

000 SEMI-STRUCTURED LLM REASONERS CAN BE RIGOR- 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SEMI-STRUCTURED LLM REASONERS CAN BE RIGOR- OUSLY AUDITED

Anonymous authors

Paper under double-blind review

ABSTRACT

Although Large Language Models (LLMs) have become capable reasoners, the problem of faithfulness persists: their reasoning can contain errors and omissions that are difficult to detect and that may obscure biases in model outputs. To address this issue, we introduce Semi-Structured Reasoning Models (SSRMs), which are trained to produce semi-structured representations of reasoning. SSRMs generate reasoning traces in a *non-executable* Pythonic syntax that names each reasoning step and marks its inputs and outputs. This structure allows SSRM traces to be automatically *audited* to identify reasoning flaws. We evaluate three types of audits: hand-crafted *structured reasoning audits*, written in a domain-specific language (DSL) implemented in Python; LLM-generated *structured reasoning audits*; and learned *typicality audits*, which apply probabilistic models over reasoning traces. We show that all of these methods can be used to effectively flag probable reasoning errors. Importantly, the auditability of SSRMs does not appear to compromise overall accuracy: in evaluation on twelve benchmarks and two model families, SSRMs demonstrate strong performance and generalizability relative to other models of comparable size. We provide our code at [Anonymous Github Link](#).

1 INTRODUCTION

Large Language Models (LLMs) often benefit from reasoning techniques such as short Chain-of-Thought (CoT) prompting (Wei et al., 2022) or long CoT reasoning (Chen et al., 2025a; Wang et al., 2025; Wang, 2025). Yet in many applications, LLMs may generate superficially plausible but incorrect reasoning that obscures biases in the output (Turpin et al., 2024); more generally, reasoning traces are not causally related to the final output (Bao et al., 2024). This problem of “unfaithful” LLM reasoning has been extensively investigated in short CoT settings (Lanham et al., 2023; Bentham et al., 2024; Parcalabescu & Frank, 2024), and is likely to be more problematic in long CoT reasoning.

As a concrete step toward demystifying reasoning LLMs and improving their reliability, we present methods for *rigorously checking LLM reasoning on specific tasks*. To illustrate and motivate this, consider the simplified medical question-answering (QA) task in Figure 1, adapted from the Med-CalcBench (Khandekar et al., 2024). The “flawed” reasoning trace appears superficially plausible but is incomplete compared to the “ideal” trace: it contains one obvious omission, one subtler error, and one issue where the LLM fails to explicitly check the compatibility of the units for an extracted value. Although none of these affect the final answer in this example, such flaws are undesirable in consequential tasks. Human experts performing similar tasks are often expected to carefully follow explicit instructions—variously called rubrics, cookbooks, or policies depending on the domain—to ensure that reasoning is complete and decisions are made consistently. This observation motivates the central research question: *can we detect when an LLM deviates from a desired reasoning strategy?*

Since analyzing arbitrary reasoning traces is difficult, we begin by training an LLM to generate *semi-structured* reasoning traces, as shown in Figure 2 (Top). Following prior work (Cohen & Cohen, 2024), we adopt a Pythonic syntax that labels different types of reasoning steps using a restricted, task-specific vocabulary and specifies the *inputs and outputs* of each step, *without requiring the steps to be executable*. Because the steps can perform arbitrary computations and consume or produce arbitrary strings of text, this semi-structured format is highly general. In this paper we provide new evidence for this generality by showing that training models to generate *semi-structured* traces achieves performance comparable to similarly trained free-form reasoning models and other baselines.

Figure 1: Overview of the problem addressed. Top: a question that requires the LLM to extract information and apply reasoning to answer correctly. Bottom left: a desired reasoning trace. Bottom right: a flawed reasoning trace. The flawed trace differs from the desired one in three ways: (1) the incorrect patient measurement is used to determine applicability of the first rule; (2) the second rule is skipped; (3) the units associated with a patient measurement are not explicitly checked against those required by the third rule. In this example, none of these reasoning flaws affects the final answer, so this flawed reasoning trace will be reinforced during reinforcement learning with an outcome reward.

Figure 2: Overview of our approach. An LLM is trained to generate a *semi-structured trace* comprising a function name, its inputs, and its outputs for each reasoning step. Two plausible constraints on this semi-structured trace are also shown, given in natural language (gray boxes) and as executable tests (bottom left). The executable tests are *reasoning trace audits*, and in this case are hand-written. We also explore *typicality audits*, which are learned from a corpus of reasoning traces.

We further show that semi-structured reasoning *facilitates the scalable detection of reasoning flaws*. For example, in Figure 2, one can observe that a desired rule was skipped by comparing the number of `evaluate_rule` steps with the length of the rule list returned by `analyze_input`. We refer to such

checks as *reasoning audits*. Figure 2 also provides natural-language descriptions of two audits alongside their corresponding *structured reasoning audits*. Our results indicate that these manually implemented audits can identify potential reasoning flaws and flag outcomes that are likely incorrect.

Our DSL for structured queries uses trace that has been encoded as a Pandas DataFrame, and audits also look like Python unit tests—two widely-used programming constructs. Because of these design choices, we show that *structured reasoning audits are also easily generated automatically by modern LLMs given minimal guidance*, substantially reducing the cost of auditing reasoning in a new domain.

Beyond enabling structured reasoning queries, *semi-structured reasoning facilitates additional forms of analysis*. A recurring question in the literature (Kambhampati et al., 2025) is whether reasoning LLMs generate novel “reasoning patterns” or simply reproduce patterns that are seen during training. This issue is difficult to address without a formal definition of “reasoning patterns.” In this work, we explore certain definitions of a “reasoning pattern” for semi-structured reasoners and use it to build *probabilistic models of reasoning patterns for specific tasks*. We evaluate the hypothesis that model accuracy correlates with the probability assigned to its reasoning patterns. By analogy with structured audits, we term this a *typicality audit*, and show that they can also identify potential reasoning errors.

In summary, this paper makes the following contributions:

- We introduce two-stage training recipes for SSRMs that produce semi-structured reasoning traces.
- We illustrate that both manually-generated and LLM-generated structured audits can effectively reveal potential reasoning flaws, and that failing certain audits increases the probability of error.
- We show that typicality audits can reveal common reasoning patterns linked to better outcomes.
- We demonstrate that auditability comes without cost in generalization performance, as SSRMs achieve results comparable to similarly trained unstructured reasoning models and other baselines.

2 RELATED WORK

Faithfulness and Process Models. CoT prompting has been shown to sometimes produce predictions that preserve underlying LLM biases, accompanied by explanations that obscure those biases (Turpin et al., 2024). This observation has motivated extensive research on explanation faithfulness in CoT prompting Jacovi & Goldberg (2020); Turpin et al. (2024); Lanham et al. (2023); Bao et al. (2024). Nevertheless, defining and measuring faithfulness remains challenging, with some prior studies advocating quantitative approaches that assess mechanistic influence in neural networks through numerical metrics (Parcalabescu & Frank, 2024; Bentham et al., 2024; Chen et al., 2025b). In this work, we propose *reasoning audits* as a concrete and testable alternative to measuring faithfulness.

Other studies have proposed methods verifying reasoning chains using *process reward models* (Paul et al., 2024; Sun et al., 2024b) and *step reward models* Viteri et al. (2024); Wang et al. (2023); Saparov & He (2022); Lai et al. (2024). However, these reward models are typically tailored to specific domains—such as mathematics (Paul et al., 2024; Sun et al., 2024b) or theorem-proving (Saparov & He, 2022; Lai et al., 2024)—and often rely on Monte Carlo Tree Search (Kocsis & Szepesvári, 2006) to explore and evaluate multiple candidate reasoning chains, a computationally expensive procedure. While our work is largely orthogonal, the symbolic and statistical audits we propose could provide complementary signals for future reward-model training. In particular, the statistical audits we proposed refine the notion of reasoning patterns, which have previously been identified either through task-specific analyses (Zhang et al., 2025) or via LLM pipeline methods (Zhou et al., 2025).

Semi-structured LLM Reasoning. Various prompting strategies—such as CoT (Wei et al., 2022), Tree-of-Thought (ToT) (Yao et al., 2023), Chain-of-Code (CoC) (Li et al., 2023), and Program-of-Thought (PoT) (Chen et al., 2022)—have been widely employed to enhance the reasoning capabilities of LLMs. More recently, research has shifted from prompting toward inference-time scaling by incorporating search algorithms, particularly tree-based search (including Monte Carlo Tree Search variants) and beam search, into the sampling process (Feng et al., 2023; Trinh et al., 2024; Xin et al., 2024; Kocsis & Szepesvári, 2006); by ensembling multiple reasoning trajectories through self-consistency (Wang et al., 2022; Huang et al., 2025; Aggarwal et al., 2023); and by applying reinforcement learning (RL) to extend the length of reasoning (OpenAI, 2024; Shao et al., 2024; Guo et al., 2025; Qwen, 2024; Kumar et al., 2024; Yang et al., 2025). Despite these, LLMs frequently produce reasoning traces that appear plausible yet incorrect, and such errors can be difficult to detect.

162 Previous studies have proposed that faithfulness can be improved by using a code-like format for
 163 LLM outputs. Prior work assumes this format is either fully executable Python programs (Chen et al.,
 164 2022; Gao et al., 2023; Lyu et al., 2023; Paranjape et al., 2023) or partially executable pseudocode (Li
 165 et al., 2023; Weir et al., 2024; Chae et al., 2024). While enabling the use of Python as a tool often
 166 improves performance, the reasoning process used to generate the pseudocode remains obscured.
 167 These works have also argued (sometimes implicitly) that faithfulness is qualitatively improved with
 168 code-based outputs. In contrast, we pursue the more concrete goal of auditing the reasoning process.

169 We build most on the reasoning-chain syntax used in Program Trace Prompting (PTP) (Cohen &
 170 Cohen, 2024). While PTP uses few-shot prompting to extrapolate “partial programs” and sample
 171 traces for novel inputs, SSRMs achieve strong performance without task-specific few-shot prompts.
 172

173 3 TRAINING METHODS

175 We use a two-stage training recipe for a Semi-Structured Reasoning Model (SSRM). The first stage
 176 performs SFT to teach the model to produce the semi-structured reasoning traces, while the second
 177 stage uses reinforcement learning with verifiable rewards (RLVR) to enhance the reasoning ability.
 178

179 **Supervised Fine-Tuning.** To collect SFT data for semi-structured reasoning, we follow the PTP
 180 approach (Cohen & Cohen, 2024). We generate semi-structured reasoning traces with PTP using
 181 both Claude Sonnet 3.5 and 3.7 (Anthropic, 2024; 2025) on a subset of BBH tasks (Suzgun et al.,
 182 2022) as well as subsets of the training data from GSM8K (Cobbe et al., 2021), MATH500 (Lightman
 183 et al., 2023), and MedCalcBenchV2 (please see Section 4). Only traces that produce a correct final
 184 answer are retained. To verify correctness, we extract answers from the answer tags and evaluate their
 185 accuracy. We also perform a simple formatting check to remove samples whose partial programs
 186 or traces cannot be parsed. For the final dataset, we apply downsampling to balance the number of
 187 samples across tasks. The distribution of the resulting SFT data is provided in Appendix E.1 Table 9.

188 **Chain-of-Thought Baseline.** To establish a fair baseline for comparison, we construct a standard
 189 CoT dataset. We generate CoT traces on BBH using the original few-shot prompts applied to Claude
 190 Sonnet 3.5, and augment the training data with ground-truth CoT solutions from GSM8K, MATH500,
 191 and MedCalcBenchV2, for the same problem instances used in the semi-structured SFT training data.

