Under review as a conference paper at ICLR 2026

SEMI-STRUCTURED LLLM REASONERS CAN BE RIGOR-
OUSLY AUDITED

Anonymous authors
Paper under double-blind review

ABSTRACT

Although Large Language Models (LLMs) have become capable reasoners, the
problem of faithfulness persists: their reasoning can contain errors and omissions
that are difficult to detect and that may obscure biases in model outputs. To address
this issue, we introduce Semi-Structured Reasoning Models (SSRMs), which are
trained to produce semi-structured representations of reasoning. SSRMs generate
reasoning traces in a non-executable Pythonic syntax that names each reasoning
step and marks its inputs and outputs. This structure allows SSRM traces to be
automatically audited to identify reasoning flaws. We evaluate three types of audits:
hand-crafted structured reasoning audits, written in a domain-specific language
(DSL) implemented in Python; LLM-generated structured reasoning audits; and
learned typicality audits, which apply probabilistic models over reasoning traces.
We show that all of these methods can be used to effectively flag probable reasoning
errors. Importantly, the auditability of SSRMs does not appear to compromise
overall accuracy: in evaluation on twelve benchmarks and two model families,
SSRMs demonstrate strong performance and generalizability relative to other
models of comparable size. We provide our code at/Anonymous Github Link.

1 INTRODUCTION

Large Language Models (LLMs) often benefit from reasoning techniques such as short Chain-of-
Thought (CoT) prompting (Wei et al., |2022) or long CoT reasoning (Chen et al. 2025a; Wang
et al.| 2025; Wang| [2025). Yet in many applications, LLMs may generate superficially plausible but
incorrect reasoning that obscures biases in the output (Turpin et al.| 2024); more generally, reasoning
traces are not causally related to the final output (Bao et al.,2024). This problem of “unfaithful’LLM
reasoning has been extensively investigated in short CoT settings (Lanham et al.| 2023; Bentham
et al.,[2024; |Parcalabescu & Frank, [2024), and is likely to be more problematic in long CoT reasoning.

As a concrete step toward demystifying reasoning LLMs and improving their reliability, we present
methods for rigorously checking LLM reasoning on specific tasks. To illustrate and motivate this,
consider the simplified medical question-answering (QA) task in Figure[I] adapted from the Med-
CalcBench (Khandekar et al.,|2024)). The “flawed” reasoning trace appears superficially plausible
but is incomplete compared to the “ideal” trace: it contains one obvious omission, one subtler error,
and one issue where the LLM fails to explicitly check the compatibility of the units for an extracted
value. Although none of these affect the final answer in this example, such flaws are undesirable in
consequential tasks. Human experts performing similar tasks are often expected to carefully follow
explicit instructions—variously called rubrics, cookbooks, or policies depending on the domain—to
ensure that reasoning is complete and decisions are made consistently. This observation motivates the
central research question: can we detect when an LLM deviates from a desired reasoning strategy?

Since analyzing arbitrary reasoning traces is difficult, we begin by training an LLM to generate
semi-structured reasoning traces, as shown in Figure [2[(Top). Following prior work (Cohen & Cohen)
2024)), we adopt a Pythonic syntax that labels different types of reasoning steps using a restricted,
task-specific vocabulary and specifies the inputs and outputs of each step, without requiring the steps
to be executable. Because the steps can perform arbitrary computations and consume or produce
arbitrary strings of text, this semi-structured format is highly general. In this paper we provide
new evidence for this generality by showing that training models to generate semi-structured traces
achieves performance comparable to similarly trained free-form reasoning models and other baselines.

https://anonymous.4open.science/r/ICLR2026-DCAC

Under review as a conference paper at ICLR 2026

Patient note: 17-year-old female was admitted to bilateral blurring of vision. She had body temp 101.3°F; heart
rate, 80 beats per minute; blood pressure, 100/60 mmHg; and white blood cell counts 9,700/mm3.
Question: What is the SIRS score of the patient? Calculate SIRS Score with the following rules:

Temp >38°C or <36°C: No = 0 points, Yes = +1 point

WBC >12,000/mm?: No = 0 points, Yes = +1 point

Heart rate >90 bpm: No = 0 points, Yes = +1 point

4‘ Ideal reasoning trace l ! Flawed reasoning trace

Start with a running score of 0. Start with a running score of 0.
To apply the rule "Temp >38°C or <36°C: No = 0 points, Yes = +1 point" To apply the rule "Temp >38°C or <36°C: No = 0 points, Yes = +1 point"
we need to know the patient's Temp. we need to know the patient's Temp.
From the patient note, the patient's Temp is 101.3°F. From the patient note, the patient's Temp is 101.3°F. Error: the value used
Converting that to the units required by the rule gives 38.5°C. Converting that to the units required by the rule gives 38.5°C. L
Since 38.5° > 38°, we add +1 point to the running score. Since 101.3 >3 add +1 point to the running score. .
The running score is now 1. The running sc?rjiLN before conversion,
not after
To apply the rule "Heart rate >90 bpm: No = 0 points, Yes = +1 point"
we need to know the patient's heart rate.
From the patient note, the patient's heart rate is 80 beats per minute.
Expressing that in the units required by the rule gives 80bpm.
Since 80 is not >90, we add 0 points to the running score. <\ Erers Semand mile e 16|
The running score is now 1. N
(greyed text is not present)
To apply the rule "WBC >12,000/mm?: No = 0 points, Yes = +1 point" To apply the rule "WBC >12,000/mm?: No = 0 points, Yes = +1 point"
we need to know the patient's white blood cell count (WBC). we need to know the patient's white blood cell count (WBC).
From the patient note, the patient's WBC is 9,700/mm3. From the patient note, the patient's WBC is 9,700/mm?.
This does not need to be converted. «— Error: Units not checked
Since 9,700is not > 12,000, we add 0 points to the running score. Since 9,700is not >12,000, we add 0 points to the running score. for rule compatibility
The running score is now 1. The running score is now 1.
The final SIRS score is 1. The final SIRS score is 1.

Figure 1: Overview of the problem addressed. Top: a question that requires the LLM to extract
information and apply reasoning to answer correctly. Bottom left: a desired reasoinng trace. Bottom
right: a flawed reasoning trace. The flawed trace differs from the desired one in three ways: (1) the
incorrect patient measurement is used to determine applicability of the first rule; (2) the second rule is
skipped; (3) the units associated with a patient measurement are not explicitly checked against those
required by the third rule. In this example, none of these reasoning flaws affects the final answer, so
this flawed reasoning trace will be reinforced during reinforcement learning with an outcome reward.

| Flawed semi-structured reasoning trace l

Calling analyze_input('’A 17-year-old...Yes = +1 point')... Audit 1: For every rule (in the list that is the
...analyze_input returned ("What is the number of SIRS criteria met by the patient?" «— second output of analyze_input) there must
[Temp >38°C or <36°C: No = 0 points, Yes = +1 point', 'Heart rate >90: No = 0 points, Yes = +1 point', be calls to extract_patient_data,
'WBC >12,000/mm?*: No = 0 points, Yes = +1 point])) evaluate_rule, and convert_units

Calling extract_patient_data('Temp >38°C or <36°C: No = 0 points, Yes = +1 point')...returned ‘101.3°F'

Calling convert_units('Temp 101.3°F', 'Temp >38°C or <36°C: No = 0 points, Yes = +1 point'. “101.3°F")...returned '38.5°C'
Calling evaluate_rule('Temp >38°C or <36°C: No = 0 points, Yes = +1 point', 101.3'%

Calling accumulate_score(0, 1)...returned 1 Audit 2: Every second input to
evaluate_rule must be an output

of convert_units

Calling extract_patient_data('WBC >12,000/mm?: No = 0 points, Yes = +1 point')...returned ‘9,7 m3'

Calling evaluate_rule('WBC >12,000/mm?: No = 0 points, Yes = +1 point', ‘9,700")."returned 0
Calling accumulate_score(1, 0)...returned 1

Final answer: 1
| Dataframe Schema Used for Audits
{_Structured audits that identify the flaws ‘—

Audit 1: fn_name Name of step
question, rules = df.query("fn_name=="analyze_input").output[0] # output of first call to analyze_input
for name in [‘extract_patient_datf’. ‘convert_sini‘ts', ‘evaluate_rule’]: input Tuple of step inputs

assert(set(df.query(f‘fn_name” == ‘{name}"”).input1) == set(rules))
Audit 2: :' output Step output
evaluate_rule_patient_value_inputs = set(df.query("fn_name == "evaluate_rule").input2)
convert_units_outputs = set(df.query("fn_name=="convert_units").output) input1 First input
assert(evaluate_rule_patient_value_inputs == convert_unit_outputs)

input2 Second input

Figure 2: Overview of our approach. An LLM is trained to generate a semi-structured trace
comprising a function name, its inputs, and its outputs for each reasoning step. Two plausible
constraints on this semi-structured trace are also shown, given in natural language (gray boxes) and
as executable tests (bottom left). The executable tests are reasoning trace audits, and in this case are
hand-written. We also explore typicality audits, which are learned from a corpus of reasoning traces.

We further show that semi-structured reasoning facilitates the scalable detection of reasoning flaws.
For example, in Figure 2] one can observe that a desired rule was skipped by comparing the number
of evaluate_rule steps with the length of the rule list returned by analyze_input. We refer to such

Under review as a conference paper at ICLR 2026

checks as reasoning audits. Figure [2] also provides natural-language descriptions of two audits
alongside their corresponding structured reasoning audits. Our results indicate that these manually
implemented audits can identify potential reasoning flaws and flag outcomes that are likely incorrect.

Our DSL for structured queries uses trace that has been encoded as a Pandas DataFrame, and audits
also look like Python unit tests—two widely-used programming constructs. Because of these design
choices, we show that structured reasoning audits are also easily generated automatically by modern
LLMs given minimal guidance, substantially reducing the cost of auditing reasoning in a new domain.

Beyond enabling structured reasoning queries, semi-structured reasoning facilitates additional forms
of analysis. A recurring question in the literature (Kambhampati et al.l 2025) is whether reasoning
LLMs generate novel “reasoning patterns” or simply reproduce patterns that are seen during training.
This issue is difficult to address without a formal definition of “reasoning patterns.” In this work, we
explore certain definitions of a “reasoning pattern” for semi-structured reasoners and use it to build
probabilistic models of reasoning patterns for specific tasks. We evaluate the hypothesis that model
accuracy correlates with the probability assigned to its reasoning patterns. By analogy with structured
audits, we term this a typicality audit, and show that they can also identify potential reasoning errors.

In summary, this paper makes the following contributions:

* We introduce two-stage training recipes for SSRMs that produce semi-structured reasoning traces.

* We illustrate that both manually-generated and LLM-generated structured audits can effectively
reveal potential reasoning flaws, and that failing certain audits increases the probability of error.

* We show that typicality audits can reveal common reasoning patterns linked to better outcomes.

* We demonstrate that auditability comes without cost in generalization performance, as SSRMs
achieve results comparable to similarly trained unstructured reasoning models and other baselines.

