj)

δL

δρθk−1

(xj).

From this approximation, taking (31) into consideration, the following update rule holds for the vector wk
to approximate the original vk:

wk = µk
(
wk−1 + nβk−1∇θL(ρθk−1

)
)
− n

(
µkβk + hk(γk − β̇k)

)
∇θL(ρθk). (33)

Finally, we can derive the accelerated L2 gradient descent method as Algorithm 1.

Algorithm 1 Accelerated L2 Natural Gradient Descent

Input: Initial parameters θ0, step sizes hk, decay rates {αk}, {βk}, {γk}
Output: Updated parameters θT

1: for k = 1, . . . , T − 1 do
2: Update wk according to (33).
3: Calculate (O⊤

k Ok)
† through samples.

4: Calculate update direction dk = (O⊤
k Ok)

†wk.
5: Update model parameters θk+1 = θk + hkdk.
6: end for

10



4.2 Hs Metric

The Hs metric is a generalization of the basic L2 metric. According to Table 1, the quantities Ok and
bk in (18) are given as:

Ok = [∂θρθk(x
1), ..., ∂θρθk(x

n)]⊤,

bk =

[
((Ds)∗Ds)−1

(
Ψk − βk

δL

δρθk

)
(x1), ..., ((Ds)∗Ds)−1

(
Ψk − βk

δL

δρθk

)
(xn)

]⊤
,

where Dsσ is a vector consisting of all derivatives of σ up to order s. In this case, the term bk is computa-
tionally intractable due to the existence of high-order (positive or negative) derivatives. To overcome this
difficulty, we follow the approach outlined in Section 3.3 by selecting S(ρ) as given in Table 1. The treatment
of the equivalent system (24) depends on whether s is positive or negative.

Case 1: s > 0 We first introduce the following definitions:

Sk = [∂θ((D
s)∗Ds)ρθk(x

1), ..., ∂θ((D
s)∗Ds)ρθk(x

n)]⊤ ∈ Rn×p,
BD
k = [∂θDρθk(x1), ..., ∂θDρθk(xn)]⊤ ∈ Rn×p, D ∈ Ds,

zk =

[(
Ψk − βk

δL

δρθk

)
(x1), ...,

(
Ψk − βk

δL

δρθk

)
(xn)

]⊤
∈ Rp×1.

Integration by parts then shows that:

1

n
S⊤
k Ok ≈

∫
∂θ((D

s)∗Ds)ρθk(x)∂θρθk(x)
⊤dx

=

∫
∂θD

sρθk(x)∂θD
sρθk(x)

⊤dx ≈ 1

n

∑
D∈Ds

(BD
k )

⊤BD
k .

(34)

It also holds that

1

n
S⊤
k bk ≈

∫
∂θ((D

s)∗Ds)ρθk(x)((D
s)∗Ds)−1

(
Ψk − βk

δL

δρθk

)
(x)dx

=

∫
∂θρθk(x)

(
Ψk − βk

δL

δρθk

)
(x)dx ≈ 1

n
O⊤
k zk.

(35)

The approximation is given through the connection between integral of functions and the summation over
samples. Thus, the update direction dk is given by:

dk =

(
1

n

∑
D∈Ds

(BD
k )

⊤BD
k

)†(
1

n
O⊤
k zk

)
. (36)

It is worth noting that the term O⊤
k zk coincides with vk from the L2 case. Hence, its update can be

approximated by that of wk.

Case 2: s < 0 Similar to (34) and (35), we employ integration by parts to redistribute the high-order
derivatives to other terms, thereby alleviating the computational complexity of handling bk. To be specific,
we take Sk = Ok and

BD
k = [∂θDρθk(x1), ..., ∂θDρθk(xn)]⊤ ∈ Rn×p, D ∈ D|s|,

zDk =

[
D
(
Ψk − βk

δL

δρθk

)
(x1), ...,D

(
Ψk − βk

δL

δρθk

)
(xn)

]⊤
∈ Rp×1, D ∈ D|s|.
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It yields the approximation:

1

n
S⊤
k bk ≈

∫
∂θρθk(x)((D

s)∗Ds)

(
Ψk − βk

δL

δρθk

)
(x)dx

=

∫
∂θD

sρθk(x)D
s

(
Ψk − βk

δL

δρθk

)
(x)dx ≈ 1

n

∑
D∈Ds

(BD
k )

⊤zDk .
(37)

Furthermore, analogous to (20), each zDk can be computed via the iterative update:

DΨk(x
j) = µkDΨk−1(x

j) + hk−1

(
γk − β̇k − αkβk

)
D δL

δρθk
(xj), k ≥ 1. (38)

4.3 Fisher-Rao metric

Beyond PDE-based models, we now consider ρθ as a parameterized probability density function. The
ρ-trajectory in the Fisher-Rao ARG flow (11) can be reformulated as ∂t log ρt − (Φt − Eρt [Φt]) = 0, where
Φt = Ψt − βt

δL
δρt

. By defining

Ok = [∂θ log(ρθk)(x
1
k), ..., ∂θ log(ρθk)(x

n
k )]

⊤ ∈ Rn×p,

bk =
[
Φk(x

1
k), ...,Φk(x

n
k )
]⊤ ∈ Rn×1,

we provide the explicit form of the linear system previously introduced in (18).
Next we discretize Ψ-trajectory for updating the cotangent variable. To estimate Eρk [Φk] at the k-th

iteration, it is necessary to update samples {xik}ni=1 ∼ ρθk and evaluate Φk at these points. However, a
fundamental challenge arises: storing a function state variable Φk for each x ∈ Rd is intractable. To address
this, we use the solution of the previous linear system, dk−1, to estimate centered values of Φk at samples
{xik}ni=1 in the k-iteration as follows:

Φk−1(x
i
k)

△
=
〈
∂θ log ρθk−1

(xik), dk−1

〉
.