192 **Training Template.** We structure each example using a consistent markup format. In the semi-
 193 structured setting, partial programs are wrapped in `<partial_program>` tags, reasoning traces in
 194 `<program_trace>` tags, both enclosed within a `<think>` tag. The final answer is placed inside the
 195 `<answer>` tag for easy parsing. For the CoT baseline, only `<think>` and `<answer>` tags are used.

196 **RLVR Dataset.** In the second stage, we enhance the SFT model with RLVR. We construct the RLVR
 197 dataset by sampling eight responses per problem from the English subset of DAPO-Math-17K (Yu
 198 et al., 2025), using the SFT checkpoint. We randomly discard half of the samples with pass rates of
 199 either zero or one. We further include a held-out subset of MedCalcBenchV2 excluded from SFT.

200 **Reward Design.** We adopt a rule-based reward combining outcome accuracy and structural validity.
 201 Outcome accuracy measures the correctness of the final answer, while format rewards are assigned if
 202 the reasoning trace conforms to the semi-structured or CoT format, evaluated via regular expressions.

203 **RL Algorithm.** We optimize with the Group Relative Policy Optimization (GRPO) (Shao et al., 2024),
 204 which estimates token-level advantages without requiring a critic. For a specific question-answer pair
 205 (q, a) , the policy model first samples a group of G individual responses $\{\mathbf{o}_i\}_{i=1}^G$. Subsequently, the
 206 advantage of the i -th response is calculated as $A_{i,t} = \frac{r_i - \text{mean}(\{R_i\}_{i=1}^G)}{\text{std}(\{R_i\}_{i=1}^G)}$. And the training objective is
 207

$$\begin{aligned}
 \mathcal{J}_{\text{GRPO}}(\theta) = & \mathbb{E}_{(q,a) \sim \mathcal{D}, \{\mathbf{o}_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot|q)} \\
 & \left[\frac{1}{G} \sum_{i=1}^G \frac{1}{|\mathbf{o}_i|} \sum_{t=1}^{|\mathbf{o}_i|} (\min(r_{i,t}(\theta) A_{i,t}, \text{clip}(r_{i,t}(\theta), 1 - \varepsilon, 1 + \varepsilon) A_{i,t}) - \beta D_{\text{KL}}(\pi_{\theta} \parallel \pi_{\text{ref}})) \right], \\
 \text{where } r_{i,t}(\theta) = & \frac{\pi_{\theta}(\mathbf{o}_{i,t} \mid q, \mathbf{o}_{i,<t})}{\pi_{\theta_{\text{old}}}(\mathbf{o}_{i,t} \mid q, \mathbf{o}_{i,<t})}
 \end{aligned} \tag{1}$$

213 Differ from standard GRPO, we adopt fully on-policy training and token-level loss (Yu et al., 2025).
 214

216

4 EXPERIMENTS

218 In this section, we present a series of experiments conducted across diverse benchmarks—including
 219 mathematics, medical, and health domains—covering both in-domain datasets and those outside the
 220 training mixture. We also compare SSRMs to strong prompted baselines. Our goal is to address three
 221 key questions: (1) Can the reasoning traces of SSRMs be audited, either through structured queries or
 222 statistical methods? (2) Can prompted models be audited in a similar manner? (3) Is semi-structured
 223 reasoning more difficult to learn? Detailed setups and dataset descriptions are listed in Appendix F.

224 **Experimental Setup.** We use Qwen2.5-7B (Yang et al., 2024) as the base model for SSRM and
 225 conduct auditability analysis on its generated semi-structured reasoning traces. To further validate
 226 the performance, we also train an SSRM based on Llama3.1-8B (Grattafiori et al., 2024). All models
 227 are trained using `ver1` (Sheng et al., 2024) on 8 H100 GPUs, with evaluations conducted on 1 H100.

228 In addition to similarly trained unstructured baselines, we compare SSRMs against baselines of
 229 comparable size. Non-reasoning baselines include Llama3.1-8B-Instruct (Grattafiori et al., 2024),
 230 Medical Llama (ContactDoctor, 2024) (fine-tuned for biomedical knowledge), and the Qwen series
 231 (Yang et al., 2024). Reasoning baselines include the DeepSeek-Distilled series (Guo et al., 2025).
 232 For prompted baselines, we evaluate Claude Sonnet 3.5 (Anthropic, 2024) and Qwen2.5-7B-Instruct.

233 We use greedy decoding and report accuracy for all tasks, except for AIME24, where we sample 32
 234 responses and report Pass@1 with a temperature of 0.7. The maximum generation length is set to
 235 32,768 tokens. All tasks are evaluated in a zero-shot setting, except for prompted baselines, which
 236 use two-shot prompts. Reasoning baselines follow the recommended setting (temperature 0.6, top- p
 237 0.95) (Guo et al., 2025). For Qwen2.5-7B, we omit the chat template following Liu et al. (2025).

238 **Primary Evaluation: MedCalcBenchV2.** Our primary evaluation benchmark is MedCalcBenchV2,
 239 a cleaned version of MedCalcBench (Khandekar et al., 2024) (See Appendix F.1). MedCalcBenchV2
 240 measures an LLM’s ability to extract information from clinical text (*patient note*) and perform
 241 calculations using either explicit rules or formulas provided in the prompt. We observe that rule-based
 242 tasks are substantially more challenging than formula-based tasks. Errors in formula-based problems
 243 primarily arise from computation or extraction mistakes, whereas errors in rule-based problems more
 244 often involve failures to follow explicit instructions, consistent with prior findings on rule-following
 245 tasks (Sun et al., 2024a). To account for this discrepancy, we treat the two categories as two distinct
 246 tasks: MedCalcV2 Rules and MedCalcV2 Formulas. Evaluation follows the original MedCalcBench
 247 criteria, which allow small numeric deviations and employ rule-based checks for date-based answers.

248 **Domain-Specific Language for structured audits.** Our DSL for structured audits looks like Python
 249 unit tests: they are class methods, can be called without arguments, and contain assertion statements
 250 invoked by the class method `self.assertTrue`. An audit fails if it raises an exception or if an
 251 `assertTrue` call does not hold. The method can access a Pandas DataFrame `self.df` that represents
 252 the semi-structured trace, and assertions usually operate on this data structure using Pandas operations.

253 **Additional Evaluation.** To evaluate the generalizability of the SSRMs beyond in-domain data, we
 254 conduct additional experiments on a range of benchmarks: general reasoning (GPQA-Diamond (Rein
 255 et al., 2024)), mathematical reasoning (AIME24), commonsense reasoning (CommonsenseQA (Tal-
 256 mor et al., 2018)), truthfulness (TruthfulQA (Lin et al., 2021)), as well as several medical and
 257 health-related tasks, namely MedQA (Jin et al., 2020), the biology and health subsets of MMLU-
 258 Pro (Wang et al., 2024), and PubMedQA (Jin et al., 2019), which we convert to multiple-choice.

260

4.1 EXPERIMENTAL RESULTS

261 **Both hand-crafted and LLM-generated structured audits are effective for auditing semi-
 262 structured reasoning traces generated by SSRMs.** To validate that semi-structured reasoning can
 263 be systematically audited, we first apply hand-crafted audits for the two MedCalcV2 tasks based on
 264 the analysis of the training examples. Table 1 reports results for all individual audits that are applied
 265 with sufficient frequency¹ and are sufficiently discriminative—specifically, audits that succeed at
 266 least 5% of the time and fail at least 5% of the time. The second audit for MedCalcV2 Formulas (e.g.,
 267 “math is correct”) uses Python’s `eval` function; whereas all other audits inspect only trace structure.

268
 269 ¹Audits may not be applied to all traces—for example, one cannot confirm that number of rules evaluated is
 the same as the number of rules extracted if rule extraction fails to produce a legal output.

270 Table 1: Hand-crafted structured audits for Qwen SSRM generated semi-structured traces on two
 271 MedCalcV2 tasks. For each, we report the failure rate, the outcome accuracy conditioned on audit
 272 failing or passing, the accuracy difference (Δ) between passing and failing cases, and the p -value for
 273 testing $\Delta \neq 0$. One star (*) for statistical significance at $p < 0.1$ and two stars (**) for $p < 0.05$.
 274

	%Failed	– accuracy and difference –			p -val	description of audit
		Failing	Passing	Δ		
<u>MedCalcV2 Formulas</u>	22.0	0.77	0.86	0.09	**	solve_formula output is formatted well
	49.0	0.84	0.83	-0.01		solve_formula math is correct ^{math}
<u>MedCalcV2 Rules</u>	13.2	0.22	0.46	0.24	**	one get_data step per extracted rule
	13.4	0.22	0.47	0.25		get_data called on all rules
	14.0	0.21	0.47	0.26	**	one eval_rule step per rule
	20.3	0.26	0.48	0.22		all rule outputs summed correctly

282
 283 Table 2: LLM-generated structured audits on the same set of Qwen SSRM traces for MedCalcV2.
 284

	%Failed	– accuracy and difference –			p -val	description of audit
		Failing	Passing	Δ		
<u>MedCalcV2 Formulas</u>	5.7	0.76	0.84	0.08	**	step 4 output feeds into step 5 input
	6.4	0.45	0.86	0.41		step 3 output feeds into step 4 input
	8.3	0.62	0.86	0.24		step 2 output feeds into step 3 input
	9.3	0.82	0.84	0.02		convert_units called once per datapoint
	10.2	0.81	0.84	0.03		convert_units receives formula as first input
	12.6	0.80	0.84	0.05		convert_units correct second input
	14.4	0.37	0.92	0.55		get_data receives formula from analyze_input
<u>MedCalcV2 Rules</u>	13.4	0.22	0.47	0.25	**	get_data called for each rule
	13.9	0.21	0.47	0.26		consistent rules across get_data steps

295 As suggested in Figure 2, reasoning flaws do not always yield incorrect outcomes. In Table 1, for
 296 each audit a , we present test accuracy when a fails (“Failing” column), when a passes (“Passing”
 297 column), the accuracy difference Δ , and the statistical significance of the difference being non-zero.
 298

299 The results suggest that reasoning errors are more frequent in MedCalcV2 Rules than in Formulas.
 300 While math errors in Formulas occur frequently, they do not correlate with outcome errors.² In
 301 contrast, reasoning errors in Rules are common and associated with substantial accuracy losses. The
 302 most common failure is mis-summing rule contributions, followed by skipping a rule. Other failing
 303 audits indicate mismatches between the counts of patient data extraction and rule application steps.
 304

305 Because manually generating audits is expensive, we also explore automatic generation of structured
 306 audits using LLMs. We manually write audits for three additional tasks from BBH, and use those
 307 as few-shot examples to prompt Claude Sonnet 4.0 to output structured audits given a set of three
 308 correct sample traces. The results, shown in Table 2, show that LLM-generated structured audits are
 309 comparably useful to hand-crafted ones. (For more results and details, please check Appendix F.4)

310 **Typicality audits are also applicable for auditing semi-structured reasoning traces generated by**
 311 **SSRMs.** Typicality audits provide a complementary use of the semi-structured format by analyzing
 312 *abstract versions of reasoning processes*, aka “reasoning patterns” (Zhang et al., 2025). Prior work has
 313 conjectured that LLMs predominantly reproduce “reasoning patterns” observed in the training data
 314 and struggle to generate novel sequences—i.e., LLM reasoning often relies on retrieving previously
 315 seen reasoning examples (Kambhampati et al., 2025). If this holds, reasoning within a given task
 316 should exhibit regularity, thereby enabling statistical analyses to flag outlier traces as potential errors.
 317

318 In past work, “reasoning patterns” are typically identified heuristically or by LLMs (Zhang et al., 2025;
 319 Zhou et al., 2025). Here we define “reasoning patterns” as the sequence of step names. For example,
 320 in Figure 2, the pattern is “analyze_input extract_patient_data convert_units evaluate_rule
 321 accumulate_score extract_patient_data evaluate_rule accumulate_score”. We then construct a
 322 probabilistic model M over these sequences, treating them as language tokens. This formulation
 323 yields a precise version of the conjecture above: *LLM correctness is positively correlated with the*

²MedCalcV2 numerical answers are soft-matched to the target, whereas the implemented audits check exact equivalence before and after simplification.