2 RELATED WORK

Faithfulness and Process Models. CoT prompting has been shown to sometimes produce predictions
that preserve underlying LLM biases, accompanied by explanations that obscure those biases (Turpin
et al.,|2024). This observation has motivated extensive research on explanation faithfulness in CoT
prompting Jacovi & Goldberg| (2020); Turpin et al.|(2024)); Lanham et al.| (2023)); Bao et al.| (2024).
Nevertheless, defining and measuring faithfulness remains challenging, with some prior studies
advocating quantitative approaches that assess mechanistic influence in neural networks through
numerical metrics (Parcalabescu & Frankl| 2024; |Bentham et al.| 2024} |Chen et al.,[2025b). In this
work, we propose reasoning audits as a concrete and testable alternative to measuring faithfulness.

Other studies have proposed methods verifying reasoning chains using process reward models (Paul
et al.,2024;Sun et al.| [2024b)) and step reward models|Viteri et al.|(2024));[Wang et al.|(2023)); [Saparov
& He| (2022); [La1 et al.| (2024). However, these reward models are typically tailored to specific
domains—such as mathematics (Paul et al., 2024} Sun et al., 2024b) or theorem-proving (Saparov,
& Hel 2022; [Lai et al., [2024)—and often rely on Monte Carlo Tree Search (Kocsis & Szepesvari,
2006) to explore and evaluate multiple candidate reasoning chains, a computationally expensive
procedure. While our work is largely orthogonal, the symbolic and statistical audits we propose could
provide complementary signals for future reward-model training. In particular, the statistical audits
we proposed refine the notion of reasoning patterns, which have previously been identified either
through task-specific analyses (Zhang et al.,2025)) or via LLM pipeline methods (Zhou et al., [2025).

Semi-structured LLM Reasoning. Various prompting strategies—such as CoT (Wel et al.| 2022)),
Tree-of-Thought (ToT) (Yao et al.} 2023)), Chain-of-Code (CoC) (Li et al., 2023)), and Program-of-
Thought (PoT) (Chen et al.,2022)—have been widely employed to enhance the reasoning capabilities
of LLMs. More recently, research has shifted from prompting toward inference-time scaling by
incorporating search algorithms, particularly tree-based search (including Monte Carlo Tree Search
variants) and beam search, into the sampling process (Feng et al., 2023}, [Trinh et al.| 2024} [Xin
et al.| 2024} Kocsis & Szepesvari, 2000); by ensembling multiple reasoning trajectories through
self-consistency (Wang et al.| [2022; |Huang et al., 2025; |Aggarwal et al.| [2023)); and by applying
reinforcement learning (RL) to extend the length of reasoning (OpenAlL 2024; Shao et al.l 2024; |Guo
et al.} 2025 |Qwen, 2024; [Kumar et al., [2024; Yang et al., [2025). Despite these, LLMs frequently
produce reasoning traces that appear plausible yet incorrect, and such errors can be difficult to detect.

Under review as a conference paper at ICLR 2026

Previous studies have proposed that faithfulness can be improved by using a code-like format for
LLM outputs. Prior work assumes this format is either fully executable Python programs (Chen et al.,
2022;|Gao et al.| [2023; Lyu et al., |2023; [Paranjape et al.,|2023) or partially executable pseudocode (L1
et al., 2023} Weir et al., 2024; (Chae et al., [2024). While enabling the use of Python as a tool often
improves performance, the reasoning process used to generate the pseudocode remains obscured.
These works have also argued (sometimes implicitly) that faithfulness is qualitatively improved with
code-based outputs. In contrast, we pursue the more concrete goal of auditing the reasoning process.

We build most on the reasoning-chain syntax used in Program Trace Prompting (PTP) (Cohen &
Cohen, 2024). While PTP uses few-shot prompting to extrapolate “partial programs” and sample
traces for novel inputs, SSRMs achieve strong performance without task-specific few-shot prompts.

3 TRAINING METHODS

We use a two-stage training recipe for a Semi-Structured Reasoning Model (SSRM). The first stage
performs SFT to teach the model to produce the semi-structured reasoning traces, while the second
stage uses reinforcement learning with verifiable rewards (RLVR) to enhance the reasoning ability.

Supervised Fine-Tuning. To collect SFT data for semi-structured reasoning, we follow the PTP
approach (Cohen & Cohen, 2024)). We generate semi-structured reasoning traces with PTP using
both Claude Sonnet 3.5 and 3.7 (Anthropic} [2024; 2025) on a subset of BBH tasks (Suzgun et al.,
2022])) as well as subsets of the training data from GSM8K (Cobbe et al.|[2021), MATHS500 (Lightman
et al., [2023), and MedCalcBenchV2 (please see Section[d). Only traces that produce a correct final
answer are retained. To verify correctness, we extract answers from the answer tags and evaluate their
accuracy. We also perform a simple formatting check to remove samples whose partial programs
or traces cannot be parsed. For the final dataset, we apply downsampling to balance the number of
samples across tasks. The distribution of the resulting SFT data is provided in Appendix [E.T] Table 9]

Chain-of-Thought Baseline. To establish a fair baseline for comparison, we construct a standard
CoT dataset. We generate CoT traces on BBH using the original few-shot prompts applied to Claude
Sonnet 3.5, and augment the training data with ground-truth CoT solutions from GSM8K, MATHS500,
and MedCalcBenchV2, for the same problem instances used in the semi-structured SFT training data.

Training Template. We structure each example using a consistent markup format. In the semi-
structured setting, partial programs are wrapped in <partial_program> tags, reasoning traces in
<program_trace> tags, both enclosed within a <think> tag. The final answer is placed inside the
<answer> tag for easy parsing. For the CoT baseline, only <think> and <answer> tags are used.

RLVR Dataset. In the second stage, we enhance the SFT model with RLVR. We construct the RLVR
dataset by sampling eight responses per problem from the English subset of DAPO-Math-17K (Yu
et al.| 2025)), using the SFT checkpoint. We randomly discard half of the samples with pass rates of
either zero or one. We further include a held-out subset of MedCalcBenchV2 excluded from SFT.

Reward Design. We adopt a rule-based reward combining outcome accuracy and structural validity.
Outcome accuracy measures the correctness of the final answer, while format rewards are assigned if
the reasoning trace conforms to the semi-structured or CoT format, evaluated via regular expressions.

RL Algorithm. We optimize with the Group Relative Policy Optimization (GRPO) (Shao et al.| 2024)),
which estimates token-level advantages without requiring a critic. For a specific question-answer pair
(¢, a), the policy model first samples a group of G individual responses {0;}$;. Subsequently, the
T —IIle&n({Ri }?=1)

advantage of the i-th response is calculated as A; ; = (RS

. And the training objective is

Jarro(0) = E(y 0)up, (0115~ (1)
[o;]

G

1 1 . .

IE E Torl E (min (r,1(0) A, clip (rit(0),1 —e,1 +¢€) Ait) — BDxL (ol mret)) |
i=1 't =1

79 (04t | ¢, 0i <t)
To1a (Oi,t | Q70i,<t)

where r;4(0) =

(1)
Differ from standard GRPO, we adopt fully on-policy training and token-level loss (Yu et al., [2025).

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

In this section, we present a series of experiments conducted across diverse benchmarks—including
mathematics, medical, and health domains—covering both in-domain datasets and those outside the
training mixture. We also compare SSRMs to strong prompted baselines. Our goal is to address three
key questions: (1) Can the reasoning traces of SSRMs be audited, either through structured queries or
statistical methods? (2) Can prompted models be audited in a similar manner? (3) Is semi-structured
reasoning more difficult to learn? Detailed setups and dataset descriptions are listed in Appendix [F|

Experimental Setup. We use Qwen2.5-7B (Yang et al., |2024) as the base model for SSRM and
conduct auditability analysis on its generated semi-structured reasoning traces. To further validate
the performance, we also train an SSRM based on Llama3.1-8B (Grattafiori et al., [2024). All models
are trained using verl (Sheng et al.,[2024) on 8 H100 GPUs, with evaluations conducted on 1 H100.

In addition to similarly trained unstructured baselines, we compare SSRMs against baselines of
comparable size. Non-reasoning baselines include Llama3.1-8B-Instruct (Grattafiori et al., [2024),
Medical Llama (ContactDoctor, |2024) (fine-tuned for biomedical knowledge), and the Qwen se-
ries (Yang et al.| [2024). Reasoning baselines include the DeepSeek-Distilled series (Guo et al., [2025).
For prompted baselines, we evaluate Claude Sonnet 3.5 (Anthropic, [2024) and Qwen2.5-7B-Instruct.

We use greedy decoding and report accuracy for all tasks, except for AIME24, where we sample 32
responses and report Pass@ 1 with a temperature of 0.7. The maximum generation length is set to
32,768 tokens. All tasks are evaluated in a zero-shot setting, except for prompted baselines, which
use two-shot prompts. Reasoning baselines follow the recommended setting (temperature 0.6, top-p
0.95) (Guo et al.| |[2025)). For Qwen2.5-7B, we omit the chat template following |Liu et al.|(2025)).

Primary Evaluation: MedCalcBenchV2. Our primary evaluation benchmark is MedCalcBenchV2,
a cleaned version of MedCalcBench (Khandekar et al.| 2024) (See Appendix E]) MedCalcBenchV2
measures an LLM’s ability to extract information from clinical text (patient note) and perform
calculations using either explicit rules or formulas provided in the prompt. We observe that rule-based
tasks are substantially more challenging than formula-based tasks. Errors in formula-based problems
primarily arise from computation or extraction mistakes, whereas errors in rule-based problems more
often involve failures to follow explicit instructions, consistent with prior findings on rule-following
tasks (Sun et al.,|2024a)). To account for this discrepancy, we treat the two categories as two distinct
tasks: MedCalcV2 Rules and MedCalcV2 Formulas. Evaluation follows the original MedCalcBench
criteria, which allow small numeric deviations and employ rule-based checks for date-based answers.

Domain-Specific Language for structured audits. Our DSL for structured audits looks like Python
unit tests: they are class methods, can be called without arguments, and contain assertion statements
invoked by the class method self.assertTrue. An audit fails if it raises an exception or if an
assertTrue call does not hold. The method can access a Pandas DataFrame self . df that represents
the semi-structured trace, and assertions usually operate on this data structure using Pandas operations.

Additional Evaluation. To evaluate the generalizability of the SSRMs beyond in-domain data, we
conduct additional experiments on a range of benchmarks: general reasoning (GPQA-Diamond (Rein
et al., [2024))), mathematical reasoning (AIME24), commonsense reasoning (CommonsenseQA (Tal{
mor et al 2018)), truthfulness (Truthful QA (Lin et al.l [2021))), as well as several medical and
health-related tasks, namely MedQA (Jin et al.} [2020), the biology and health subsets of MMLU-
Pro (Wang et al., [2024)), and PubMedQA (Jin et al.,|2019)), which we convert to multiple-choice.

4.1 EXPERIMENTAL RESULTS

Both hand-crafted and LLM-generated structured audits are effective for auditing semi-
structured reasoning traces generated by SSRMs. To validate that semi-structured reasoning can
be systematically audited, we first apply hand-crafted audits for the two MedCalcV2 tasks based on
the analysis of the training examples. Table[T|reports results for all individual audits that are applied
with sufficient frequencyﬁ] and are sufficiently discriminative—specifically, audits that succeed at
least 5% of the time and fail at least 5% of the time. The second audit for MedCalcV2 Formulas (e.g.,
“math is correct”) uses Python’s eval function; whereas all other audits inspect only trace structure.

