
Feature-Based Instance Neighbor Discovery:
Advanced Stable Test-Time Adaptation in Dynamic

World

Qinting Jiang
Shenzhen International Graduate School

Tsinghua University
jqt23@mails.tsinghua.edu.cn

Chuyang Ye
Courant Institute of Mathematical Sciences

New York University
chuyang.ye@nyu.edu

Dongyan Wei
CSDAI Department

Institut Polytechnique de Paris
dongyan.wei@ip-paris.fr

Bingli Wang
College of Information Engineering

Sichuan Agricultural University
wangbingli@stu.sicau.edu.cn

Yuan Xue
Shenzhen International Graduate School

Tsinghua University
yxue2021@gmail.com

Jingyan Jiang∗
School of Artificial Intelligence

Shenzhen Technology University
jiangjingyan@sztu.edu.cn

Zhi Wang∗
Shenzhen International Graduate School

Tsinghua University
wangzhi@sz.tsinghua.edu.cn

Abstract

Despite progress, deep neural networks still suffer performance declines under
distribution shifts between training and test domains, leading to a substantial
decrease in Quality of Experience (QoE) for applications. Existing test-time
adaptation (TTA) methods are challenged by dynamic, multiple test distributions
within batches. We observe that feature distributions across different domains
inherently cluster into distinct groups with varying means and variances. This
divergence reveals a critical limitation of previous global normalization strategies
in TTA, which inevitably distort the original data characteristics. Based on this
insight, we propose Feature-based Instance Neighbor Discovery (FIND), which
comprises three key components: Layer-Wise Feature Disentanglement (LFD),
Feature-Aware Batch Normalization (FABN) and Selective FABN (S-FABN). LFD
stably captures features with similar distributions at each layer by constructing
graph structures; while FABN optimally combines source statistics with test-time
distribution-specific statistics for robust feature representation. Finally, S-FABN
determines which layers require feature partitioning and which can remain unified,
thus enhancing the efficiency of inference. Extensive experiments demonstrate that
FIND significantly outperforms existing methods, achieving up to approximately
30% accuracy improvement in dynamic scenarios while maintaining computational
efficiency. The source code is available at https://github.com/Peanut-255/
FIND.

∗Corresponding author: wangzhi@sz.tsinghua.edu.cn, jiangjingyan@sztu.edu.cn

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/Peanut-255/FIND
https://github.com/Peanut-255/FIND

1 Introduction

The remarkable advancements in deep neural networks have not fully resolved the challenge of
domain shift. When deployed in real-world scenarios, neural networks often encounter significant
performance degradation as testing environments deviate from training conditions [1, 2, 3]. To
mitigate these challenges, researchers have developed test-time adaptation (TTA) approaches, which
enable models to dynamically adjust to new domains during inference without accessing the original
training data or target domain labels [4].

Existing TTA approaches can be divided into two main categories: test-time fine-tuning [4, 3, 5, 6, 7,
8, 9, 10] and test-time normalization [11, 12, 13, 14]. The former methods adapt model parameters
during inference [4, 3, 5, 15]. While effective, these approaches demand considerable computational
resources. The latter methods, alternatively, focus on adapting batch normalization (BN) statistics to
address distribution shifts. These approaches correct the statistics of source batch normalization (SBN)
by leveraging either test-time batch normalization (TBN) or its variants during inference [3, 16].

The effectiveness of previous TTA methods primarily relies on the assumptions of ideal test condi-
tions—test examples are homogeneous and originate from a single distribution over a period, which
we refer to as the static scenario [4, 17, 3, 5]. However, real-world data streams often exhibit
more complex trends: distribution shifts no longer gradually evolve over time; instead, multiple
distinct distributions may emerge simultaneously, which we refer to as the dynamic scenario. For
instance, due to variations in network conditions and device capabilities, clients may upload images of
different compression rates. This results in the model receiving samples with varying levels of quality
degradation that are drawn from multiple distinct distributions. Our investigation (Figure 2a) reveals
that existing methods exhibit significant performance degradation in dynamic scenarios (an average
accuracy drop of 15%). Surprisingly, the test-time fine-tuning approach not only fails to improve
performance compared to test-time normalization but even decreases accuracy by approximately
0.4%. This finding highlights an essential revelation: in dynamic scenarios, mitigating performance
degradation depends primarily on carefully adjusting normalization methods. We observe that feature
distributions in dynamic scenarios naturally form distinct clusters with varying means and variances
(Figure 3a). However, current TBN-based normalization approaches employ a global normalization
strategy across all features, inducing interference between different distributions (Figure 1).

(a) TBN based methods

Source

...

Noisy
Collapse

(b) Feature-Based Instance Neighbor Discovery (ours)

Average Accuracy
66%

Average Accuracy

72.7%

Test Batch

Test Batch

Model

Source

...

LFD

FABN

No Collapse

Model

Different-colored small circles
indicate multi-domain data in

the batch

The BN
layer of

the model

Test batch at a
time step

Distance

Aggregation

Refined

Figure 1: (a) In previous TBN-based methods,
batch-level statistical values are computed holisti-
cally across all features, leading to erroneous nor-
malization of cross-distribution features. (b) Our
FIND framework introduces a layer-wise divide-
and-conquer strategy for intra-batch feature pro-
cessing, synergistically integrating source domain
knowledge to achieve reliable normalization.

This brings us to a crucial insight: in dynamic
scenarios, effectively addressing performance
degradation hinges on a “divide and conquer”
normalization approach, which naturally raises
two fundamental questions—how to divide and
how to conquer? To address these challenges,
we start by performing preliminary experiments
and motivation analyses to explore potential so-
lutions (Section 3). We find that: 1) Adopting
layer-wise feature partitioning instead of direct
classification on raw input samples leads to supe-
rior efficacy. 2) Integrating generic knowledge
from the source domain enhances normalization
stability and compensates for missing general-
izable patterns (e.g., class correlations) across
partitioned groups.

Based on the above insights, we propose FIND
(Feature-based Instance Neighbor Discovery), a
fine-grained test-time normalization framework
tailored for dynamic scenarios, comprising three
key components: layer-wise feature disentangle-
ment (LFD), feature-aware batch normalization
(FABN) and selective FABN (S-FABN), as il-
lustrated in Figure 1b. The core innovation of FIND lies in its layer-adaptive feature separation for
multi-distribution samples and layer-specific distribution alignment, which precisely models the un-
derlying statistical characteristics of each layer. For LFD, we establish graph-based feature modeling
through the exploitation of inter-feature correlations, which enables systematic reorganization of

2

features across heterogeneous distributions. For FABN, we integrate the group-specific knowledge
from each partitioned cluster with the generic knowledge derived from the statistics of the source
domain to achieve robust normalization. Finally, we employ S-FABN to determine which layers
require feature partitioning and which can remain unified, thereby enhancing inference efficiency.
Our contributions can be summarized as follows:

• We introduce the pioneering test-time normalization framework specifically designed for re-
alistic dynamic scenarios, addressing the limitations of current one-size-fits-all normalization
approaches in practical applications.

• Our method employs instance-level statistics to identify and cluster features with similar
distributions, achieving robust dynamic adaptation through the aggregation of group-specific
knowledge and generic knowledge from the source domain.

• Our method demonstrates versatility across architectures equipped with batch normalization
layers, including both transformer-based models (ViT) and classical convolutional networks
(e.g., ResNet). Remarkably, we are the first BN-based method tested on ViT structures with
outstanding performance in TTA.

• Comparative analysis on benchmark datasets validates our method’s effectiveness, showing
a 30% accuracy gain over current state-of-the-art solutions in dynamic scenarios.

2 Preliminary

Test-time adaptation addresses the challenge of model adaptation when deploying a pre-trained model
in novel environments. Consider a deep neural network fθ : x → y that has been trained on source
domain data DS . During deployment, this model encounters a target domain containing N unlabeled
test samples, denoted as DT , {xi}Ni=1 ∈ DT . While DS and DT may exhibit different distributions,
they share the same output space for prediction tasks.

The fundamental objective of TTA is to enable real-time model adaptation using streaming test
samples. This online adaptation process operates sequentially: at any time step t, the model processes
a batch of instances Xt, simultaneously performs adaptation and generates predictions Ŷt. A key
characteristic of this setup is its streaming nature: when processing the subsequent batch Xt+1 at
step t+ 1, the model must adapt and make predictions without retaining or accessing historical data
X1→t. This constraint reflects real-world deployment scenarios where memory and computational
resources are limited, and past data cannot be stored indefinitely.

Static Dynamic
50

55

60

65

70

75

80

Ac
cu

ra
cy

 (
%

)

57.38

77.34 78.23

57.38

62.51 62.12

Static Trend
Dynamic Trend
Source
Source+TBN
Source+TBN+FT

0 200 400 600 800 1000 1200 1400
Steps

2

3

4

5

6

7

8

9

L2
 N

or
m

 G
ra

d

Single-Domain
Multi-Domain

(a) TTN VS. FT

Static Dynamic
50

55

60

65

70

75

80

Ac
cu

ra
cy

 (
%

)

57.38

77.34 78.23

57.38

62.51 62.12

Static Trend
Dynamic Trend
Source
Source+TBN
Source+TBN+FT

0 200 400 600 800 1000 1200 1400
Steps

2

3

4

5

6

7

8

9

L2
 N

or
m

 G
ra

d

Single-Domain
Multi-Domain

(b) Gradient of each step
Figure 2: (a) demonstrates the performance gains
of test-time normalization (TTN) versus test-time
fine-tuning (FT). (b) shows how gradient changes
across fine-tuning steps under different scenarios.

In the TTA framework, target domain distribu-
tions evolve across time steps, with samples at
each moment adhering to independent and iden-
tically distributed (i.i.d.) properties: Xt ∈ Dt

and Dt ̸= Dt+1. However, following our ear-
lier discussion, real-world applications com-
monly present situations where the inference
process must handle mixed samples from vary-
ing distributions. To address this scenario, we
model the target domain Dt at time step t as
a set comprising one or multiple distributions:
Dt = {Dt,1, Dt,2, ..., Dt,M}, where M ≥ 1.
This formulation, termed the Dynamic scenario, reflects that Xt may originate from either single or
multiple distributions.

3 Observations of TTA in Dynamic Scenario

Precise normalization is pivotal for effective TTA. To disentangle the contributions of test-time
normalization (TTN) and test-time fine-tuning, we conduct ablation studies by sequentially applying
TBN and fine-tuning (SAR [7]) on the source model. As shown in Figure 2a, TBN demonstrates
significantly greater contribution (5%-20% performance gains) compared to fine-tuning (-0.4%-1%
gains by building upon TBN). Notably, fine-tuning introduces negative impacts in dynamic scenarios.
Our gradient convergence analysis in Figure 2b reveals that in dynamic environments, conflicting

3

gradients from multi-distribution samples hinder convergence and degrade model performance,
whereas static environments allow stable convergence beyond 1,000 adaptation steps. These findings
establish the inefficacy of fine-tuning in dynamic scenarios, emphasizing the necessity of developing
precise normalization strategies for robust performance enhancement.

Figure 3: Feature distributions across domains (a)
and classes (b and c) under different scenarios. The
domains are gaussian noise, zoom blur, snow, and
pixelate from CIFAR100-C in (a). In (a) and (b),
the feature distributions are clearly partitioned; in
(c), they are entangled.