324 *probability of the required reasoning pattern under M .* To test this, we compute the correlation
 325 between outcome correctness and the probability of the reasoning pattern generated by the SSRMs.
 326

327 We consider the following types of *reason pattern typicality* models M : a *unigram* language model
 328 smoothed with a Dirichlet prior (referred to as *multinomial* in the tables below); *bigram* and *trigram*
 329 models, implemented simply by extending the base vocabulary to consider all n -grams of step names
 330 for $n = 2, 3$; an HMM with three hidden states over trigrams, denoted $HMM(3,3)$ in the table; and a
 331 final model, HMM^* , in which we perform a grid search over different n -gram sizes and numbers of
 332 hidden states, selecting the configuration that optimizes the BIC criterion (Please see Appendix F.2).

333 Table 3 summarizes the results obtained by fitting these models to the test data.³ We use
 334 Kendall’s τ to measure correlation because it
 335 makes no parametric assumptions and observe
 336 only moderate correlations ranging from 0.08 to
 337 0.26. As another way of testing if highly typical
 338 reasoning patterns correspond to higher accuracies
 339 than atypical ones, we sort all test predictions
 340 by pattern probability and compare the accuracy
 341 of the least probable third with that of the most
 342 probable third, excluding the middle third.
 343 Using this method, we observe significant differ-
 344 ences in many models. For example, under the
 345 $HMM(3,3)$ model, the accuracy difference (Δ)
 346 between the least and most probable tertiles is
 347 approximately 25% for both MedCalcV2 tasks.
 348 These results suggest that a *typicality model M*
 349 can approximate the behavior of a structured audit by: (a) sorting predictions by typicality, (b)
 350 splitting predictions into quantiles, and (c) inter-
 351 preting the top quantile as audit-passed cases,
 352 the bottom quantile as audit-failed cases, and
 353 any other intermediate quantiles as unevaluable.

354 Following this approach, the typicality audits function as an *abstaining classifier* Pietraszek (2005)
 355 for evaluating outcome correctness, abstaining specifically on intermediate scores. The abstention
 356 rate can be adjusted by splitting the predictions into different numbers of quantiles: for instance,
 357 dividing predictions into two groups yields no abstentions, whereas dividing them into eight groups
 358 results in abstention for the middle six octiles—i.e., $\frac{6}{8} = \frac{3}{4}$ of the time. As shown in Figure 3, higher
 359 abstention rates are associated with larger accuracy difference (Δ) across both MedCalcV2 tasks.

360 Given the effectiveness of both structured and
 361 typicality audits in identifying potential reasoning
 362 errors, a straightforward extension is to apply at inference time. For example, when com-
 363 bining typicality audits with self-consistency,
 364 reasoning traces in the lowest tertile can be
 365 resampled more extensively, whereas those in
 366 the highest tertile—more likely to be correct—
 367 might require no additional sampling. This strat-
 368 egic can help concentrate the sampling budget
 369 on the most error-prone cases. We evaluate this
 370 approach on the MedCalcV2 Rules tasks and
 371 report the results in Appendix F.7. Our findings
 372 show that audit-guided self-consistency reduces
 373 computational cost while maintaining compara-
 374 ble or slightly improved performance relative to
 375 vanilla self-consistency with a fixed sampling budget.
 376 However, we do not observe significant improvements over greedy decoding with a single sample.

377 Table 3: The results prove that atypical reasoning
 378 pattern in the MedCalcV2 tasks are more likely
 379 to result in errors. We evaluate several typicali-
 380 ty/probability models, all of which correlate with
 381 correctness, though the correlation is weaker on
 382 MedCalcV2 Rules. In addition to Kendall’s τ
 383 for correlation, we also partition the test data into
 384 three equal groups by probability and report accu-
 385 racy in the lowest and highest tertiles, the accuracy
 386 difference (Δ), and the p -value of this difference.

MedCalcV2 Formulas	— accuracy and difference —				p-val
	τ	Tertile 1	Tertile 3	Δ	
multinomial	0.25	0.72	0.95	0.22	*
bigram	0.25	0.72	0.95	0.23	*
trigram	0.26	0.72	0.95	0.23	*
$HMM(3,3)$	0.26	0.72	0.97	0.25	**
HMM^*	0.21	0.74	0.97	0.07	

MedCalcV2 Rules	— accuracy and difference —				p-val
	τ	Tertile 1	Tertile 3	Δ	
multinomial	0.17	0.32	0.57	0.25	**
bigram	0.17	0.32	0.57	0.25	**
trigram	0.17	0.32	0.57	0.25	**
$HMM(3,3)$	0.17	0.32	0.57	0.25	**
HMM^*	0.08	0.43	0.52	0.09	

378 Figure 3: Abstention Rate vs. Δ (accuracy differ-
 379 ence between the highest- and lowest- probability
 380 quantiles) on MedCalcV2 under a typicality audit.
 381

382 ³Note that the correctness label is not used in this step. Moreover, the distribution of reasoning patterns in
 383 the training data may differ for tasks with ground-truth reasoning chains.

378
 379
 380
 381
 382 Table 4: Results of applying structured audits to Claude Sonnet 3.5 with semi-structured prompting
 383 on both MedCalcV2 Formulas and Rules. Overall, the results resemble those of SSRM, although the
 384 prompted MedCalcV2 Formulas system does have some rarely-failing audits that impact accuracy.
 385
 386
 387
 388
 389
 390
 391

	%Failed	– accuracy and difference –				description of audit
		Failing	Passing	Δ	p-val	
<u>MedCalcV2 Formulas</u>	1.7	0.000	0.662	0.662		one get_datastep
	2.1	0.000	0.664	0.664	*	one insert_variables step
Claude Sonnet 3.5 (65.1% acc)	3.8	0.091	0.673	0.582	**	solve_formula output is a number ^{math}
	9.2	0.593	0.657	0.064		solve_formula output is formatted correctly
	47.3	0.667	0.636	-0.030		solve_formula math is correct ^{math}
<u>MedCalcV2 Rules</u>	5.8	0.182	0.399	0.218		analyze_input returns correct # values
	14.7	0.196	0.420	0.223	**	one convert_units step per rule
Claude Sonnet 3.5 (38.7% acc)	14.7	0.196	0.420	0.223	**	one get_data step per rule
	15.8	0.183	0.425	0.242	**	one evaluate_rule step per rule
	17.1	0.169	0.432	0.263	**	one accumulate_score step per rule

392
 393 We hypothesize that traces flagged as incorrect by audits may correspond to problems that the model
 394 struggles to solve even with additional sampling budget. We leave this to future work.
 395

396 **Both structured and typicality audits can**
 397 **be applied to semi-structured traces from**
 398 **few-shot prompted models.** Table 4 presents
 399 the results of structured audits applied to few-
 400 shot prompted Claude Sonnet 3.5 on both Med-
 401 CalcV2 tasks, while Table 5 shows typicality
 402 audit results for the same model (limited to three
 403 representative typicality models for brevity).
 404 Overall, Claude Sonnet 3.5 behaves similarly
 405 to SSRMs under these audits, except for the
 406 typicality audit for Rules, where more typical
 407 reasoning traces exhibit *higher* error rates on
 408 average (although not significantly so). This
 409 may be attributed to the high error rate of the
 410 prompted model itself: even typical reasoning
 411 processes often lead to errors. In Appendix F.4,
 412 we present results for Qwen2.5-7B-Instruct—
 413 a weaker prompted model and the instruction-
 414 tuned version of the Qwen2.5-7B base used as
 415 the backbone for SSRMs—as well as LLM-generated
 416 structured audit results on prompted Claude.

417 **Semi-structured reasoning is learnable and**
 418 **achieves performance and generalization on**
 419 **par with unstructured reasoning.** We con-
 420 sider two different model families for training
 421 SSRMs: a stronger one based on Qwen2.5-7B
 422 and a weaker one based on Llama3.1-8B. Our
 423 trained Qwen SSRM achieves strong results, as
 424 shown in Table 6. On average, *it outperforms*
 425 *the unstructured reasoning baseline trained with*
 426 *the same procedure.* On the two challenging
 427 MedCalcV2 tasks, it exceeds six other strong
 428 baselines of comparable size. Within the train-
 429 ing mixture, it outperforms the best baseline by
 430 nearly ten points. Moreover, it generalizes effectively
 431 to tasks outside the training mixture: while it
 does not match the top math-specialized reasoning
 models, it outperforms all non-reasoning baselines.
 On a range of medical QA benchmarks, it achieves
 performance comparable to reasoning models,
 lagging only slightly behind BioMedical-Llama-3-8B,
 a specialized model for biomedical knowledge.
 By contrast, although the Llama SSRM is based on a
 weaker backbone, it delivers performance comparable
 to similarly trained unstructured reasoning baselines
 on both in-domain and out-of-domain benchmarks,
 further supporting that semi-structured reasoning does not compromise performance.

395 Table 5: Results of applying typicality audits to
 396 semi-structured reasoning traces from few-shot
 397 prompted Claude Sonnet 3.5 on both MedCalcV2
 398 Formulas and Rules. Overall, the results indicate
 399 that the hypothesis—that atypical reasoning pat-
 400 terns correspond to higher error rates—holds for
 401 MedCalcV2 Formulas but not for the noisier Rules.
 402

	τ	– accuracy and difference –				p-val
		Tertile 1	Tertile 3	Δ		
<u>MedCalcV2 Formulas</u>						
Claude Sonnet 3.5 (65.1% acc)						
trigram	0.13	0.56	0.67	0.11		
HMM(3,3)	0.21	0.56	0.70	0.14		
HMM*	0.30	0.54	0.87	0.33	**	
<u>MedCalcV2 Rules</u>						
Claude Sonnet 3.5 (38.7% acc)						
trigram	-0.06	0.47	0.33	-0.14		
HMM(3,3)	-0.06	0.46	0.32	-0.14		
HMM*	-0.05	0.43	0.33	0.00		

615 Table 5: Results of applying typicality audits to
 616 semi-structured reasoning traces from few-shot
 617 prompted Claude Sonnet 3.5 on both MedCalcV2
 618 Formulas and Rules. Overall, the results indicate
 619 that the hypothesis—that atypical reasoning pat-
 620 terns correspond to higher error rates—holds for
 621 MedCalcV2 Formulas but not for the noisier Rules.
 622

623 Figure 4: Comparison of SSRM against similarly
 624 trained and prompted baselines on MedCalcV2.

625 On a range of medical QA benchmarks, it achieves
 626 performance comparable to reasoning models,
 627 lagging only slightly behind BioMedical-Llama-3-8B,
 628 a specialized model for biomedical knowledge.
 629 By contrast, although the Llama SSRM is based on a
 630 weaker backbone, it delivers performance comparable
 631 to similarly trained unstructured reasoning baselines
 632 on both in-domain and out-of-domain benchmarks,
 633 further supporting that semi-structured reasoning does not compromise performance.