! Audits may not be applied to all traces—for example, one cannot confirm that number of rules evaluated is
the same as the number of rules extracted if rule extraction fails to produce a legal output.

Under review as a conference paper at ICLR 2026

Table 1: Hand-crafted structured audits for Qwen SSRM generated semi-structured traces on two
MedCalcV?2 tasks. For each, we report the failure rate, the outcome accuracy conditioned on audit
failing or passing, the accuracy difference (A) between passing and failing cases, and the p-value for
testing A # 0. One star (*) for statistical significance at p < 0.1 and two stars (**) for p < 0.05.

— accuracy and difference —

%Failed Failing Passing A p-val description of audit
MedCalcV2 Formulas 22.0 0.77 0.86 0.09 solve_formula output is formatted well
49.0 0.84 0.83 -0.01 solve_formula math is correct™h
MedCalcV2 Rules 13.2 0.22 0.46 0.24 ** one get_data step per extracted rule
134 0.22 0.47 0.25 *#* get_data called on all rules
14.0 0.21 0.47 0.26 *%* one eval_rule step per rule
20.3 0.26 0.48 0.22 ** all rule outputs summed correctly

Table 2: LLM-generated structured audits on the same set of Qwen SSRM traces for MedCalcV2.

— accuracy and difference —

%Failed Failing Passing A p-val description of audit
MedCalcV2 Formulas 5.7 0.76 0.84 0.08 step 4 output feeds into step 5 input
6.4 0.45 0.86 0.41 ** step 3 output feeds into step 4 input
8.3 0.62 0.86 0.24 step 2 output feeds into step 3 input
9.3 0.82 0.84 0.02 convert_units called once per datapoint
10.2 0.81 0.84 0.03 convert_units receives formula as first input
12.6 0.80 0.84 0.05 convert_units correct second input
14.4 0.37 0.92 0.55 ** get_data receives formula from analyze_input
MedCalcV2 Rules 134 0.22 0.47 0.25 ** get_data called for each rule
13.9 0.21 0.47 0.26 *% consistent rules across get_data steps

As suggested in Figure 2] reasoning flaws do not always yield incorrect outcomes. In Table|[T] for
each audit a, we present test accuracy when q fails (“Failing” column), when a passes (‘“Passing”
column), the accuracy difference A, and the statistical significance of the difference being non-zero.

The results suggest that reasoning errors are more frequent in MedCalcV2 Rules than in Formulas.
While math errors in Formulas occur frequently, they do not correlate with outcome errors In
contrast, reasoning errors in Rules are common and associated with substantial accuracy losses. The
most common failure is mis-summing rule contributions, followed by skipping a rule. Other failing
audits indicate mismatches between the counts of patient data extraction and rule application steps.

Because manually generating audits is expensive, we also explore automatic generation of structured
audits using LLMs. We manually write audits for three additional tasks from BBH, and use those
as few-shot examples to prompt Claude Sonnet 4.0 to output structured audits given a set of three
correct sample traces. The results, shown in Table [2} show that LLM-generated structured audits are
comparably useful to hand-crafted ones. (For more results and details, please check Appendix

Typicality audits are also applicable for auditing semi-structured reasoning traces generated by
SSRMs. Typicality audits provide a complementary use of the semi-structured format by analyzing
abstract versions of reasoning processes, aka “reasoning patterns” (Zhang et al.,[2025). Prior work has
conjectured that LLMs predominantly reproduce “reasoning patterns” observed in the training data
and struggle to generate novel sequences—i.e., LLM reasoning often relies on retrieving previously
seen reasoning examples (Kambhampati et al.,|2025)). If this holds, reasoning within a given task
should exhibit regularity, thereby enabling statistical analyses to flag outlier traces as potential errors.

In past work, “reasoning patterns” are typically identified heuristically or by LLMs (Zhang et al.,[2025;
Zhou et al.;[2025)). Here we define “reasoning patterns” as the sequence of step names. For example,
in Figure @ the pattern is “analyze_input extract_patient_data convert_units evaluate_rule
accumulate_score extract_patient_data evaluate_rule accumulate_score”. We then construct a
probabilistic model M over these sequences, treating them as language tokens. This formulation
yields a precise version of the conjecture above: LLM correctness is positively correlated with the

*MedCalcV2 numerical answers are soft-matched to the target, whereas the implemented audits check exact
equivalence before and after simplification.

Under review as a conference paper at ICLR 2026

probability of the required reasoning pattern under M. To test this, we compute the correlation
between outcome correctness and the probability of the reasoning pattern generated by the SSRMs.

We consider the following types of reason pattern typicality models M: a unigram language model
smoothed with a Dirichlet prior (referred to as multinomial in the tables below); bigram and trigram
models, implemented simply by extending the base vocabulary to consider all n-grams of step names
for n = 2, 3; an HMM with three hidden states over trigrams, denoted HMM(3,3) in the table; and a
final model, HMM*, in which we perform a grid search over different n-gram sizes and numbers of
hidden states, selecting the configuration that optimizes the BIC criterion (Please see Appendix [F2)).

Table 3] summarizes the results obtained by fit-
ting these models to the test datal| We use
Kendall’s 7 to measure correlation because it
makes no parametric assumptions and observe
only moderate correlations ranging from 0.08 to
0.26. As another way of testing if highly typical
reasoning patterns correspond to higher accura-
cies than atypical ones, we sort all test predic-
tions by pattern probability and compare the ac-
curacy of the least probable third with that of the
most probable third, excluding the middle third.

Table 3: The results prove that atypical reasoning
pattern in the MedCalcV2 tasks are more likely
to result in errors. We evaluate several typicali-
ty/probability models, all of which correlate with
correctness, though the correlation is weaker on
MedCalcV2 Rules. In additional to Kendall’s 7
for correlation, we also partition the test data into
three equal groups by probability and report accu-
racy in the lowest and highest tertiles, the accuracy
difference (A), and the p-value of this difference.

Using this method, we observe significant differ- MedCalcV2 Formulas ~ — accuracy and difference —
ences in many models. For example, under the Hinomial 05 Te(;“;; 1 Te(;ﬁglg 3 0A22 p-val
. multinomial N "
HMM(3,3) model, the accuracy difference (A) igram 025 072 095 023 %
between the least and most probable tertiles is trigram 026 072 0.95 0.23 *
approximately 25% for both MedCalcV2 tasks. ~ HMMG@.3) 026072 097 025 ==
o HMM* 021 074 097 0.07
These results suggest that a typicality model M -
. te the behavi f a structured MedCalcV2 Rules — accuracy and difference —
can approximate the behavior of a structured au- 5 Terilel Terile3 A poval
dit by: (a) sorting predictions by typicality, (b) multinomial 017 032 057 025 %
splitting predictions into quantiles, and (c) in- ~ bigram PSR L
. . . 1 . 2
terpreting the top quantile as audit-passed cases, HI\%[M(3,3) 017 032 057 025
the bottom quantile as audit-failed cases, and ~ HMM* 0.08 043 0.52 0.09

any other intermediate quantiles as unevaluable.

Following this approach, the typicality audits function as an abstaining classifier Pietraszek| (2005)
for evaluating outcome correctness, abstaining specifically on intermediate scores. The abstention
rate can be adjusted by splitting the predictions into different numbers of quantiles: for instance,
dividing predictions into two groups yields no abstentions, whereas dividing them into eight groups
results in abstention for the middle six octiles—i.e., 3 = 2 of the time. As shown in Figure[3| higher

abstention rates are associated with larger accuracy difference (A) across both MedCalcV?2 tasks.

Given the effectiveness of both structured and
typicality audits in identifying potential reason-
ing errors, a straightforward extension is to ap-
ply at inference time. For example, when com-
bining typicality audits with self-consistency,
reasoning traces in the lowest tertile can be
resampled more extensively, whereas those in
the highest tertile—more likely to be correct—
might require no additional sampling. This strat-
egy can help concentrate the sampling budget
on the most error-prone cases. We evaluate this
approach on the MedCalcV2 Rules tasks and
report the results in Appendix Our findings
show that audit-guided self-consistency reduces
computational cost while maintaining compara-
ble or slightly improved performance relative to vanilla self-consistency with a fixed sampling budget.
However, we do not observe significant improvements over greedy decoding with a single sample.

Abstention Rate vs. Delta on MedCalcV2

o
=)

°
s
3

—
P

°
w
=)

S

o
o
S

Dataset
-e- MedCalcV2 Formulas
MedCalcv2 Rules

Delta (Accuracy Difference)
°
S

o

o

25v/;\bstention Rate (“/05)0% o

Figure 3: Abstention Rate vs. A (accuracy differ-
ence between the highest- and lowest- probability
quantiles) on MedCalcV2 under a typicality audit.

3Note that the correctness label is not used in this step. Moreover, the distribution of reasoning patterns in
the training data may differ for tasks with ground-truth reasoning chains.

Under review as a conference paper at ICLR 2026

Table 4: Results of applying structured audits to Claude Sonnet 3.5 with semi-structured prompting
on both MedCalcV2 Formulas and Rules. Overall, the results resemble those of SSRM, although the
prompted MedCalcV2 Formulas system does have some rarely-failing audits that impact accuracy.

— accuracy and difference —

%Failed Failing Passing A p-val description of audit
MedCalcV2 Formulas 1.7 0.000 0.662 0.662 one get_datastep
2.1 0.000 0.664 0.664 * one insert_variables step
Claude Sonnet 3.5 3.8 0.091 0.673 0.582 *% solve_formula output is a number™"
(65.1% acc) 9.2 0.593 0.657 0.064 solve_formula output is formatted correctly
47.3 0.667 0.636 -0.030 solve_formula math is correct™h
MedCalcV2 Rules 5.8 0.182 0.399 0.218 analyze_input returns correct # values
14.7 0.196 0.420 0.223 ** one convert_units step per rule
Claude Sonnet 3.5 147 0.196 0.420 0.223 ** one get_data step per rule
(38.7% acc) 158 0.183 0.425 0.242 *% one evaluate_rule step per rule

17.1 0.169 0.432 0.263 ** one accumulate_score step per rule

We hypothesize that traces flagged as incorrect by audits may correspond to problems that the model
struggles to solve even with additional sampling budget. We leave this to future work.

Both structured and typicality audits can Table 5: Results of applying typicality audits to
be applied to semi-structured traces from semi-structured reasoning traces from few-shot
few-shot prompted models. Table [presents prompted Claude Sonnet 3.5 on both MedCalcV2
the results of structured audits applied to few- Formulas and Rules. Overall, the results indicate
shot prompted Claude Sonnet 3.5 on both Med- that the hypothesis—that atypical reasoning pat-
CalcV2 tasks, while Table [5] shows typicality terns correspond to higher error rates—holds for
audit results for the same model (limited to three MedCalcV2 Formulas but not for the noisier Rules.
representative typicality models for brevity).