Specifically, we discretize the Ψ-trajectory as:

Ψk(x
i
k)−Ψk−1(x

i
k)

hk
= −αkΦk−1(x

i
k)−

1

2
Φk−1(x

i
k)Ψk−1(x

i
k)− (γk − β̇k)

δL

δρθk
(xik),

where Ψk−1(x
i
k) = Φk−1(x

i
k) + βk−1

δL
δρθk−1

(xik). Here we use the centralized cotangent variable over samples

since centralization does not influence the iteration update. Consequently, the update for the cotangent
variable is derived as:

Φk(x
i
k) =(1− hkαk)Φk−1(x

i
k)−

hk
2
Φk−1(x

i
k)Ψk−1(x

i
k)

+ (βk − hkβ̇k − hkγk)
δL

δρθk
(xik)− βk−1

δL

δρθk−1

(xik).

(40)

Based on the above discussion, we are ready to present the ANGD method in Algorithm 2 for the
Fisher-Rao metric.

4.4 Wasserstein-2 metric

The evolution of probability density can equivalently be interpreted as the movement of particles. From
the perspective of the continuity equation, (12) explicitly defines the velocity of each particle xt ∼ ρt as
ẋt = ∇Φt(xt), where Φt = Ψt − βt

δL
δρt

. Substituting this into the evolution of Ψt in (12) and taking the
spatial gradient, we obtain the particle-wise velocity evolution:

d

dt
[∇Ψt(xt)] = −αt∇Ψt + βt

(
∇2 δL

δρt
∇Φt −

1

2
∇wt

)
︸ ︷︷ ︸

W1,t

+ηt∇
δL

δρt
.
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Algorithm 2 Accelerated Fisher-Rao Natural Gradient Descent

Input: Initial model parameters θ0, step sizes {hk}, decay rates {αk}, {βk}, {γk}.
Output: Updated model parameters θK .

1: Initialize Φ0 = 0 ∈ Rn.
2: Sample {xi0}ni=1

i.i.d.∼ ρθ0 .
3: for k = 0, 1, . . . ,K − 1 do
4: Estimate Φk−1(x

i
k) =

〈
∂θ log ρθk−1

(xik), dk−1

〉
for 1 ≤ i ≤ n.

5: Update the cotangent variable bk[i]
△
= Φk(x

i
k) according to (40) for 1 ≤ i ≤ n.

6: Compute the update direction dk by solving Okdk = bk.
7: Update model parameters θt+1 = θk + hkdk.
8: Update samples xik+1 based on xik via sampling methods for 1 ≤ i ≤ n.
9: end for

Note that the evolution of log ρt given by (12) is ∂t log ρt + ⟨∇ log ρt,∇Φt⟩ +∆Φt = 0, which also involves
second-order derivatives of Φt (or Ψt). To capture these dynamics, we further examine the evolution of the
spatial Hessian at time-varying samples:

d

dt

[
∇2Ψt(xt)

]
= −αt∇2Ψt + βt

(
∇3 δL

δρt
∇Φt −

1

2
∇2wt

)
︸ ︷︷ ︸

W2,t

−[∇2Φt]
2 + ηt∇2 δL

δρt
.

Thus the full particle-density evolution system is summarized as follows:

∂txt −∇Φt(xt) = 0,

∂t log ρt(x) + ⟨∇Φt(x),∇ log ρt(x)⟩+∆Φt(x) = 0, (fixed x)

d

dt
[∇Ψt(xt)] + αt∇Ψt(xt)− βtW1,t − ηt∇

δL

δρt
(xt) = 0,

d

dt

[
∇2Ψt(xt)

]
+ αt∇2Ψt(xt)− βtW2,t + [∇2Φt(xt)]

2 − ηt∇2 δL

δρt
(xt) = 0,

where Φt = Ψt + βt
δL
δρt

. Unlike the Fisher-Rao metric, which requires tracking updates of the cotangent

variable at all spatial points in Rd, the current framework for Wasserstein-2 metric only needs updates at
sample points, making it suitable for practical applications. However, a computational challenge arises in

evaluating ∇wt and ∇2wt. The condition ∇ ·
(
ht∇ δL

δρt
− ρt∇wt

)
= 0 does not implies ρt∇wt = ht∇ δL

δρt
,

as ht

ρt
∇ δL
δρt

is generally not curl-free and therefore can not guaranteed to be a gradient. To simplify, we

approximate ∇wt and ∇2wt as zero, or set βt ≡ 0 for computational efficiency.
Now we focus on the case where βt ≡ 0, which implies Φt = Ψt. The linear system (18) is specified by

taking:
Ok = [∂θ log(ρθk)(x

1
k), ..., ∂θ log(ρθk)(x

n
k )]

⊤ ∈ Rn×p,

bk =

[
∇ · (ρθk∇Φk)(x

1
k)

ρθk(x
1
k)

, ...,
∇ · (ρθk∇Φk)(x

n
k )

ρθk(x
n
k )

]⊤
∈ Rn×1.