432 Table 6: Our models are initialized from Qwen2.5-7B and Llama3.1-8B, trained with SFT followed by
 433 RLVR on a mix of MedCalcV2 and other math tasks. Underlined results indicate the best performance
 434 among our comparably trained models; starred results denote best among non-reasoning models; and
 435 bold results are best overall. On average, SSRM outperforms the unstructured CoT format and six
 436 strong, comparably sized baseline models.⁴ We sample 32 times and report Pass@1 for AIME24.
 437

	SSRM from Qwen2.5-7B (ours)					SSRM from Llama3.1-8B (ours)					Instr/reasoning LLMs (Qwen2.5-7B)			Instr/reasoning LLMs (Llama3/3.1-8B)		
	Base	unstr. +SFT	unstr. ++RL	semi-str. +SFT	semi-str. ++RL	unstr. +SFT	unstr. ++RL	semi-str. +SFT	semi-str. ++RL	Instr	*OpR1	*DSeek	BioL	Instr	*DSeek	
MedCalcV2 Formulas	3.0	52.4	75.9	63.3	*83.6	48.7	58.9	56.9	75.0	56.4	44.8	36.9	12.6	10.0	29.7	
MedCalcV2 Rules	0.0	27.4	38.4	38.9	*43.2	27.9	28.4	20.8	36.3	32.1	22.6	14.2	16.6	9.5	9.2	
GSM8k	85.4	74.4	90.5	76.6	*90.9	42.3	43.8	57.4	36.2	*90.9	94.8	89.2	51.9	81.1	75.7	
MATH500	69.2	44.6	77.0	45.4	75.2	15.6	15	22.6	12.4	*78.8	91.0	94.0	17.4	46.2	87.2	
<i>train mix avg</i>	39.4	49.7	70.5	56.1	*73.2	33.6	36.5	39.4	40	64.6	63.3	58.6	24.6	36.7	50.5	
AIME24	9.1	1.1	12.1	3.7	*12.4	0.3	0.5	0.2	0.9	11.8	45.3	53.4	0.1	2.1	45.2	
GPQA-D	31.8	31.8	*38.4	30.3	34.3	25.8	33.8	22.2	26.3	32.8	41.4	50.5	26.8	31.8	43.9	
TruthfulQA	49.7	57.3	56.3	41.1	54.3	41.6	39.8	31.3	32.9	*55.6	42.6	47.5	53.0	54.3	52.6	
CommonsenseQA	70.5	70.1	72.8	70.8	*75.7	52.7	52.4	58.6	60.4	66.8	54.0	52.3	39.3	50.4	63.1	
MedQA	57.4	62.4	62.0	55.9	61.4	55.4	57	50.4	53	*62.8	31.1	36.4	76.9	68.9	58.1	
MMLU Pro Bio	64.6	68.6	71.8	59.3	*69.9	58	58.4	55.4	59.3	*73.5	50.9	66.7	64.6	67.8	73.1	
MMLU Pro Health	42.1	53.2	53.1	40.5	51.7	40.1	41.6	40.1	39.7	*54.8	22.0	33.4	53.1	58.3	46.5	
PubmedQA	66.3	73.4	71.4	70.2	*76.2	73.9	75.5	68.2	73.4	73.5	73.3	72.7	77.1	75.6	73.8	
<i>med/health avg</i>	57.6	64.4	64.6	56.5	*64.8	56.9	58.1	53.5	56.4	66.2	44.3	52.3	*67.9	67.7	62.9	
<i>overall avg</i>	45.3	51.3	60.8	50.2	*61.7	39.7	41.7	40.3	42	58.0	52.1	54.3	39.5	45.6	54.6	

450 ⁴All accuracies are percentages. “Instr” models are instruction-trained, “DSeek” are distilled from
 451 DeepSeek-R1, and OpR1 is OpenR1-Qwen-7B. BioL is Bio-Medical-Llama-3-8B.

452
 453
 454 In Figure 4, we show that Qwen SSRM not only outperforms the Claude Sonnet 3.5, which is used to
 455 seed the SFT training data, but also significantly outperforms the Qwen instruction-tuned variant.
 456 For Claude Sonnet 3.5 and Qwen2.5-7B-Instruct, we employ two-shot prompting, using two fixed
 457 demonstrations across all MedCalc “calculators”.⁵ For each prompted model, we evaluate two prompt
 458 variants: one with unstructured free-form CoT prompts and one with the semi-structured format.

459 We also analyze the token usage of Qwen SSRM and unstructured reasoning baselines (see Ap-
 460 pendix F.5 for details). In summary, SSRM consume more tokens than the unstructured reasoning
 461 baselines on MedCalcV2 Tasks, while token usage is comparable on MATH500 and GPQA-D. One
 462 factor contributing to the increased usage is redundant argument and variable referencing, as shown
 463 in Figure 2. We leave the development of a more efficient referencing mechanism to future work.

464 5 CONCLUSION

465 We have presented methods for scalably testing whether an LLM adheres to a prescribed reasoning
 466 strategy on specific critical tasks. Our methods combine a Semi-Structured Reasoning Model (SSRM),
 467 which outputs reasoning steps in a semi-structured format, with methods for *auditing* these reasoning
 468 traces. We consider two challenging tasks: (a) extracting information from clinical text and (b)
 469 performing a series of calculations using the extracted values, based on either predefined rules or
 470 given formulas. These tasks are adapted from MedCalcBench, which has been cleaned, deduplicated,
 471 and restructured to separate the simpler formula-based tasks from the more complex rule-based ones.

472 We show that *structured reasoning audits* can reveal meaningful classes of likely reasoning errors for
 473 these tasks and qualitatively distinguish between the types of errors made across tasks and models.
 474 We further introduce *typicality audits*, which are probabilistic models trained on a corpus of semi-
 475 structured reasoning traces. Typicality audits approximate structured audits by (a) sorting predictions
 476 by typicality, (b) splitting predictions into quantiles, and (c) interpreting the top quantile as a pass
 477 and the bottom quantile as a fail. Both types of audits can be applied to few-shot prompted models.

478 Importantly, auditability appears to come without a cost in accuracy: overall, our Qwen SSRM model
 479 outperforms plausible baselines, including strong closed-source prompted models, an identically-
 480 trained unstructured baseline, and many other strong comparably-sized models. Likewise, the Llama
 481 SSRM demonstrates comparable performance relative to its identically-trained unstructured baseline.

482
 483 ⁵This also diverges from the MedCalcBench few-shot evaluation, which selects a single demonstration from
 484 the same calculator as the test instance.

486 REPRODUCIBILITY STATEMENT
487488 To facilitate reproducibility, we provide detailed information on the datasets used (please see Ap-
489 pendix F), implementation details (please see Appendix E), and code (Anonymous Github Link).
490491 REFERENCES
492493 Pranjal Aggarwal, Aman Madaan, Yiming Yang, et al. Let’s sample step by step: Adaptive-consistency for
494 efficient reasoning and coding with llms. *arXiv preprint arXiv:2305.11860*, 2023.495 Anthropic. Claude 3.5 sonnet. <https://www.anthropic.com/news/clause-3-5-sonnet>, 2024.496 Anthropic. Claude 3.7 sonnet. <https://www.anthropic.com/news/clause-3-7-sonnet>, 2025.497 Guangsheng Bao, Hongbo Zhang, Linyi Yang, Cunxiang Wang, and Yue Zhang. Llms with chain-of-thought are
498 non-causal reasoners. *arXiv preprint arXiv:2402.16048*, 2024.500 Oliver Bentham, Nathan Stringham, and Ana Marasović. Chain-of-thought unfaithfulness as disguised accuracy,
501 2024. URL <https://arxiv.org/abs/2402.14897>.502 Hyungjoo Chae, Yeonghyeon Kim, Seungone Kim, Kai Tzu-iunn Ong, Beong-woo Kwak, Moohyeon Kim,
503 Seonghwan Kim, Taeyoon Kwon, Jiwan Chung, Youngjae Yu, et al. Language models as compilers:
504 Simulating pseudocode execution improves algorithmic reasoning in language models. *arXiv preprint
arXiv:2404.02575*, 2024.505 Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu, Yuhang Zhou,
506 Te Gao, and Wangxiang Che. Towards reasoning era: A survey of long chain-of-thought for reasoning large
507 language models. *arXiv preprint arXiv:2503.09567*, 2025a.508 Wenhui Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompting: Disentangling
509 computation from reasoning for numerical reasoning tasks. *arXiv preprint arXiv:2211.12588*, 2022.510 Yanda Chen, Joe Benton, Ansh Radhakrishnan, Jonathan Uesato, Carson Denison, John Schulman, Arushi
511 Somani, Peter Hase, Misha Wagner, Fabien Roger, et al. Reasoning models don’t always say what they think.
512 *arXiv preprint arXiv:2505.05410*, 2025b.513 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert,
514 Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to
515 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.516 Cassandra A Cohen and William W Cohen. Watch your steps: Observable and modular chains of thought. *arXiv
517 preprint arXiv:2409.15359*, 2024.518 ContactDoctor. Bio-medical: A high-performance biomedical language model.
519 <https://huggingface.co/ContactDoctor/Bio-Medical-Llama-3-8B>, 2024.520 Noura Dridi and Melita Hadzagic. Akaike and Bayesian information criteria for hidden Markov models. *IEEE
521 Signal processing letters*, 26(2):302–306, 2018.522 Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and Jun
523 Wang. Alphazero-like tree-search can guide large language model decoding and training. *arXiv preprint
arXiv:2309.17179*, 2023.524 Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and Graham
525 Neubig. Pal: Program-aided language models. In *International Conference on Machine Learning*, pp.
526 10764–10799. PMLR, 2023.527 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
528 Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models. *arXiv
529 preprint arXiv:2407.21783*, 2024.530 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
531 Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning.
532 *arXiv preprint arXiv:2501.12948*, 2025.533 Chengsong Huang, Langlin Huang, Jixuan Leng, Jiacheng Liu, and Jiaxin Huang. Efficient test-time scaling via
534 self-calibration. *arXiv preprint arXiv:2503.00031*, 2025.

540 Alon Jacovi and Yoav Goldberg. Towards faithfully interpretable NLP systems: How should we define and
 541 evaluate faithfulness? In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), *Proceedings*
 542 *of the 58th Annual Meeting of the Association for Computational Linguistics*, pp. 4198–4205, Online,
 543 July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.386. URL <https://aclanthology.org/2020.acl-main.386>.

545 Di Jin, Eileen Pan, Nassim Oufattolle, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What disease does this
 546 patient have. *A Large-scale Open Domain Question Answering Dataset from Medical Exams. arXiv [cs. CL]*,
 547 2020.

548 Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William Cohen, and Xinghua Lu. Pubmedqa: A dataset for
 549 biomedical research question answering. In *Proceedings of the 2019 Conference on Empirical Methods in*
 550 *Natural Language Processing and the 9th International Joint Conference on Natural Language Processing*
 551 (*EMNLP-IJCNLP*), pp. 2567–2577, 2019.

552 Subbarao Kambhampati, Kaya Stechly, and Karthik Valmeekam. (how) do reasoning models reason? *Annals of*
 553 *the New York Academy of Sciences*, 2025.

554 Nikhil Khandekar, Qiao Jin, Guangzhi Xiong, Soren Dunn, Serina Applebaum, Zain Anwar, Maame Sarfo-
 555 Gyamfi, Conrad Safranek, Abid Anwar, Andrew Zhang, et al. Medcalc-bench: Evaluating large language
 556 models for medical calculations. *Advances in Neural Information Processing Systems*, 37:84730–84745,
 557 2024.

558 Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In *European conference on machine*
 559 *learning*, pp. 282–293. Springer, 2006.

560 Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli, Shariq
 561 Iqbal, Colton Bishop, Rebecca Roelofs, et al. Training language models to self-correct via reinforcement
 562 learning. *arXiv preprint arXiv:2409.12917*, 2024.

563 Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xiangru Peng, and Jiaya Jia. Step-dpo: Step-wise
 564 preference optimization for long-chain reasoning of llms. *arXiv preprint arXiv:2406.18629*, 2024.

565 Tamera Lanham, Anna Chen, Ansh Radhakrishnan, Benoit Steiner, Carson Denison, Danny Hernandez, Dustin
 566 Li, Esin Durmus, Evan Hubinger, Jackson Kernion, et al. Measuring faithfulness in chain-of-thought reasoning.
 567 *arXiv preprint arXiv:2307.13702*, 2023.

