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ABSTRACT

Traditional Multiple Instance Learning (MIL), as a core method for Whole Slide
Image (WSI) classification in computational pathology, often leads to model mis-
classification due to insufficient information when relying solely on visual repre-
sentations. The introduction of Large Language Models (LLMs) has provided rich
textual prompts to enhance visual representations. However, the data-driven learn-
ing of LLMs often induces spurious correlations between visual signals and text,
causing inaccurate textual descriptions that pollute the alignment process and de-
grade WSI classification performance. To address this issue, we propose a Causal-
learning Dual-attention MIL framework (CDMIL). The framework first achieves
preliminary alignment through a prototype-guided dual-attention mechanism, fol-
lowed by a counterfactual learning strategy for causal intervention. Replacing
factual text with counterfactual text forces the model to abandon its reliance on
spurious correlations and instead learn genuine causal relationships. Experiments
demonstrate that CDMIL achieves state-of-the-art performance in both accuracy
and out-of-distribution robustness, validating the superiority of this causal learn-
ing framework. The code will be released at https://github.com/xxx/CDMIL.

1 INTRODUCTION

The digital revolution in pathology has propelled computational pathology to the forefront of mod-
ern precision medicine (Wang et al., 2024; Tsai et al., 2023). The transformation of traditional
glass slides into gigapixel-scale whole slide images (WSIs) has enabled digital pathology to create
unprecedented opportunities for objective, reproducible, and high-throughput diagnostic analysis.
In practice, however, assembling large-scale datasets with precise pixel-level annotations is often
challenging and infeasible. To alleviate this limitation, Multiple Instance Learning (MIL) has been
widely adopted as a mainstream learning paradigm (Lu et al., 2021; Zhang et al., 2022; Li et al.,
2023a; Wang et al., 2022; Shao et al., 2021; Li et al., 2023b; Zhang et al., 2024; Shi et al., 2024).

MIL operates on small patches (also known as ”instances”) to construct a slide-level (or ”bag-level”)
representation for analysis (Maron & Lozano-Pérez, 1997). An MIL-based approach typically fol-
lows a three-stage pipeline: (1) patches are cropped from the WSI, (2) a pre-trained encoder is used
to extract patch features, and (3) these features are aggregated into a slide-level representation to
perform WSI classification. Methods following this paradigm have achieved remarkable success
in various pathological diagnostic tasks. However, a key limitation of conventional MIL is its ex-
clusive reliance on visual signals, which often leads models to learn merely statistical correlations
rather than the underlying pathological principles relied upon by human experts (Shi et al., 2024).
The rapid emergence of large language models (LLMs) offers a promising avenue to address this
shortcoming. Equipped with strong text-generation capabilities, LLMs can furnish rich, descrip-
tive annotations for pathology images, thereby supplying the semantic context that purely visual
pipelines lack (Shi et al., 2024). This progress has, in turn, catalyzed vision–language approaches in
pathology that align visual features from WSI patches with corresponding diagnostic text prompts
(Huang et al., 2023; Zheng et al., 2025; Shi et al., 2024). The central hypothesis is that guiding
the model with explicit pathological concepts (e.g., “pleomorphic nuclei,” “mitotic figures”) enables
it to learn representations that are more meaningful and clinically relevant. Nevertheless, while
such vision–language alignment can enhance performance and interpretability, it introduces a crit-
ical challenge: ensuring that the alignment is robust not merely in a statistical sense but is firmly
grounded in genuine pathological principles.
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Figure 1: (a) This panel illustrates that when relying solely on WSI visual information (V → P), the
model may be influenced by spurious correlations in features, leading to misjudgment and focus on
incorrect regions. When combined with textual descriptions ((V → T )→ P), erroneous textual as-
sociations can exacerbate this misjudgment, causing the model to further focus on irrelevant regions.
(b) Through counterfactual causal learning, the model is able to avoid directing tumor-like attention
to normal regions. The red text in the figure indicates that even though tumor and normal slides may
have similar textual descriptions, whereas the green text represents the key textual descriptions that
truly influence tumor identification.

Due to tumor-induced Extracellular Matrix remodeling and fibrotic reactions, these regions often
exhibit visual similarities to tumorous areas in the training data (Yuan et al., 2023). Consequently,
when an LLM ”observes” the visual features of such a normal slide, it may generate a description
that, in addition to normal tissue features, includes terms typically associated with tumor regions
(e.g., ”dense stromal changes,” ”desmoplasia”). This introduces spurious tumor-related information
into the textual modality. A model trained to simply align with this ”contaminated” text can be
easily misled into misclassifying a normal slide as tumor, as illustrated in Fig. 1. This exemplifies a
classic case of confounding, where the visual features of fibrotic stroma act as a confounder, creating
a non-causal, spurious link between the ”normal” slide and ”tumor-like” text.

To address this challenge, we propose the Causal-learning Dual-attention Multiple Instance Learn-
ing (CDMIL) framework, coupling prototype-driven dual-attention vision–language alignment with
a counterfactual causal learning strategy. Specifically, prototype-guided dual attention aligns visual
features with text representations, while counterfactual constraints enforce prediction gaps pushing
the model toward causal rather than spurious textual cues. In this way, CDMIL grounds its predic-
tions in genuine pathological evidence over superficial data co-occurrence.

Contributions. To summarize, our contributions are:

• We design a prototype-driven dual-attention mechanism to achieve robust vision-language
alignment with the descriptions generated by LLMs.