Despite this simplification, additional challenges persist. Estimating bk is computationally intractable due
to the difficulty of directly computing or storing the spatial Hessian in most practical scenarios. This aligns
with the case discussed in Section 3.3. To address this, we apply integration by parts, yielding the following
identity:

Ex∼ρθk

[
∇ · (ρθk∇Φk)(x)

ρθk(x)
∂θ log ρθk(x)

]
= −Ex∼ρθk [∂θ ⟨∇ log ρθk(x),∇Φk(x)⟩] ,

where the right-hand side can be efficiently estimated by sampling and automatic differentiation. Thus we
can estimate dk by solving (

1

n
O⊤
k Ok

)
dk =

1

n

n∑
i=1

∂θ
〈
∇ log ρθk(x

i
k),∇Φk(x

i
k)
〉
.
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This approach requires only the computation of first-order derivatives, eliminating the need for second-order
derivatives.

Synthesizing all the above insights, we can now formulate the ANGD method for Wasserstein-2 metric
in Algorithm 3. To address discretization errors, we usually incorporate additional sampling steps (e.g.,
MCMC) for xik + hkV

i
k+1, ensuring that xik+1(1 ≤ i ≤ n) tend to follow ρθk+1

.

Algorithm 3 Accelerated Wasserstein-2 Natural Gradient Descent

Input: Initial parameters θ0, step sizes {hk}, decay rates {αk}, {βk}, {γk}.
Output: Updated model parameters θK .

1: Initialize V i0 = 0 ∈ Rd for 1 ≤ i ≤ n.

2: Sample {xi0}ni=1
i.i.d.∼ ρθ0 .

3: for k = 0, 1, . . . ,K − 1 do
4: Update cotangent gradients V ik+1 = (1− αkhk)V

i
k − hk∇ δL

δρθk
(xik) for 1 ≤ i ≤ n.

5: Solve the parameter update direction dk from(
1

n
O⊤
k Ok

)
dk =

1

n

n∑
i=1

∂θ
〈
∇ log ρθk(x

i
k), V

i
k+1

〉
.

6: Update model parameters θk+1 = θk + hkdk.
7: Update samples xik+1 based on xik + hkV

i
k+1 for 1 ≤ i ≤ n.

8: end for

5 Theoretical Analysis

In this section, we present a theoretical analysis of the ARG flow (5). First, we rigorously establish the
equivalence between (5) and the system composed of coupled ODEs (6)–(7) through the proof of Proposition
1. Subsequently, we derive convergence guarantees for the ARG flow (5) under the geodesic convexity
assumption.

5.1 Proof of Proposition 1

Proof. In the following proof, for notational convenience, we assume that any smooth tangent field defined
on curve ρt possesses a local extension, which does not impact the final conclusion. We begin by computing
∇∂tρt∂tρt using the Koszul formula. For any tangent field ht along ρt, it holds:

gρt (∇∂tρt∂tρt, ht) =
d

dt
gρt (∂tρt, ht)︸ ︷︷ ︸

(A)

−1

2
ht ◦ gρt (∂tρt, ∂tρt)︸ ︷︷ ︸

(B)

+ gρt (∂tρt, [ht, ∂tρt]) ,

(41)

where [·, ·] denotes Lie brackets. Define Φt = G(ρt)∂tρt ∈ T ∗
ρtM, the components on the right side of (41)

can be evaluated using calculus rules:

(A) =
d

dt

∫
Φthtdx =

∫
∂tΦthtdx+

∫
Φt∂thtdx. (42)

Besides for component (B), it yields

(B) =

∫
δ (gρt (∂tρt, ∂tρt))

δρt
htdx+ 2

∫
G(ρt)∂tρt(x)

∫
δ

δρt
∂tρt(x, y)ht(y)dydx. (43)
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Then we compute [ht, ∂tρt]. For any smooth functional E(ρ), it holds

[ht, ∂tρt]E(ρt) = ht ◦
d

dt
E(ρt)−

d

dt

∫
δ

δρt
E(ρt)htdx

=

∫
δE

δρt
(x)

(∫
δ

δρt
∂tρt(x, y)ht(y)dy − ∂tht(x)

)
dx,

where the last equality holds due to δ
δρt

d
dtE(ρt) =

d
dt

δ
δρt
E(ρt). It implies:

[ht, ∂tρt](x) =

∫
δ

δρt
∂tρt(x, y)ht(y)dy − ∂tht(x). (44)

Substituting (42), (43), and (44) into (41), it gives:

gρt (∇∂tρt∂tρt, ht) =

∫
∂tΦthtdx− 1

2

∫
δ (gρt (∂tρt, ∂tρt))

δρt
htdx. (45)