568 Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen, Karol Hausman, Dorsa Sadigh, Sergey Levine, Li Fei-Fei,
 569 Fei Xia, and Brian Ichter. Chain of code: Reasoning with a language model-augmented code emulator. *arXiv*
 570 *preprint arXiv:2312.04474*, 2023.

571 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan Leike, John
 572 Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *The Twelfth International Conference*
 573 *on Learning Representations*, 2023.

574 Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human falsehoods.
 575 *arXiv preprint arXiv:2109.07958*, 2021.

576 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min Lin.
 577 Understanding r1-zero-like training: A critical perspective. *arXiv preprint arXiv:2503.20783*, 2025.

578 Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki, and Chris
 579 Callison-Burch. Faithful chain-of-thought reasoning, 2023. URL <https://arxiv.org/abs/2301.13379>.

580 OpenAI. Learning to reason with llms, 2024. URL <https://openai.com/index/learning-to-reason-with-llms/>.

581 Bhargavi Paranjape, Scott Lundberg, Sameer Singh, Hannaneh Hajishirzi, Luke Zettlemoyer, and Marco Tulio
 582 Ribeiro. Art: Automatic multi-step reasoning and tool-use for large language models. *arXiv preprint*
 583 *arXiv:2303.09014*, 2023.

584 Letitia Parcalabescu and Anette Frank. On measuring faithfulness or self-consistency of natural language
 585 explanations, 2024. URL <https://arxiv.org/abs/2311.07466>.

586 Debjit Paul, Robert West, Antoine Bosselut, and Boi Faltings. Making reasoning matter: Measuring and
 587 improving faithfulness of chain-of-thought reasoning. *arXiv preprint arXiv:2402.13950*, 2024.

588 Tadeusz Pietraszek. Optimizing abstaining classifiers using roc analysis. In *Proceedings of the 22nd international*
 589 *conference on Machine learning*, pp. 665–672, 2005.

594 Qwen. Qwq: Reflect deeply on the boundaries of the unknown, 2024. URL [https://qwenlm.github.io/](https://qwenlm.github.io/blog/qwq-32b-preview/)
 595 blog/qwq-32b-preview/.

596

597 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani, Julian
 598 Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In *First Conference
 599 on Language Modeling*, 2024.

600 Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis of chain-of-
 601 thought. *arXiv preprint arXiv:2210.01240*, 2022.

602 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang,
 603 YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models.
 604 *arXiv preprint arXiv:2402.03300*, 2024.

605

606 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng, Haibin Lin,
 607 and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. *arXiv preprint arXiv:2409.19256*, 2024.

608 Wangtao Sun, Chenxiang Zhang, XueYou Zhang, Xuanqing Yu, Ziyang Huang, Pei Chen, Haotian Xu, Shizhu
 609 He, Jun Zhao, and Kang Liu. Beyond instruction following: Evaluating inferential rule following of large
 610 language models. *arXiv preprint arXiv:2407.08440*, 2024a.

611 Zhiqing Sun, Longhui Yu, Yikang Shen, Weiyang Liu, Yiming Yang, Sean Welleck, and Chuang Gan. Easy-
 612 to-hard generalization: Scalable alignment beyond human supervision. *arXiv preprint arXiv:2403.09472*,
 613 2024b.

614

615 Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung, Aakanksha
 616 Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks and whether chain-of-
 617 thought can solve them. *arXiv preprint arXiv:2210.09261*, 2022.

618 Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question answering
 619 challenge targeting commonsense knowledge. *arXiv preprint arXiv:1811.00937*, 2018.

620 Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry without human
 621 demonstrations. *Nature*, 625(7995):476–482, 2024.

622

623 Miles Turpin, Julian Michael, Ethan Perez, and Samuel Bowman. Language models don't always say what they
 624 think: unfaithful explanations in chain-of-thought prompting. *Advances in Neural Information Processing
 625 Systems*, 36, 2024.

626 Scott Viteri, Max Lamparth, Peter Chatain, and Clark Barrett. Markovian agents for truthful language modeling.
 627 *arXiv preprint arXiv:2404.18988*, 2024.

628 Jun Wang. A tutorial on llm reasoning: Relevant methods behind chatgpt o1. *arXiv preprint arXiv:2502.10867*,
 629 2025.

630

631 Junlin Wang, Shang Zhu, Jon Saad-Falcon, Ben Athiwaratkun, Qingyang Wu, Jue Wang, Shuaiwen Leon Song,
 632 Ce Zhang, Bhuwan Dhingra, and James Zou. Think deep, think fast: Investigating efficiency of verifier-free
 633 inference-time-scaling methods. *arXiv preprint arXiv:2504.14047*, 2025.

634 Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Y Wu, and Zhifang Sui.
 635 Math-shepherd: A label-free step-by-step verifier for llms in mathematical reasoning. *arXiv preprint
 636 arXiv:2312.08935*, 2023.

637 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
 638 Denny Zhou. Self-consistency improves chain of thought reasoning in language models. *arXiv preprint
 639 arXiv:2203.11171*, 2022.

640 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming Ren, Aaran
 641 Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-task language
 642 understanding benchmark. *arXiv preprint arXiv:2406.01574*, 2024.

643

644 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
 645 Chain-of-thought prompting elicits reasoning in large language models. *Advances in neural information
 646 processing systems*, 35:24824–24837, 2022.

647 Nathaniel Weir, Muhammad Khalifa, Linlu Qiu, Orion Weller, and Peter Clark. Learning to reason via program
 648 generation, emulation, and search. *arXiv preprint arXiv:2405.16337*, 2024.

648 Huajian Xin, ZZ Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu, Liyue Zhang, Xuan
649 Lu, Qiushi Du, et al. Deepseek-prover-v1. 5: Harnessing proof assistant feedback for reinforcement learning
650 and monte-carlo tree search. *arXiv preprint arXiv:2408.08152*, 2024.

651 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
652 Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint arXiv:2412.15115*, 2024.

653

654 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengan
655 Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*, 2025.

656 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of
657 thoughts: Deliberate problem solving with large language models. *Advances in neural information processing*
658 *systems*, 36:11809–11822, 2023.

659 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong Liu,
660 Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at scale. *arXiv preprint*
661 *arXiv:2503.14476*, 2025.

662 Yufeng Zhang, Xuepeng Wang, Lingxiang Wu, and Jinqiao Wang. Enhancing chain of thought prompting in large
663 language models via reasoning patterns. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
664 volume 39, pp. 25985–25993, 2025.

665 Ben Zhou, Sarthak Jain, Yi Zhang, Qiang Ning, Shuai Wang, Yassine Benajiba, and Dan Roth. Self-supervised
666 analogical learning using language models. *arXiv preprint arXiv:2502.00996*, 2025.

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A LIMITATIONS**
703704 We demonstrate SSRMs’ effectiveness on Qwen2.5-7B and Llama3.1-8B. Experiments with different
705 architectures and larger scales could help clarify the generalizability of the technique.
706707 While symbolic audits provide a novel mechanism for monitoring behavior of LLMs, they can only
708 capture some aspects of intended behavior. If audit coverage is incomplete, a model might pass all
709 audits while following a logically incorrect reasoning process. (This limitation is analogous to the use
710 of unit tests in software development, where test coverage is often incomplete). Additionally, models
711 can execute individual steps incorrectly—a failure mode that reasoning audits typically fail to detect.
712713 Typicality audits identify reasoning traces that are unusual, which need not be correlated with traces
714 that are incorrect (e.g., if a model has a high error rate, highly typical traces might still be incorrect.)
715716 In this study, we conducted only preliminary experiments integrating test-time-scaling with audits.
717 Further investigations into effectively combining audits with test-time-scaling methods—such as
718 audit-based self-consistency—to show their utility during inference time are left for future work.
719720 **B BROADER IMPACTS**
721722 This paper introduces Semi-Structured Reasoning Models (SSRMs) and presents two types of audits
723 to identify probable reasoning errors in the semi-structured reasoning traces: (1) hand-crafted or
724 LLM-generated structured audits and (2) probabilistic model-based typicality audits. Our goal is to
725 detect undesirable reasoning shortcuts for LLMs while maintaining good downstream performance.
726727 **C BACKGROUND: PROGRAM TRACE PROMPTING**
728729 Program Trace Prompting (PTP) Cohen & Cohen (2024) was proposed to make CoT explanations
730 easier to analyze while preserving the generality and flexibility. In prior PTP work, existing few-
731 shot CoT demonstrations were manually reformatted by wrapping them in a semi-formal syntax
732 resembling a program trace. Functionally, the trace format (1) identifies and names steps, (2) defines
733 the input/output behavior of steps, and (3) replaces every CoT explanation in a demonstration with a
734 chain of formalized steps. The named steps were also documented with a Python “stub” that specifies
735 type signatures for the inputs and outputs, and gives a short summary of the semantics of a step in a
736 Python “docstring”. Additionally, a top-level stub was created that specifies the task and contains, in
737 its docstring, each of the sample traces. The resulting structure is referred to as a “partial program”:
738 it contains no executable code or pseudo-code, just documentation and a few high-level traces.
739740 The partial program is then passed to an LLM along with a new program input, and the LLM is
741 asked to predict a trace. An example of a partial program (with one demonstration, lightly edited for
742 brevity) and the PTP system prompt is shown in Figure 5.
743744 PTP performs comparably to traditional CoT prompting when CoT demonstrations are mapped
745 directly to traces. A limitation of PTP, however, is that constructing the partial program requires the
746 prompt designer to provide more explicit guidance on how to decompose a problem. SSRMs address
747 this issue by using a fine-tuned model to generate partial programs as well as traces, thereby reducing
748 the associated manual overhead.
749750 **D AUDIT-GUIDED QUALITATIVE ANALYSIS OF REASONING TRACES**
751752 **D.1 AUDITS IMPLEMENTATION**
753754 The output of SSRMs includes both the partial program and the trace, which appear as a series of
755 function calls, as shown in Figure 6. These function calls may be nested. Before running the audits,
756 each completed step is converted into a structured object that contains the following fields:
757758 These function calls might be nested. Before audits are run, each completed step is converted to a
759 structured object which always contains these fields.
760

```
756
757
758
759
760
761
762
763 PTP partial program with one CoT demo encoded as a trace
764
765 def analyze_sentence(sentence: str) -> tuple[str, str, str]:
766     """From a sentence about sports, extract the name of a player, an
767     action, and an event. The event will be an empty string if no event
768     is mentioned in the sentence.
769     """
770     ...
771
772     def sport_for(x: str)-> str:
773         """Return the name of the sport associated with a player, action, or event.
774         """
775         ...
776
777     def consistent_sports(sport1: str, sport2: str) -> bool:
778         """Compare two descriptions of sports, and determine if they are consistent.
779
780         Descriptions are consistent if they are the same, or if one is more
781         general than the other.
782         """
783         ...
784
785     def sports_understanding(sentence):
786         """Determine if a sentence about sports is plausible or not.
787
788         >>> sports_understanding('Santi Cazorla scored a touchdown.')
789         Calling analyze_sentence('Santi Cazorla scored a touchdown.')
790         ...analyze_sentence returned ('Santi Cazorla', 'scored a touchdown.', '')
791         Calling sport_for('Santi Cazorla')...
792         ...sport_for returned 'soccer'
793         Calling sport_for('scored a touchdown.')...
794         ...sport_for returned 'American football and rugby'
795         Calling consistent_sports('soccer', 'American football and rugby')...
796         ...consistent_sports returned False
797         Final answer: no
798         False
799         """
800
801         ...
```