• We propose a counterfactual causal learning strategy aimed at enforcing vision-language
causality while mitigating the model’s reliance on spurious correlations in textual features.
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• We demonstrate that our approach achieves SOTA performance on WSI classification tasks
and exhibits exceptional generalization.

2 RELATED WORKS

Multiple Instance Learning for WSI Classification. MIL is a widely recognized approach to the
classification of WSIs, especially in situations with weak supervision. In MIL, each WSI is repre-
sented as a ”bag” B = {x1, x2, . . . , xN} of N image patches at the instance level. Only a single
slide-level label Y ∈ {0, . . . , C − 1} is provided. The existing approaches in MIL can generally be
divided into two broad categories: (1) explicit modeling, where the slide label is predicted by aggre-
gating the predictions at the instance level, ie Ŷ = pool{ŷ1, ŷ2, . . . , ŷN}, using pooling techniques
such as mean or max pooling (Campanella et al., 2019; Zhang et al., 2022), and (2) implicit repre-
sentation learning, where a slide level representation z = f(B) is learned by combining embeddings
of the instance, followed by classification using methods such as recurring neural networks (RNNs)
(Campanella et al., 2019) or attention mechanisms (Ilse et al., 2018).

In the latter case, attention-based MIL methods are highly effective, learning adaptive instance
weights to reduce inductive biases in complex histopathological patterns. Architectural innova-
tions have further enhanced this, such as CLAM’s clustering branch for feature separation (Lu et al.,
2021) and TransMIL’s self-attention for capturing inter-instance dependencies (Shao et al., 2021).
Other strategies optimize the learning process by improving instance selection (Yu et al., 2023a; Li
et al., 2023a), enhancing representations via contrastive sampling (Wang et al., 2022), or ensuring
robustness against dominant patches (Zhang et al., 2024).

Vision-Language Models for Computational Pathology. The Vision Language Models (VLM)
paradigm, exemplified by CLIP (Radford et al., 2021) and FLIP (Li et al., 2023b), has proven effec-
tive in various visual recognition tasks (Khattak et al., 2023; Yu et al., 2023b; Luo et al., 2025). These
models use a dual-encoder architecture, aligning visual and textual inputs into a shared embedding
space via pretraining on large datasets. In computational pathology, MI-Zero (Lu et al., 2023) and
PLIP (Huang et al., 2023) have applied this paradigm to align visual features with pathology texts.
However, curating large-scale, high-quality image-text datasets remains labor-intensive. LLMs of-
fer a promising solution by generating rich textual descriptions for pathology images, potentially
bypassing manual data collection and making large-scale dataset creation more accessible.

A fundamental challenge arises as LLMs generate descriptions based on statistical co-occurrence,
not causal logic. This means they can encode spurious correlations, such as staining artifacts with
disease labels, directly into the text (Lin et al., 2024a). Models trained to align with this text con-
sequently inherit these biases, compromising their out-of-distribution (OOD) robustness (Lin et al.,
2024b; Zhang & Ranganath, 2023). Our work introduces a counterfactual mechanism to directly
address this. Replacing factual text with counterfactuals from a feature library challenges the model
to move beyond simple alignment and validate the causal necessity of its learned vision-language
associations, ensuring predictions are grounded in genuine pathological evidence.

3 PROBLEM SETUP & BACKGROUND

3.1 THE ”CORRELATION” VS. ”CAUSALITY” DILEMMA IN VISUAL RECOGNITION

Traditional supervised deep learning, especially in the field of computer vision, is essentially a
powerful Correlation Learning Engine. Given a large-scale dataset

D = {(Xi,Yi)}Ni=1, (1)

the model learns parameters θ by minimizing an empirical risk function:

min
θ

1

N

N∑
i=1

L(f(Xi; θ),Yi), (2)

where f is the deep neural network, and L is the loss function. This process effectively learns the
statistical conditional probability P (Y|X ) from the data distribution P (X ,Y). For example, the
model learns to associate the visual pattern ”furry ears and whiskers” with the label ”cat”.

3
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However, this learning paradigm has a fundamental theoretical flaw: correlation does not imply
causation. The strong correlations learned by the model may not reflect true causal relationships
but are simply artifacts of confounding bias present in the dataset. Suppose there is an unobserved
confounding variable Z that affects both the image features X and the labels Y . In this case, the
model learns P (Y|X ) as a weighted average across various confounded environments:

P (Y|X ) =
∑
z

P (Y|X ,Z = z)P (Z = z|X ). (3)

A classic example is the ”cow on the grass” problem (Beery et al., 2018): if the confounding variable
Z represents ”outdoor grass”, the model might mistakenly treat the ”green background” as a feature
that is falsely correlated rather than a causal feature for recognizing ”cow”. When the model is tested
on a new distribution P ′(Z|X ) (e.g., beach, indoor), its performance will drop dramatically due to
the reliance on spurious correlations (Fan et al., 2025). This phenomenon reveals the vulnerability of
existing models in OOD generalization. Moreover, LLMs may generate text that falsely correlates
with visual signals, further reinforcing the model’s reliance on non-causal associations.

3.2 CAUSAL INFERENCE THEORY: STRUCTURAL CAUSAL MODELS AND INTERVENTIONS

To formalize causality mathematically, we introduce the theoretical framework of Structural Causal
Models (SCM) (Pearl, 2010). An SCM describes the world as a graph (Directed Acyclic Graph,
DAG) consisting of variable nodes and directed edges, where the edges represent direct causal re-
lationships between variables. In our vision-language task, a simplified causal graph can be repre-
sented as: visual features V lead to text features T , and both jointly influence the final prediction P ,
as shown in Fig. 2.