A divide-and-conquer strategy is essential in
dynamic environments. Figure 3a reveals in-
trinsic cluster patterns in BN layers when using
domain as labels, where each cluster exhibits
unique distribution characteristics (varying cen-
ters and variances). Conventional test-time nor-
malization methods that compute global statis-
tics inevitably distort feature distributions, as
shown in Figure 3b and 3c: In static scenarios,
different classes exhibit well-separated feature
boundaries, whereas in dynamic scenarios, im-
proper normalization induces feature coupling.
This phenomenon motivates our core design
principle: features from divergent distributions
require separate normalization pipelines.

Replace processing the input samples directly by layer-wise feature partitioning. Direct parti-
tioning input samples is infeasible due to missing domain labels and domain-class feature couplings.
Inspired by Neyshabur et al. [18] and Lee et al. [8], who demonstrated that visual features inher-
ently decompose into domain-relevant features (DRF, e.g., backgrounds) and class-relevant features
(CRF, e.g., object structures), and that various network layers exhibit distinct preferences for these
feature types, we propose layer-wise processing for BN layers. This strategy achieves: 1) reduced
cross-feature interference during partitioning, and 2) fine-grained alignment with layer-specific
normalization needs.

1 5 10 15
Domain

20

40

Ac
cu

ra
cy

 (%
) Static TBN

Dynamic TBN

Static SBN
Dynamic SBN

(a) DN vs. accuracy

1 2 4 8 16 64 128
Batch Size

10

20

30

Ac
cu

ra
cy

 (%
)

TBN
SBN

(b) BS vs. accuracy
Figure 4: (a) and (b) display the inference accuracy
with different domain numbers (DN) and batch
sizes (BS). Static and Dynamic represent different
scenarios.

Enhance normalization stability via generic
knowledge from training data. When the
“divide-and-conquer” strategy is implemented,
the features of the BN layer will be divided
into multiple clusters. The sizes of these clus-
ters are much smaller than the original batch
sizes, resulting in biases in the distribution of
class-relevant features. As shown in Figures 4a
and 4b, while TBN exhibits sensitivity to batch
size and domain quantity, SBN maintains sta-
ble performance across these variables. This
robustness stems from SBN’s integration of
generic knowledge (e.g., class-relevant knowl-
edge)—comprehensive statistics derived from large-scale training data. These domain-shareable
characteristics facilitate stable normalization by preventing the loss of generic features in clusters. A
more specific analysis on the introduction of SBN in TBN is in Appendix M.

4 Method: FIND

As shown in Figure 5, the proposed FIND involves three novel designs, including layer-wise feature
disentanglement (LFD), feature-aware batch normalization (FABN) and selective FABN (S-FABN).
Here we introduce them in the following parts.

4.1 Layer-Wise Feature Disentanglement

In previous methods, the monolithic statistical computation—applied uniformly across all batch
samples—inevitably skews feature representations toward erroneous distributions, particularly under
dynamic multi-domain shifts, thereby compromising the overall reliability and accuracy of model
inference during test-time adaptation. Our analysis reveals that a divide-and-conquer strategy is
essential for normalizing multi-domain samples. However, directly partitioning input samples faces

4

Text

Feature-Based Instance Neighbor Discovery (FIND)

Source
Model

...

Conv

ReLU...

FC

 Step

La
ye

r
 LFD

C
B

Layer Input Features

W
,H

Inference

Layer-
wise

Conduct ...

Conv

ReLU

Conv

ReLU

FC

 Step

SB
N ...

TFN

 Subset of F

FABN

SBN
Instance-wise statistical

values
Cosine Distance

Linear aggregation

Source domain statistical values SBN(,)

Batch-wise statistical values TBN(,)

Obtain of Layer by
TBN(,) and SBN(,

). If , skip LFD and
replace TFN with TBN

TBN

S-FABN

ReLU

Conv

SBN

ReLU

Conv

Conv

TBN

... Conv

Figure 5: Overview of the proposed FIND (FIND*). We design layer-wise feature disentanglement (LFD)
to divide multi-distribution feature maps within each layer into different subsets. Features in each subset
have similar cosine distances, ensuring distribution consistency. Next, we combine the test-feature-specific
normalization (TFN) statistics calculated for each subset with SBN statistics to improve normalization stability.
Finally, layers requiring LFD partitioning can be selected through sensitivity score to enhance efficiency.

practical limitations: For supervised clustering algorithms, the lack of relevant domain labels and
domain information poses challenges; for some unsupervised clustering algorithms, it is difficult to
determine the number of clusters, while category features, domain features, and other characteristics
in the samples are inherently entangled. Disentangling these features may require additional training
steps. Inspired by [18] and our observations that BN layers exhibit layer-specific feature preferences
(e.g., shallow layers focus on edges/textures while deeper layers prioritize semantic structures), we
propose layer-wise feature disentanglement (LFD). Unlike sample-level segregation, this neighbor-
search-based approach achieves fine-grained feature separation tailored to each layer’s distributional
characteristics.

For a certain BN layer in the network, we analyze the feature map F ∈ RB×C×H×W of all samples
at this layer, where B represents the batch dimension, C denotes the number of channels, and spatial
dimensions are spatial dimensions are represented by L (L = HW). Central to our approach is
the identification and re-grouping of feature maps that exhibit similar feature characteristics. This
grouping process is performed based on instance-level statistical representations µI ∈ RC , which
capture the essential features of each sample in the batch. The computation of these instance-level
means µI and the methodology for assessing feature similarity between samples can be formulated
as follows:

µI
i,c =

1

L

∑
L

Fi;c;L, (1)

Sim(i, j) =
µI
i,c · µI

j,c∥∥µI
i,c

∥∥∥∥µI
j,c

∥∥ , (2)

where Fi;c;L and Fj;c;L represent feature maps of sample i and sample j. Utilizing the Sim metric
to measure the similarities between instance-level statistical representations across samples, LFD
partitions the feature maps F of all samples into distinct subsets at this BN layer.

Drawing inspiration from FINCH [19], our LFD approach partitions F based on first-neighbor
relationships of instance-level statistics. For each BN layer, we compute similarity metric Sim
between different µI pairs, where Sim quantifies the feature affinity between instances at the current
layer. Each µI identifies its first neighbor by selecting the instance with the highest similarity score.
Following this first-neighbor initialization, LFD constructs an adjacency matrix as follows:

First(i, j) =

{
1, if a1i = j or a1j = i or a1i = a1j

0, otherwise , (3)

where each sample’s feature map at the layer constitutes the node of the adjacency matrix. a1i
represents the first neighbor of the i − th node. After obtaining the adjacency matrix First, LFD
proceeds with feature map F partitioning. By traversing the adjacency matrix First, nodes i and j
are assigned to the same connected component when First(i, j) = 1. This operation reconstructs F
into a graph structure with multiple connected components, thereby grouping features exhibiting high
similarity measures. The detailed algorithm is provided in Appendix A. The analysis of clusters of
each layer by LFD is provided in Appendix H.

5

4.2 Feature-Aware Batch Normalization

After partitioning, the original feature map F in the BN layer is divided into r subsets, i.e., F ={
F 1, F 2, F 3, . . . , F r

}
, where F i ∈ Rb×C×L and b represents the number of instance-wise feature

maps included in that set. Similar to computing batch-wise statistical values, we calculate the
test-feature-specific-normalization (TFN) statistical values µi

F and σi
F for each subset:

µi
F =

1

bL

∑
b,L

F i
b;c;L, σ

i
F =

√
1

bL

∑
b,L

(
F i
b;c;L − µi

F

)2

. (4)

Based on the preceding analysis, TFN computations enable the capture of domain-specific feature
distributions within each BN layer. However, since TFN operates on smaller subsets compared to the
original batch size, the missing or incomplete representation of generic features (e.g., insufficient class
diversity in subsets) in these subsets may introduce statistical bias to TFN estimations. Therefore,
we introduce SBN (generic knowledge) to supplement TFN. We thus propose Feature-Aware Batch
Normalization (FABN), which utilizes SBN to correct the TFN statistics:

µi
FABN = αµs + (1− α)µi

F , (5)

σi
FABN

2 = ασ2
s + (1− α)σi

F
2, (6)

α determines the relative contributions of each component. This hybrid approach leverages pre-
trained model knowledge through SBN while utilizing TFN to mitigate domain-specific feature
perturbations. The final FABN output can be expressed as:

FABNi
(
µi
FABN, σ

i
FABN

)
= φ ·

(
F i
;c; − µi

FABN

)√
σi
FABN

2 + ε
+ β, 1 ≤ i ≤ r, (7)

where φ and β represent the affine parameters of the BN layer, and ε is a small bias to prevent division
by zero.

4.3 Selective Feature-Aware Batch Normalization (S-FABN)

As noted earlier, different layers exhibit varying preferences for features, meaning layers with minimal
focus on domain characteristics remain insensitive to domain shifts. Consequently, feature map
partitioning becomes unnecessary for these layers since their feature distributions across domains
show minimal divergence and align closely with the source domain. To quantify the distribution gap,
we calculate the KL divergence between source domain DS and current target domain DT for each
BN layer:

KL(DT ∥ DS) =
σ2
T + (µT − µS)

2

2σ2
S

+ ln

(
σS

σT

)
− 1

2
, (8)

where KL ∈ RC , µT = 1
BL

∑
B,L FB;c;L and σT =

√
1

BL

∑
B,L (FB;c;L − µT)

2. We calculate the
mean KL divergence KLmean across all channels in the current BN layer based on KL. However,
averaging across all channels risks diluting critical signals from highly sensitive ones. We address
this by:

Score = (1 +
1

1 + e−KLst
)KLmean, (9)

where KLst is the standard deviation of KL divergence in the current BN layer. The introduction of
KLst as a weighting factor mitigates potential oversight of highly sensitive channels.

In this process, we introduce no additional data but conduct a cold-start phase. Specifically, we
leverage the initial batches fed into the model to compute the average Score for each layer, followed
by Score normalization. Throughout this phase, the divide-and-conquer strategy remains applied to
all layers. Upon obtaining the scores, partitioning is deactivated for layers exhibiting lower sensitivity.
We set a threshold γ. If Score ≥ γ, we retain the FABN. Otherwise, we deactivate the partitioning
and replace the TFN component in FABN with (µT , σT).

We denote the selectively partitioned FIND as FIND*. We conduct sensitivity analysis on γ in
the experiments. The details of the cold-start process and the sensitivity analysis of γ are given in
Appendix G and Appendix I.

6

5 Experiments

5.1 Experimental Setup

We evaluate our proposed FIND using the Test-Time Adaptation Benchmark (TTAB) [20]. All
reported results represent averages across three independent runs with different random seeds. Full
implementation details and experimental configurations are provided in the Appendix.

Environment and Hyperparameter Configuration. Our experiments were conducted using an
NVIDIA RTX 4090 GPU and a V100 GPU with PyTorch 1.10.1 and Python 3.9.7. For our FABN
module in FIND, we set the aggregation parameter α to 0.8. We set the threshold γ to 0.1 for FIND*.
A detailed analysis of α, γ and the cold-start phase of FIND* is available in the Appendix. The
details of hyperparameter settings are provided in Appendix F.

Baselines. We consider the following baselines: (1) Test-time fine-tune. SAR [7], EATA [21], DeYO
[8], TENT [4], NOTE [3], RoTTA [5] and ViDA [6]. (2) Test-time normalization. TBN [22], α-BN
[23], and IABN [3]. We evaluate all methods under the online test-time adaptation (TTA) protocol,
where source training data is inaccessible. Detailed experimental configurations are provided in
Appendix C.