789 System Prompt Template for PTP
790
791 Consider the program fragment below. This program fragment is incomplete,
792 with key parts of the implementation hidden by replacing them
793 with "... markers.
794
795 PROGRAM:
796 ````python
797 {{PARTIAL_PROGRAM}}
798 ````
799
800 QUESTION: Predict what the output of the program above will be, given
801 the input shown below. Respond with the FULL program output, and ONLY
802 the expected program output: you will be PENALIZED if you introduce
803 any additional explanatory text.
804
805 >>> {{TASK_NAME}}({{TASK_INPUT}})

Figure 5: PTP partial program with one CoT demo encoded as traces (Top). System Prompt (Bottom).

```

810
811 SSRMs Partial Program
812
813 <partial_programs>
814 ... omitted...
815 @traced
816 def analyze_input(input_str: str) -> tuple[str, list[str], list[str]]:
817     """Accepts an input and extracts the question being asked, a list of rules to follow to answer
818     ↪ the question, and the patient note.
819     """
820     ...
821
822 @traced
823 def get_data(formula: str, patient_note: str) -> list[str]:
824     """Accepts a formula and a patient note, and extracts datapoints from the patient note required
825     ↪ to evaluate the rule.
826     """
827     ...
828 ... omitted...
829 </partial_programs>
830
831 SSRMs output trace
832
833 ... omitted...
834 <program_trace>
835     13     Calling get_data('Age: <50 years = 0 points, 50-59 years = +1 point, 60-69 years = +2 points,
836     ↪ 70-79 years = +3 points, >=80 years = +4 points', ['79-year-old gentleman'])...
837     14     ...get_data returned '79 years old'
838     15     Calling eval_rule('Age: <50 years = 0 points, 50-59
839     years = +1 point, 60-69 years = +2 points, 70-79 years = +3 points, >=80 years = +4 points', '79 years
840     ↪ old')...
841     16     ...eval_rule returned 3
842     ... omitted...
843 </program_trace>
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

```

Figure 6: SSRMs partial program (Top). SSRMs output trace (Bottom).

```

843 An Audit Example
844
845 class MedCalcRulesAuditor(audit.Auditor):
846     ... omitted...
847
848     def test_each_rule_applied(self):
849         df = self.df
850         # there is one step that extracts the rules to apply
851         _, rules, _ = df.query('step_fn == "analyze_input"').output.iloc[0]
852         # check that there is a step to extract data for each rule
853         get_data_steps = df[df.step_fn=='get_data']
854         self.assertTrue(
855             msg='one "get_data" step per rule',
856             expr=(len(get_data_steps)==len(rules)))
857         # check that there is a step to evaluate each rule
858
859         eval_rule_steps = df[df.step_fn=='eval_rule']
860         self.assertTrue(
861             msg='one "eval_rule" step per rule',
862             expr=(len(eval_rule_steps)==num_rules))
863         # check that the first inputs of get_data are all rules,
864         # and that every rule is used as input to get_data at least once
865         self.assertTrue(
866             msg='"get_data" called on all rules',
867             expr=(set(rules) == set(get_data_steps.input1)))
868
869
870
871
872
873

```

Figure 7: An audit example for MedCalcRules.

- 864 • `step_fn`: the name of the “function” being “traced”, e.g., `“eval_rule”` for the second
865 function call in the figure.
- 866 • `start_line`: the first line of the step, e.g., 15.
- 867 • `end_line`: the last line, e.g. 16. (If there are nested calls in between, the end line and start
868 lines can be far apart).
- 869 • `str_inputs`: a string with the tuple of function inputs, e.g., “(`Age: <50 years = 0`
870 `points, 50-59 years = +1 point, 60-69 years = +2 points, 70-79 years = +3`
871 `points, >=80 years = +4 points’, ‘79 years old’`)”
- 872 • `str_output`: analogous, e.g., “3”.
- 873
- 874

875 If the inputs can be parsed as a Python tuple, the following additional fields are added:

- 876 • `input`: a Python tuple of the inputs.
- 877 • `input1, input2, ...`: the Python values of the individual inputs.
- 878 • `len_input`: the length of the input tuple.
- 879 • `output`: the parsed Python value of the output.
- 880 • `output1, output2, ...`: when output is a tuple, the Python values of the individual
881 outputs.
- 882
- 883
- 884

885 Finally, a Pandas DataFrame is constructed from all structured objects, with NaN used for missing
886 fields (e.g., `input2` is absent for steps with only one input, and `output` is absent when `str_output`
887 cannot be parsed as Python). The DSL for audits makes use of these DataFrames, combining
888 DataFrame operations with a unit-test-like syntax. An example audit is provided in Figure 7.

889 D.2 EXAMPLE OF A TRACE WITH REASONING FLAWS

890 To illustrate how audits can be useful, we randomly selected a problem from the MedCalcV2 Rules
891 dataset (id #22) for which SSRM’s output failed several audits. This problem asks the model to
892 compute the Pneumonia Severity Index (PSI) for a 25-year-old male patient, given the patient note
893 (which is about 150 words long) and 20 rules. (See Figure 8 (Top).)

894 In the resulting reasoning trace, only 19 rules of the 20 rules are called. For each of these 19 rules, an
895 appropriate data extraction step is called and a result is returned, but the final score is computed by
896 summing only 17 of the returned scores. Consequently, this trace fails r audits.⁶

- 897 • one `“get_data”` step per rule and one `“eval_rule”` step per rule both fail because
898 neither a `get_data` nor `eval_rule` step was called for the 20th rule.
- 899 • `all outputs summed` fails because some rule outputs are not included in the sum for the
900 final score.
- 901 • `get_data called on all rules` fails because the 20th rule was never used as an argument
902 to `get_data`.
- 903
- 904
- 905
- 906

907 D.3 DISTINCT PATTERNS OF AUDIT FAILURES INDICATE DISTINCT REASONING FLAWS

908 The example in Figure 8 is typical of the MedCalcV2 Rules dataset: many audits are correlated, so
909 examples that fail one often fail several others. In particular, the audits one `“get_data”` step per
910 rule, one `“eval_rule”` step per rule, and `get_data called on all rules` often fail together.
911 Table 7 reports the most common *combinations* of failed audits and summarizes the reasoning flaws
912 typically associated with each combination (as determined by manual inspection). In brief, one
913 recurring issue is the failure to check every rule, which we had noted in preliminary experiments with
914 prompted models; but failure to accurately collect and sum all the results of rule evaluations are even
915 more common for SSRMs.

916
917 ⁶There is also at least one flaw in executing a *single* step, which we did not audit for this task: the (incorrectly)
918 selected outputs are also incorrectly summed.

918
919

Example of a flawed reasoning trace

920

Original input:

921

A 25-year-old male patient presents at the clinic for a routine physical examination. The patient
 ↳ describes a recent episode of fever and altered mental state. He denies any past history of heart
 ↳ disease, renal disease, cerebrovascular disease, liver disease, or cancer. The patient is currently
 ↳ unemployed and lives alone. Upon physical examination, the patient has a measured body temperature of
 ↳ 34 degrees celsius, a heart rate of 101 beats per minute, and a respiratory rate of 32 breaths per
 ↳ minute. His blood pressure measures at 123/85 mm Hg. Laboratory findings show a hematocrit level of
 ↳ 35, a blood glucose level of 15 mmol/L, and a BUN of 33.21 mg/dL. His sodium level is moderately low
 ↳ at 123 mmol/L. Arterial blood gas results show a PaO₂ of 67 mm Hg and a slightly acidotic pH of 7.17.
 ↳ The patient's chest X-ray shows no signs of pleural effusion.

922

What is the patient's Pneumonia Severity Index (PSI)?

923

Calculate PSI Score: Pneumonia Severity Index for CAP by summing the results of the following rules:

924

Age: Enter age in years (age score will be equal to age in years)
 Sex: Female = -10 points, Male = 0 points
 Nursing home resident: No = 0 points, Yes = +10 points
 Neoplastic disease: No = 0 points, Yes = +30 points

925

... rest of rules omitted ...

926

Reasoning trace:

927

Calling analyze_input(...

928

rest of input omitted for brevity ...

929

...analyze_input returned (

930

"What is the patient's Pneumonia Severity Index (PSI)?",
 ['Age: Enter age in years (age score will be equal to age in years)',

931

'Sex: Female = -10 points, Male = 0 points',

932

... rest of rules omitted from return value ...

933

])

934

Calling get_data('Age: Enter age in years (age score will be equal to age in years)', ['25-year-old'])...

935

...get_data returned '25 years old'

936

Calling eval_rule('Age: Enter age in years (age score will be equal to age in years)', '25 years old')...

937

...eval_rule returned 25

938

Calling get_data('Sex: Female = -10 points, Male = 0 points', ['25-year-old male'])...

939

...get_data returned 'male'

940

Calling eval_rule('Sex: Female = -10 points, Male = 0 points', 'male')...

941

...eval_rule returned 0

942

Calling get_data('Nursing home resident: No = 0 points, Yes = +10 points', ['lives alone'])...

943

...get_data returned 'no'

944

Calling eval_rule('Nursing home resident: No = 0 points, Yes = +10 points', 'no')...

945

...eval_rule returned 0

946

...omitted ...

947

Calling get_data('Partial pressure of oxygen <60 mmHg or <8 kPa: No = 0 points, Yes = +10 points', ['PaO2

948

↳ of 67 mm Hg'])...

949

...get_data returned 'no'

950

Calling eval_rule('Partial pressure of oxygen <60 mmHg or <8 kPa: No = 0 points, Yes = +10 points',

951

↳ 'no')...

952

...eval_rule returned 0

953

Calling sum_rules([25, 0, 0, 0, 0, 0, 0, 20, 20, 0, 15, 0, 30, 20, 20, 0])...

954

...sum_rules returned 130

955

956

957

Figure 8: Example of a flawed reasoning trace.

958

959

Set of failed audits	<i>N</i>	<i>N_{correct}</i>	Acc	Comments
(no failures)	266	135	50.75%	
all outputs summed	51	18	35.9%	Typically the score for 1–2 of the rules evaluated are not included in the final summation.
"get_data" called on all rules; one \"eval_rule" step per rule; one "get_data" step per rule	26	9	34.6%	Typically one or more rules extracted from the input are not evaluated.
(all audits above fail)	22	2	9.1%	Similar to the example of Section D.2.

960

961

962

963

964

965

966

967

968

969

970

971

Table 7: More detailed analysis of the most common patterns of failed audits.

972 A more detailed qualitative analysis of the reasoning patterns reveals a more nuanced picture.
 973 Additional insight into unusual reasoning behaviors can be gained either by examining atypical
 974 combinations of audit failures or by instrumenting individual audits further.

975 As an example of the first type of analysis, only one trace (#291) fails exactly the two audits all
 976 outputs summed and one "eval_rule" step per rule. Manual inspection shows an unusual
 977 (but correct) reasoning pattern. For this example, the data are extracted for one particular rule is
 978 a common-separated list of three conditions relevant to the rule from the patient node. The model
 979 evaluates the rule three times on the same extraction, obtaining the correct total score for that rule.
 980 The final output is also correct. However, we argue that in a consequential task, detecting *anomalous*
 981 *reasoning patterns* is nearly as important as detecting errors, if the end goal is a reliable system with
 982 predictable behavior.

983 As an example of the second type of analysis, we instrumented the all outputs summed audit to
 984 report additional information. By tracking the total number of extracted rules, the number of rules
 985 scored, and the number of values summed, we observed that most of the time (more than 70%) only
 986 one or two rules were missed from the summation. In many of these cases, the omitted value was
 987 zero; thus, in more than 25% of the cases, the sum of the extracted values was numerically correct
 988 even though not all extracted values were included.

989 More interestingly, this instrumentation also revealed additional unusual reasoning patterns, in this
 990 case incorrect ones. In 7 of the failures for this audit, the number of values summed was *greater* than
 991 the number of rule evaluations. In most of these cases, the issue was again related to the problem of
 992 rules that match in multiple ways, as above: on these cases, the score reported for the rule is indicated
 993 by reporting a string containing the result of each match, as well as the final score, e.g., by returning
 994 "1 + 1 = 2" as the result of the rule evaluation.