Figure 2: Simplified causal graph show-
ing the relationship between visual fea-
tures V , text features T , and the final
prediction Y in a vision-language task.

Traditional supervised learning, i.e., learning (P|V, T )
in Eq. 1, involves observational prediction. However,
true causal problems concern interventional prediction,
i.e., (P|do(T = t)), where the do-operator (Pearl, 2010)
represents a forcible ”intervention”: we set T = t and
block all causal paths leading to T (for example, replac-
ing the original text input in our model), then observe how
P changes.

In real-world visual tasks, we cannot arbitrarily perform
do-interventions on the input data as in physical exper-
iments. Therefore, researchers have proposed a method
called causal regularization, where the core idea is to in-
troduce specific constraints in the model’s learning pro-
cess to approximate or encourage the model to behave
like a causal model undergoing intervention (Schölkopf
et al., 2021; Arjovsky et al., 2019).

Counterfactual reasoning is one of the most powerful
tools for implementing causal regularization. It explores the question: ”What if things had been
different?” This can be viewed as a ”thought experiment” conducted within the model, serving as a
mathematical approximation of the do-intervention.

In our work, this idea is concretized as a counterfactual causal loss (Lcausal), which is combined with
the standard supervised loss. The specific implementation details are presented in Sec. 4.2 and 4.3.

4 METHODOLOGY

In this section, we detail our proposed causal learning framework, summarized in Fig. 3. Sec. 4.1
introduces the core CDMIL architecture, which aligns visual features with text descriptions from
LLMs via a prototype-driven dual-attention mechanism, before using mean pooling for prediction.
Sec. 4.2 describes our causal intervention strategy, where a text feature library is used to generate
counterfactual samples by replacing the factual text prompt. Sec. 4.3 presents the causal regulariza-
tion loss, which maximizes the divergence between factual and counterfactual predictions to penalize
reliance on spurious correlations, thereby enforcing a robust, causal vision-language alignment.

4
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Figure 3: The architecture of our proposed CDMIL. (a) The training scheme features two parallel
streams: a Factual Branch with the original prompt, and a Counterfactual Branch where the prompt is
replaced by a prototype from the Text Feature Library. The causal loss Lcausal enforces inconsistency
between the two branches’ predictions. (b) The main pipeline uses a dual cross-attention mechanism
to fuse visual features and textual features via learnable prototypes. The prediction is obtained
through pooling, and the classification loss Lcls is computed with respect to the ground truth (GT).

4.1 DUAL-ATTENTION VISION-LANGUAGE ALIGNMENT

Given a WSI, we first represent it as a bag of instance features V = {v1, v2, . . . , vN} ∈ RN×Dv ,
extracted by a pre-trained ResNet-50 (He et al., 2015). Simultaneously, a pre-trained text encoder
(Radford et al., 2021) processes the text descriptions obtained through LLMs to extract text features
T ∈ RB×Dt , where B denotes the number of text prompts. The core of our model is a two-stage
cross-attention mechanism designed to synergize these modalities.

Stage 1: Visually-Grounded Prototype Refinement. We initialize a set of learnable, class-specific
visual prototypes Pvis ∈ RC×Dv , where C is the number of classes. These prototypes act as high-
level conceptual queries. We use a cross-attention layer to allow these prototypes to ”attend to” the
bag of instance features, aggregating the most relevant visual information for each class concept:

P ′
vis, = CrossAttention1 (query = Pvis, key = V, value = V) (4)

where P ′
vis are the refined, context-aware visual prototypes. A residual connection and layer normal-

ization are applied to obtain the final visual slide features.

Stage 2: Text-Modulated Fusion. We then fuse the refined slide features with the text features Tfact.
To do this, we first concatenate the slide features with another set of learnable textual prototypes
Ptext ∈ RC×Dt (where Dt = Dv) to form a combined query matrix Qtext ∈ R2C×Dt . A second
cross-attention layer then uses this query to interact with the text features:

Tfused = CrossAttention2 (query = Qtext, key = T , value = T ) (5)

The final fused representation is obtained by another residual connection and normalization. This
representation is then used to compute the similarity matrix S with slide features, and the final
classification logits are obtained via Mean Pooling.

4.2 COUNTERFACTUAL INTERVENTION FOR CAUSAL LEARNING

The fusion mechanism described above excels at learning correlations, but is susceptible to spurious
ones. To address this, we introduce a counterfactual learning scheme to enforce causal reasoning.
This process is active only during training and after an initial ”burn-in” epoch.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Step 1: Text Feature Library Population (Epoch 1). During the first training epoch, we only per-
form standard supervised learning. Concurrently, for each training sample (V, T ,Y), we compute
its text features Tfact and accumulate them in a temporary library, grouped by the ground-truth label
Y . At the end of the epoch, we compute the mean feature vector for each class to populate our main
online text feature library,

Ltext = {T̄0, T̄1, . . . , T̄C−1}. (6)

Step 2: Counterfactual Intervention (Epoch > 1). For subsequent epochs, for each training
sample, we perform an intervention on the text modality. While keeping the visual features V
unchanged, we replace the factual text features Tfact with a counterfactual text feature Tcf. This
Tcf is retrieved from our library Ltext corresponding to a different class:

Tcf = Ltext[(Y + 1) mod C]. (7)

Step 3: Computing Counterfactual Prediction. We then pass the contradictory pair (V, Tcf)
through the exact same dual-attention fusion pipeline as the factual branch to obtain the counter-
factual logits, logitscf. This ensures that the visual signal remains unchanged while only the textual
input varies, thereby blocking the causal path from V to T and enabling any change in prediction to
be attributed solely to the textual intervention.