Following standard protocols [20, 3], we conduct experiments with a test batch size of 64 and one
adaptation epoch. Method-specific hyperparameters are adopted from their respective published
configurations [20].

Datasets. We evaluate on three corrupted datasets from the TTA benchmark [20]: CIFAR10-C (10-C),
CIFAR100-C (100-C), and ImageNet-C (IN-C) [24]. Similar to previous studies [20], all experiments
use severity level 5 corruptions and ResNet-50 [25] models pre-trained on their respective clean
datasets. To demonstrate the transferability of our approach, we extend our evaluation to
transformer-based architectures, specifically using EfficientViT [26] as an additional backbone.
We are the first BN-based method tested on ViT. Details of datasets are provided in Appendix B.

Scenarios. In contrast to existing approaches that assume static data patterns, we shift our attention
to TTA in dynamic data patterns. In our experiments, we employed three scenarios based on dynamic
data patterns: CrossMix. Each batch contains samples from multiple domains (15 domains). Shuffle.
Batches alternate between containing samples from a single domain and multiple domains. Random.
The number of domains represented in each batch is entirely stochastic.

All three scenarios involve abrupt distribution shifts between consecutive time steps. Detailed scenario
specifications are provided in Appendix E.

5.2 Performance Comparison under Dynamic Scenarios

Table 1 presents the comparative results of all test-time adaptation methods under dynamic scenarios.
Our method consistently outperforms existing approaches in all scenarios. Most importantly, in
the CrossMix scenario, we achieve accuracy gains of 17% and 7% over RoTTA (worst baseline)
and DeYO (best baseline), respectively. This superior performance demonstrates our method’s
effectiveness in handling multi-distribution batch data, attributed to FABN’s ability to effectively
partition features into distribution-specific subsets while maintaining their statistical integrity. The
performance advantages persist in both Random and Shuffle scenarios, where we surpass the strongest
baseline (α-BN) by 3% in three datasets. These results validate our method’s robustness across
various distribution shift patterns, regardless of whether the test batches contain single, multiple, or
transitioning distributions. Notably, there is almost no performance gap between FIND* and FIND,
which better reflects each layer’s individual sensitivity to distribution shifts. For insensitive layers,
avoiding feature partitioning can reduce additional time consumption. The results under different
domain scales of a batch are provided in Appendix K. The results in other scenarios are provided in
Appendix N, P and Q respectively.

5.3 Performance Comparison under Transformer Backbone

We use EfficientViT [26] as an additional backbone. EfficientViT is an architecturally optimized
vision transformer that replaces the conventional layer normalization with batch normalization layers
to achieve computational efficiency. We are the first BN-based method tested on ViT. Table 2

7

presents the comparative results. Our method consistently outperforms existing approaches across
all scenarios. Most notably, in the CrossMix scenario, we achieve accuracy gains of 10% and 5%
over NOTE (worst baseline) and Source (best baseline), respectively. The performance advantages
persist in both Random and Shuffle scenarios, where we surpass all the baselines. It demonstrates our
method has versatility across architectures equipped with batch normalization layers, including both
transformer-based models (ViT) and classical convolutional networks (e.g., ResNet).

Table 1: Comparison with state-of-the-art methods on CIFAR10-C, CIFAR100-C, and ImageNet-C
datasets (corruption severity 5, batch size 64). Results show accuracy (%) across CrossMix,
Random, and Shuffle scenarios using ResNet-50. Best and second-best results are shown in bold and
underlined, respectively.

CrossMix Random Shuffle
Method Venue 10-C 100-C IN-C Avg. 10-C 100-C IN-C Avg. 10-C 100-C IN-C Avg. Avg-All

Source CVPR16 57.39 28.59 25.64 37.21 57.38 28.58 25.93 37.30 57.38 28.58 25.80 37.25 37.25
TEST-TIME FINE-TUNE

TENT CVPR21 62.77 31.57 18.45 37.60 71.50 40.96 23.15 45.20 71.56 40.73 23.78 45.36 42.72
EATA ICML22 61.97 32.74 19.68 38.13 68.25 42.15 24.26 44.89 67.83 41.37 24.50 44.57 42.53
NOTE NIPS22 63.03 32.96 17.44 37.81 62.81 33.19 21.64 39.21 65.34 35.12 22.98 41.15 39.39
SAR ICLR23 61.70 31.45 18.65 37.27 71.04 40.92 23.62 45.19 71.49 39.58 23.50 44.86 42.44
RoTTA CVPR23 43.70 24.05 21.85 29.87 48.68 23.80 20.39 30.96 54.79 29.29 22.71 35.60 32.14
ViDA ICLR24 61.97 32.14 18.52 37.54 67.96 39.48 23.33 43.59 67.96 39.48 23.06 43.50 41.54
DeYO ICLR24 68.85 30.43 19.13 39.47 75.63 36.67 24.32 45.54 75.62 35.45 25.21 45.43 43.48

TEST-TIME NORMALIZATION
TBN ICML20 61.96 32.12 18.72 37.60 67.75 39.16 22.99 43.30 67.63 39.22 23.35 43.40 41.43
α-BN arXiv20 62.41 33.22 21.92 39.18 69.88 41.59 27.57 46.35 69.87 41.60 27.78 46.42 43.98
IABN NIPS22 62.63 24.54 9.73 32.30 64.59 26.40 10.75 33.91 64.59 26.40 10.79 33.93 33.38
FIND Proposed 71.54±0.2 39.75±0.2 29.21±0.0 46.83 73.09±0.2 42.56±0.2 30.12±0.2 48.59 72.74±0.1 42.87±0.3 30.00±0.2 48.54 47.87
FIND* Proposed 70.75±0.0 40.48±0.1 30.33±0.1 47.19 73.68±0.0 43.05±0.0 30.62±0.0 49.12 73.60±0.0 43.88±0.2 30.24±0.4 49.23 48.50

Table 2: Comparison with state-of-the-art methods on CIFAR10-C, CIFAR100-C, and ImageNet-C
datasets (corruption severity 5, batch size 64). Results show accuracy (%) across CrossMix,
Random, and Shuffle scenarios using EfficientViT-M5. Best and second-best results are shown in
bold and underlined, respectively.

CrossMix Random Shuffle
Method Venue 10-C 100-C IN-C Avg. 10-C 100-C IN-C Avg. 10-C 100-C IN-C Avg. Avg-All

Source CVPR16 74.57 42.87 26.05 47.83 74.62 43.14 27.39 48.38 74.62 43.06 27.36 48.35 48.19
TEST-TIME FINE-TUNE

TENT CVPR21 74.22 42.54 20.37 45.71 77.98 44.70 23.58 48.75 77.97 44.86 23.67 48.83 47.76
EATA ICML22 74.50 41.79 20.75 45.68 77.93 45.28 24.57 49.26 77.88 45.47 24.11 48.83 47.92
NOTE NIPS22 68.45 36.42 20.10 41.66 67.05 35.19 18.95 40.40 65.56 34.24 18.50 39.43 40.50
SAR ICLR23 75.17 41.39 20.18 45.58 78.29 44.50 23.62 48.80 77.80 45.76 23.43 49.00 47.79
RoTTA CVPR23 75.84 43.35 20.10 46.43 74.52 42.58 20.99 46.03 76.07 44.09 23.63 47.93 46.79
ViDA ICLR24 75.05 41.37 12.45 42.96 78.13 44.73 14.30 45.72 78.20 44.67 15.51 46.13 44.94
DeYO ICLR24 75.10 42.50 20.35 45.98 78.01 44.54 24.45 49.00 78.35 44.65 20.83 47.94 47.64

TEST-TIME NORMALIZATION
TBN ICML20 74.94 41.26 20.06 45.42 77.73 43.84 23.10 48.22 77.65 44.75 22.87 48.42 47.35
α-BN arXiv20 75.50 43.90 22.97 47.46 78.47 46.95 28.44 51.29 78.94 46.92 28.55 51.47 50.07
IABN NIPS22 68.47 37.63 20.21 42.10 67.08 34.66 19.20 40.31 66.68 35.04 18.52 40.08 40.83
FIND Proposed 78.60±0.2 48.69±0.2 29.23±0.0 52.17 79.54±0.1 48.75±0.2 30.94±0.0 53.08 79.58±0.1 48.47±0.1 30.95±0.2 53.00 52.75
FIND* Proposed 78.72±0.2 49.30±0.4 30.05±0.1 52.69 79.61±0.1 49.10±0.3 31.17±0.2 53.29 79.60±0.2 48.89±0.2 31.24±0.3 53.24 53.07

5.4 Efficiency Analysis

Table 3: Comparison of memory (GB) and latency (s) of different methods.
Overhead TBN α-BN TENT IABN DeYO RoTTA SAR EATA ViDA NOTE FIND FIND*

Latency (s) 0.07 0.07 0.17 0.22 0.23 0.60 0.30 0.17 5.62 1.84 0.21 0.15
Memory (GB) 0.86 0.86 5.59 1.73 6.20 12.72 5.59 5.64 7.02 10.94 1.44 1.21

To evaluate the
efficiency of dif-
ferent methods,
we compare their
memory usage and latency on ImageNet-C using a V100 GPU and ResNet-50. Table 3 shows that
our proposed methods, FIND and FIND*, achieve significantly lower memory usage and latency
compared to most of the baselines.

As shown in Table 3, our method demonstrates strong computational efficiency, ranking top-3
in inference speed (30× faster than ViDA) and memory usage (12× more efficient than RoTTA),
confirming its practical deployability.

8

5.5 Sensitivity analysis of γ

We compress the score of each layer in FIND* to the range [0, 1] through normalization, with score
proximity to 0 indicating lower distribution shift sensitivity of the layer. As shown in Figure 6, when
γ varies within 0-0.1, accuracy fluctuation remains below 1% while inference efficiency improves by
17%-32%, demonstrating robust model performance. When γ exceeds 0.1, accuracy drops by 2%-6%
with unstable model behavior. Therefore, setting γ between 0-0.1 achieves inference acceleration
while preserving model performance.

0.00 0.10 0.20 0.30 0.40
27

28

29

30

31

Ac
cu

ra
cy

 (
%

) Best: 30.33%
0.03 0.06 0.09

29.5

30.0

0.03 0.06 0.090.17

0.18

0.19

0.20

Accuracy
Time (s) 0.10

0.12

0.14

0.16

0.18

0.20

Ti
m

e
(s

)

(a) ImageNet-C & ResNet-50

0.00 0.10 0.20 0.30 0.40

66

68

70

72

Ac
cu

ra
cy

 (
%

)

Best: 72.45%

0.03 0.06 0.09
71

72

0.03 0.06 0.09

0.15

0.20

Accuracy
Time (s) 0.08

0.10
0.12
0.14
0.16
0.18
0.20
0.22

Ti
m

e
(s

)

(b) CIFAR10-C & ResNet-50
Figure 6: (a) and (b) demonstrate the sensitivity of model inference performance (Accuracy (%)) to
γ variations, along with the associated changes in inference efficiency (Time (s)).

5.6 Performance Comparison Between FIND (Ours) and Other Clustering Algorithms

Table 4: Comparison of substituting our
LFD in FIND with other clustering meth-
ods. The model is ResNet-50.