Overall, Claude Sonnet 3.5 behaves similarly — accuracy and difference —

to SSRMs under these audits, except for the 7 Tertilel Tertle3 A p-val
typicality audit for Rules, where more typical =~ MedCalcV2 Formulas

reasoning traces exhibit higher error rates on ~ Claude Sonnet3.5 (65.1% acc)

average (although not significantly so). This &t 5 eSS S

may be attributed to the high error rate of the = HMM* 030 054 0.87 033
prompted model itself: even typical reasoning MedCalcV2 Rules

processes often lead to errors. In Appendix|[F.4] Claude Sonnet 3.5 (38.7% acc)

we present results for Qwen2.5-7B-Instruct— trigram 006 047 033 -0.14
K 4 model and the i : HMM(3,3) 006 046 032 014
a weaker prompted model and the instruction- v 005 043 033 0.00

tuned version of the Qwen2.5-7B base used as
the backbone for SSRMs—as well as LLM-generated structured audit results on prompted Claude.

Semi-structured reasoning is learnable and Model Performance on MedCalcv2
. . R s Unstructured Baseline (ours) mmm Sonnet 3.5 CoT
achieves performance and generalization on SSRM (ours) s Quen2.5-7B-IT semi-struct
par With unstructured reasoning. We con- B Sonnet 3.5 semi-struct B Qwen2.5-7B-IT CoT
MedCalcV2 Formulas MedCalcV2 Rules

sider two different model families for training
SSRMs: a stronger one based on Qwen2.5-7B 80
and a weaker one based on Llama3.1-8B. Our
trained Qwen SSRM achieves strong results, as 2.,

- 36.3

83.6
75.9
65.1
60
. . 42.7 38.4 43

shown in Table [§] On average, it outperforms 40 286 286 11,
the unstructured reasoning baseline trained with
the same procedure. On the two challenging

0 || ||

MedCalcV2 tasks, it exceeds six other strong
baselines of comparable size. Within the train-
ing mixture, it outperforms the best baseline by
nearly ten points. Moreover, it generalizes effectively to tasks outside the training mixture: while it
does not match the top math-specialized reasoning models, it outperforms all non-reasoning baselines.
On a range of medical QA benchmarks, it achieves performance comparable to reasoning models,
lagging only slightly behind BioMedical-Llama-3-8B, a specialized model for biomedical knowledge.
By contrast, although the Llama SSRM is based on a weaker backbone, it delivers performance com-
parable to similarly trained unstructured reasoning baselines on both in-domain and out-of-domain
benchmarks, further supporting that semi-structured reasoning does not compromise performance.

Accuracy (%)

N
=3

Figure 4: Comparison of SSRM against similarly
trained and prompted baselines on MedCalcV2.

Under review as a conference paper at ICLR 2026

Table 6: Our models are initialized from Qwen2.5-7B and Llama3.1-8B, trained with SFT followed by
RLVR on a mix of MedCalcV2 and other math tasks. Underlined results indicate the best performance
among our comparably trained models; starred results denote best among non-reasoning models; and
bold results are best overall. On average, SSRM outperforms the unstructured CoT format and six
strong, comparably sized baseline models.* We sample 32 times and report Pass@ 1 for AIME24.

Instr/reasoning LLMs Instr/reasoning LLMs

SSRM from Qwen2.5-7B (ours) SSRM from Llama3.1-8B (ours) (Qwen2.5-7B) (Llama3/3.1-8B)

unstr. unstr. semi-str. semi-str. | unstr. unstr. semi-str. semi-str. N N . -
Base |GFT +4RL +SFT ++RL |+SFT ++RL +SFT 4+RL | "S& "OPRL “DSeck) Biol Instr *DSeek

MedCalcV2 Formulas 3.0 524 759 63.3 *83.6 | 48.7 589 56.9 750 | 564 44.8 369 | 12.6 10.0 29.7
MedCalcV2 Rules 0.0 274 384 389 *43.2 | 279 284 20.8 36.3 | 321 22,6 142 | 166 95 9.2
GSM8k 854 744 905 76.6 *90.9 | 423 438 574 36.2 | *90.9 94.8 89.2| 519 8I.1 75.7
MATHS500 69.2 446 770 45.4 752 | 156 15 22.6 12.4 | *78.8 91.0 94.0 | 174 462 872
train mix avg 394 49.7 705 56.1 *73.2| 336 365 394 40| 64.6 63.3 586 | 24.6 36.7 50.5
AIME24 9.1 L1 121 3.7 *12.4 0.3 0.5 02 09| 118 45.3 53.4 0.1 21 452
GPQA-D 31.8 31.8 *384 303 343 | 258 338 222 263 | 328 41.4 50.5| 26.8 318 439
Truthful QA 49.7 573 563 41.1 543 | 41.6 398 313 329 | *55.6 42.6 47.5] 53.0 543 52.6
CommonsenseQA 705 70.1 728 70.8 *75.7 | 527 524 58.6 60.4 | 66.8 54.0 523 | 393 504 63.1
MedQA 574 624 620 559 614 | 554 57 50.4 53| *62.8 311 364 | 769 68.9 58.1
MMLU Pro Bio 646 68.6 718 593 69.9 58 584 55.4 59.3 | *73.5 50.9 66.7| 64.6 67.8 73.1
MMLU Pro Health 421 532 531 40.5 51.7| 40.1 416 40.1 39.7 | *54.8 22.0 334 53.1 583 46.5
PubmedQA 663 734 714 70.2 762 | 739 755 68.2 734 735 73.3 7271 771 756 73.8
med/health avg 57.6 644 64.6 56.5 64.8| 569 58.1 53.5 564 | 66.2 44.3 52.3|%67.9 67.7 62.9
overall avg 453 513 608 50.2 *61.7 ‘ 39.7 417 40.3 42 ‘ 58.0 52.1 54.3 ‘ 39.5 45.6 54.6

El/\ll accuracies are percentages. “Instr” models are instruction-trained, “DSeek” are distilled from
DeepSeek-R1, and OpR1 is OpenR1-Qwen-7B. BioL is Bio-Medical-Llama-3-8B.

In Figure[d] we show that Qwen SSRM not only outperforms the Claude Sonnet 3.5, which is used to
seed the SFT training data, but also significantly outperforms the Qwen instruction-tuned variant.
For Claude Sonnet 3.5 and Qwen2.5-7B-Instruct, we employ two-shot prompting, using two fixed
demonstrations across all MedCalc “calculators”E] For each prompted model, we evaluate two prompt
variants: one with unstructured free-form CoT prompts and one with the semi-structured format.

We also analyze the token usage of Qwen SSRM and unstructured reasoning baselines (see Ap-
pendix [E:3]for details). In summary, SSRM consume more tokens than the unstructured reasoning
baselines on MedCalcV?2 Tasks, while token usage is comparable on MATH500 and GPQA-D. One
factor contributing to the increased usage is redundant argument and variable referencing, as shown
in Figure[2] We leave the development of a more efficient referencing mechanism to future work.

5 CONCLUSION

We have presented methods for scalably testing whether an LLM adheres to a prescribed reasoning
strategy on specific critical tasks. Our methods combine a Semi-Structured Reasoning Model (SSRM),
which outputs reasoning steps in a semi-structured format, with methods for auditing these reasoning
traces. We consider two challenging tasks: (a) extracting information from clinical text and (b)
performing a series of calculations using the extracted values, based on either predefined rules or
given formulas. These tasks are adapted from MedCalcBench, which has been cleaned, deduplicated,
and restructured to separate the simpler formula-based tasks from the more complex rule-based ones.

We show that structured reasoning audits can reveal meaningful classes of likely reasoning errors for
these tasks and qualitatively distinguish between the types of errors made across tasks and models.
We further introduce typicality audits, which are probabilistic models trained on a corpus of semi-
structured reasoning traces. Typicality audits approximate structured audits by (a) sorting predictions
by typicality, (b) splitting predictions into quantiles, and (c) interpreting the top quantile as a pass
and the bottom quantile as a fail. Both types of audits can be applied to few-shot prompted models.

Importantly, auditability appears to come without a cost in accuracy: overall, our Qwen SSRM model
outperforms plausible baselines, including strong closed-source prompted models, an identically-
trained unstructured baseline, and many other strong comparably-sized models. Likewise, the Llama
SSRM demonstrates comparable performance relative to its identically-trained unstructured baseline.

5This also diverges from the MedCalcBench few-shot evaluation, which selects a single demonstration from
the same calculator as the test instance.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we provide detailed information on the datasets used (please see Ap-
pendix [F), implementation details (please see Appendix [E), and code (Anonymous Github Link).

REFERENCES

Pranjal Aggarwal, Aman Madaan, Yiming Yang, et al. Let’s sample step by step: Adaptive-consistency for
efficient reasoning and coding with llms. arXiv preprint arXiv:2305.11860, 2023.

Anthropic. Claude 3.5 sonnet. https://www.anthropic.com/news/claude-3-5-sonnet, 2024.
Anthropic. Claude 3.7 sonnet. https://www.anthropic.com/news/claude-3-7-sonnet, 2025.

Guangsheng Bao, Hongbo Zhang, Linyi Yang, Cunxiang Wang, and Yue Zhang. LIms with chain-of-thought are
non-causal reasoners. arXiv preprint arXiv:2402.16048, 2024.

Oliver Bentham, Nathan Stringham, and Ana Marasovi¢. Chain-of-thought unfaithfulness as disguised accuracy,
2024. URL https://arxiv.org/abs/2402.14897.

Hyungjoo Chae, Yeonghyeon Kim, Seungone Kim, Kai Tzu-iunn Ong, Beong-woo Kwak, Moohyeon Kim,
Seonghwan Kim, Taeyoon Kwon, Jiwan Chung, Youngjae Yu, et al. Language models as compilers:
Simulating pseudocode execution improves algorithmic reasoning in language models. arXiv preprint
arXiv:2404.02575, 2024.

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu, Yuhang Zhou,
Te Gao, and Wangxiang Che. Towards reasoning era: A survey of long chain-of-thought for reasoning large
language models. arXiv preprint arXiv:2503.09567, 2025a.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompting: Disentangling
computation from reasoning for numerical reasoning tasks. arXiv preprint arXiv:2211.12588, 2022.

Yanda Chen, Joe Benton, Ansh Radhakrishnan, Jonathan Uesato, Carson Denison, John Schulman, Arushi
Somani, Peter Hase, Misha Wagner, Fabien Roger, et al. Reasoning models don’t always say what they think.
arXiv preprint arXiv:2505.05410, 2025b.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert,
Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Cassandra A Cohen and William W Cohen. Watch your steps: Observable and modular chains of thought. arXiv
preprint arXiv:2409.15359, 2024.

ContactDoctor. Bio-medical: A high-performance biomedical language model.
https://huggingface.co/ContactDoctor/Bio-Medical-Llama-3-8B, 2024.

Noura Dridi and Melita Hadzagic. Akaike and Bayesian information criteria for hidden Markov models. /IEEE
Signal processing letters, 26(2):302-306, 2018.

Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and Jun
Wang. Alphazero-like tree-search can guide large language model decoding and training. arXiv preprint
arXiv:2309.17179, 2023.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and Graham
Neubig. Pal: Program-aided language models. In International Conference on Machine Learning, pp.
10764-10799. PMLR, 2023.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning.
arXiv preprint arXiv:2501.12948, 2025.