4.3 JOINT OPTIMIZATION WITH CAUSAL LOSS

Our total loss function Ltotal is defined as:
Ltotal = Lcls + λ · Lcausal, (8)

where λ is a balancing hyperparameter (λ = 0.1).

Supervised loss Lcls: This is the standard classification loss applied to the observational data. Let f
be our model, and let logitsfact = f(V, Tfact) be the output of the factual branch, then:

Lcls = CrossEntropy(logitsfact,Ytrue) (9)

Causal Regularization on Predictions: The causal lossLcausal is designed to enforce causal reason-
ing by ensuring that the model’s final prediction is sensitive to interventions on its inputs. This term
aims to maximize the divergence between the factual and counterfactual prediction distribution.

Computing Factual and Counterfactual Predictions: We pass both the factual pair (V, Tfact) and
counterfactual pair (V, Tcf) through the entire model fθ to obtain their respective final logits:

logitsfact = fθ(V, Tfact) and logitscf = fθ(V, Tcf) (10)
The intervention is isolated to the textual modality, as the visual evidence V is held constant.

Defining the Causal Loss: A causally-aware model, when presented with a contradictory pair
like (cancer-image, normal-text-prototype), should produce a significantly different final prediction
compared to the factual case. We enforce this by maximizing the distance between the two prediction
distributions. We first convert the logits into probability distributions using the softmax function, and
then use the negative KL-divergence as our loss:

Lcausal = −DKL(softmax(logitscf) ∥ softmax(logitsfact)) (11)

The minimization of the total loss in Eq. 8 serves a dual purpose: it ensures the model fits the
observational data (via Lcls) while, more critically, imposing causal regularization on its predictive
behavior. This regularization penalizes ”lazy” models that are insensitive to semantic interventions
on their inputs. It encourages the model to ground its predictions in true, robust causal evidence
rather than relying on spurious correlations arising from data bias. Ultimately, this enables the model
to achieve superior out-of-distribution generalization, which is the core value of causal learning.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. To comprehensively evaluate the efficacy of our proposed CDMIL framework and its
counterfactual causal learning mechanism, we designed an experimental protocol using a suite of

6
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histopathology datasets. For the prediction of Epidermal Growth Factor Receptor (EGFR) muta-
tions in Lung Adenocarcinoma (LUAD), we utilized two in-house datasets from two independent
hospitals, LCEM1 (n=777) and LCEM2 (n=844), supplemented by the public TCGA-LUAD dataset
(n=528). Additionally, the Camelyon16 dataset (n=399) was employed for the binary classification
of breast cancer lymph node metastases (tumor vs. normal). In our experimental design, the LCEM1

and Camelyon16 datasets were used to train models and compare their performance against base-
line and state-of-the-art methods. To rigorously assess zero-shot generalization, models trained on
LCEM1 were directly evaluated on the unseen LCEM2 and TCGA-LUAD datasets.

Implementation Details. For preprocessing, we extracted non-overlapping 256 × 256 patches at
20× magnification from tissue regions identified by Otsu’s thresholding. All experiments ran on
an NVIDIA RTX 4090 GPU, using a ResNet-50 (He et al., 2015) pre-trained on ImageNet as the
feature encoder. The model was optimized with Adam (weight decay=1e-5), using an initial learning
rate of 3e-4 (later reduced to 1e-4) and an early stopping patience of 20. For LCEM1, we used an
80:20 random split for training/testing, with the training set further split 8:2 for validation. For the
Camelyon16 dataset, however, we strictly adhered to the official protocol and used its predefined
test set for all final evaluations.

Evaluation Metrics. We evaluated all methods using three key metrics: the Area Under the Re-
ceiver Operating Accuracy (ACC), Characteristic curve (AUC), and F1-score. To ensure robust
evaluation, each method was tested five times, with the dataset being randomly partitioned for each
run according to predefined ratios. The final results are reported as the mean and standard deviation
of these five runs. Furthermore, a paired t-test was used to determine if the performance difference
between two methods was statistically significant. A p-value greater than 0.05 was considered to
indicate that the difference between the results was not statistically significant.

5.2 PERFORMANCE COMPARISON WITH EXISTING WORKS

As presented in Table 1, our proposed CDMIL method achieves state-of-the-art (SOTA) performance
on both datasets, attaining an AUC of 88.11% on LCEM1 and 90.84% on Camelyon16. These results
demonstrate a consistent and significant advantage over all competing methods. The superiority of
our approach is particularly pronounced on the more challenging LCEM1 dataset. We attribute this
success to the integration of textual information with counterfactual causal learning, which enables
the model to focus on more discriminative features and thereby enhances its classification capability.

Table 1: Comparison of WSI classification performance (mean % ± std). Bold indicates the best
result, an underline indicates the second best, and * denotes comparable performance to the top
result (paired t-test, p > 0.05).