997 E TRAINING DETAILS

1000 Detailed hyperparameters configurations for both Stage 1 (SFT) and Stage 2 (RLVR) are provided in
 1001 Table 8. We provide the detailed settings in subsequent subsections to support reproducibility.

1003 Table 8: Hyperparameter settings for supervised fine-tuning (SFT) and reinforcement learning with
 1004 verifiable rewards (RLVR). Both the semi-structured reasoning and CoT baseline settings use the
 1005 same set of hyperparameters. \dagger : max sequence length for SFT and max generation length for RLVR.

1007	1008	Hyperparameter	SFT	RLVR
1009	1010	Optimizer	AdamW	AdamW
1011	1012	Actor Learning Rate	1e-5	1e-6
1013	1014	Weight Decay	1e-4	0.1
1015	1016	Warmup Ratio	0.1	0.01
1017	1018	Prompt Length	-	2048
1019	1020	Max Length \dagger	16384	4096
1021	1022	Loss Agg Mode	-	token_mean
1023	1024	Grad Clip	0.2	1.0
		Batch Size	128	256
		MiniBatch Size	-	256 (On-Policy)
		Num Responses Per Prompt	-	8
		Temperature	-	1.0
		Sequence Packing	False	True
		Entropy Coeff	-	0.0
		KL Loss Coeff	-	0.0
		Epochs	5	10

1026
1027

E.1 SUPERVISED FINE-TUNING (SFT) DATA

1028 We primarily follow the PTP approach (Cohen & Cohen, 2024) for generating semi-structured traces.
 1029 A limitation of PTP, however, is that it requires manually written task-specific partial programs. For
 1030 our experiments, we reuse the partial programs provided for BBH and manually construct those for
 1031 GSM8K, MATH500, and MedCalcV2.

1032 Beyond validating the final accuracy, we also perform a simple formatting check to remove samples
 1033 whose partial programs or traces cannot be parsed. For the final dataset, we apply downsampling to
 1034 balance the number of samples across tasks. Table 9 presents the distribution of SFT data for SSRMs.
 1035

1036
1037

Table 9: Distribution of Semi-Structured SFT data.

1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048

Task	Count	%
BBH	2,727	64.76
GSM8K	393	9.33
Math500	393	9.33
MedCalc Formulas	528	12.54
MedCalc Rules	170	4.04
Total	4,211	100.00

1049
1050
1051
1052
1053

E.2 SUPERVISED FINE-TUNING (SFT) CONFIGURATIONS

1054 Figure 9 presents the system prompt template we used for SSRMs. The same system prompt is used
 1055 for both Stage 1 and 2. Figure 10 shows a semi-structured reasoning trace from GSM8K used for
 1056 SFT.

1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

System Prompt Template for Semi-Structured Reasoning Models (SSRMs)

```

A conversation between User and Assistant. The User asks a question, and the Assistant solves it. The
→ assistant first reasons through the problem by generating high-level partial programs with key parts
→ hidden using "..." markers. It then simulates programs trace based on the incomplete partial programs.
→ The partial program must be general enough to solve all instances of the problem type, not just
→ specific examples. The partial programs and traces are enclosed within <partial_program>
→ </partial_program> and <program_trace> </program_trace> tags, while the overall reasoning process and
→ final answer are enclosed within <think> </think> and <answer> </answer> tags, respectively. You
→ should also wrap your final answer in $\boxed{\{ANSWER\}}$ if it is a mathematical expression.

Format:
<think>
<partial_program>
[Partial Program here]
</partial_program>
<program_trace>
[Program Trace here]
</program_trace>
</think>
<answer>
[Final Answer here]
</answer>

```

Figure 9: System Prompt Template for Semi-Structured Reasoning Models (SSRMs).

E.3 REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS (RLVR) CONFIGURATIONS

1076 **Reward Design.** We employ two types of rule-based rewards functions for reinforcement learning:
 1077

- 1078 • **Outcome Rewards:** The generated response will be assigned a reward of 1 for correct answers
 1079 and 0 for incorrect answers. For the MedCalcV2 data, we follow the original proposed protocol
 and allow for a range-based evaluation; for the DAPO math data, we use an exact-match criterion.

```

1080
1081
1082
1083
1084
1085 Semi-Structured Reasoning Trace for GSM8K
1086
1087 <think>
1088 <partial_program>
1089 @traced
1090 def analyze_input(input_str: str) -> tuple[str, ...]:
1091     """From an input, extract a tuple of individual questions and given values, as well as the final
1092     ↪ question to be answered.
1093     """
1094     ...
1095
1096 @traced
1097 def convert_to_equations(input_questions: tuple[str, ...]) -> tuple[str, ...]:
1098     """Takes a list of questions and converts them to a list of mathematical equations.
1099     """
1100     ...
1101
1102 @traced
1103 def simplify_equation(input_equation: str, given_values: tuple[str, ...]) -> str:
1104     """Takes an input equation and simplifies it by replacing a variable with the value of the variable as
1105     ↪ found in a list of given values if possible or performing algebraic operations if not, returning the
1106     ↪ simplified equation.
1107     """
1108     ...
1109
1110 </partial_program>
1111
1112 <program_trace>
1113 Calling analyze_input("Two-fifths of the seats in an auditorium that holds 500 people are currently taken.
1114 ↪ It was found that 1/10 of the seats are broken. How many seats are still available?")...
1115 ...analyze_input returned ('An auditorium holds 500 people.', 'Two-fifths of the seats are currently
1116 ↪ taken.', '1/10 of the seats are broken.', 'How many seats are still available?')
1117 Calling convert_to_equations(('An auditorium holds 500 people.', 'Two-fifths of the seats are currently
1118 ↪ taken.', '1/10 of the seats are broken.', 'How many seats are still available?'))...
1119 ...convert_to_equations returned ('total_seats = 500', 'occupied_seats = total_seats * 2/5',
1120 ↪ 'broken_seats = total_seats * 1/10', 'available_seats = total_seats - occupied_seats - broken_seats')
1121 Calling simplify_equation('available_seats = total_seats - occupied_seats - broken_seats', ('total_seats
1122 ↪ = 500', 'occupied_seats = total_seats * 2/5', 'broken_seats = total_seats * 1/10'))...
1123 ...simplify_equation returned 'available_seats = 500 - occupied_seats - broken_seats'
1124 Calling simplify_equation('available_seats = 500 - occupied_seats - broken_seats', ('total_seats = 500',
1125 ↪ 'occupied_seats = total_seats * 2/5', 'broken_seats = total_seats * 1/10'))...
1126 ...simplify_equation returned 'available_seats = 500 - (500 * 2/5) - broken_seats'
1127 Calling simplify_equation('available_seats = 500 - (500 * 2/5) - broken_seats', ('total_seats = 500',
1128 ↪ 'occupied_seats = total_seats * 2/5', 'broken_seats = total_seats * 1/10'))...
1129 ...simplify_equation returned 'available_seats = 500 - 200.0 - broken_seats'
1130 Calling simplify_equation('available_seats = 500 - 200.0 - broken_seats', ('total_seats = 500',
1131 ↪ 'occupied_seats = total_seats * 2/5', 'broken_seats = total_seats * 1/10'))...
1132 ...simplify_equation returned 'available_seats = 500 - 200.0 - (500 * 1/10)'
1133 Calling simplify_equation('available_seats = 500 - 200.0 - (500 * 1/10)', ('total_seats = 500',
1134 ↪ 'occupied_seats = total_seats * 2/5', 'broken_seats = total_seats * 1/10'))...
1135 ...simplify_equation returned 'available_seats = 500 - 200.0 - 50.0'
1136 Calling simplify_equation('available_seats = 500 - 200.0 - 50.0', ('total_seats = 500', 'occupied_seats =
1137 ↪ total_seats * 2/5', 'broken_seats = total_seats * 1/10'))...
1138 ...simplify_equation returned 'available_seats = 250.0'
1139 </program_trace>
1140 </think>
1141 <answer>
1142 250
1143 </answer>
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145

```

1134 • **Format Rewards:** We require all models to format its responses using tags such as `<think>`
 1135 and `<answer>`. For SSRMs specifically, additionally require the tags `<partial_program>` and
 1136 `<program_trace>`, define at least three functions within the `<partial_program>` block, and ex-
 1137clusively invoke these functions within the `<program_trace>` block. Given the regular syntax of
 1138 semi-structured reasoning traces, these constraints can be enforced via regular expressions.

1139
 1140 **F EXPERIMENTAL DETAILS**
 1141

1142 **F.1 MEDCALCBENCH V2**
 1143

1144 The original MedCalcBench (Khandekar et al., 2024) contains examples from 55 distinct *calculators*,
 1145 including target quantities such as the SIRS score from Figure 1. In the original study, average scores
 1146 were reported across all calculators: 37.9% in the zero-shot setting with GPT-4 and 50.9% in the
 1147 one-shot setting. In the latter, the demonstration always used the same calculator as the test case,
 1148 thereby evaluating the model’s ability to extract data and reproduce an identical reasoning chain.

1149 For our input, we concatenate the patient note and the original question, followed by a concise
 1150 definition of the relevant formulas or rules. In the long-context CoT setting (for SSRMs), this
 1151 concatenation serves as the sole input. In prompt-based settings, we employ a single two-shot CoT
 1152 demonstration involving calculations of the same *type* (formula or rules), though not necessarily the
 1153 same *calculator*, thereby testing the LLM’s ability to extract data and perform a potentially different
 1154 calculation. Therefore, MedCalcV2 scores are not directly comparable to those of MedCalcBench.

1155 We implement two additional changes. First, we remove training samples in the original MedCal-
 1156 cBench that overlap with the test data to ensure a clean evaluation. Second, during testing, we
 1157 discovered errors in results for the Glasgow Coma Scale Calculator: each ground-truth explanation
 1158 duplicates the verbal-response rule and erroneously adds its value twice, leading to incorrect final
 1159 scores. We manually correct these errors by deleting the duplicate lines and adjusting the final values
 1160 in both the ground-truth explanations and the expected outputs. MedCalcV2 will be made available.

1161
 1162 **F.2 TYPICALITY AUDIT CONFIGURATION**
 1163

1164 Results labeled HMM* are obtained via a grid search over hidden-state counts (1, 2, 5, 10) and
 1165 n-gram sizes (1, 2, 3, 10, 25, 50), selecting the model with the lowest Bayesian Information Criterion
 1166 (BIC) score (Dridi & Hadzagic, 2018). HMM are implemented using the `CategoricalHMM` class
 1167 from `hmmlearn`, with preprocessing to convert sequences into n-gram representations. Each sequence
 1168 is augmented with start and end tokens, an unknown-word token, and padded to a uniform length.
 1169 We use the Fisher’s exact test in `scipy.stats` for statistical significance of proportional differences.

1170
 1171 **F.3 PROMPT FOR LLM-GENERATED AUDITS**
 1172

1173 Generated audits are created by prompting Claude-Sonnet-4-20250514 using the following prompt,
 1174 replacing the label `[TASKNAME]` with the name of the task the audits are being generated for.

1175
 1176 **F.4 ADDITIONAL RESULTS**

1177 Table 10 presents the comparison between the prompted Sonnet 3.5 model and a smaller prompted
 1178 model, Qwen2.5-7B-Instruct, which is similar to the model we trained. The structured audits reveal
 1179 that Qwen2.5-7B-Instruct’s performance diverges significantly from the larger Sonnet model. In
 1180 the Formula task, Sonnet 3.5 exhibits no significant reasoning errors, whereas Qwen2.5-7B-Instruct
 1181 frequently commits errors in the initial reasoning steps, resulting in substantially poorer outcomes.
 1182 In the Rule task, Qwen2.5-7B-Instruct demonstrates a distinct failure mode than Sonnet model: it
 1183 generates correctly structured solution traces, but then fails to execute each individual step correctly.