Chengsong Huang, Langlin Huang, Jixuan Leng, Jiacheng Liu, and Jiaxin Huang. Efficient test-time scaling via
self-calibration. arXiv preprint arXiv:2503.00031, 2025.

10

https://anonymous.4open.science/r/ICLR2026-DCAC
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://arxiv.org/abs/2402.14897

Under review as a conference paper at ICLR 2026

Alon Jacovi and Yoav Goldberg. Towards faithfully interpretable NLP systems: How should we define and
evaluate faithfulness? In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 4198—4205, Online,
July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.386. URL https:
//aclanthology.org/2020.acl-main. 386.

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What disease does this
patient have. A Large-scale Open Domain Question Answering Dataset from Medical Exams. arXiv [cs. CL],
2020.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William Cohen, and Xinghua Lu. Pubmedqa: A dataset for
biomedical research question answering. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pp. 2567-2577, 2019.

Subbarao Kambhampati, Kaya Stechly, and Karthik Valmeekam. (how) do reasoning models reason? Annals of
the New York Academy of Sciences, 2025.

Nikhil Khandekar, Qiao Jin, Guangzhi Xiong, Soren Dunn, Serina Applebaum, Zain Anwar, Maame Sarfo-
Gyamfi, Conrad Safranek, Abid Anwar, Andrew Zhang, et al. Medcalc-bench: Evaluating large language
models for medical calculations. Advances in Neural Information Processing Systems, 37:84730-84745,
2024.

Levente Kocsis and Csaba Szepesvari. Bandit based monte-carlo planning. In European conference on machine
learning, pp. 282-293. Springer, 2006.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli, Shariq
Igbal, Colton Bishop, Rebecca Roelofs, et al. Training language models to self-correct via reinforcement
learning. arXiv preprint arXiv:2409.12917, 2024.

Xin Lai, Zhuotao Tian, Yukang Chen, Sengiao Yang, Xiangru Peng, and Jiaya Jia. Step-dpo: Step-wise
preference optimization for long-chain reasoning of llms. arXiv preprint arXiv:2406.18629, 2024.

Tamera Lanham, Anna Chen, Ansh Radhakrishnan, Benoit Steiner, Carson Denison, Danny Hernandez, Dustin
Li, Esin Durmus, Evan Hubinger, Jackson Kernion, et al. Measuring faithfulness in chain-of-thought reasoning.
arXiv preprint arXiv:2307.13702, 2023.

Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen, Karol Hausman, Dorsa Sadigh, Sergey Levine, Li Fei-Fei,
Fei Xia, and Brian Ichter. Chain of code: Reasoning with a language model-augmented code emulator. arXiv
preprint arXiv:2312.04474, 2023.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan Leike, John
Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth International Conference
on Learning Representations, 2023.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulga: Measuring how models mimic human falsehoods.
arXiv preprint arXiv:2109.07958, 2021.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min Lin.
Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783, 2025.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki, and Chris
Callison-Burch. Faithful chain-of-thought reasoning, 2023. URL https://arxiv.org/abs/2301.13379.

OpenAl Learning to reason with Ilms, 2024. URL |https://openai.com/index/
learning-to-reason-with-11lms/.

Bhargavi Paranjape, Scott Lundberg, Sameer Singh, Hannaneh Hajishirzi, Luke Zettlemoyer, and Marco Tulio
Ribeiro. Art: Automatic multi-step reasoning and tool-use for large language models. arXiv preprint
arXiv:2303.09014, 2023.

Letitia Parcalabescu and Anette Frank. On measuring faithfulness or self-consistency of natural language
explanations, 2024. URL https://arxiv.org/abs/2311.07466.

Debjit Paul, Robert West, Antoine Bosselut, and Boi Faltings. Making reasoning matter: Measuring and
improving faithfulness of chain-of-thought reasoning. arXiv preprint arXiv:2402.13950, 2024.

Tadeusz Pietraszek. Optimizing abstaining classifiers using roc analysis. In Proceedings of the 22nd international
conference on Machine learning, pp. 665-672, 2005.

11

https://aclanthology.org/2020.acl-main.386
https://aclanthology.org/2020.acl-main.386
https://arxiv.org/abs/2301.13379
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://arxiv.org/abs/2311.07466

Under review as a conference paper at ICLR 2026

Qwen. Qwq: Reflect deeply on the boundaries of the unknown, 2024. URL https://qwenlm.github.io/
blog/qwg-32b-preview/.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani, Julian
Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In First Conference
on Language Modeling, 2024.

Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis of chain-of-
thought. arXiv preprint arXiv:2210.01240, 2022.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang,
YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models.
arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng, Haibin Lin,
and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint arXiv:2409.19256, 2024.

Wangtao Sun, Chenxiang Zhang, XueYou Zhang, Xuanqing Yu, Ziyang Huang, Pei Chen, Haotian Xu, Shizhu
He, Jun Zhao, and Kang Liu. Beyond instruction following: Evaluating inferential rule following of large
language models. arXiv preprint arXiv:2407.08440, 2024a.

Zhiqing Sun, Longhui Yu, Yikang Shen, Weiyang Liu, Yiming Yang, Sean Welleck, and Chuang Gan. Easy-
to-hard generalization: Scalable alignment beyond human supervision. arXiv preprint arXiv:2403.09472,
2024b.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung, Aakanksha
Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks and whether chain-of-
thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question answering
challenge targeting commonsense knowledge. arXiv preprint arXiv:1811.00937,2018.

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry without human
demonstrations. Nature, 625(7995):476-482, 2024.

Miles Turpin, Julian Michael, Ethan Perez, and Samuel Bowman. Language models don’t always say what they
think: unfaithful explanations in chain-of-thought prompting. Advances in Neural Information Processing
Systems, 36, 2024.

Scott Viteri, Max Lamparth, Peter Chatain, and Clark Barrett. Markovian agents for truthful language modeling.
arXiv preprint arXiv:2404.18988, 2024.

Jun Wang. A tutorial on 1lm reasoning: Relevant methods behind chatgpt ol. arXiv preprint arXiv:2502.10867,
2025.

Junlin Wang, Shang Zhu, Jon Saad-Falcon, Ben Athiwaratkun, Qingyang Wu, Jue Wang, Shuaiwen Leon Song,
Ce Zhang, Bhuwan Dhingra, and James Zou. Think deep, think fast: Investigating efficiency of verifier-free
inference-time-scaling methods. arXiv preprint arXiv:2504.14047, 2025.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Y Wu, and Zhifang Sui.
Math-shepherd: A label-free step-by-step verifier for llms in mathematical reasoning. arXiv preprint
arXiv:2312.08935, 2023.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. Self-consistency improves chain of thought reasoning in language models. arXiv preprint
arXiv:2203.11171,2022.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming Ren, Aaran
Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-task language
understanding benchmark. arXiv preprint arXiv:2406.01574, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information
processing systems, 35:24824-24837, 2022.

Nathaniel Weir, Muhammad Khalifa, Linlu Qiu, Orion Weller, and Peter Clark. Learning to reason via program
generation, emulation, and search. arXiv preprint arXiv:2405.16337, 2024.

12

https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/

Under review as a conference paper at ICLR 2026

Huajian Xin, ZZ Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu, Liyue Zhang, Xuan
Lu, Qiushi Du, et al. Deepseek-prover-v1. 5: Harnessing proof assistant feedback for reinforcement learning
and monte-carlo tree search. arXiv preprint arXiv:2408.08152, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. Qwen?2. 5 technical report. arXiv preprint arXiv:2412.15115, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen
Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of
thoughts: Deliberate problem solving with large language models. Advances in neural information processing
systems, 36:11809-11822, 2023.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong Liu,
Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at scale. arXiv preprint
arXiv:2503.14476, 2025.

Yufeng Zhang, Xuepeng Wang, Lingxiang Wu, and Jinqiao Wang. Enhancing chain of thought prompting in large
language models via reasoning patterns. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 39, pp. 25985-25993, 2025.

Ben Zhou, Sarthak Jain, Yi Zhang, Qiang Ning, Shuai Wang, Yassine Benajiba, and Dan Roth. Self-supervised
analogical learning using language models. arXiv preprint arXiv:2502.00996, 2025.

13

Under review as a conference paper at ICLR 2026

A LIMITATIONS

We demonstrate SSRMs’ effectiveness on Qwen2.5-7B and Llama3.1-8B. Experiments with different
architectures and larger scales could help clarify the generalizability of the technique.

While symbolic audits provide a novel mechanism for monitoring behavior of LLMs, they can only
capture some aspects of intended behavior. If audit coverage is incomplete, a model might pass all
audits while following a logically incorrect reasoning process. (This limitation is analogous to the use
of unit tests in software development, where test coverage is often incomplete). Additionally, models
can execute individual steps incorrectly—a failure mode that reasoning audits typically fail to detect.

Typicality audits identify reasoning traces that are unusual, which need not be correlated with traces
that are incorrect (e.g., if a model has a high error rate, highly typical traces might still be incorrect.)

In this study, we conducted only preliminary experiments integrating test-time-scaling with audits.
Further investigations into effectively combining audits with test-time-scaling methods—such as
audit-based self-consistency—to show their utility during inference time are left for future work.

B BROADER IMPACTS

This paper introduces Semi-Structured Reasoning Models (SSRMs) and presents two types of audits
to identify probable reasoning errors in the semi-structured reasoning traces: (1) hand-crafted or
LLM-generated structured audits and (2) probabilistic model-based typicality audits. Our goal is to
detect undesirable reasoning shortcuts for LLMs while maintaining good downstream performance.

C BACKGROUND: PROGRAM TRACE PROMPTING

Program Trace Prompting (PTP)|Cohen & Cohen| (2024} was proposed to make CoT explanations
easier to analyze while preserving the generality and flexibility. In prior PTP work, existing few-
shot CoT demonstrations were manually reformatted by wrapping them in a semi-formal syntax
resembling a program trace. Functionally, the trace format (1) identifies and names steps, (2) defines
the input/output behavior of steps, and (3) replaces every CoT explanation in a demonstration with a
chain of formalized steps. The named steps were also documented with a Python “stub” that specifies
type signatures for the inputs and outputs, and gives a short summary of the semantics of a step in a
Python “docstring”. Additionally, a top-level stub was created that specifies the task and contains, in
its docstring, each of the sample traces. The resulting structure is referred to as a “partial program’:
it contains no executable code or pseudo-code, just documentation and a few high-level traces.

The partial program is then passed to an LLM along with a new program input, and the LLM is
asked to predict a trace. An example of a partial program (with one demonstration, lightly edited for
brevity) and the PTP system prompt is shown in Figure 5]

PTP performs comparably to traditional CoT prompting when CoT demonstrations are mapped
directly to traces. A limitation of PTP, however, is that constructing the partial program requires the
prompt designer to provide more explicit guidance on how to decompose a problem. SSRMs address
this issue by using a fine-tuned model to generate partial programs as well as traces, thereby reducing
the associated manual overhead.