Method LCEM1 Camelyon16
ACC AUC F1 ACC AUC F1

MeanPooling (Campanella et al., 2019) 62.21±6.82 62.11±7.00 42.60±11.69 74.23±8.12 75.56±9.33 72.14±8.91

MaxPooling (Campanella et al., 2019) 64.36±7.42 66.68±9.78 46.89±14.73 73.78±9.66 75.34±9.88 72.07±7.67

CLAM (Lu et al., 2021) 68.74±7.23 70.27±11.68 60.09±15.06 80.78±4.73 83.04±4.48 78.29±5.63

ABMIL (Ilse et al., 2018) 66.75±9.75 69.00±8.22 54.80±17.19 76.74±9.07 78.36±7.96 74.37±18.00

DSMIL (Li et al., 2021) 68.28±3.76 69.75±4.20 63.37±4.36 75.35±6.31 78.26±6.75 73.41±8.95

TransMIL (Shao et al., 2021) 60.40±4.82 54.85±5.15 37.61±1.93 78.33±7.23 79.25±8.17 77.92±9.87

PMIL (Yan et al., 2025) 73.16±1.79* 82.29±1.84* 72.27±1.87* 83.88±0.90* 87.27±2.36* 81.84±1.60*
CDMIL 78.58±1.18 88.11±1.67 75.63±1.27 87.66±1.10 90.84±3.09 85.15±5.80

5.3 ZERO-SHOT GENERALIZATION PERFORMANCE

To rigorously evaluate the model’s generalization capability, we deployed models trained on the
LCEM1 dataset directly onto two external test sets: LCEM2 and TCGA-LUAD. As detailed in Ta-
ble 2, the results unequivocally demonstrate the exceptional OOD performance of CDMIL. On the
LCEM2 dataset, CDMIL achieves an AUC of 85.95%, surpassing the next-best baseline, ABMIL
(62.47%), by a substantial margin of over 23 percentage points. This superiority is further confirmed
on the highly challenging TCGA-LUAD dataset, which is characterized by severe class imbalance;
here, CDMIL attains an AUC of 86.32% while all other methods remain below 64%, showcasing its
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Figure 4: Visualization of instance-level attention on slide test 090 from the Camelyon16 dataset.
(green contour: GT)

remarkable robustness. Crucially, when the counterfactual causal learning mechanism is removed,
the model’s performance degrades dramatically. This provides compelling evidence that the intro-
duction of text prompts alone is insufficient to ensure robust generalization. Without the constraint of
causal regularization, even a vision-language model is susceptible to learning spurious correlations.
In summary, the consistent and significant performance gap demonstrates that both traditional MIL
approaches and simple vision-text alignment models are prone to overfitting spurious correlations in
the training data, which fail to generalize to new distributions.

Table 2: Zero-shot generalization performance comparison on the EGFR mutation prediction task.
CDMIL w/o Lcausal represents an ablation variant of our model without the causal learning mecha-
nism. (Notably, due to a severe class imbalance of EGFR mutation types in the TCGA-LUAD
dataset, AUC and F1 is considered the primary metrics for a fair comparison on this dataset.)

Method LCEM2 TCGA-LUAD
ACC AUC F1 ACC AUC F1

MeanPooling 61.73 59.85 38.17 14.02 58.71 12.29
MaxPooling 59.12 55.66 55.16 56.25 58.25 48.84

CLAM 42.54 58.55 38.22 84.66 63.58 51.30
ABMIL 61.73 62.47 38.17 14.02 59.50 12.29
DSMIL 50.36 60.78 50.13 80.30 61.51 54.38

TransMIL 66.55 61.73 48.17 14.02 46.97 12.29
PMIL 54.38 61.78 52.36 80.68 60.91 50.04

CDMIL w/o Lcausal 63.51 58.26 51.65 57.77 60.29 49.10
CDMIL 70.73 85.95 65.39 81.06 86.32 56.67

5.4 QUALITATIVE RESULTS AND VISUALIZATION

As illustrated in Fig. 4, the positive predictions generated by CDMIL demonstrate a strong corre-
spondence with the ground-truth annotations, which is reflected in a higher intersection over union
and greater prediction confidence scores. In contrast, the CDMIL variant without counterfactual
causal learning exhibits erroneous predictions, misallocating attention to non-tumorous regions.
Furthermore, we visualize the slide-level feature clusters on the LCEM1 and Camelyon16 test sets
using t-SNE (Van der Maaten & Hinton, 2008) in Fig. 5. Compared to the best-performing baseline
MIL methods, the embedding space learned by CDMIL exhibits superior intra-class compactness
and inter-class separability. This further substantiates the superiority of our approach by visually
demonstrating that it learns more discriminative representations.

5.5 ABLATION STUDY

To dissect the contributions of each key component, we conducted a comprehensive ablation study
(see Table 3). A noteworthy phenomenon is that the model incorporating only textual information
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Figure 5: Visualization of slide-level feature clustering results using t-SNE with different methods
on the LCEM1 and Camelyon16 test sets.

exhibits high variance, which indicates that while simple vision-text alignment can raise the perfor-
mance ceiling, it also makes the model unstable and prone to overfitting spurious correlations present
in the text across different data splits. However, after introducing the counterfactual causal learn-
ing mechanism, the model’s performance not only improves substantially, but its variance is also
significantly reduced. This provides strong evidence that our causal regularization, acting as a con-
straint, effectively stabilizes the training process, forcing the model to ignore spurious associations
and focus on learning more robust causal features. Therefore, while high-quality text (with GPT-5
performing best) serves as the foundation, the causal learning mechanism is the key to achieving
both high mean performance and high stability.