Consequently, we have

G(ρt)∇∂tρt∂tρt = ∂tΦt −
1

2

δ

δρt
[gρt (∂tρt, ∂tρt)] . (46)

Next we analyze the expression for ∇∂tρt gradL using the Koszul formula again. For any smooth tangent
field ht along the curve ρt, it holds that:

2gρt(∇∂tρt gradL, ht)

= ∂tρt ◦ gρt(gradL, ht)︸ ︷︷ ︸
(C)

+gradL ◦ gρt(∂tρt, ht)︸ ︷︷ ︸
(D)

−ht ◦ gρt(gradL, ∂tρt)︸ ︷︷ ︸
(E)

+ gρt([∂tρt, gradL], ht)︸ ︷︷ ︸
(F )

+ gρt([ht, ∂tρt], gradL)︸ ︷︷ ︸
(G)

+ gρt([ht, gradL], ∂tρt)︸ ︷︷ ︸
(H)

.

(47)

Calculating the terms using the chain rule gives:

(C)− (E) + (G)

=∂tρt ◦ (ht ◦ gradL)− ht ◦ (∂tρt ◦ gradL) + [ht, ∂tρt] ◦ gradL = 0,
(48)

and it holds for (D) that

(D) = gradL ◦
∫
∂tρtG(ρt)ht

=

∫∫
δht
δρt

(x, y) gradL(y)dy · G(ρt)∂tρt(x)dx

+

∫∫
δht
δρt

(x, y) gradL(y)dy · G(ρt)∂tρt(x)dx

+

∫
∂tρt

(
∂G
∂ρt

gradL

)
htdx

∫
G(ρt)ht(x)

∫
δ

δρt
∂tρt(x, y) gradL(y)dydx.

(49)

For (F ) and (H), we use a test functional E(ρ):

[∂tρt, gradL] ◦ E =
d

dt

∫
δL

δρt
gradL− gradL ◦ ∂tE(ρt)

=

∫
δL

δρt
∂t gradL(ρt)−

∫
δL

δρt
(x)

∫
δ

δρt
∂tρt(x, y) gradL(y)dydx,

where the last equality hold due to the self-adjoint property of δ
2L
δρ2t

. This leads to:

[∂tρt, gradL](x) = ∂t gradL(x)−
∫

δ

δρt
∂tρt(x, y) gradL(y)dy. (50)
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Similarly, we obtain:

[ht, gradL](x) =

∫
δ

δρt
gradL(x, y)ht(y)dy −

∫
δ

δρt
ht(x, y) gradL(y)dy. (51)

Substituting (48), (49), (50) and (51) into (47) gives

2gρt(∇∂tρt gradL, ht)
(48)
= (D) + (F ) + (H)

=

∫
(∂tG(ρt) · gradL+ 2G(ρt)∂t gradL(ρt))ht

=

∫ (
∂t
δL

δρt
+ G(ρt)∂t gradL(ρt)

)
ht.

Thus, the conclusion follows:

G(ρt)∇∂tρt gradL =
1

2
∂t
δL

δρt
+

1

2
G(ρt)∂t gradL(ρt). (52)

With (46) and (52) substituted into (5), we arrive at:

∂tΦt + αtΦt −
1

2

δ

δρt

(∫
∂tρtG(ρt)∂tρt dx

)
+
βt
2
∂t
δL

δρt
+
βt
2
G(ρt)∂t gradL(ρt)︸ ︷︷ ︸

(I)

+γt
δL

δρt
= 0.

(53)

To compute (I), the following expansion is applied:

(I) = G(ρt)∂t
(
G(ρt)−1 δL

δρt

)
= G(ρt)∂t

(
G(ρt)−1

) δL
δρt

+ ∂t
δL

δρt

∂tρt=G(ρt)−1Φt
============ G(ρt)

[
∂
(
G(ρt)−1

)
∂ρt

· G(ρt)−1Φt

]
δL

δρt
+ ∂t

δL

δρt
.

(54)

We ultimately establish the conclusion by making transformation Ψt = Φt + βt
δL
δρt

, and employing

δ
δρ

(∫
∂tρtG(ρ)∂tρt dx

)∣∣∣
ρ=ρt

= − δ
δρ

(∫
ΦtG(ρ)−1Φt dx

)∣∣∣
ρ=ρt

. This equality is proved in Section A.2 of [29].

5.2 Analysis of ODE-flow

In this subsection, we aim to prove the convergence of the ODE trajectory (5) with αt = α/t. We first
provide a technical lemma that analyzes two quantities related to the metrics.

Lemma 1. Let Tt = logρt ρ
∗ denote the exponential map from ρt to ρ∗. For the Hs (s ∈ Z) metric,

Fisher-Rao metric, and Wasserstein-2 metric, the following inequality holds:

g(∂tρt,∇∂tρtTt + ∂tρt) ≥ 0. (55)

For the Hs (s ∈ Z) metric and Fisher-Rao metric, we further have:

g(gradF (ρt),∇∂tρtTt + ∂tρt) ≥ g(gradF (ρt), ∂tρt)− || gradF (ρt)||g · ||∂tρt||g. (56)

Proof. Hs metrics. The proof is straightforward, as the Riemannian manifold is flat. We have Tt = ρ∗ − ρt,
and ∇∂tρtTt = ∂tTt = −∂tρt. This immediately gives the desired conclusion (55) and (56).