D AUDIT-GUIDED QUALITATIVE ANALYSIS OF REASONING TRACES

D.1 AUDITS IMPLEMENTATION

The output of SSRMs includes both the partial program and the trace, which appear as a series of
function calls, as shown in Figure[6] These function calls may be nested. Before running the audits,
each completed step is converted into a structured object that contains the following fields:

These function calls might be nested. Before audits are run, each completed step is converted to a
structured object which always contains these fields.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

PTP partial program with one CoT demo encoded as a trace

def analyze_sentence(sentence: str) -> tuple[str, str, str]:
"""From a sentence about sports, extract the name of a player, an
action, and an event. The event will be an empty string if no event
is mentioned in the sentence.

nnn

def sport_for(x: str)-> str:
"""Return the name of the sport associated with a player, action, or event.

def consistent_sports(sportl: str, sport2: str) -> bool:
"""Compare two descriptions of sports, and determine if they are consistent.

Descriptions are consistent if they are the same, or if one is more
general than the other.

nnn

def sports_understanding(sentence):
"""Determine if a sentence about sports is plausible or not.

>>> sports_understanding('Santi Cazorla scored a touchdown.')
Calling analyze_sentence('Santi Cazorla scored a touchdown.')...
...analyze_sentence returned ('Santi Cazorla', 'scored a touchdown.', '')
Calling sport_for('Santi Cazorla')...

...sport_for returned 'soccer'’

Calling sport_for('scored a touchdown.')...

...sport_for returned 'American football and rugby'

Calling consistent_sports('soccer', 'American football and rugby')...
...consistent_sports returned False

Final answer: no

False

|\ J
System Prompt Template for PTP

Consider the program fragment below. This program fragment is incomplete,
with key parts of the implementation hidden by replacing them
with "..." markers.

PROGRAM:
~*“python
{{PARTIAL_PROGRAM}}

QUESTION: Predict what the output of the program above will be, given
the input shown below. Respond with the FULL program output, and ONLY
the expected program output: you will be PENALIZED if you introduce
any additional explanatory text.

>>> {{TASK_NAME}}({{TASK_INPUT}})
\ J

Figure 5: PTP partial program with one CoT demo encoded as traces (Top). System Prompt (Bottom).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
81
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

SSRMs Partial Program

<partial_programs>
...omitted . ..

@traced

def analyze_input(input_str: str) -> tuple[str, list[str], list[strl]:
"""Accepts an input and extracts the question being asked, a list of rules to follow to answer
< the question, and the patient note.

nnn

@traced

def get_data(formula: str, patient_note: str) -> list[str]:
"""Accepts a formula and a patient note, and extracts datapoints from the patient note required
< to evaluate the rule.

nnn

...omitted ...

</partial_programs>

_

SSRMs output trace

\

...omitted ...

<program_trace>

13 Calling get_data('Age: <50 years = @ points, 50-59 years = +1 point, 60-69 years = +2 points,
< 70-79 years = +3 points, >=80 years = +4 points', ['79-year-old gentleman'])...
14 ...get_data returned '79 years old'
15 Calling eval_rule('Age: <50 years = @ points, 50-59
years = +1 point, 60-69 years = +2 points, 70-79 years = +3 points, >=80 years = +4 points', '79 years
— old')...
16 ...eval_rule returned 3
...omitted . ..

</program_trace>

.

_

Figure 6: SSRMs partial program (Top). SSRMs output trace (Bottom).

An Audit Example

class MedCalcRulesAuditor(audit.Auditor):

...omitted . ..
def test_each_rule_applied(self):
df = self.df
there is one step that extracts the rules to apply
_, rules, _ = df.query('step_fn == "analyze_input"').output.iloc[@]

check that there is a step to extract data for each rule
get_data_steps = df[df.step_fn=="'get_data']
self.assertTrue(
msg="'one "get_data” step per rule',
expr=(len(get_data_steps)==len(rules)))
check that there is a step to evaluate each rule

eval_rule_steps = df[df.step_fn=='eval_rule']
self.assertTrue(
msg='one "eval_rule” step per rule',
expr=(len(eval_rule_steps)==num_rules))
check that the first inputs of get_data are all rules,
and that every rule is used as input to get_data at least once
self.assertTrue(
msg="'"get_data" called on all rules',
expr=(set(rules) == set(get_data_steps.inputl)))

(
\.

Figure 7: An audit exmaple for MedCalcRules.

16

Under review as a conference paper at ICLR 2026

* step_fn: the name of the “function” being “traced”, e.g., “eval_rule” for the second
function call in the figure.

e start_line: the first line of the step, e.g., 15.

e end_line: the last line, e.g. 16. (If there are nested calls in between, the end line and start
lines can be far apart).

e str_inputs: a string with the tuple of function inputs, e.g., “(’Age: <50 years = 0
points, 50-59 years = +1 point, 60-69 years = +2 points, 70-79 years = +3
points, >=80 years = +4 points’, ’79 years old’)

* str_output: analogous, e.g., “3”.
If the inputs can be parsed as a Python tuple, the following additional fields are added:

e input: a Python tuple of the inputs.

e inputl, input2, ...:the Python values of the individual inputs.
e len_input: the length of the input tuple.

e output: the parsed Python value of the output.

* outputl, output2, ...: when output is a tuple, the Python values of the individual
outputs.

Finally, a Pandas DataFrame is constructed from all structured objects, with NaN used for missing
fields (e.g., input?2 is absent for steps with only one input, and output is absent when str_output
cannot be parsed as Python). The DSL for audits makes use of these DataFrames, combining
DataFrame operations with a unit-test-like syntax. An example audit is provided in Figure[7}

D.2 EXAMPLE OF A TRACE WITH REASONING FLAWS

To illustrate how audits can be useful, we randomly selected a problem from the MedCalcV2 Rules
dataset (id #22) for which SSRM’s output failed several audits. This problem asks the model to
compute the Pneumonia Severity Index (PSI) for a 25-year-old male patient, given the patient note
(which is about 150 words long) and 20 rules. (See Figure(Top).)

In the resulting reasoning trace, only 19 rules of the 20 rules are called. For each of these 19 rules, an
appropriate data extraction step is called and a result is returned, but the final score is computed by
summing only 17 of the returned scores. Consequently, this trace fails r auditsEl

e one "get_data” step per ruleandone "eval_rule” step per rule both fail because
neither a get_data nor eval_rule step was called for the 20th rule.

* all outputs summed fails because some rule outputs are not included in the sum for the
final score.

* get_data called on all rules fails because the 20th rule was never used as an argument
to get_data.

D.3 DISTINCT PATTERNS OF AUDIT FAILURES INDICATE DISTINCT REASONING FLAWS

The example in Figure[§]is typical of the MedCalcV2 Rules dataset: many audits are correlated, so
examples that fail one often fail several others. In particular, the audits one "get_data” step per
rule, one "eval_rule” step per rule, and get_data called on all rules often fail together.
Table[7]reports the most common combinations of failed audits and summarizes the reasoning flaws
typically associated with each combination (as determined by manual inspection). In brief, one
recurring issue is the failure to check every rule, which we had noted in preliminary experiments with
prompted models; but failure to accurately collect and sum all the results of rule evaluations are even
more common for SSRMs.

SThere is also at least one flaw in executing a single step, which we did not audit for this task: the (incorrectly)
selected outputs are also incorrectly summed.

17

Under review as a conference paper at ICLR 2026

Original input:

A 25-year-old male patient presents at the clinic for a routine physical examination. The patient
describes a recent episode of fever and altered mental state. He denies any past history of heart
disease, renal disease, cerebrovascular disease, liver disease, or cancer. The patient is currently
unemployed and lives alone. Upon physical examination, the patient has a measured body temperature of
34 degrees celsisus, a heart rate of 101 beats per minute, and a respiratory rate of 32 breaths per
minute. His blood pressure measures at 123/85 mm Hg. Laboratory findings show a hematocrit level of
35, a blood glucose level of 15 mmol/L, and a BUN of 33.21 mg/dL. His sodium level is moderately low
at 123 mmol/L. Arterial blood gas results show a Pa02 of 67 mm Hg and a slightly acidotic pH of 7.17.
The patient's chest X-ray shows no signs of pleural effusion.

R I A

What is the patient's Pneumonia Severity Index (PSI)?

Calculate PSI Score: Pneumonia Severity Index for CAP by summing the results of the following rules:
Age: Enter age in years (age score will be equal to age in years)
Sex: Female = -10 points, Male = @ points
Nursing home resident: No = @ points, Yes = +10 points
Neoplastic disease: No = @ points, Yes = +30 points

.. rest of rules omitted . ..

Reasoning trace:
Calling analyze_input(...
rest of input omitted for brevity . ..

...analyze_input returned (
"What is the patient's Pneumonia Severity Index (PSI)?”,
['Age: Enter age in years (age score will be equal to age in years)',
'Sex: Female = -10 points, Male = @ points',

... rest of rules omitted from return value . ..

1)
Calling get_data('Age: Enter age in years (age score will be equal to age in years)', ['25-year-old'])...
...get_data returned '25 years old'
Calling eval_rule('Age: Enter age in years (age score will be equal to age in years)', '25 years old')...
...eval_rule returned 25
Calling get_data('Sex: Female = -10 points, Male = @ points', ['25-year-old male'l)...
...get_data returned 'male’
Calling eval_rule('Sex: Female = -10 points, Male = @ points', 'male')...
...eval_rule returned @
Calling get_data('Nursing home resident: No = @ points, Yes = +10 points', ['lives alone'l)...
...get_data returned 'no'
Calling eval_rule('Nursing home resident: No = @ points, Yes = +10 points',
...eval_rule returned @

no')...

...omitted ...

Calling get_data('Partial pressure of oxygen <60 mmHg or <8 kPa: No = @ points, Yes = +10 points', ['Pa02
< of 67 mm Hg'l)...

...get_data returned 'no'

Calling eval_rule('Partial pressure of oxygen <60 mmHg or <8 kPa: No = @ points, Yes = +10 points',

— 'no')...

...eval_rule returned 0

Calling sum_rules([25, o, @, @, o, @, 0, 0, 20, 20, 0, 15, 0, 30, 20, 20, 0])...

...sum_rules returned 130

Figure 8: Example of a flawed reasoning trace.

Set of failed audits | N | Neorrect | Acc | Comments

(no failures) | 266 | 135 | 50.75% |

all outputs summed 51 18 35.9% | Typically the score for 1-2 of the rules
evaluated are not included in the final
summation.

"get data” called on all 26 9 34.6% | Typically one or more rules extracted

rules; one \"eval.rule” step from the input are not evaluated.

per rule; one "get_data” step

per rule

(all audits above fail) | 22| 2| 9.1% | Similar to the example of Section

Table 7: More detailed analysis of the most common patterns of failed audits.

18

Under review as a conference paper at ICLR 2026

A more detailed qualitative analysis of the reasoning patterns reveals a more nuanced picture.
Additional insight into unusual reasoning behaviors can be gained either by examining atypical
combinations of audit failures or by instrumenting individual audits further.

As an example of the first type of analysis, only one trace (#291) fails exactly the two audits all
outputs summed and one "eval_rule” step per rule. Manual inspection shows an unusual
(but correct) reasoning pattern. For this example, the data are extracted for one particular rule is
a common-separated list of three conditions relevant to the rule from the patient node. The model
evaluates the rule three times on the same extraction, obtaining the correct total score for that rule.
The final output is also correct. However, we argue that in a consequential task, detecting anomalous
reasoning patterns is nearly as important as detecting errors, if the end goal is a reliable system with
predictable behavior.