Table 3: Ablation study of CDMIL’s key components on three datasets. We evaluate the incremental
benefits of integrating Text, our Causal Learning mechanism, and different LLMs over a Vision-only
baseline. Results are reported as classification AUC (mean % ± std).

Vision Text Lcasual Gemini-2.5 GPT-4.1 GPT-5 LCEM1 Camelyon16
✓ 69.09±4.38 76.87±5.81

✓ ✓ ✓ 75.81±10.69 79.24±8.96

✓ ✓ ✓ 81.70±11.33 80.13±9.81

✓ ✓ ✓ 84.23±12.50 82.79±10.86

✓ ✓ ✓ ✓ 77.32±5.63 81.54±6.28

✓ ✓ ✓ ✓ 86.51±3.15 84.37±2.33

✓ ✓ ✓ ✓ 88.11±1.67 90.84±3.09

6 CONCLUSION AND DISCUSSION

In this paper, we addressed the challenge of spurious correlations in vision-language computational
pathology, which undermines OOD robustness. We proposed CDMIL, a framework that integrates
a counterfactual learning mechanism into a vision-language alignment model. CDMIL challenges
the model by dynamically replacing factual text with counterfactual features from a text feature li-
brary, regularizing it to ground predictions in causally robust evidence. Experiments on pathology
classification tasks showed that CDMIL achieves state-of-the-art accuracy and, critically, demon-
strates significantly improved OOD robustness over existing methods. These results demonstrate
that enforcing causal reasoning through counterfactual intervention is an effective strategy, and the
framework for integrating causal reasoning into multimodal MIL contributes to the development of
more reliable and interpretable AI systems in computational pathology.

Limitation and Future works. This study has several limitations that suggest directions for fu-
ture research. Our current counterfactual interventions are applied only to the textual modality.
A natural extension would be to develop methods for creating visual counterfactuals (Liu et al.,
2025). Additionally, the feature library could be improved by incorporating more sophisticated
update mechanisms (He et al., 2020).
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APPENDIX

A THEORETICAL BACKGROUND ON COUNTERFACTUAL CAUSAL
INFERENCE

o provide a deeper theoretical foundation for the causal learning mechanism employed in our CD-
MIL framework, we briefly review the principles of counterfactual causal inference, primarily based
on the structural causal model (SCM) framework developed by Judea Pearl (Pearl, 2010).

A.1 THE THREE LAYERS OF THE CAUSAL HIERARCHY

Causal inference theory posits a three-layer hierarchy of reasoning, each level enabling answers to
a different class of questions:

Layer 1: Association (Seeing) This is the level of standard statistical and machine learning. It
deals with purely observational data and answers questions about correlation, such as ”What is the
probability of a diagnosis Y given we observe visual features V?” denoted as P (Y|V). Most deep
learning models operate exclusively at this layer.

Layer 2: Intervention (Doing) This layer deals with questions about the effects of actively chang-
ing or ”doing” something in the system. For example, ”What would the diagnosis Y be if we
forced the text description T to be ’normal’?” denoted as P(Y|do(T = ’normal’)). The do-operator
signifies a ”hard” intervention that removes any pre-existing causal influences on the variable T .
Answering such questions is crucial for understanding causal effects, as it allows us to distinguish
causation from spurious correlation.

Layer 3: Counterfactuals (Imagining) This is the highest level of causal reasoning. It deals with
retrospective, ”what if” questions that involve imagining a world that contradicts what was actually
observed. For example, ”Given that a patient with visual features V and factual text Tfact was di-
agnosed with cancer (Y = 1), what would the diagnosis have been if the text had been ’normal’
(T = ’normal’) instead?” This is denoted as P(YT =’normal’|V, Tfact,Y = 1). Counterfactuals are
more powerful than interventions because they use evidence from the specific, observed world (e.g.,
the specific visual features V) to refine the prediction in a hypothetical world.

A.2 COUNTERFACTUALS AS A TOOL FOR CAUSAL REGULARIZATION

In complex domains like vision and language, performing a true do-intervention on the data is often
infeasible. We cannot, for instance, perfectly change a ”cancerous” region in an image to a ”normal”
one without altering other correlated features.

Our work leverages Layer 3 reasoning—counterfactuals—as a powerful computational tool to ap-
proximate the goal of Layer 2. The counterfactual learning mechanism in CDMIL can be understood
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as a form of causal regularization. Instead of directly manipulating the data, we simulate an inter-
vention within the model’s forward pass.

The process unfolds as follows:

• Observation: The model first processes the factual pair (V, Tfact) through its factual
branch. This can be seen as the model establishing its ”belief” about the world as it is,
based on the observed evidence. The resulting prediction, logitsfact, is a Layer 1 (associa-
tional) outcome.

• Imagining a Counterfactual World: We then construct a counterfactual scenario. For the
same visual evidence V , we ask the model to imagine a world where the textual evidence
was different. We achieve this by replacing Tfact with a counterfactual prototype Tcf. This
step is a direct implementation of a counterfactual query.

• Causal Constraint: The core of our approach lies in the causal loss, Lcausal = −DKL(Pcf ∥
Pfact). This loss function does not simply measure a difference; it imposes a structural
constraint on the model’s reasoning process. It essentially tells the model: ”Your prediction
in the counterfactual world Pcf must be logically consistent with the change I made. If your
initial prediction Pfact was heavily reliant on a spurious correlation between some visual
artifact in V and the concept in Tfact, then your prediction should not change much when I
replace Tfact with Tcf. I will penalize you for this ’stubbornness’ by making the loss high.”