Fisher-Rao metric. According to Proposition 10 in [29], the geodesic connecting τ0 and τ1 for any
τ0, τ1 ∈ M is given by

τt(x) =
1

sin2H

[
sin(Ht)

√
τ1(x) + sin(H(1− t))

√
τ0(x)

]2
, 0 ≤ t ≤ 1,
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where H = cos−1(
∫ √

τ0(x)τ1(x)dx) ∈ [0, π2 ). This leads to the expression:

Tt =
2Ht

sin(Ht)

√
ρtρ∗ −

2Ht cos(Ht)

sin(Ht)
ρt, (57)

where Ht = cos−1(
∫ √

ρt(x)ρ∗(x)dx) ∈ [0, π2 ). We denote [f ]ρt = f − Eρt [f ]. It yields:

∂tHt =− 1

2 sinHt

∫ √
ρ∗

ρt
∂tρt dx = − 1

2 sinHt

∫ √
ρ∗ρt[Φt]ρt dx,

∂tTt =− sinHt −Ht cosHt

sin3Ht

(∫ √
ρ∗ρt[Φt]ρtdx

)[√
ρ∗

ρt

]
ρt

ρt

+
Ht

sinHt

(√
ρ∗

ρt
[Φt]ρt −

∫ √
ρ∗ρt[Φt]ρtdx

)
ρt −

2Ht cosHt

sinHt
[Φt]ρtρt.

(58)

Thus for any f ∈ T ∗
ρtM, we have:

∫
∂tTt[f ]ρt =− sinHt −Ht cosHt

sin3Ht

(∫ [√
ρ∗

ρt

]
ρt

[Φt]ρtρt dx

)∫ [√
ρ∗

ρt

]
ρt

[f ]ρtρt dx

+
Ht

sinHt

∫ √
ρ∗ρt[Φt]ρt [f ]ρt dx− 2Ht cosHt

sinHt

∫
[Φt]ρt [f ]ρtρt dx.

(59)

The Cauchy-Schwarz inequality implies that:(∫ [√
ρ∗

ρt

]
ρt

[Φt]ρtρtdx

)(∫ [√
ρ∗

ρt

]
ρt

[f ]ρtρtdx

)

≤

(∫ [√
ρ∗

ρt

]2
ρt

ρtdx

)(∫
[Φt]

2
ρtρtdx

) 1
2
(∫

[f ]2ρtρtdx

) 1
2

= sin2Ht

(∫
[Φt]

2
ρtρtdx

) 1
2
(∫

[f ]2ρtρtdx

) 1
2

.

(60)

Since tanHt ≥ Ht for all Ht ∈ [0, π2 ), substituting (60) into (59) yields:

∫
∂tTt[f ]ρtdx =− sinHt −Ht cosHt

sinHt

(∫
[Φt]

2
ρtρtdx

) 1
2
(∫

[f ]2ρtρtdx

) 1
2

+
Ht

sinHt

∫ √
ρ∗ρt[Φt]ρt [f ]ρtdx− 2Ht cosHt

sinHt

∫
[Φt]ρt [f ]ρtρtdx.

(61)

We now consider the expression in (55):

g(∂tρt,∇∂tρtTt + ∂tρt)

=
d

dt
g(∂tρt, Tt)− g(∇∂tρt∂tρt, Tt) + g(∂tρt, ∂tρt)

(46)
=

∫
(∂tΦtTt + [Φt]ρt∂tTt)dx−

∫ (
∂tΦt −

1

2

δg(∂tρt, ∂tρt)

δρt

)
Ttdx+ g(∂tρt, ∂tρt)

(61)

≥ − sinHt −Ht cosHt

sinHt

∫
[Φt]

2
ρtρtdx+

Ht

sinHt

∫ √
ρ∗ρt[Φt]

2
ρtdx+

∫
[Φt]

2
ρtρtdx

− 2Ht cosHt

sinHt

∫
[Φt]

2
ρtρtdx− 1

2

∫
[Φt]

2
ρt

(
2Ht

sin(Ht)

√
ρtρ∗ −

2Ht cos(Ht)

sin(Ht)
ρt

)
dx

=0.
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A similar approach is applied to handle (56), which gives

g(gradF (ρt),∇∂tρtTt + ∂tρt)

=
d

dt
g(gradF (ρt), Tt)− g(∇∂tρt gradF (ρt), Tt) + g(gradF (ρt), ∂tρt)

(61)

≥ − sinHt −Ht cosHt

sinHt

(∫
[Φt]

2
ρtρtdx

) 1
2

(∫ [
δF

δρt

]2
ρt

ρtdx

) 1
2

+
Ht

sinHt

∫ √
ρ∗ρt[Φt]ρt

[
δF

δρt

]
ρt

dx− 2Ht cosHt

sinHt

∫
[Φt]ρt

[
δF

δρt

]
ρt

ρtdx

− 1

2

∫ [
δF

δρt

]
ρt

[Φt]ρt

(
2Ht

√
ρtρ∗

sinHt
− 2Ht cosHt

sinHt
ρt

)
dx+

∫
[Φt]ρt

[
δF

δρt

]
ρt

ρtdx

≥−
(∫

[Φt]
2
ρtρt

) 1
2

(∫ [
δF

δρt

]2
ρt

ρtdx

) 1
2

+

∫
[Φt]ρt

[
δF

δρt

]
ρt

ρtdx,

where the last inequality uses Cauchy-Schwarz inequality. Thus, the conclusion (55) and (56) holds for
Fisher-Rao metric.