Method Acc (%) Time (s) Mem (GB)

HDBSCAN 24.66 0.50 1.64
Agglomerative 25.77 0.33 1.56
Birch 26.09 2.12 2.06
RccCluster 25.30 9.51 1.66
DSets-DBSCAN 25.13 2.05 1.62
DBSCAN 25.71 1.34 2.01
K-means 26.71 9.74 15.91
FIND (Ours) 29.21 0.21 1.44

Table 4 displays the performance of LFD in our method
and other clustering algorithms on ImageNet-C. Requires
no predefined cluster count: HDBSCAN [27], DB-
SCAN [28], RccCluster [29], and DSets-DBSCAN [30]
are density-based algorithms, while Agglomerative [31]
and Birch [32] are hierarchy-based. Requires predefined
cluster: K-means [33]. Our method demonstrates supe-
rior performance and computational efficiency compared
to alternative clustering approaches. This demonstrates
that LFD can effectively aggregate distribution-relevant
features with high similarity, thereby providing a cleaner
representation. In conclusion, FIND achieves fully auto-
matic perception and dynamic grouping. Other clustering algorithms depend on hyperparameters
or can only partition the feature space globally, lacking the capability for fine-grained perception in
complex scenarios.

5.7 Performance under Different Batch Size

1 2 4 8 16 64 128
Batch Size

20

40

60

Ac
cu

ra
cy

 (%
)

CIFAR10-C

SAR
EATA
DeYO

TBN
Ours

(a) CIFAR-10

1 2 4 8 16 64 128
Batch Size

20

40

Ac
cu

ra
cy

 (%
)

CIFAR100-C

SAR
EATA
DeYO

TBN
Ours

(b) CIFAR-100
Figure 7: Batch size sensitivity analysis. Our approach
demonstrates batch-size invariant performance.

Figure 7 demonstrates our method’s
stability across varying batch sizes in
the CrossMix scenario. While base-
line methods exhibit significant per-
formance degradation with smaller
batches, particularly on CIFAR100-C
where accuracy stabilizes only beyond
batch size 64, our approach maintains
consistent performance regardless of
batch size. This batch-size invariance
highlights our method’s robustness.

5.8 Ablation Study on α

We conducted two sets of ablation studies on α with γ = 0.1 in FABN, separately for clustered
and non-clustered layers (Table 6). We observe that in both cases, performance is better when

9

Table 6: Ablation study of α for clustered layers (CL) and non-clustered layers (NCL) in the CrossMix
scenario, where α for one layer type is varied while α for the other is fixed at 0.8. The dataset is
CIFAR10-C (severity level 5, batch size 64) and the model is ResNet-50.

α (CL) α (NCL)
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Acc (%) 57.48 62.98 66.81 69.49 70.75 60.39 67.20 67.47 68.29 69.36 70.75 70.80

the SBN ratio is higher (>0.5). Clustered layers are sensitive to the SBN ratio (13% change in
accuracy), while non-clustered layers are not (3% change in accuracy). The ablation study on α
provides strong evidence supporting several conclusions in our paper: 1. The generic knowledge
(SBN) dominates during inference. 2. The sensitivity of α is much lower in layers that do not require
clustering compared to those that do, because TFN only provides domain-specific distributions
rather than the full generic knowledge distribution (as discussed in Section 3, Observation 4).

Table 5: Ablation study on cor-
rupted datasets using ResNet-50
(severity level 5, batch size 64)
in the CrossMix scenario.

Method 10-C 100-C IN-C Avg.

SBN 57.39 28.59 25.64 37.21

TFN 45.78 18.90 10.65 25.11

SBN+TFN (FIND) 71.54 39.75 29.21 46.83

FIND* 70.75 40.48 30.33 47.19

5.9 Ablation Study on FIND

We conducted the ablation study on the components of FIND,
which consists of three key modules: LFD, FABN, and S-
FABN. LFD performs hierarchical feature partitioning to derive
new normalization statistics, referred to as TFN. FABN com-
plements TFN by incorporating SBN to supply the missing
generic features. Table 5 reveals that neither SBN nor TFN
alone achieves optimal results. SBN lacks relevant distribution
information from the target domain, while TFN’s small-batch
computation limits its ability to capture generic feature distributions. Our proposed FIND leverages
the complementary strengths of both approaches, thereby enhancing overall performance.

6 Related Work

Online TTA and Continual TTA. Test-time adaptation (TTA), a form of unsupervised domain
adaptation, enables model adaptation without source data. Initial work by Schneider et al.[34]
demonstrated the effectiveness of updating batch normalization statistics during inference. Subsequent
approaches incorporated backpropagation-based optimization, with Wang et al.[4] focusing on batch
normalization parameters through entropy minimization, while Zhang et al. [35] extended this to
full model optimization with test-time augmentation. Continual TTA addresses sequential domain
shifts in real-world deployments. While TENT [4] can handle continuous adaptation, it risks error
accumulation. COTTA [17] specifically targets this challenge through weighted averaging and
restoration mechanisms. EATA [21] further enhances adaptation stability by incorporating entropy-
based sample filtering and Fisher regularization.

TTA in Dynamic Wild World. Real-world test data often exhibits complex characteristics, including
data drift and mixed or imbalanced distributions. SAR [7] examines model degradation under such
wild data, NOTE [3] tackles non-i.i.d. distributions through IABN and balanced sampling, and
DeYo [8] leverages feature decoupling for enhanced category learning.

However, TTA in dynamic environments remains largely unexplored. We present the first dedicated
analysis of distribution shifts through BN statistics correction, introducing a backward-free adaptation
framework. More details can be found in Appendix D.

7 Conclusion

In this paper, we propose FIND, a divide-and-conquer strategy to enhance TTA performance in
dynamic scenarios. FIND combines LFD for feature map partitioning via instance normalization
statistics, and FABN for consistent representation through SBN aggregation. Our approach demon-
strates robust performance across diverse distribution shifts in dynamic data streams compared with
existing methods. More discussions are in Appendix U.

10

8 Acknowledgements

This work is supported in part by the National Key Research and Development Project of China
(Grant No. 2023YFF0905502), National Natural Science Foundation of China(Grant No. 92467204
and 62472249), Shenzhen Science and Technology Program (Grant No. JCYJ20220818101014030
and KJZD20240903102300001) and Natural Science Foundation of Top Talent of SZTU (Grant No.
GDRC202413).

References
[1] Sungha Choi, Sanghun Jung, Huiwon Yun, Joanne T Kim, Seungryong Kim, and Jaegul Choo.

Robustnet: Improving domain generalization in urban-scene segmentation via instance selective
whitening. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11580–11590, 2021.

[2] Joaquin Quiñonero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D Lawrence.
Dataset shift in machine learning. Mit Press, 2022.

[3] Taesik Gong, Jongheon Jeong, Taewon Kim, Yewon Kim, Jinwoo Shin, and Sung-Ju Lee.
NOTE: Robust Continual Test-time Adaptation Against Temporal Correlation, 2023.

[4] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent:
Fully Test-time Adaptation by Entropy Minimization, 2021.

[5] Longhui Yuan, Binhui Xie, and Shuang Li. Robust Test-Time Adaptation in Dynamic Scenarios,
2023.

[6] Jiaming Liu, Senqiao Yang, Peidong Jia, Renrui Zhang, Ming Lu, Yandong Guo, Wei Xue, and
Shanghang Zhang. Vida: Homeostatic visual domain adapter for continual test time adaptation,
2024.

[7] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiquan Wen, Yaofo Chen, Peilin Zhao, and
Mingkui Tan. Towards stable test-time adaptation in dynamic wild world, 2023.

[8] Jonghyun Lee, Dahuin Jung, Saehyung Lee, Junsung Park, Juhyeon Shin, Uiwon Hwang,
and Sungroh Yoon. Entropy is not enough for test-time adaptation: From the perspective of
disentangled factors, 2024.

[9] Guowei Wang, Changxing Ding, Wentao Tan, and Mingkui Tan. Decoupled Prototype Learning
for Reliable Test-Time Adaptation, January 2024. arXiv:2401.08703 [cs].

[10] Jin Gao, Jialing Zhang, Xihui Liu, Trevor Darrell, Evan Shelhamer, and Dequan Wang. Back to
the Source: Diffusion-Driven Test-Time Adaptation, June 2023. arXiv:2207.03442 [cs].

[11] Hyesu Lim, Byeonggeun Kim, Jaegul Choo, and Sungha Choi. TTN: A Domain-Shift Aware
Batch Normalization in Test-Time Adaptation, 2023.

[12] M Jehanzeb Mirza, Jakub Micorek, Horst Possegger, and Horst Bischof. The norm must go on:
Dynamic unsupervised domain adaptation by normalization. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 14765–14775, 2022.

[13] Wei Wang, Zhun Zhong, Weijie Wang, Xi Chen, Charles Ling, Boyu Wang, and Nicu Sebe.
Dynamically instance-guided adaptation: A backward-free approach for test-time domain
adaptive semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 24090–24099, 2023.

[14] Xingzhi Zhou, Zhiliang Tian, Ka Chun Cheung, Simon See, and Nevin L. Zhang. Resilient
Practical Test-Time Adaptation: Soft Batch Normalization Alignment and Entropy-driven
Memory Bank, January 2024. arXiv:2401.14619 [cs].

[15] Dian Chen, Dequan Wang, Trevor Darrell, and Sayna Ebrahimi. Contrastive Test-Time Adapta-
tion, April 2022. arXiv:2204.10377 [cs].

11

[16] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift, 2015.

[17] Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Continual Test-Time Domain Adapta-
tion, 2022.

[18] Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. What is being transferred in transfer
learning? Advances in neural information processing systems, 33:512–523, 2020.

[19] Saquib Sarfraz, Vivek Sharma, and Rainer Stiefelhagen. Efficient parameter-free clustering
using first neighbor relations. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 8934–8943, 2019.

[20] Hao Zhao, Yuejiang Liu, Alexandre Alahi, and Tao Lin. On pitfalls of test-time adaptation. In
International Conference on Machine Learning (ICML), 2023.

[21] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen, Shijian Zheng, Peilin Zhao, and
Mingkui Tan. Efficient test-time model adaptation without forgetting, 2022.

[22] John Bronskill, Jonathan Gordon, James Requeima, Sebastian Nowozin, and Richard Turner.
Tasknorm: Rethinking batch normalization for meta-learning. In International Conference on
Machine Learning, pages 1153–1164. PMLR, 2020.

[23] Fuming You, Jingjing Li, and Zhou Zhao. Test-time batch statistics calibration for covariate
shift. arXiv preprint arXiv:2110.04065, 2021.

[24] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations, 2019.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition, 2015.

[26] Xinyu Liu, Houwen Peng, Ningxin Zheng, Yuqing Yang, Han Hu, and Yixuan Yuan. Efficientvit:
Memory efficient vision transformer with cascaded group attention, 2023.

[27] Leland McInnes, John Healy, Steve Astels, et al. hdbscan: Hierarchical density based clustering.
J. Open Source Softw., 2(11):205, 2017.

[28] Jörg Sander, Martin Ester, Hans-Peter Kriegel, and Xiaowei Xu. Density-based clustering in
spatial databases: The algorithm gdbscan and its applications. Data mining and knowledge
discovery, 2:169–194, 1998.

[29] Pranali Sonpatki and Nameeta Shah. Recursive consensus clustering for novel subtype discovery
from transcriptome data. Scientific reports, 10(1):11005, 2020.