Minimizing this loss extends beyond merely training the model for accuracy on observed data. We
are regularizing its internal representations, forcing it to learn a function that is sensitive to causal
interventions. This encourages the model to ground its predictions in features that are robustly linked
across both the factual and counterfactual worlds—that is, the true causal features. This approach,
therefore, helps the model to climb from Layer 1 (Association) towards a more robust, Layer 2-like
(Interventional) predictive capability, leading to improved out-of-distribution generalization.

B DETAILED TRAINING ALGORITHM

To provide a comprehensive and reproducible overview of our training procedure, we present the
detailed step-by-step algorithm for our Online Counterfactual Learning framework in Algorithm 1.
This algorithm elaborates on the methodology described in the main paper, particularly detailing the
two-stage training process. The key components of the algorithm are as follows:

Epoch 1 (Lines 4-10): The first epoch is dedicated to standard supervised learning and the initial
population of the text feature library. The model is trained solely on the classification loss (Lcls)
while simultaneously accumulating the text features corresponding to each ground-truth class. At
the end of this epoch, the main text feature library (Ltext) is finalized by averaging the accumulated
features for each class.

Epochs > 1 (Lines 11-23): From the second epoch onwards, the full causal learning mechanism
is activated. For each batch, the model computes both a factual prediction and a counterfactual
prediction. The counterfactual prediction is generated by intervening on the textual input, replacing
it with a feature retrieved from the previously constructed library (Ltext).

Joint Optimization (Line 22): The model is then optimized using a combined loss function, which
includes both the standard classification loss and our proposed causal loss (Lcausal). This causal
loss penalizes the model if its prediction is insensitive to the counterfactual intervention, thereby
encouraging the learning of robust, causal associations.

This two-stage approach ensures that a stable and representative text feature library is constructed
before the counterfactual regularization is applied, contributing to the overall stability and effective-
ness of the training process.
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Algorithm 1 Counterfactual Learning for CDMIL
Input: Training data D, model fθ, epochs E, causal weight λ.
Output: Causally-aligned model parameters θ.

1: Initialize model parameters θ and an empty text feature library Ltext.
2: for epoch e = 1, . . . , E do
3: if e = 1 then
4: // Epoch 1: Supervised Learning & Library Population
5: for each batch (V, T ,Y) in D do
6: Compute factual logits logitsfact ← fθ(V, T ).
7: Compute classification loss Lcls ← Loss(logitsfact,Y).
8: Update parameters θ using Lcls.
9: Accumulate text features derived from T into a temporary library based on Y .

10: end for
11: Populate the main library Ltext by averaging accumulated features.
12: else
13: // Epoch > 1: Counterfactual Causal Alignment
14: for each batch (V, T ,Y) in D do
15: // Factual Path
16: logitsfact ← fθ(V, T ).
17: Lcls ← Loss(logitsfact,Y).
18: // Counterfactual Path
19: Determine counterfactual label Ycf.
20: Retrieve counterfactual text feature Tcf ← Ltext[Ycf].
21: logitscf ← fθ(V, Tcf) {Visual input V remains unchanged}
22: // Causal Loss on Final Predictions
23: Lcausal ← −DKL(softmax(logitscf)||softmax(logitsfact)). {Constraint on prediction

space}
24: // Combined Update
25: Ltotal ← Lcls + λ · Lcausal.
26: Update parameters θ using Ltotal.
27: end for
28: end if
29: end for

C EXTERNAL EXPERIMENTAL RESULTS

C.1 ADDITIONAL DATASET

To further evaluate the generalizability and robustness of our CDMIL framework across diverse
histopathological tasks, we additionally incorporated the Breast Cancer Subtyping (BRACS) dataset.
BRACS is a public, high-resolution WSI benchmark comprising 547 annotated images from 189
unique patients. It is designed for fine-grained, multi-class classification, aiming to distinguish
between three core pathological categories: Benign, Atypical, and Malignant. This provides an ideal
platform for validating model performance in complex, beyond-binary scenarios. The preprocessing
for this dataset was conducted in accordance with the ”Implementation Details” described in Sec.
5.1 of the main paper.

C.2 PERFORMANCE ON LCEM2 AND BRACS DATASETS

To provide a more comprehensive evaluation of our proposed CDMIL framework, we conducted
additional comparative experiments on the LCEM2 and BRACS datasets. The LCEM2 dataset was
utilized to further assess performance on the LUAD EGFR mutation prediction task, while the multi-
class BRACS dataset was used to test the model’s applicability to more complex classification sce-
narios. All experimental setups, including data preprocessing and evaluation metrics, were kept
consistent with those described in the main paper.

The detailed quantitative results are presented in Table 4. On both datasets, our CDMIL method
consistently outperforms all baseline and state-of-the-art MIL approaches across nearly all met-
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Table 4: Comparison of WSI classification performance on LCEM2 and BRACS (mean % ± std).
Bold indicates the best result, an underline indicates the second best, and * denotes comparable
performance to the top result. (paired t-test, p > 0.05)

Method LCEM2 BRACS
ACC AUC F1 ACC AUC F1

MeanPooling 69.47±1.36 73.70±4.46 61.34±3.07 65.26±1.31 79.78±2.23* 46.30±1.74

MaxPooling 74.56±4.03 80.66±4.15* 71.95±3.91 66.37±3.36 82.01±2.21* 51.33±6.46

CLAM 75.38±1.99* 82.72±3.90* 71.84±2.93 75.50±1.27* 88.02±0.95* 62.58±5.97*
ABMIL 71.72±3.63 73.75±8.88 65.88±6.12 74.22±2.00* 88.06±2.17* 59.40±7.14