Wasserstein-2 metric. Suppose that Pt is the optimal transport mapping from ρt to ρ∗. Hence, we
have Pt#ρt = ρ∗. By Brenier’s Theorem [27], there exists a strictly convex function ct : Rd → R such that
Pt = ∇ct, and consequently, ∇Pt = ∇2ct is symmetric. Then according to the continuity equation, the
exponential map is expressed as Tt = −∇ · (ρt(Pt − id)).

Next, we compute the time derivative of Pt. Noting that

0 = ∂t(P
−1
t ◦ Pt) = ∂t(P

−1
t ) ◦ Pt +∇(P−1

t ) · ∂tPt, (62)

and Id = ∇(P−1
t ◦ Pt) = ∇(P−1

t ) · ∇Pt, we can deduce

∂tPt(x) = −∇Pt(x)ut(x), (63)

where ut = ∂t(P
−1
t ) ◦ Pt. Given that Pt is the optimal transport mapping, the distribution of yt = Pt

−1(y0)
is ρt for y0 ∼ ρ∗. Its velocity is given by ∂tyt = ut(yt). By the continuity equation, we have

∇ · (ρtut) = ∇ · (ρt∇Φt) = −∂tρt. (64)

Based on the preceding discussion, we now proceed with the term g(∂tρt,∇∂tρtTt + ∂tρt) as follows:

g(∂tρt,∇∂tρtTt + ∂tρt)
(46)
=

∫
Φt∂tTtdx+

∫
δg(∂tρt, ∂tρt)

δρt

Tt
2
dx+ g(∂tρt, ∂tρt)

(b),(63)
=

∫
⟨∇ ⟨∇Φt, Pt − x⟩ ,∇Φt⟩ ρtdx− ⟨∇Φt,∇Ptut⟩ ρtdx

+
1

2

〈
∇||∇Φt||2, Pt − x

〉
ρtdx+

∫
||∇Φ||2ρtdx

=

∫
⟨∇Φt,∇Pt∇Φt⟩ ρtdx−

∫
⟨∇Φt,∇Ptut⟩ ρtdx,

(65)

where (a), (b) use integration by parts. The equations (63) and (64) imply that:∫
⟨∇Φt − ut,∇Ptut⟩ ρt = −

∫
⟨∇Φt − ut, ∂t∇ct⟩ ρt =

∫
∇ · (ρt(∇Φt − ut))∂tct = 0.

Substituting it into (65) and using the semi-definiteness of ∇Pt = ∇2ct, we obtain the following inequality:

g(∂tρt,∇∂tρtTt + ∂tρt) =

∫
⟨∇Φt − ut,∇Pt(∇Φt − ut)⟩ ρtdx ≥ 0.

Thus, the proof is complete.
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Before presenting the convergence theorem, we define wt = γt−β̇t−βt/t and δt = t2
(
γt + (α− 3)βt/(2t)− β̇t

)
.

Theorem 1. Assume that the target function L is geodesically convex towards ρ on the manifold M, and
L attains its minimum at ρ∗. Let ρ : [t0,+∞) → M (t0 > 0) be a solution trajectory of (5). Suppose that
αt = α/t with α > 1, and γt > 0. Then if wt > 0 and δ̇t ≤ 2twt(α − 1) hold for the Hs(s ∈ Z) metric and
the Fisher-Rao metric, or βt ≡ 0 holds for the Wasserstein-2 metric, we have

L(ρt)− L(ρ∗) = O
(

1

t2wt

)
as t→ ∞. (66)

Proof. For notational convenience, we use a dot over a variable to denote its derivative with respect to time.
Consider the following Lyapunov function

Et = δt (L(ρt)− L(ρ∗)) +
1

2
g(vt, vt) +

α− 1

2
g(logρt(ρ

∗), logρt(ρ
∗)), (67)

where vt = −(α − 1) logρt(ρ
∗) + 2t(ρ̇t + βt gradL(ρt)). Since ρt is the trajectory of the ODE (5), we can

calculate the derivative of vt as

∇ρ̇tvt = (α− 1)(−∇ρ̇t logρt(ρ
∗)− ρ̇t)− (α− 1)ρ̇t − 2twt gradL(ρt). (68)

It gives

d

dt
Et = δ̇t(L(ρt)− L(ρ∗)) + 2twt(α− 1)g(logρt(ρ

∗), gradL(ρt))︸ ︷︷ ︸
(A)

− 4t2βtδtg(gradL(ρt), gradL(ρt))− (α− 1)2g(logρt(ρ
∗),−∇ρ̇t logρt(ρ

∗)− ρ̇t)︸ ︷︷ ︸
(B)

− 2t(α− 1)g(ρ̇t, ρ̇t)
2 + 2t(α− 1)g(ρ̇t + βt gradL(ρt),−∇ρ̇t logρt(ρ

∗)− ρ̇t)︸ ︷︷ ︸
(C)

.