[30] Jian Hou, Huijun Gao, and Xuelong Li. Dsets-dbscan: A parameter-free clustering algorithm.
IEEE Transactions on Image Processing, 25(7):3182–3193, 2016.

[31] Fionn Murtagh and Pierre Legendre. Ward’s hierarchical agglomerative clustering method:
which algorithms implement ward’s criterion? Journal of classification, 31:274–295, 2014.

[32] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: an efficient data clustering method
for very large databases. ACM sigmod record, 25(2):103–114, 1996.

[33] Mohiuddin Ahmed, Raihan Seraj, and Syed Mohammed Shamsul Islam. The k-means algorithm:
A comprehensive survey and performance evaluation. Electronics, 9(8):1295, 2020.

[34] Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Brendel, and Matthias
Bethge. Improving robustness against common corruptions by covariate shift adaptation.
Advances in neural information processing systems, 33:11539–11551, 2020.

[35] Marvin Zhang, Sergey Levine, and Chelsea Finn. Memo: Test time robustness via adaptation
and augmentation. Advances in neural information processing systems, 35:38629–38642, 2022.

12

[36] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo,
Rahul Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness:
A critical analysis of out-of-distribution generalization. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 8340–8349, 2021.

[37] Eric Mintun, Alexander Kirillov, and Saining Xie. On interaction between augmentations
and corruptions in natural corruption robustness. Advances in Neural Information Processing
Systems, 34:3571–3583, 2021.

[38] Guohao Chen, Shuaicheng Niu, Deyu Chen, Shuhai Zhang, Changsheng Li, Yuanqing Li, and
Mingkui Tan. Cross-device collaborative test-time adaptation. Advances in Neural Information
Processing Systems, 37:122917–122951, 2024.

[39] Daeun Lee, Jaehong Yoon, and Sung Ju Hwang. Becotta: Input-dependent online blending of
experts for continual test-time adaptation. arXiv preprint arXiv:2402.08712, 2024.

[40] Yunbei Zhang, Akshay Mehra, Shuaicheng Niu, and Jihun Hamm. Dpcore: Dynamic prompt
coreset for continual test-time adaptation. arXiv preprint arXiv:2406.10737, 2024.

[41] Devavrat Tomar, Guillaume Vray, Jean-Philippe Thiran, and Behzad Bozorgtabar. Un-mixing
test-time normalization statistics: Combatting label temporal correlation. arXiv preprint
arXiv:2401.08328, 2024.

[42] Qingyang Zhang, Yatao Bian, Xinke Kong, Peilin Zhao, and Changqing Zhang. Come: Test-time
adaption by conservatively minimizing entropy. arXiv preprint arXiv:2410.10894, 2024.

[43] Jisu Han, Jaemin Na, and Wonjun Hwang. Ranked entropy minimization for continual test-time
adaptation. arXiv preprint arXiv:2505.16441, 2025.

[44] Mingkui Tan, Guohao Chen, Jiaxiang Wu, Yifan Zhang, Yaofo Chen, Peilin Zhao, and
Shuaicheng Niu. Uncertainty-calibrated test-time model adaptation without forgetting. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2025.

13

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction accurately reflect the contri-
butions. Claims clearly match our proposed method, empirical results and analysis.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are provided in Appendix T and Appendix U.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

14

Justification: The analysis of this article is mainly based on observed phenomena and
experimental data.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Implementation details are provided in Appendix B, Appendix C and Appendix
F for reproduction.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

15

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release our full code base with detailed instructions, scripts for
reproducing results. All used models and datasets are publicly available, and setup details
are included in the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Implementation details are provided in Appendix B, Appendix C and Appendix
F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bounds are provided along with the main results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The information about compute resources in the implementation is provided in
Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The societal impacts are provided in Appendix S.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

17

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We mention the licenses of existing assets in Appendix B and Appendix R.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

18

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our open-source code base is well documented, with documentation provided
alongside the code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Crowdsourcing or research with human subjects is not involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Crowdsourcing or research with human subjects is not involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

19

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The main method of this paper does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

Contents of Appendix

A The Layer-Wise Feature Disentanglement Algorithm 22

B Details of Datasets 22

C Details of Baselines 23

D Extension of Related Work 24

E Details of Our Scenarios 25

F Hyperparameter Settings 25

G Cold-Start Mechanism and Layer Sensitivity 26

H Analysis of Cluster Numbers of Each FABN Layer by LFD 26

I Sensitivity analysis of γ 27

J Compatibility Evaluation with Test-Time Tuning 28

K Performance under Different Domain Scales 28

L Performance under Different Model Structures 28

M Extension of Motivations 29

N Performance under Static Scenario 30

O Performance under Different Batch Size 30

P Experimental Results and Analysis under Wild Scenario 31

Q Experimental Results and Analysis on Simulated Lifelong Adaptation 32

R License and Asset Attribution 33

S Broader Impacts 33

T Limitations 33

U Conclusion and Future Work 33

21

A The Layer-Wise Feature Disentanglement Algorithm

Algorithm 1 is the proposed layer-wise feature disentanglement (LFD) Algorithm in this paper.

The identification of semantically similar samples is achieved through cosine similarity computations
between feature map representations at specific batch normalization layers. This similarity-based
approach enables precise detection of nearest neighbors that share comparable distributional charac-
teristics. By constructing an adjacency matrix (detailed in Equation 3) that connects each sample to
both its primary neighbor and secondary connections, we establish a hierarchical clustering structure.
This clustering mechanism naturally groups samples with analogous feature distributions.

Our analysis reveals an interesting architectural phenomenon: the distribution of clusters exhibits a
clear pattern across network depth. Specifically, we observe a higher cluster density in the network’s
earlier layers compared to deeper ones. This observation suggests a functional specialization where
shallow layers adapt to domain-specific representations, while deeper layers develop domain-invariant
features that remain stable across different contexts.

Algorithm 1 LFD Algorithm

1: Input: Feature map Fj = {1, 2, · · · , B} in the BN layer j, Fj ∈ RB×C×L, 1 ≤ j ≤ N , where
N is total number of BN layers in the model.

2: Output: Feature map F
′

j = {F 1, F 2, · · · , F r} after clustering, F i ∈ Rb×C×L, 1 ≤ i ≤ r.
3: Begin LFD Algorithm:
4: Compute first neighbors integer vector a1 ∈ RB×1 via exact distance (the distance metric is

defined by Equation 2).
5: Given a1, get adjacency matrix First of the feature map Fj via Equation 3.
6: Generate connected components from matrix First.
7: END

B Details of Datasets

We evaluate adaptation performance under covariate shift using three benchmark datasets: CIFAR10-
C, CIFAR100-C, and ImageNet-C [24]. These datasets simulate real-world distribution shifts through
systematic perturbations at varying intensities, ranging from level 1 to 5, with higher levels represent-
ing more severe distribution shifts. The CIFAR-based corrupted datasets maintain their original class
structures, with CIFAR10-C containing 10 categories (50K/10K split for train/test) and CIFAR100-C
encompassing 100 categories (maintaining identical data volume). For large-scale evaluation, we
utilize ImageNet-C, which spans 1,000 categories with approximately 1.28M training samples and
50K test instances. As shown in Figure 8, each dataset contains 15 types of corruptions, which are:
Gaussian Noise, Shot Noise, Impulse Noise, Defocus Blur, Glass Blur, Motion Blur, Zoom Blur,
Snow, Frost, Fog, Brightness, Contrast, Elastic Transformation, Pixelate, and JPEG Compression.
These three datasets are sufficient to effectively reflect the performance of different methods in
dynamic data streams and mixed domain scenarios.

Table 7: Comparison with state-of-the-art methods on ImageNet-R and ImageNet-C̄ datasets
(batch size 64). Results show accuracy (%) under CrossMix scenario using ResNet-50. Best

results are shown in bold.
Dataset Source α-BN IABN TBN TENT EATA SAR DeYO ViDA RoTTA NOTE FIND

ImageNet-R 27.94 31.60 21.63 31.12 31.36 31.65 31.22 32.05 31.12 30.78 21.20 34.74
ImageNet-C̄ 33.78 38.01 23.35 38.63 38.69 39.00 37.90 38.42 38.49 39.62 24.48 41.91

To show the high extensibility of our method to other datasets. We compare our FIND with other
methods on two additional datasets ImageNet-R [36] and ImageNet-C̄ [37]. Based on the previous
setup, we tested the performance of different methods under the CrossMix scenario (where all
domains are mixed as input), with specific details as follows:

• Style transfer-based dataset ImageNet-R: ImageNet-R reflects style shift, where images
are transformed from real photographs into various artistic styles (e.g., cartoons, sketches,
etc.). Such shifts mainly affect low-level features such as edges and textures, resulting

22

in milder perturbations compared to typical corruptions. As shown in Table 7, our FIND
achieves state-of-the-art performance, with improvements of 3%-13% over existing methods.

• Human-made corruption dataset ImageNet-C̄: Compared to ImageNet-C, ImageNet-C̄
includes a large variety of human-designed corruptions, such as Blue Noise, Plasma Noise,
and Caustic Refraction. This allows for a more thorough evaluation of model robustness
against structured, frequency-related, and complex synthetic corruptions. As shown in Table
7, our FIND still achieves the best results, outperforming the previous SOTA by 2.5%-17%.

Gaussian Noise Shot Noise Impulse Noise Defocus Blur Glass Blur

Motion Blur Zoom Blur Snow Frost Fog

Brightness Contrast Elastic Transform Pixelate Jpeg Compression

Figure 8: Visualization of the 15 types of corruptions in CIFAR10-C, CIFAR100-C and ImageNet-C.

C Details of Baselines

We consider the following baselines, including state-of-the-art test-time adaptation and test-time
normalization algorithms.

Test-time fine-tune. Sharpness-aware and reliable entropy minimization method (SAR) [7] has the
advantage of conducting selective entropy minimization, excluding samples with noisy gradients
during online adaptation, which leads to more robust model updates. Additionally, SAR optimizes
both entropy and the sharpness of the entropy surface simultaneously, ensuring the model’s robustness
to samples with remaining noisy gradients. Efficient anti-forgetting test-time adaptation (EATA) [21]
improves the stability of model updates by filtering high-entropy samples, while applying Fisher
regularizer to limit the extent of changes in important parameters, thereby alleviating catastrophic
forgetting after long-term model adaptation. Destroy your object (DeYo) [8] disrupts the structural
class-related features of samples by chunking them, and selects appropriate samples for model
adaptation by comparing the entropy change in predictions before and after chunking, thereby
enabling the model to learn the correct knowledge. Test entropy minimization (TENT) [4] optimizes
the model for confidence as measured by the entropy of its predictions and estimates normalization
statistics and optimizes channel-wise affine transformations to update online on each batch. Non-
i.i.d. Test-time adaptation (NOTE) [3] is mainly two-fold: Instance-Aware Batch Normalization
(IABN) that corrects normalization for out-of-distribution samples, and Prediction-balanced Reservoir
Sampling (PBRS) that simulates i.i.d. data stream from non-i.i.d. stream in a class-balanced manner.
Robust test-time Adaptation (RoTTA) [5] shares a similar approach with NOTE, which simulates an
i.i.d. data stream by creating a sampling pool and adjusting the statistics of the batch normalization
(BN) layer. Visual Domain Adapter (ViDA) [6] shares knowledge by partitioning high-rank and
low-rank features. For the aforementioned methods that require updating the model, we follow

23

the online TTA setup. We assume that the source data, which is used for model pre-training, is
not available for use in test-time adaptation (TTA). We conduct online adaptation and evaluation,
continuously updating the model.