As an example of the second type of analysis, we instrumented the all outputs summed audit to
report additional information. By tracking the total number of extracted rules, the number of rules
scored, and the number of values summed, we observed that most of the time (more than 70%) only
one or two rules were missed from the summation. In many of these cases, the omitted value was
zero; thus, in more than 25% of the cases, the sum of the extracted values was numerically correct
even though not all extracted values were included.

More interestingly, this instrumentation also revealed additional unusual reasoning patterns, in this
case incorrect ones. In 7 of the failures for this audit, the number of values summed was greater than
the number of rule evaluations. In most of these cases, the issue was again related to the problem of
rules that match in multiple ways, as above: on these cases, the score reported for the rule is indicated
by reporting a string containing the result of each match, as well as the final score, e.g., by returning
“l + 1 =27 as the result of the rule evaluation.

E TRAINING DETAILS

Detailed hyperparameters configurations for both Stage 1 (SFT) and Stage 2 (RLVR) are provided in
Table[8] We provide the detailed settings in subsequent subsections to support reproducibility.

Table 8: Hyperparameter settings for supervised fine-tuning (SFT) and reinforcement learning with
verifiable rewards (RLVR). Both the semi-structured reasoning and CoT baseline settings use the
same set of hyperparameters. T: max sequence length for SFT and max generation length for RLVR.

Hyperparameter SFT RLVR
Optimizer AdamW AdamW
Actor Learning Rate le-5 le-6
Weight Decay le-4 0.1
Warmup Ratio 0.1 0.01
Prompt Length - 2048
Max Length 16384 4096
Loss Agg Mode - token_mean
Grad Clip 0.2 1.0
Batch Size 128 256
MiniBatch Size - 256 (On-Policy)
Num Responses Per Prompt - 8
Temperature - 1.0
Sequence Packing False True
Entropy Coeft - 0.0

KL Loss Coeff - 0.0
Epochs 5 10

19

Under review as a conference paper at ICLR 2026

E.1 SUPERVISED FINE-TUNING (SFT) DATA

We primarily follow the PTP approach (Cohen & Cohen, [2024) for generating semi-structured traces.
A limitation of PTP, however, is that it requires manually written task-specific partial programs. For
our experiments, we reuse the partial programs provided for BBH and manually construct those for
GSMS8K, MATH500, and MedCalcV2.

Beyond validating the final accuracy, we also perform a simple formatting check to remove samples
whose partial programs or traces cannot be parsed. For the final dataset, we apply downsampling to
balance the number of samples across tasks. Table 9] presents the distribution of SFT data for SSRMs.

Table 9: Distribution of Semi-Structured SFT data.

Task Count %
BBH 2,727 64.76
GSMS8K 393 9.33
Math500 393 9.33
MedCalc Formulas 528 12.54
MedCalc Rules 170 4.04
Total 4,211 100.00

E.2 SUPERVISED FINE-TUNING (SFT) CONFIGURATIONS

Figure 0] presents the system prompt template we used for SSRMs. The same system prompt is used
for both Stage 1 and 2. Figure [T0]shows a semi-structured reasoning trace from GSM8K used for
SFT.

A conversation between User and Assistant. The User asks a question, and the Assistant solves it. The
assistant first reasons through the problem by generating high-level partial programs with key parts
hidden using "..." markers. It then simulates programs trace based on the incomplete partial programs.
The partial program must be general enough to solve all instances of the problem type, not just
specific examples. The partial programs and traces are enclosed within <partial_program>
</partial_program> and <program_trace> </program_trace> tags, while the overall reasoning process and
final answer are enclosed within <think> </think> and <answer> </answer> tags, respectively. You
should also wrap your final answer in $\\boxed{{ANSWER}}$ if it is a mathematical expression.

RN

Format:

<think>
<partial_program>
[Partial Program here]
</partial_program>
<program_trace>
[Program Trace here]
</program_trace>
</think>

<answer>

[Final Answer herel
</answer>

Figure 9: System Prompt Template for Semi-Structured Reasoning Models (SSRMs).

E.3 REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS (RLVR) CONFIGURATIONS

Reward Design. We employ two types of rule-based rewards functions for reinforcement learning:

* Outcome Rewards: The generated response will be assigned a reward of 1 for correct answers
and O for incorrect answers. For the MedCalcV?2 data, we follow the original proposed protocol
and allow for a range-based evaluation; for the DAPO math data, we use an exact-match criterion.

20

Under review as a conference paper at ICLR 2026

<think>
<partial_program>
@traced
def analyze_input(input_str: str) -> tuple[str, ...]:
"""From an input, extract a tuple of individual questions and given values, as well as the final
< question to be answered.

nnn

@traced
def convert_to_equations(input_questions: tuple[str, ...]) -> tuple[str, ...1]:
"""Takes a list of questions and converts them to a list of mathematical equations.

nnn

@traced
def simplify_equation(input_equation: str, given_values: tuple[str, ...]) -> str:

"""Takes an input equation and simplifies it by replacing a variable with the value of the variable as
< found in a list of given values if possible or performing algebraic operations if not, returning the
< simplified equation.

nnn

</partial_program>

<program_trace>

Calling analyze_input("Two-fifths of the seats in an auditorium that holds 500 people are currently taken.
< It was found that 1/10 of the seats are broken. How many seats are still available?")...
...analyze_input returned ('An auditorium holds 500 people.', 'Two-fifths of the seats are currently

< taken.', '1/10 of the seats are broken.', 'How many seats are still available?')

Calling convert_to_equations(('An auditorium holds 500 people.', 'Two-fifths of the seats are currently
< taken.', '1/10 of the seats are broken.', 'How many seats are still available?'))...
...convert_to_equations returned ('total_seats = 500', 'occupied_seats = total_seats * 2/5',

< 'broken_seats = total_seats * 1/10', 'available_seats = total_seats - occupied_seats - broken_seats')
Calling simplify_equation('available_seats = total_seats - occupied_seats - broken_seats', ('total_seats
< = 500', 'occupied_seats = total_seats * 2/5', 'broken_seats = total_seats * 1/10'))...
...simplify_equation returned 'available_seats = 500 - occupied_seats - broken_seats'

Calling simplify_equation('available_seats = 500 - occupied_seats - broken_seats', ('total_seats = 500',
< 'occupied_seats = total_seats * 2/5', 'broken_seats = total_seats * 1/10'))...

...simplify_equation returned 'available_seats = 500 - (500 * 2/5) - broken_seats'

Calling simplify_equation('available_seats = 500 - (500 * 2/5) - broken_seats', ('total_seats = 500',

< 'occupied_seats = total_seats * 2/5', 'broken_seats = total_seats * 1/10'))...

...simplify_equation returned 'available_seats = 500 - 200.0 - broken_seats'

Calling simplify_equation('available_seats = 500 - 200.0 - broken_seats', ('total_seats = 500',

< 'occupied_seats = total_seats * 2/5', 'broken_seats = total_seats * 1/10'))...

...simplify_equation returned 'available_seats = 500 - 200.0 - (500 * 1/10)'

Calling simplify_equation('available_seats = 500 - 200.0 - (500 * 1/10)', ('total_seats = 500',

< 'occupied_seats = total_seats * 2/5', 'broken_seats = total_seats * 1/10'))...

...simplify_equation returned 'available_seats = 500 - 200.0 - 50.0'

Calling simplify_equation('available_seats = 500 - 200.0 - 50.0', ('total_seats = 500', 'occupied_seats =
< total_seats * 2/5', 'broken_seats = total_seats * 1/10'))...

...simplify_equation returned 'available_seats = 250.0'

</program_trace>

</think>

<answer>

250

</answer>

Figure 10: Semi-Structured Reasoning Trace for GSM8K.

21

Under review as a conference paper at ICLR 2026

* Format Rewards: We require all models to format its responses using tags such as <think>
and <answer>. For SSRMs specifically, additionally require the tags <partial_program> and
<program_trace>, define at least three functions within the <partial_program> block, and ex-
clusively invoke these functions within the <program_trace> block. Given the regular syntax of
semi-structured reasoning traces, these constraints can be enforced via regular expressions.

F EXPERIMENTAL DETAILS

F.1 MEDCALCBENCH V2

The original MedCalcBench (Khandekar et al., 2024)) contains examples from 55 distinct calculators,
including target quantities such as the SIRS score from Figure|l| In the original study, average scores
were reported across all calculators: 37.9% in the zero-shot setting with GPT-4 and 50.9% in the
one-shot setting. In the latter, the demonstration always used the same calculator as the test case,
thereby evaluating the model’s ability to extract data and reproduce an identical reasoning chain.

For our input, we concatenate the patient note and the original question, followed by a concise
definition of the relevant formulas or rules. In the long-context CoT setting (for SSRMs), this
concatenation serves as the sole input. In prompt-based settings, we employ a single two-shot CoT
demonstration involving calculations of the same fype (formula or rules), though not necessarily the
same calculator, thereby testing the LLM’s ability to extract data and perform a potentially different
calculation. Therefore, MedCalcV2 scores are not directly comparable to those of MedCalcBench.

We implement two additional changes. First, we remove training samples in the original MedCal-
cBench that overlap with the test data to ensure a clean evaluation. Second, during testing, we
discovered errors in results for the Glasgow Coma Scale Calculator: each ground-truth explanation
duplicates the verbal-response rule and erroneously adds its value twice, leading to incorrect final
scores. We manually correct these errors by deleting the duplicate lines and adjusting the final values
in both the ground-truth explanations and the expected outputs. MedCalcV2 will be made available.

F.2 TYPICALITY AUDIT CONFIGURATION

Results labeled HMM* are obtained via a grid search over hidden-state counts (1, 2, 5, 10) and
n-gram sizes (1, 2, 3, 10, 25, 50), selecting the model with the lowest Bayesian Information Criterion
(BIC) score (Dridi & Hadzagic, 2018). HMM are implemented using the CategoricalHMM class
from hmmlearn, with preprocessing to convert sequences into n-gram representations. Each sequence
is augmented with start and end tokens, an unknown-word token, and padded to a uniform length.
We use the Fisher’s exact test in scipy.stats for statistical significance of proportional differences.

F.3 PROMPT FOR LLM-GENERATED AUDITS

Generated audits are created by prompting Claude-Sonnet-4-20250514 using the following prompt,
replacing the label [TASKNAME] with the name of the task the audits are being generated for.

F.4 ADDITIONAL RESULTS

Table [I0] presents the comparison between the prompted Sonnet 3.5 model and a smaller prompted
model, Qwen2.5-7B-Instruct, which is similar to the model we trained. The structured audits reveal
that Qwen2.5-7B-Instruct’s performance diverges significantly from the larger Sonnet model. In
the Formula task, Sonnet 3.5 exhibits no significant reasoning errors, whereas Qwen2.5-7B-Instruct
frequently commits errors in the initial reasoning steps, resulting in substantially poorer outcomes.
In the Rule task, Qwen2.5-7B-Instruct demonstrates a distinct failure mode than Sonnet model: it
generates correctly structured solution traces, but then fails to execute each individual step correctly.