DSMIL 70.89±1.47 73.46±2.84 62.95±2.81 70.75±1.76 86.53±1.57* 55.88±3.83

TransMIL 70.65±15.38 69.81±19.32 55.41±26.10 69.30±5.42 82.87±3.83 52.74±5.21

PMIL 75.03±2.18* 82.92±2.84* 73.45±3.01* 72.03±1.81* 87.24±1.72* 58.74±7.13

CDMIL 80.77±1.89 85.02±0.84 76.45±3.92 76.83±1.77 92.11±1.65 65.79±4.03

rics. Notably, on the more challenging multi-class BRACS dataset, CDMIL achieves the highest
performance in terms of ACC and AUC, demonstrating its strong robustness and versatility across
different tasks. These supplementary results further corroborate the findings from our main exper-
iments, underscoring the significant advantages conferred by the integration of causal learning into
the vision-language MIL framework.

C.3 SYMMETRIC GENERALIZATION PERFORMANCE EVALUATION

To further validate the robustness of our CDMIL framework and demonstrate that its strong per-
formance is not specific to a single training domain, we conducted a symmetric generalization ex-
periment. In this setup, we reversed the roles of the LCEM1 and LCEM2 datasets compared to
the experiment presented in the main paper. Specifically, all models were trained exclusively on the
LCEM2 dataset and then evaluated in a zero-shot manner on the external LCEM1 and TCGA-LUAD
test sets.

The results of this symmetric evaluation are detailed in Table 5. Consistent with our primary find-
ings, CDMIL once again substantially outperforms all baseline methods on both external test sets.
It achieves a state-of-the-art AUC of 82.50% on LCEM1 and 85.05% on TCGA-LUAD, margins
that are significantly ahead of the next-best competitors. This bidirectional validation provides com-
pelling evidence that our causal learning approach enables the model to learn truly domain-agnostic
representations, effectively mitigating overfitting to the spurious correlations present in any single
training dataset. These findings reinforce the conclusion that the superiority of CDMIL is robust and
not merely an artifact of the training data source.

Table 5: Zero-shot generalization performance on the EGFR mutation prediction task, with all
models trained on the LCEM2 dataset and evaluated on the external LCEM1 and TCGA-LUAD
test sets. (Notably, due to a severe class imbalance of EGFR mutation types in the TCGA-
LUAD dataset, AUC and F1 is considered the primary metrics for a fair comparison on this
dataset.)

Method LCEM1 TCGA-LUAD
ACC AUC F1 ACC AUC F1

MeanPooling 45.69 58.80 44.05 60.23 63.76 50.91
MaxPooling 40.80 60.87 31.59 76.52 69.17 58.11

CLAM 43.89 53.56 39.51 62.12 65.27 52.26
ABMIL 53.41 57.98 53.38 56.63 67.46 48.75
DSMIL 55.98 61.66 55.86 54.92 64.34 47.37

TransMIL 60.75 51.72 37.79 14.02 61.23 12.29
PMIL 62.29 70.34 56.08 74.43 67.90 56.13

CDMIL w/o Lcausal 60.10 65.38 52.35 75.38 67.81 49.96
CDMIL 64.35 82.50 53.51 88.26 85.05 67.16
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C.4 FURTHER VISUALIZATION

To further demonstrate the robustness and superior interpretability of our CDMIL framework, we
provide additional qualitative results on several representative WSIs from the test sets, as shown in
Fig. 6. Each row presents a different case, covering a variety of challenging histopathological pat-
terns. The first column displays the original WSI with pathologist-annotated ground-truth contours
(in green), followed by the attention heatmaps generated by baseline methods (CLAM, PMIL), our
ablation model (CDMIL w/o Lcausal), and our full CDMIL model.

Across all diverse cases, a consistent pattern clearly emerges: baseline methods such as CLAM
and PMIL often produce diffuse or misplaced attention maps, while the CDMIL variant without
causal learning is prone to being distracted by spurious features, leading to imprecise attention. In
stark contrast, our full CDMIL model consistently generates attention heatmaps that are both fo-
cused and accurate. Its high-attention regions are precisely concentrated within the ground-truth
contours, exhibiting high concordance with the pathologist’s annotations. This advantage holds true
even when processing cases with complex tumor boundaries, significant intra-tumor heterogeneity,
or large necrotic areas. These visualizations provide compelling visual evidence that our counterfac-
tual causal learning mechanism plays a critical role in guiding the model to focus on true, causally
relevant pathological features, thereby enhancing its reliability and trustworthiness for clinical ap-
plication.

D DATA AVAILABILITY

The datasets used in this study are sourced as follows:

• TCGA-LUAD: Slides for the TCGA-LUAD dataset from The Cancer Genome Atlas
(TCGA) program, comprising both wild-type and mutant tissues, are publicly available
for download from the GDC Data Portal: https://portal.gdc.cancer.gov/.

• Camelyon16: This public challenge dataset is available from its official website:
https://camelyon16.grand-challenge.org/.

• BRACS: This dataset can be publicly accessed from its official website:
https://www.bracs.icar.cnr.it/.

• Other Datasets: The remaining datasets generated or analyzed during this study are avail-
able from the corresponding author upon reasonable request.
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Figure 6: Qualitative comparison of attention heatmaps, showcasing the superior localization and
interpretability of our CDMIL model.
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