Test-time normalization. Test-time normalization. TBN [22] uses the mean and variance of the
current input batch samples as the statistics for the BN layer. α-BN [23] aggregates the statistics
of TBN and SBN to obtain new statistics for the BN layer. IABN [3] is a method for calculating
BN layer statistics in NOTE, which involves using the statistics of IN for correction. For these
backward-free methods, we also follow the online TTA setting. Additionally, we do not make any
adjustments to the model parameters. Instead, we only modify the statistics of the BN layer during
the inference process using different approaches.

D Extension of Related Work

Domain-aware multi-modeling in TTA: CoLA [38] proposes a cross-device collaborative TTA
paradigm, which achieves efficient TTA by sharing and aggregating domain knowledge vectors
learned during adaptation across multiple devices. BECoTTA [39] aims to enhance the resistance
to catastrophic forgetting and adaptation efficiency in the continual TTA process by introducing a
Mixture-of-Experts (MoE) framework. DPCore [40] aims to address continual TTA under frequent
and unpredictable target domain shifts, by preventing catastrophic forgetting and negative transfer
during the adaptation process. UnMix-TNS [41] addresses non-i.i.d. scenarios with label imbalance
by replicating K sets of BN statistics via Gaussian perturbations. However, these replicated statistics
operate as an integrated whole, limiting their ability to capture diverse domain distributions in strict
mixed-domain settings. These works differ significantly from ours in terms of motivation. Our work
specifically targets the wild world setting with dynamic data streams-where the distribution diversity
within each test batch changes arbitrarily-and the strict mixed-domain scenario. To address these
issues, we propose a novel "divide-and-conquer" framework (automatic distribution-aware feature
disentanglement).

Robust test time fine-tuning in TTA: COME [42] adopts subjective-logic–based uncertainty model-
ing and minimizes opinion entropy to address the overconfidence and instability (model collapse)
caused by entropy minimization in test-time adaptation. REM [43] improves continual TTA stability
and efficiency by preventing the model-collapse issues of entropy minimization. It introduces ranked
entropy minimization: progressively masking object-relevant patches and jointly using masked con-
sistency loss and entropy ranking loss to align predictions across difficulty levels while preserving
the intended entropy order. EATA-C [44] reduces reducible model uncertainty via a full–subnetwork
consistency loss and characterizes data uncertainty through prediction disagreements, thereby miti-
gating the overconfidence and miscalibration of pure entropy minimization in TTA while alleviating
catastrophic forgetting. Although these methods improve stability during adaptation and prevent
collapse, they still fail to achieve precise normalization in dynamic settings, preventing the model
from learning effectively.

We compare against the above work that targets the same task as ours; the detailed results are shown
in Table 8. Our FIND consistently outperforms these methods by a substantial margin (10%–15%).

Table 8: Comparison with state-of-the-art methods on CIFAR10-C, CIFAR100-C, and
ImageNet-C datasets (corruption severity 5, batch size 64). Results show accuracy (%) under

CrossMix scenario using ResNet-50. Best results are shown in bold.
Dataset COME UnMix-TNS REM CoLA FIND

CIFAR10-C 60.48 60.46 59.10 62.00 71.54
CIFAR100-C 29.76 29.98 31.55 32.52 39.75
ImageNet-C 16.66 16.93 18.65 18.74 29.21

The key differences between our work and prior “in-the-wild” work: We consider fully dynamic
data streams and more stringent domain mixing. Besides the CrossMix scenario—where each batch
strictly includes 15 domains—we also construct dynamic scenarios (Random and Shuffle) where
each batch may contain only a single domain or a varying number of domains (2–15). In addition,
we provide a novel analytical perspective, redefining the roles of SBN and TBN in normalization
from the viewpoint of domain-related and general features. We propose a divide-and-conquer
normalization strategy for features within a batch—not addressed by previous methods. Notably,

24

DDA [10] introduces an additional diffusion model for denoising samples while keeping the original
model unchanged. Although DDA also evaluates the mix domain scenario in its experiments, this is
primarily to demonstrate the robustness of the method, rather than being the main focus of the paper.
The differences between DDA and our work: 1. DDA operates on a per-sample basis. Even if a full
batch is provided as input, each sample is denoised independently by the diffusion model. As a result,
batch processing does not offer any additional algorithmic benefit beyond potential hardware-level
parallelism. 2. DDA introduces additional diffusion models and requires multiple data forward passes,
resulting in significant inference overhead. 3. Training the diffusion model requires large amounts
of source data, which is inconsistent with TTA assumptions. In contrast, our method offers greater
scalability across different batch sizes and achieves efficient inference without relying on additional
models or extra training and forward processes.

E Details of Our Scenarios

Previous researches have predominantly focused on static scenarios (whether in continual TTA or
non-i.i.d. TTA). As illustrated in Figure 9, the static scenario is characterized by samples within a
batch originating from the same domain, with each domain persisting for an extended period.

In this paper, we shift our attention to TTA in dynamic scenarios. As depicted in Figure 9, the
dynamic scenario is defined by samples within a batch originating from either a single domain or
multiple domains, with domain changes occurring in real-time rather than persisting for extended
periods. This encompasses three sub-scenarios:

• CrossMix: Each batch contains samples from multiple domains.

• Shuffle: Batches alternate between containing samples from a single domain and multiple
domains.

• Random: The number of domains represented in each batch is entirely stochastic.

Source
Model

Adapted
Model

Adapted
Model

Rainy
Adapted
Model

Source
Model

Rainy
Adapted
Model

Rainy

Rainy Cloudy Fog
Adapted
Model

Rainy Fog

Adapted
Model

Source
Model

Adapted
Model

Rainy Cloudy Rainy
Test Batch at

Adapted
Model

Fog
Test Batch at

Adapted
Model

Source
Model

Adapted
Model

Fog
Adapted
Model

Rainy Cloudy
Adapted
Model

Test Batch at Test Batch at

... ...

...

...

...
Rainy

Test Batch at
Daytime

Daytime

Daytime

Daytime

Daytime

Daytime

Daytime

Test Batch at

Test Batch at Test Batch at Test Batch at

Test Batch at

Test Batch at Test Batch at Test Batch at Test Batch at

St
at

ic
D

yn
am

ic
C

ro
ss

M
ix

Sh
uf

fle
R

an
do

m

Figure 9: The visualization of scenarios mentioned in this paper, including static and dynamic
(CrossMix, Shuffle and Random).

We propose three sub-scenarios that simulate real data streams in the wild world, while also encom-
passing continual TTA in the traditional TTA static scenario (where, under the Random scenario,
the data stream may originate from the same domain over a certain period of time). Thus, these
sub-scenarios provide a better evaluation of the performance of current TTA methods in real-world
settings.

F Hyperparameter Settings

The hyperparameters can be divided into two types: one type is shared by all the baselines, and the
other type consists of hyperparameters specific to each method. For the shared hyperparameters,
batch size = 64, learning rate = 1e−4. The optimizer used is SGD. The hyperparameters of
each test-time fine-tuning method are set according to the TTAB benchmark [20] (the optimal
hyperparameters that achieved the best performance for each method in the original paper). Following
are the hyperparameters specific to each test-time normalization method:

25

• The hyperparameters of TBN are set according to the settings in [22];

• The hyperparameters of IABN are set according to the settings in [3];

• The hyperparameters of α-BN are set according to the settings in [23].

G Cold-Start Mechanism and Layer Sensitivity

As shown in Figure 10a-Figure 10d, The sensitivity of different model layers to domain shift is
correlated with both the backbone architecture and the dataset characteristics. For ResNet-50
(Figure 10a-Figure 10c), we observed an intriguing phenomenon: shallow and deep layers exhibit
lower sensitivity to domain shift, while intermediate layers show heightened sensitivity. This deviates
from conventional wisdom (where shallow layers are typically domain-related and deep layers class-
related). The anomaly may arise because shallow layers predominantly capture universal features (e.g.,
object contours and edges) that are domain-invariant, whereas intermediate layers——transitioning
from abstract to semantic representations——undergo intensive feature transformation and mixing,
making them more domain-vulnerable. Furthermore, sensitivity correlates with task complexity, as
evidenced by the uniformly elevated sensitivity across all layers in challenging tasks like ImageNet
classification.

Figure 10e shows the sensitivity score values under different cold-start durations. We found that
the cold-start duration has negligible impact on layer sensitivity quantification. Both short-term
(3 batches) and long-term (100 batches) cold-start conditions consistently characterize the relative
sensitivity relationships across layers, exhibiting only minor oscillations in peak values that do not
compromise the final layer selection. We ultimately select the initial 10 batches as the cold-start
duration.

Overhead of cold-start phase: The time overhead introduced by the cold-start phase is negligible.
1. The time complexity of the cold-start is linear with channels C and the number of BN layers N ,
resulting in extremely low computational cost. 2. The computation is performed in parallel with the
forward pass, incurring no extra inference or training steps.

H Analysis of Cluster Numbers of Each FABN Layer by LFD

0 10 20 30 40 50

BN Layer Index
2
4
6
8

10
12
14
16
18
20
22

S
ub

se
t N

um
be

r

Random
CrossMix
Shuffle

Figure 11: Cluster numbers of each FABN
layer under dynamic (Random, CrossMix,
and Shuffle) scenarios. Each result is derived
from the mean of 1,000 batches, with the col-
ored bands around the lines representing the
standard deviation.

Our analysis reveals the fundamental mechanism of
LFD: it systematically organizes and clusters feature
representations based on distributional similarities,
thereby minimizing interference between dissimilar
feature patterns within each batch. Figure 11 illus-
trates a key architectural phenomenon: the cluster
count systematically decreases with network depth
in dynamic scenarios. This pattern indicates a pro-
gressive convergence of feature distributions across
deeper network layers, suggesting a transition from
variable feature representations to more stable, con-
sistent patterns. In Figure 11, each batch contains 15
domains and 10 classes. We observed an interesting
phenomenon: in the shallow layers (0–5), the number
of clusters slightly exceeds the number of domains;
in the middle layers (6–40), the number of clusters
is almost identical to the number of domains; and in the deep layers, the number of clusters aligns
closely with the number of classes. This aligns with the observations from the cold-start process:
initially, the model focuses on general features such as edges and structures, which are more related
to the objects themselves and less influenced by domains. As the layer depth increases, features
transition from abstract to semantic, during which domains introduce interference. In the deep layers,
features become directly tied to object categories, with minimal influence from domains. These find-
ings provide valuable insights for optimizing the layer-wise scaling parameter α and understanding
the functional roles of different network components.

26

(a) Sensitivity score of each BN layer (Backbone: ResNet-50, Dataset: ImageNet-C)

(b) Sensitivity score of each BN layer (Backbone: ResNet-50, Dataset: CIFAR10-C)

(c) Sensitivity score of each BN layer (Backbone: ResNet-50, Dataset: CIFAR100-C)

(d) Sensitivity score of each BN layer (Backbone: EfficientViT-M5, Dataset: CIFAR10-C)

(e) Sensitivity score values under different cold-start durations (Backbone: ResNet-50, Dataset: CIFAR10-C)

Figure 10: (a)-(c) demonstrate the variation trends of domain shift sensitivity across BN layers under different
backbones and datasets. (d) shows the sensitivity variations across BN layers in a single model under various
cold-start durations.