1184 Table 11 shows results with LLM-generated audits on 21 tasks from the BBH benchmark suite. We
 1185 report the number of lines of code in the generated audits, and the average number of audits that
 1186 are run on each example. As a concise measure of the utility of the audits, we report the smallest
 1187 *p*-value of any audit, as computed in Table 1 (i.e., for the null hypothesis that audit failure is not
 1188 associated with incorrect outputs.) A small *p*-value indicates that some LLM-generated audit does

1188 Prompt for LLM-Generated Audits
1189
1190 The attached file 'Example Audits' contains examples of audit functions which run on the traced outputs
1191 of functions called mocks. Each audit function tests the output to ensure that the mock has been run
1192 correctly by testing individual parts of the traced output, ensuring that each function the mock
1193 expects has been called, that the correct outputs lead to the correct inputs, and so on.
1194
1195 The attached file 'audit.py' contains the code which runs audit functions. Use this file to reference the
1196 expected structure of the dataframe that audit functions call on.
1197
1198 The attached file 'Audit Targets for [TASKNAME]' contains several traced outputs for a mock function ,
1199 [TASKNAME]. Generate a set of audit functions matching the format and construction of the examples
1200 from 'Example Audits', which will test other traced outputs of the function [TASKNAME]. Your
1201 generated audits should not programmatically generate the messages for success or failure.
1202
1203 Return only the python code for your output, with no extraneous introduction or afterward. Do not encase
1204 your output in backticks. Make sure to include imports and an if-main function.

Figure 11: Prompt for LLM-Generated Audits.

Table 10: Results of applying hand-coded structured audits to prompted models for MedCalcV2 tasks.

		- accuracy and difference -					
		%Failed	Failing	Passing	Δ	p-val	description of audit
<u>MedCalcV2 Formulas</u>		1.712	0.000	0.662	0.662	0.162	one "get_data" step
		2.055	0.000	0.664	0.664	0.086	one "insert_variables" step
Claude 3.5 (65.1% acc)		3.767	0.091	0.673	0.582	0.033	"solve_formula" output is a number
		9.247	0.593	0.657	0.064	0.870	"solve_formula" output is formatted correctly
		47.260	0.667	0.636	-0.030	0.852	"solve_formula" math is correct
<u>Qwen2.5-7B-Instruct</u> (28.6% acc)		3.425	0.000	0.296	0.296	0.126	"solve_formula" output is a string
		5.479	0.188	0.292	0.104	0.777	"solve_formula" output is a number
		7.192	0.381	0.279	-0.102	0.487	"solve_formula" output is formatted correctly
		29.110	0.376	0.249	-0.128	0.140	"solve_formula" math is correct
		29.795	0.103	0.365	0.261	0.000	one "get_data" step
		30.137	0.102	0.366	0.264	0.000	one "insert_variables" step
		33.219	0.165	0.347	0.182	0.015	one "analyze_input" step
<u>MedCalcV2 Rules</u>		5.789	0.182	0.399	0.218	0.181	analyze_input returns two values
		14.737	0.196	0.420	0.223	0.028	one step per rule with step_fn of "convert_units"
Claude 3.5 (38.7% acc)		14.737	0.196	0.420	0.223	0.028	one step per rule with step_fn of "get_data"
		15.789	0.183	0.425	0.242	0.015	one step per rule with step_fn of "check_rule"
		17.105	0.169	0.432	0.263	0.005	one step per rule with step_fn of "accumulate_score"
<u>Qwen2.5-7B-Instruct</u> (31.1% acc)		1.316	0.400	0.309	-0.091	0.672	one step per rule with step_fn of "get_data"
		1.579	0.333	0.310	-0.023	1.000	one step per rule with step_fn of "convert_units"
		1.579	0.333	0.310	-0.023	1.000	one step per rule with step_fn of "accumulate_score"
		1.579	0.333	0.310	-0.023	1.000	one step per rule with step_fn of "check_rule"
		2.632	0.500	0.305	-0.195	0.363	one step with step_fn of "analyze_input"
		4.737	0.389	0.307	-0.082	0.630	analyze_input returns two values

indeed provide information about an “interesting” reasoning failure. Nearly half of the generated audits have p -values less than 0.05, including all four of the tasks with the highest error rates.

Table 12 shows results of generated structured audits on the same reasoning traces used in Table 4.

F.5 TOKEN USAGE ANALYSIS

As shown in Table 13, SSRM consumes more tokens than the unstructured reasoning baselines on MedCalcV2 Rules and Formulas, whereas token usage is comparable on MATH500 and GPQA-Diamond. The higher token consumption primarily results from redundant arguments and variable referencing, as illustrated in Figure 2. Developing a more efficient variable referencing mechanism is left for future work.

Dataset	Qwen Unstructured	Qwen SSRM
GSM8K	319.78	841.72
Math500	909.27	978.89
MedCalcV2 Formulas	411.80	1778.14
MedCalcV2 Rules	425.70	2260.87
GPQA Diamond	1608.33	1411.29
MedQA	359.25	1065.34

Table 13: Token usage of Qwen SSRM and corresponding unstructured baseline across datasets.

1242 Table 11: Summary of LLM-generated audits on BBH tasks, using a prompted Claude Sonnet 3.5.
1243

1244 Task	1245 Task Acc	1246 Avg Audits/Example	1247 Code Lines	1248 Min <i>p</i> -value
1246 geometric shapes	37.89%	14.50	128	< 0.001
1247 formal fallacies	46.31%	10.75	107	< 0.001
1248 causal judgement	57.48%	11.75	88	< 0.001
1249 dyck languages	64.00%	27.00	89	< 0.001
1250 disambiguation qa	82.63%	10.98	93	
1251 ruin names	83.16%	10.00	105	
1252 penguins in a table	87.21%	11.01	114	< 0.05
1253 multistep arithmetic two	87.89%	12.00	95	
1254 snarks	91.53%	85.72	109	
1255 date understanding	87.89%	11.33	88	
1256 logical deduction three objects	87.89%	10.99	94	
1257 movie recommendation	91.05%	13.98	90	
1258 reasoning about colored objects	94.21%	14.00	95	
1259 word sorting	95.26%	19.82	110	< 0.05
1260 boolean expressions	95.26%	6.09	92	< 0.05
1261 temporal sequences	96.84%	12.98	90	
1262 sports understanding	97.37%	7.00	71	< 0.05
1263 hyperbaton	97.89%	7.00	69	< 0.001
1264 tracking shuffled objects	98.95%	17.00	105	< 0.05
object counting	100.00%	9.00	70	
web of lies	100.00%	15.00	94	

1265
1266
1267 Table 12: LLM-generated structured audits Claude Sonnet 3.5 Prompted Models for MedCalcV2.
1268

1270	– accuracy and difference –					description of audit
	%Failed	Failing	Passing	Δ	<i>p</i> -val	
1271 Formulas	1.71	0.00%	44.60%	44.60%	*	one get_data step
	0.34	0.00%	43.99%	43.99%		one analyze_input step
	0.68	0.00%	44.14%	44.14%		analyze_input returns tuple with 2 elements
	2.05	0.00%	44.76%	44.76%	*	one insert_variables step
	4.79	35.71%	44.24%	8.53%		convert_units called on each datapoint
	3.42	50.00%	43.62%	-6.38%		convert_units' second input is a datapoint
	0.68	50.00%	43.79%	-6.21%		convert_units's first input is the formula
	0.68	50.00%	43.79%	-6.21%		insert_variables' first input is the formula
	3.08	44.44%	43.82%	-0.63%		insert_variables' second input is an output of convert_units
	2.74	37.50%	44.01%	6.51%		get_data's inputs match the output of analyze_input
1280 Rules	0.34	0.00%	43.99%	43.99%		solve_formula's input is an output of insert_variables
	92.81	42.80%	57.14%	14.34%		final answer matches last solve_formula output
	5.79	18.18%	39.94%	21.76%	*	analyze_input returns tuple with 2 elements
	14.74	19.64%	41.98%	22.33%	**	get_data called for each rule
	14.74	19.64%	41.98%	22.33%	**	consistent rules across get_data steps
	1.05	0.00%	39.10%	39.10%		convert_units inputs are outputs of get_data
	14.74	19.64%	41.98%	22.33%	**	convert_units called for each rule
	14.74	19.64%	41.98%	22.33%	**	consistent rules across convert_units steps
	2.63	0.00%	39.73%	39.73%	**	check_rule inputs are outputs of convert_units
	15.79	18.33%	42.50%	24.17%	**	check_rule called for each rule
1289	15.79	18.33%	42.50%	24.17%	**	consistent rules across check_rule steps
	0.79	0.00%	38.99%	38.99%		accumulate_score inputs are outputs of check_rule
	17.11	16.92%	43.17%	26.25%	**	accumulate_score called for each rule

1290 F.6 EVALUATION CONFIGURATIONS
12911292 We use Lighteval for all evaluations. For non-reasoning models, we report accuracy using greedy
1293 decoding. For reasoning models, we set the temperature to 0.6 and top-*p* to 0.95. For the AIME24
1294 dataset—where we observe high variance—we sample 32 responses using a temperature of 0.7 for
1295 non-reasoning models, while retaining the configurations for reasoning models, and report Pass@1.

1296 Table 14: Comparison of Self-Consistency and Audit-Based Self-Consistency on MedcalcV2 Rule.
1297

1298 Sampling Budget	1299 Self-Consistency	1300 Audit-Based Self-Consistency	1301 Effective Samples
1300 Greedy (Temp = 0)	1301 44.2	1302 44.2	-
1301 Sampling (Temp = 0.7)	1302 44.2	1303 45.3	-
1302 3	1303 46.3	1304 45.3	306 (53.68%)
1303 5	1304 45.3	1305 46.8	522 (54.95%)
1304 7	1305 45.3	1306 45.3	764 (57.44%)
1305 9	1306 45.3	1307 45.3	1002 (58.60%)
1306 15	1307 45.3	1308 44.2	1702 (59.72%)
1307 30	1308 45.2	1309 46.3	3501 (61.42%)
1308 60	1309 44.7	1310 45.8	7071 (62.03%)

1309 **F.7 TEST-TIME-SCALING WITH TYPICALITY AUDITS**

1310
1311 To investigate the effectiveness of combining test-time-scaling with audits, we apply typicality audits
1312 (HMM*). We perform a grid search using the first half of the generated responses from the benchmark;
1313 to ensure data integrity, we evaluate the model only on the second half. We consider two variants here:
1314 vanilla self-consistency and audit-based self-consistency. Given a sampling budget of k responses
1315 per question, in vanilla self-consistency we sample k times per question and use majority voting to
1316 determine the final answer. In audit-based self-consistency, we divide the model-generated traces into
1317 tertiles: for traces in top tertile we perform no additional sampling, for those in the middle tertile we
1318 sample $k - 3$ additional times, and for those in the bottom tertile we sample $k - 1$ additional times.
1319 We report accuracy on the MedCalcV2 Rule tasks, along with the effective number of samples—i.e.,
1320 the actual number generated under the audit-based procedure. For vanilla self-consistency, the total
1321 number of samples is $k \times n$, where n is the number of questions in the corresponding benchmark.

1322 As shown in Table 14, audit-based self-consistency consistently outperforms vanilla self-consistency
1323 given the same per-question sampling budget. More specifically, when $k = 5$, audit-based self-
1324 consistency outperforms vanilla self-consistency by 1.5 percentage points while using only 54.95% of
1325 the total sampling budget. These preliminary experiments demonstrate the effectiveness of combining
1326 typicality audits with test-time-scaling methods and suggest a promising direction for future research.

1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349