Since the target function L is geodesically convex, we have for part (A):

(A) ≤
(
δ̇t − 2twt(α− 1)

)
(L(ρt)− L(ρ∗)) ≤ 0.

For (B), we have the following equation

(B) = − (α− 1)2

2

d

dt
dist(ρt, ρ

∗)2 +
(α− 1)2

2

d

dt
dist(ρt, ρ

∗)2 = 0.

One more term occurs different from the Euclidean case is (C). By Lemma 1, for Hs, Fisher-Rao and
Wasserstein-2 metrics (βt = 0), it yields

d

dt
Et ≤− 4t2βtδt∥ gradL(ρt)∥2g − 2t(α− 1)∥ρ̇t∥2g + 4t(α− 1)βt∥ gradL(ρt)∥g∥ρ̇t∥g

=− 2t(α− 1)(∥ρ̇t∥g − β2
t ∥ gradL(ρt)∥g)2

− 2tβt(2tδt − βt(α− 1))∥ gradL(ρt)∥2g ≤ 0.

The convergence rate (66) follows from the monotonic decreasing property of Et.

6 Numerical Experiments

In this section, we give some numerical examples to show how machine learning problems can be fitted
in form (1). Our method exhibits superior numerical performance on these examples.
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6.1 The Burgers’ Equation

This subsection addresses the Burgers’ equation, which is known for its challenges associated with shock
waves and discontinuities. The equation, supplemented with boundary data h(x), is formalized as follows:

ut + uux −
0.01

π
uxx = 0, x ∈ [−1, 1], t ∈ [0, 1],

u(0, x) = h(x), u(t,−1) = u(t, 1) = 0.
(69)

Let Ω = [−1, 1] × [0, 1] and define ∂Ωp = {−1, 1} × [0, 1] ∪ [−1, 1] × {0}. A neural network uθ is employed
to approximate the solution with six hidden layers with (20, 50, 80, 80, 50, 20) neurons. The associated PDE
and boundary loss for uθ are:

L(uθ) = ∥(uθ)t + uθ(uθ)x −
0.01

π
(uθ)xx∥2L2(Ω) + λ∥uθ − g∥2L2(∂Ω), (70)

where the function g(x, t) = h(x) for (x, t) ∈ [−1, 1]×{0} and g(x, t) = 0 for (x, t) ∈ {−1, 1}×[0, 1] represents
the initial and boundary conditions. Taking uθ on the L2 space, the training problem (70) can be fitted into
(1).

In our investigation, we evaluate the efficacy of the ANGD method, comparing against the stochastic
gradient descent (SGD) algorithm, Adam [13] and natural gradient method without acceleration (NGD). The
most important difference between the ANGD method and the NGD method is whether or not acceleration
is considered on the manifold. We employ a systematic grid search to identify hyper-parameters for several
algorithms. For Adam, we vary the initial learning rate among {0.001, 0.005, 0.01}, the parameters for the
momentum terms β1 ∈ {0.9, 0.99} and β2 ∈ {0.99, 0.999}, and the weight decay from the set {0, 1e-4, 5e-5}.
Similarly, for SGD, ANGD and NGD, the optimal configurations are determined by grid searching across
the same ranges for the initial learning rate and weight decay. The ODE parameters αk and βk are initially
set to the optimal values chosen from {0.01, 0.05, 0.1, 0.15} and subsequently decay linearly.

We examine two distinct boundary conditions h(x) = sin(πx) and h(x) = 1− cos(2πx), each presenting
varying levels of training difficulty. The efficacy of ANGD is demonstrated in Figures 1 and 2. We con-
sider the training loss and the testing loss versus iterations. ANGD demonstrates substantial convergence
improvements over NGD, while surpassing both Adam and SGD. The lowest loss is also attained by the
ANGD method. As a natural gradient method, ANGD consistently maintains a significantly lower testing
loss compared to Adam and SGD after acceleration.

Figure 1: Numerical results for boundary condition h(x) = sin(πx)

6.2 The Euler Equations

In this subsection, we solve the following conservative hyperbolic PDE:

∂U

∂t
+∇ · F = 0. (71)
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Figure 2: Numerical results for boundary condition h(x) = 1− cos(2πx)

A notable example is the Euler equations, which represent a complex fluid dynamics problem frequently
involving discontinuities. For the one-dimensional case of the Euler equations, the vectors U and F are
defined as U = (ρ, ρu,E) ∈ R3, F = (ρu, ρu2+p, u(E+p)) ∈ R3. In the context of an ideal gas, ρ symbolizes
the density, u represents the velocity, p denotes the pressure, and E = 1

2ρu
2 + p

0.4 is the total energy. We
employ a neural network gθ = (ρθ, uθ, pθ) with input (x, t) designed to simultaneously approximate ρ, u,
and p. Through this parametrization, we can get the value of vectors U and F as Uθ and Fθ. The initial
condition is the same as the Sod problem, which has been extensively studied. It is a 1D Riemann problem
with the initial constant states in a tube with unit length formulated as

g(x, 0) = (ρ, u, p) =

{
(1,−2, 0.4) if 0 ≤ x ≤ 0.5,

(1, 2, 0.4) if 0.5 < x ≤ 1.