I Sensitivity analysis of γ

We compress the score of each layer in FIND* to the range [0, 1] through normalization, with score
proximity to 0 indicating lower distribution shift sensitivity of the layer. As shown in Figure 12, when
γ varies within 0-0.1, accuracy fluctuation remains below 1% while inference efficiency improves by
41%-44%, demonstrating robust model performance. When γ exceeds 0.1, accuracy drops by 2%-6%
with unstable model behavior. Therefore, setting γ between 0-0.1 achieves inference acceleration
while preserving model performance. Meanwhile, the performance of the model is not sensitive to
the γ value within this interval.

27

0.00 0.10 0.20 0.30 0.40
35

36

37

38

39

40

41

Ac
cu

ra
cy

 (
%

)

Best: 40.73%

0.02 0.04 0.06 0.08 0.10
39.50

39.75

40.00

40.25

40.50

40.75

41.00

Ac
cu

ra
cy

 (
%

)

0.02 0.04 0.06 0.08 0.10
0.12

0.14

0.16

0.18

0.20

0.22

Ti
m

e
(s

)

Accuracy
Time (s)

0.075

0.100

0.125

0.150

0.175

0.200

0.225

Ti
m

e
(s

)

(a) CIFAR100-C & ResNet-50

0.00 0.10 0.20 0.30 0.40
75

76

77

78

79

80

Ac
cu

ra
cy

 (
%

)

Best: 79.02%

0.02 0.04 0.06 0.08 0.10
77.5

78.0

78.5

79.0

Ac
cu

ra
cy

 (
%

)

0.02 0.04 0.06 0.08 0.10

0.20

0.25

0.30

0.35

Ti
m

e
(s

)

Accuracy
Time (s) 0.15

0.20

0.25

0.30

0.35

Ti
m

e
(s

)

(b) CIFAR10-C & EfficientViT-M5

Figure 12: (a) and (b) demonstrate the sensitivity of model inference performance (Accuracy (%)) to
γ variations, along with the associated changes in inference efficiency (Time (s)).

J Compatibility Evaluation with Test-Time Tuning

We integrated FIND* with the test-time tuning methods discussed in our paper, and we froze the
layers in S-FABN that require clustering while updating the layers that do not require clustering.
As shown in Table 9, compared with FIND*, test-time tuning further improves performance by
approximately 2%. We obtain the following conclusions: 1. Accurate normalization is a prerequisite
for successful tuning (as stated in observation 1 of Section 2.2). 2. Selectively updating layers that
are insensitive to domain shift yields greater gains.

Table 9: Performance of combining FIND* with test-time tuning on CIFAR10-C (corruption
severity 5, batch size 64). Results show accuracy (%) under CrossMix scenario using

ResNet-50. Best results are shown in bold.
(a) FIND*+TENT [4] (b) FIND*+EATA [21] (c) FIND*+DeYO [8]

α=0.8 α=0.4 α=0 α=1 α=0.8 α=0.4 α=0 α=1 α=0.8 α=0.4 α=0 α=1

γ=0.1 72.01 70.15 67.93 71.03 72.20 69.98 67.39 71.14 73.07 71.61 68.00 70.70
γ=0.06 72.45 71.16 69.14 72.37 72.90 69.96 68.21 72.70 73.17 72.31 69.97 72.25

K Performance under Different Domain Scales

Table 10 shows the performance of the method proposed in this paper under different domain scales
in CrossMix Scenario. Experimental results demonstrate the superior adaptability of our approach
across varying levels of distributional complexity in batch data. As the feature distributions become
increasingly diverse (transitioning from homogeneous to heterogeneous batch compositions), our
method maintains consistent performance advantages over existing approaches. Performance analysis
reveals significant improvements: compared to the baseline methods, our approach achieves a 16%
improvement over RoTTA and surpasses the previous state-of-the-art method DeYO by approximately
5%. Notably, across all three evaluation datasets, our framework consistently demonstrates a 2-5%
performance gain over the strongest baseline. These results validate our method’s effectiveness in
handling dynamically changing domain distributions within batch data.

L Performance under Different Model Structures

The generalization capabilities of our approach across different architectures are examined through
ResNet-26 experiments, documented in Table 11. Under CrossMix evaluation conditions, our
framework maintains its performance advantages regardless of the underlying network structure.
Specifically, we achieve accuracy gains of approximately 3% over ViDA on CIFAR10-C and 4% over
EATA on CIFAR100-C. These results demonstrate the architecture-agnostic nature of our method
and its robust adaptation capabilities across varying model configurations.

28

Table 10: Comparisons with state-of-the-art methods on CIFAR10-C, CIFAR100-C, and ImageNet-C
(severity level = 5) under batch size = 64 regarding accuracy (%). Each method was evaluated under
the CrossMix scenario with various numbers of domains using a ResNet-50 model architecture. Best
and second-best results are shown in bold and underlined, respectively.

CIFAR10-C CIFAR100-C ImageNet-C

Method
6

Domains
9

Domains
12

Domains
6

Domains
9

Domains
12

Domains
6

Domains
9

Domains
12

Domains
Avg-All

Source 46.59 52.54 55.84 19.23 24.25 27.15 16.21 20.07 25.20 31.90
TEST-TIME FINE-TUNE

TENT 60.79 64.69 66.59 30.33 33.07 33.44 7.41 12.69 17.24 36.25
EATA 57.67 60.89 63.79 35.52 35.05 33.34 6.97 13.24 18.47 36.10
NOTE 58.61 61.88 64.93 28.55 31.46 33.65 12.92 17.23 22.71 36.88
SAR 59.76 63.76 65.75 31.03 33.48 33.71 7.44 12.75 18.05 36.19
RoTTA 52.03 35.44 42.26 23.44 21.73 23.72 6.96 16.16 22.37 27.12
ViDA 57.64 60.89 63.77 27.89 31.04 32.96 6.80 12.09 18.03 34.57
DeYO 65.23 69.22 69.89 35.35 35.71 33.96 7.39 13.59 17.85 38.69

TEST-TIME NORMALIZATION

TBN 57.63 60.89 63.77 27.89 31.03 32.95 7.39 12.39 17.51 34.60
α-BN 58.17 61.68 64.27 28.49 31.79 33.81 9.78 15.36 21.80 36.13
IABN 55.30 59.41 64.24 18.99 21.99 25.62 3.55 6.44 10.30 29.54
FIND 66.59 70.30 72.97 35.08 38.82 40.68 17.05 22.38 27.40 43.47

Table 11: Comparisons with state-of-the-art methods on CIFAR10-C and CIFAR100-C respectively
(severity level = 5) under batch size = 64 regarding accuracy (%). Each method was evaluated under
the CrossMix scenario with using a ResNet-26 model architecture. The best result is denoted in bold
black font.

Method CIFAR10-C CIFAR100-C Avg.

Source (ResNet-26) 53.06 31.34 42.20
TEST-TIME FINE-TUNE

• TENT 59.01 30.37 44.69
• EATA 59.34 34.24 46.79
• NOTE 60.18 31.28 45.73
• SAR 58.70 30.42 44.56
• RoTTA 49.26 20.10 34.68
• ViDA 65.80 30.52 48.16
• DeYO 65.47 33.89 49.68

TEST-TIME NORMALIZATION
• TBN 59.34 30.52 44.93
• α-BN 58.51 32.81 45.66
• IABN 62.31 19.72 41.02
• FIND (ours) 68.21 38.24 53.22

M Extension of Motivations

Figure 13 presents our analysis of model accuracy and TBN statistics across ImageNet-C corruption
levels 1-5, where level 1 represents minimal domain shift. We evaluate the distributional alignment
by measuring L2 norm and cosine similarity between instance normalization (IN) statistics and
TBN statistics across batch normalization layers. Our results show that increasing corruption levels
correlate with both declining accuracy and decreased statistical distance between instance-level and
TBN features, suggesting stronger distributional coupling within batches.

These findings, illustrated through a representative example in Figure 14, demonstrate how elevated
domain shifts compromise TBN’s ability to maintain distinct class-specific feature distributions. The

29

observed pattern indicates that increasing distributional shifts in domain-related features interfere
with TBN’s capacity to characterize class-relevant features, leading to reduced discriminability across
categories.

Based on these empirical observations and our theoretical analysis, we identify two fundamental
limitations of TBN in dynamic scenarios: 1. Coupling between different domain-relevant features in
TBN and 2. Interference between domain-related and class-relevant features in TBN. These findings
underscore the importance of incorporating SBN into the adaptation framework.

70 75
Accuracy (%)

258

260

262

L2
 D

is
ta

nc
e

Brightness

L2 Distance
0.91

0.91

0.92

C
os

in
e

si
m

ila
rit

y
Cosine similarity

20 40 60
Accuracy (%)

235

240

245

250

L2
 D

is
ta

nc
e

Motion

L2 Distance 0.92

0.92

0.93

0.93

0.94

C
os

in
e

si
m

ila
rit

y

Cosine similarity

20 40
Accuracy (%)

230

235

240

245

L2
 D

is
ta

nc
e

Defocus

L2 Distance 0.93

0.93

0.94

0.94

0.95

C
os

in
e

si
m

ila
rit

y

Cosine similarity

20 40 60
Accuracy (%)

220
225
230
235
240
245

L2
 D

is
ta

nc
e

Gaussian

L2 Distance 0.93

0.94

0.95

0.96

C
os

in
e

si
m

ila
rit

y

Cosine similarity

Figure 13: TBN-IN distance vs. accuracy under different corruptions. The 5 data points in the
figure represent samples with corruption levels 1 through 5, where higher levels correspond to lower
accuracy. We compute the average distance between per-sample IN statistics and TBN statistics in
the deep layers, reflecting the dispersion of feature distributions within a batch. It reveals that the
distribution of DRF interferes with the distribution of CRF: as the sample corruption level increases,
the feature distributions within a batch become more coupled.

Figure 14: Airplane wings in different corruption. More severe corruption perturbations of the image
can obscure the CRFs, causing the overall feature distribution to become more entangled and thus
decreasing the model’s inference accuracy.

N Performance under Static Scenario

Table 12 shows the results of the baselines and our method on ImageNet-C under the Static scenario.
The data presented in the table demonstrates that both FIND and FIND* outperform the second-best
method by approximately 3%. This result indicates that our approach maintains optimal performance
in both dynamic and static scenarios.

Table 12: Comparisons with state-of-the-art methods on ImageNet-C (severity level = 5) under batch
size = 64 regarding accuracy (%). Each method was evaluated under the static scenario using
a ResNet-50 model architecture. Best and second-best results are shown in bold and underlined,
respectively.

Method α-BN TBN TENT DeYO RoTTA SAR EATA ViDA FIND FIND*

ImageNet-C 29.64 27.97 28.25 29.71 19.76 28.42 27.87 27.99 31.78 32.10

O Performance under Different Batch Size

The impact of varying batch sizes on adaptation performance under CrossMix conditions is illustrated
in Figure 15. Our framework demonstrates remarkable stability across all evaluated batch size
configurations on the three benchmark datasets, with minimal performance fluctuations. This contrasts
sharply with alternative approaches, which exhibit significant sensitivity to batch size variations.

30

Notably, on CIFAR100-C and ImageNet-C, competing methods show substantial performance
degradation with reduced batch sizes, only achieving stability at batch sizes exceeding 64.