Table[TT]shows results with LLM-generated audits on 21 tasks from the BBH benchmark suite. We
report the number of lines of code in the generated audits, and the average number of audits that
are run on each example. As a concise measure of the utility of the audits, we report the smallest
p-value of any audit, as computed in Table[I] (i.e., for the null hypothesis that audit failure is not
associated with incorrect outputs.) A small p-value indicates that some LLM-generated audit does

22

Under review as a conference paper at ICLR 2026

B

The
AN

The
N
N
AN

attached file 'Example Audits' contains examples of audit functions which run on the traced outputs
of functions called mocks. Each audit function tests the output to ensure that the mock has been run
correctly by testing individual parts of the traced output, ensuring that each function the mock
expects has been called, that the correct outputs lead to the correct inputs, and so on.

attached file 'audit.py' contains the code which runs audit functions. Use this file to reference the
expected structure of the dataframe that audit functions call on.

attached file 'Audit Targets for [TASKNAME]' contains several traced outputs for a mock function ,
[TASKNAME]. Generate a set of audit functions matching the format and construction of the examples
from 'Example Audits', which will test other traced outputs of the function [TASKNAME]. Your
generated audits should not programmatically generate the messages for success or failure.

Return only the python code for your output, with no extraneous introduction or afterward. Do not encase
< your output in backticks. Make sure to include imports and an if-main function.

Figure 11: Prompt for LLM-Generated Audits.

Table 10: Results of applying hand-coded structured audits to prompted models for MedCalcV?2

tasks.
— accuracy and difference —
%Failed Failing Passing A p-val description of audit
MedCalcV2 Formulas 1.712 0.000 0.662 0.662 0.162 one “get_data” step
2.055 0.000 0.664 0.664 0.086 one "insert_variables” step
Claude 3.5 3.767 0.091 0.673 0.582 0.033 ”solve_formula” output is a number
(65.1% acc) 9.247 0.593 0.657 0.064 0.870 ”solve_formula” output is formatted correctly
47260 0.667 0.636 -0.030 0.852 “solve_formula” math is correct
3.425 0.000 0.296 0.296 0.126 solve_formula” output is a string
5479 0.188 0.292 0.104 0.777 ”solve_formula” output is a number
7.192 0.381 0.279 -0.102 0.487 ”solve_formula” output is formatted correctly
Qwen2.5-7B-Instruct 29.110 0.376 0.249 -0.128 0.140 solve_formula” math is correct
(28.6% acc) 29.795 0.103 0.365 0.261 0.000 one "get_data” step
30.137 0.102 0.366 0.264 0.000 one "insert_variables” step
33219 0.165 0.347 0.182 0.015 one “analyze_input” step
MedCalcV2 Rules 5.789 0.182 0.399 0.218 0.181 analyze_input returns two values
14.737 0.196 0.420 0.223 0.028 one step per rule with step_fn of “convert_units”
Claude 3.5 14.737 0.196 0.420 0.223 0.028 one step per rule with step_fn of ”get_data”
(38.7% acc) 15789 0.183 0.425 0.242 0.015 one step per rule with step_fn of "check_rule”
17.105 0.169 0.432 0.263 0.005 one step per rule with step_fn of "accumulate_score”
1.316 0.400 0.309 -0.091 0.672 one step per rule with step_fn of “get_data”
1.579 0.333 0.310 -0.023 1.000 one step per rule with step_fn of "convert_units”
Qwen2.5-7B-Instruct 1.579 0.333 0.310 -0.023 1.000 one step per rule with step_fn of “accumulate_score”
(31.1% acc) 1.579 0.333 0.310 -0.023 1.000 one step per rule with step_fn of “check_rule”
2.632 0.500 0.305 -0.195 0.363 one step with step_fn of "analyze_input”
4737 0.389 0.307 -0.082 0.630 analyze_input returns two values

indeed provide information about an “interesting” reasoning failure. Nearly half of the generated
audits have p-values less than 0.05, including all four of the tasks with the highest error rates.

Table [I2] shows results of generated structured audits on the same reasoning traces used in Table 4]

F.5 TOKEN USAGE ANALYSIS

As shown in Table[13] SSRM consumes more
tokens than the unstructured reasoning baselines
on MedCalcV2 Rules and Formulas, whereas
token usage is comparable on MATH500 and
GPQA-Diamond. The higher token consump-
tion primarily results from redundant arguments
and variable referencing, as illustrated in Fig-
ure[2] Developing a more efficient variable ref-
erencing mechanism is left for future work.

Dataset Qwen Unstructured Qwen SSRM
GSMB8K 319.78 841.72
Math500 909.27 978.89
MedCalcV2 Formulas 411.80 1778.14
MedCalcV2 Rules 425.70 2260.87
GPQA Diamond 1608.33 1411.29
MedQA 359.25 1065.34

Table 13: Token usage of Qwen SSRM and corre-
sponding unstructured baseline across datasets.

23

Under review as a conference paper at ICLR 2026

Table 11: Summary of LLM-generated audits on BBH tasks, using a prompted Claude Sonnet 3.5.

Task Task Acc Avg Audits/Example Code Lines Min p-value
geometric shapes 37.89% 14.50 128 < 0.001
formal fallacies 46.31% 10.75 107 < 0.001
causal judgement 57.48% 11.75 88 < 0.001
dyck languages 64.00% 27.00 89 < 0.001
disambiguation qa 82.63% 10.98 93

ruin names 83.16% 10.00 105

penguins in a table 87.21% 11.01 114 < 0.05
multistep arithmetic two 87.89% 12.00 95

snarks 91.53% 85.72 109

date understanding 87.89% 11.33 88

logical deduction three objects 87.89% 10.99 94

movie recommendation 91.05% 13.98 90

reasoning about colored objects 94.21% 14.00 95

word sorting 95.26% 19.82 110 < 0.05
boolean expressions 95.26% 6.09 92 < 0.05
temporal sequences 96.84% 12.98 90

sports understanding 97.37% 7.00 71 < 0.05
hyperbaton 97.89% 7.00 69 < 0.001
tracking shuffled objects 98.95% 17.00 105 < 0.05
object counting 100.00% 9.00 70

web of lies 100.00% 15.00 94

Table 12: LLM-generated structured audits Claude Sonnet 3.5 Prompted Models for MedCalcV2.

— accuracy and difference —

%Failed Failing Passing A p-val description of audit
Formulas 1.71 0.00% 44.60% 44.60% * one get_data step
034 0.00% 43.99% 43.99% one analyze_input step
0.68 0.00% 44.14% 44.14% analyze_input returns tuple with 2 elements
205 0.00% 44.76% 44.76% * one insert_variables step
479 3571% 44.24% 8.53% convert_units called on each datapoint
342 50.00% 43.62% -6.38% convert_units’ second input is a datapoint
0.68 50.00% 43.79% -6.21% convert_units’s first input is the formula
0.68 50.00% 43.79% -6.21% insert_variables’ first input is the formula
3.08 44.44% 43.82% -0.63% insert_variables’ second input is an output of convert_units
2.74 37.50% 44.01% 6.51% get_data’s inputs match the output of analyze_input
0.34 0.00% 43.99% 43.99% solve_formula’s input is an output of insert_variables
92.81 42.80% 57.14% 14.34% final answer matches last solve_formula output
Rules 579 18.18% 39.94% 21.76% * analyze_input returns tuple with 2 elements
1474 19.64% 4198% 22.33% wE get_data called for each rule
1474 19.64% 41.98% 22.33% wE consistent rules across get_data steps
1.05 0.00% 39.10% 39.10% convert_units inputs are outputs of get_data
1474 19.64% 41.98% 22.33% wE convert_units called for each rule
1474 19.64% 41.98% 22.33% wE consistent rules across convert_units steps
263 0.00% 39.73% 39.73% ok check_rule inputs are outputs of convert_units
1579 1833% 4250% 24.17% K check_rule called for each rule
15.79 1833% 42.50% 24.17% ok consistent rules across check_rule steps
0.79 0.00% 38.99% 38.99% accumulate_score inputs are outputs of check_rule
17.11 16.92% 43.17% 26.25% wE accumulate_score called for each rule

F.6 EVALUATION CONFIGURATIONS

We use Lighteval for all evaluations. For non-reasoning models, we report accuracy using greedy
decoding. For reasoning models, we set the temperature to 0.6 and top-p to 0.95. For the AIME24
dataset—where we observe high variance—we sample 32 responses using a temperature of 0.7 for
non-reasoning models, while retaining the configurations for reasoning models, and report Pass@1.

24

https://github.com/huggingface/lighteval

Under review as a conference paper at ICLR 2026

Table 14: Comparison of Self-Consistency and Audit-Based Self-Consistency on MedcalcV2 Rule.

Sampling Budget Self-Consistency Audit-Based Self-Consistency Effective Samples
Greedy (Temp = 0) 442 44.2 -
Sampling (Temp = 0.7) 44.2 44.2 -

3 46.3 453 306 (53.68%)

5 453 46.8 522 (54.95%)

7 453 453 764 (57.44%)

9 453 453 1002 (58.60%)
15 453 4422 1702 (59.72%)
30 452 46.3 3501 (61.42%)
60 44.7 45.8 7071 (62.03%)

F.7 TEST-TIME-SCALING WITH TYPICALITY AUDITS

To investigate the effectiveness of combining test-time-scaling with audits, we apply typicality audits
(HMM*). We perform a grid search using the first half of the generated responses from the benchmark;
to ensure data integrity, we evaluate the model only on the second half. We consider two variants here:
vanilla self-consistency and audit-based self-consistency. Given a sampling budget of k responses
per question, in vanilla self-consistency we sample & times per question and use majority voting to
determine the final answer. In audit-based self-consistency, we divide the model-generated traces into
tertiles: for traces in top tertile we perform no additional sampling, for those in the middle tertile we
sample k£ — 3 additional times, and for those in the bottom tertile we sample & — 1 additional times.
We report accuracy on the MedCalcV?2 Rule tasks, along with the effective number of samples—i.e.,
the actual number generated under the audit-based procedure. For vanilla self-consistency, the total
number of samples is k£ x n, where n is the number of questions in the corresponding benchmark.

As shown in Table[I4] audit-based self-consistency consistently outperforms vanilla self-consistency
given the same per-question sampling budget. More specifically, when k& = 5, audit-based self-
consistency outperforms vanilla self-consistency by 1.5 percentage points while using only 54.95% of
the total sampling budget. These preliminary experiments demonstrate the effectiveness of combining
typicality audits with test-time-scaling methods and suggest a promising direction for future research.

25

	Introduction
	Related Work
	Training Methods
	Experiments
	Experimental Results

	Conclusion
	Limitations
	Broader Impacts
	Background: Program Trace Prompting
	Audit-guided qualitative analysis of reasoning traces
	Audits Implementation
	Example of a trace with reasoning flaws
	Distinct patterns of audit failures indicate distinct reasoning flaws

	Training Details
	Supervised Fine-Tuning (SFT) Data
	Supervised Fine-Tuning (SFT) Configurations
	Reinforcement Learning with Verifiable Rewards (RLVR) Configurations

	Experimental Details
	MedCalcBench V2
	Typicality Audit Configuration
	Prompt for LLM-Generated Audits
	Additional results
	Token Usage Analysis
	Evaluation Configurations
	Test-Time-Scaling with Typicality Audits