We test the performance of the network at t = 0.2s. To quantify the performance of our model, the loss
function on the area Ω = [0, 1]× [0, 0.2] is given as

L(ρθ, uθ, pθ) = ∥(Uθ)t +∇ · Fθ∥2L2(Ω) + λ∥gθ − g(x, 0)∥2. (72)

Here we consider the manifold L2(Ω)⊗3, allowing (72) to be fitted in the form of (1). We evaluate the efficacy
of ANGD method using L2 metric, comparing its performance against SGD, Adam, and non-accelerated
NGD. The hyper-parameters are set as described in Section 6.1. Figure 3 illustrates the evolution of training
and testing loss with respect to iterations. The ANGD method demonstrates a faster convergence rate in
terms of training loss compared with the conventional method and the non-accelerated NGD, highlighting
its efficiency in optimizing PINNs. Moreover, the ANGD method achieves a substantially lower testing loss,
indicating generalization and improved alignment between the network’s predictions and the ground truth.

6.3 Many-body quantum problem

We consider a many-body quantum system with N electrons x = {x1, ..., xN} ∈ R3N . The wavefunction
ψθ : x → R describing the quantum state of the system is typically parameterized using neural networks,
such as Ferminet [21]. The goal is to solve for the ground state energy and wavefunction, which is formulated
as a variational problem:

min
θ

∫
x∈R3N ψθ(x)(Hψθ)(x)dx∫

x∈R3N ψθ(x)2dx
=

∫
x∈R3N

√
ρθ(x)(H

√
ρθ)(x)dx

△
= L(ρθ), (73)

where H is a Hamiltonian operator, and ρθ :=
ψ2

θ∫
x∈R3N ψ2

θdx
is a probability density. From this, we derive

δL
δρθ

=
H√

ρθ√
ρθ

= Hψθ

ψθ
and ∂θ log ρθ(x) = 2(∂θψθ(x)− Eρθ [∂θψθ]).
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Figure 3: Numerical results for solving the Euler equations

Figure 4: Numerical results of VMC on the molecules Be,Li2,H10,N2. We use “FR” and “W2” to denote
the Fisher-Rao and Wasserstein-2 metrics, respectively, for brevity.

Variational Monte Carlo (VMC) methods utilize Markov Chain Monte Carlo (MCMC) sampling to esti-
mate expectations with an unnormalized probability distribution. Using this approach, we conduct numerical
experiments on a small atom (Be), and three molecules (Li2,H10,N2), to verify the acceleration effects of our
proposed ANGD algorithms on the Fisher-Rao metric using projected momentum discretization outlined in
(23), and the Wasserstein-2 metric with KFAC discretization. Notably, the non-accelerated NGD-Fisher-
Rao algorithm corresponds to the SPRING algorithm [9], while the non-accelerated NGD-Wasserstein-2
algorithm is essentially the WQMC algorithm [18], differing primarily in numerical stability techniques.

The experimental setup is as follows. The sample size n is set to 2000 for the Fisher-Rao metric and
4000 for the Wasserstein-2 metric. The initial learning rate h0 is searched in {0.001, 0.005, 0.01, 0.05, 0.1}
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for the baseline NGD algorithms, and in {
√
0.001,

√
0.005,

√
0.01,

√
0.02,

√
0.05} for the ANGD algorithms.

Following the approach in [9], all algorithms employ a linear decay schedule hk = h0

1+ϵk with ϵ = 5e-5 for
ANGD and ϵ = 1e-4 for NGD (doubled due to the square root). We also impose linear decay on αk, βk with
α0 ∈ {0.1/h0, 0.2/h0, 0.5/h0}, β0 ∈ {0.0, 0.01, 0.05, 0.1, 0.15} for ANGD methods, and set βk ≡ 0 for ANGD-
Wasserstein-2. Other hyper-parameters including clipping, sampling steps, and the Ferminet architecture
follow [9].

Comparisons of the performance between the ANGD and NGD algorithms on the four benchmark par-
ticles are shown in Figure 4. We normalize the loss (energy) them by subtracting the physical lower bound
(reported in Hartrees to four decimal places). For both the Fisher-Rao and Wasserstein-2 metrics, the ANGD
methods demonstrate significantly faster convergence rates and attain lower final losses than the NGD meth-
ods. Remarkably, even the worst-performing ANGD variant outperforms the best NGD variant in terms of
final loss, highlighting the significant benefits of incorporating acceleration into the optimization process.

7 Conclusion

In this paper, we introduce a novel ANGD framework for solving parametrized manifold optimization
problems. An ARG flow is designed to characterize accelerated optimization on a manifold, incorporating
Hessian-driven damping. An equivalent system of first-order ODEs for several metrics is proposed. We
develop a discretization scheme to project the ODE flow onto the parameter space, leading to an efficient
solution of the accelerated direction. The convergence analysis of ARG flow under convexity assumptions is
also established. Numerical experiments show that ANGD accelerates the optimization process compared
to other methods.
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