Our method’s batch-size invariance can be attributed to two key factors: the robust class-relevant
feature representations provided by SBN, and the preservation of domain-specific characteristics
regardless of batch size configurations. This architectural design enables consistent performance
even in extreme scenarios - when processing individual samples (batch size = 1), the framework
successfully captures domain-specific distributions from single-instance feature maps.

This stability across arbitrary batch sizes represents a significant advantage in practical deployment
scenarios where batch size flexibility is crucial.

1 2 4 8 16 64 128
Batch Size

20

40

60

Ac
cu

ra
cy

 (%
)

CIFAR10-C

SAR
EATA
DeYO

TBN
Ours

1 2 4 8 16 64 128
Batch Size

20

40

Ac
cu

ra
cy

 (%
)

CIFAR100-C

SAR
EATA
DeYO

TBN
Ours

1 2 4 8 16 64 128
Batch Size

0

10

20

Ac
cu

ra
cy

 (%
)

ImageNet-C

SAR
EATA
DeYO

TBN
Ours

Figure 15: Batch size vs. accuracy. Other methods exhibit poorer performance at low batch sizes,
only stabilizing as batch size increases. In contrast, our approach is insensitive to batch size variation,
demonstrating greater robustness.

P Experimental Results and Analysis under Wild Scenario

Table 13: Results for δ = 0.1

Method 10-C 100-C Avg.

Source (ResNet-50) 57.40 28.59 43.00
TEST-TIME FINE-TUNE

• TENT 52.48 34.58 43.53
• EATA 54.99 35.60 45.30
• NOTE 67.50 24.70 46.10
• SAR 52.19 32.99 42.59
• RoTTA 49.49 22.60 36.05
• ViDA 55.02 36.72 45.87
• DeYO 50.77 18.27 34.52

TEST-TIME NORMALIZATION
• TBN 55.00 36.73 45.87
• α-BN 60.98 40.51 50.75
• IABN 63.30 24.92 44.11
• FIND (ours) 69.49 38.86 54.18

Table 14: Results for δ = 0.01

Method 10-C 100-C Avg.

Source (ResNet-50) 57.40 28.59 43.00
TEST-TIME FINE-TUNE

• TENT 51.77 27.16 39.47
• EATA 54.47 24.39 39.43
• NOTE 67.49 24.71 46.10
• SAR 51.48 23.34 37.41
• RoTTA 49.27 22.33 35.80
• ViDA 54.47 30.59 42.53
• DeYO 50.35 11.27 30.81

TEST-TIME NORMALIZATION
• TBN 54.47 30.57 42.52
• α-BN 60.54 34.51 47.53
• IABN 63.28 24.97 44.13
• FIND (ours) 69.43 35.56 52.50

Table 15: Results for δ = 0.005

Method 10-C 100-C Avg.

Source (ResNet-50) 57.40 28.59 43.00
TEST-TIME FINE-TUNE

• TENT 51.99 25.97 38.98
• EATA 54.42 23.42 38.92
• NOTE 67.56 24.70 46.13
• SAR 51.45 22.34 36.90
• RoTTA 49.14 21.87 35.51
• ViDA 54.42 29.81 42.12
• DeYO 48.04 10.17 29.11

TEST-TIME NORMALIZATION
• TBN 54.42 29.80 42.11
• α-BN 60.46 33.52 46.99
• IABN 63.30 24.95 44.12
• FIND (ours) 69.38 35.21 52.30

We extend the Random scenario by incorporating label distribution shifts to create the Wild scenario,
which better approximates real-world data streams. This enhanced setup allows both distributional
and label variations within batches, simulating open-world conditions. Following the methodology
established in NOTE [3], we employ Dirichlet distributions to generate temporally correlated label
sequences, with the concentration parameter δ (δ > 0) controlling shift intensity - lower values
indicating more severe shifts.

Results from experiments with varying shift intensities (δ = 0.1, 0.01, 0.005) are presented in Ta-
bles 13, 14, and 15. Our framework demonstrates remarkable stability across increasing label shift
intensities, maintaining consistent performance levels. Quantitatively, our approach achieves approxi-
mately 5% higher average accuracy compared to the strongest baseline, and a 20% improvement over
the weakest performing method.

The performance gap becomes particularly pronounced under severe label shifts, where competing
methods show significant degradation. For instance, DeYo’s performance deteriorates substantially,
dropping below 20% accuracy on CIFAR100-C under intense label shifts. This comparative analysis
demonstrates our method’s exceptional resilience to distribution variations in open-world scenarios,
significantly outperforming existing approaches in handling complex, real-world data streams.

31

Table 16: Comparisons with state-of-the-art methods on CIFAR10-C and CIFAR100-C respectively
(severity level = 5) under batch size = 64 regarding accuracy (%). Each method was evaluated
under the CrossMix scenario (Round = 2) with using a ResNet-50 model architecture. Best and
second-best results are shown in bold and underlined, respectively.

Method CIFAR10-C CIFAR100-C Avg.

Source (ResNet-50) 57.41 28.59 43.00
TEST-TIME FINE-TUNE

• TENT 58.89 27.20 43.05
• EATA 62.03 34.38 48.20
• NOTE 66.68 24.70 45.69
• SAR 57.54 27.59 42.56
• RoTTA 49.11 23.58 36.34
• ViDA 62.01 32.29 47.15
• DeYO 67.89 17.38 42.63

TEST-TIME NORMALIZATION
• TBN 62.01 32.29 47.15
• α-BN 62.45 33.21 47.83
• IABN 63.34 24.91 44.12
• FIND (ours) 71.48 39.72 55.60

Table 17: Comparisons with state-of-the-art methods on CIFAR10-C and CIFAR100-C respectively
(severity level = 5) under batch size = 64 regarding accuracy (%). Each method was evaluated
under the CrossMix scenario (Round = 3) with using a ResNet-50 model architecture. Best and
second-best results are shown in bold and underlined, respectively.

Method CIFAR10-C CIFAR100-C Avg.

Source (ResNet-50) 57.39 28.59 42.99
TEST-TIME FINE-TUNE

• TENT 55.49 23.64 39.56
• EATA 62.01 33.67 47.84
• NOTE 67.90 24.70 46.30
• SAR 54.28 24.61 39.45
• RoTTA 49.21 22.11 35.66
• ViDA 62.02 32.21 47.12
• DeYO 65.77 12.77 39.27

TEST-TIME NORMALIZATION
• TBN 62.02 32.21 47.12
• α-BN 62.46 33.21 47.84
• IABN 63.28 24.87 44.08
• FIND (ours) 71.54 39.67 55.61

Q Experimental Results and Analysis on Simulated Lifelong Adaptation

While existing approaches focus on continuous adaptation to non-stationary data streams, their
evaluation protocols typically utilize single-pass dataset sequences. To better approximate real-
world deployment conditions, where inference cycles extend over longer periods, we propose an
enhanced evaluation framework that extends test sequences through dataset replication. Specifically,
we evaluate adaptation stability by creating extended sequences of CIFAR10-C and CIFAR100-C
through two-fold and three-fold replication (Round = 2 and Round = 3). Results under CrossMix
conditions are presented in Tables 16 and 17.

32

Our empirical analysis reveals distinct patterns in long-term adaptation stability. Our framework
maintains consistent performance across extended sequences, showing minimal performance degra-
dation between Round=2 and Round=3. In contrast, competing methods exhibit notable performance
deterioration: DeYo experiences accuracy drops of 2% and 5% on CIFAR10-C and CIFAR100-C
respectively. TENT shows performance degradation of 3% (CIFAR10-C) and 4% (CIFAR100-C).
SAR demonstrates consistent 3% accuracy decline across both datasets. Other approaches show
similar degradation patterns.

R License and Asset Attribution

We use the open-source implementations TTAB [20] under the Apache-2.0 license in our experiments.

TTAB is publicly available, and we have properly credited its creators in the main text. We have
respected all terms of its license, and all usage is compliant with its respective open-source agree-
ments.

S Broader Impacts

FIND improves the robustness of deep neural networks in dynamic real-world scenarios by addressing
performance degradation under distribution shifts. This can enhance the reliability and adaptability of
AI systems in diverse applications, including autonomous vehicles, medical diagnostics, and remote
sensing, where data is often non-stationary and heterogeneous.

These improvements may contribute to more stable and efficient AI deployments, reducing the need for
frequent model retraining and lowering computational costs. Additionally, the proposed framework’s
compatibility with both convolutional and transformer architectures broadens its accessibility for
various use cases. We do not foresee negative societal impacts from this work.

T Limitations

While FIND significantly enhances model robustness in dynamic scenarios, the divide-and-conquer
strategy used in Layer-Wise Feature Disentanglement (LFD) introduces additional computational
overhead compared to simpler normalization techniques like TBN. Although our implementation
is efficient and parallelized, the graph-based clustering in LFD may still become a bottleneck for
extremely high-dimensional data or very large batch sizes. Further optimization of the clustering
process and hardware-specific acceleration could address this issue.

U Conclusion and Future Work

In this work, we considered a more practical test scenario: The test samples within the same time
period are no longer independent and identical, and may come from one or more different distributions.
The existing TTA methods perform poorly in this scenario. Our analysis reveals that the main reason
lies in the normalization failure of the BN layer. Therefore, we improved the existing test-time batch
normalization methods and designed a new universal BN architecture. This architecture adopts a
divide-and-conquer strategy and can precisely divide and normalize complex data streams during
the testing period. In the experiment, we designed various scenarios, including: Dynamic, Static,
Wild and Lifelong, to test the performance, robustness, practicability and stability under continuous
learning of the method. We simultaneously adopt multiple backbones, including ResNet and ViT,
to test the universality of the method. Experiments have proved that the method we designed has
good effects in various scenarios during the test period and has strong practicability. Meanwhile, our
method has achieved good results on multiple commonly used backbones by replacing the BN layer of
the model, and has strong universality. Our work leaves several aspects unexplored. Specifically, we
need to continue exploring the methods of online model updates so that we can also acquire effective
knowledge when dealing with non-independent and non-distributed data streams. In addition, we
also need to explore the optimal value of the FABN layer fusion parameter α to meet the specific
characteristics of different layers.

33

	Introduction
	Preliminary
	Observations of TTA in Dynamic Scenario
	Method: FIND
	Layer-Wise Feature Disentanglement
	Feature-Aware Batch Normalization
	Selective Feature-Aware Batch Normalization (S-FABN)

	Experiments
	Experimental Setup
	 Performance Comparison under Dynamic Scenarios
	 Performance Comparison under Transformer Backbone
	Efficiency Analysis
	 Sensitivity analysis of
	Performance Comparison Between FIND (Ours) and Other Clustering Algorithms
	Performance under Different Batch Size
	Ablation Study on
	Ablation Study on FIND

	Related Work
	Conclusion
	Acknowledgements
	The Layer-Wise Feature Disentanglement Algorithm
	Details of Datasets
	Details of Baselines
	Extension of Related Work
	Details of Our Scenarios
	Hyperparameter Settings
	Cold-Start Mechanism and Layer Sensitivity
	Analysis of Cluster Numbers of Each FABN Layer by LFD
	Sensitivity analysis of
	Compatibility Evaluation with Test-Time Tuning
	Performance under Different Domain Scales
	Performance under Different Model Structures
	Extension of Motivations
	Performance under Static Scenario
	Performance under Different Batch Size
	Experimental Results and Analysis under Wild Scenario
	Experimental Results and Analysis on Simulated Lifelong Adaptation
	License and Asset Attribution
	Broader Impacts
	Limitations
	Conclusion and Future Work

