
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SEMI-STRUCTURED LLM REASONERS CAN BE RIGOR-
OUSLY AUDITED

Anonymous authors
Paper under double-blind review

ABSTRACT

Although Large Language Models (LLMs) have become capable reasoners, the
problem of faithfulness persists: their reasoning can contain errors and omissions
that are difficult to detect and that may obscure biases in model outputs. To address
this issue, we introduce Semi-Structured Reasoning Models (SSRMs), which are
trained to produce semi-structured representations of reasoning. SSRMs generate
reasoning traces in a non-executable Pythonic syntax that names each reasoning
step and marks its inputs and outputs. This structure allows SSRM traces to be
automatically audited to identify reasoning flaws. We evaluate three types of audits:
hand-crafted structured reasoning audits, written in a domain-specific language
(DSL) implemented in Python; LLM-generated structured reasoning audits; and
learned typicality audits, which apply probabilistic models over reasoning traces.
We show that all of these methods can be used to effectively flag probable reasoning
errors. Importantly, the auditability of SSRMs does not appear to compromise
overall accuracy: in evaluation on twelve benchmarks and two model families,
SSRMs demonstrate strong performance and generalizability relative to other
models of comparable size. We provide our code at Anonymous Github Link.

1 INTRODUCTION

Large Language Models (LLMs) often benefit from reasoning techniques such as short Chain-of-
Thought (CoT) prompting (Wei et al., 2022) or long CoT reasoning (Chen et al., 2025a; Wang
et al., 2025; Wang, 2025). Yet in many applications, LLMs may generate superficially plausible but
incorrect reasoning that obscures biases in the output (Turpin et al., 2024); more generally, reasoning
traces are not causally related to the final output (Bao et al., 2024). This problem of “unfaithful”LLM
reasoning has been extensively investigated in short CoT settings (Lanham et al., 2023; Bentham
et al., 2024; Parcalabescu & Frank, 2024), and is likely to be more problematic in long CoT reasoning.

As a concrete step toward demystifying reasoning LLMs and improving their reliability, we present
methods for rigorously checking LLM reasoning on specific tasks. To illustrate and motivate this,
consider the simplified medical question-answering (QA) task in Figure 1, adapted from the Med-
CalcBench (Khandekar et al., 2024). The “flawed” reasoning trace appears superficially plausible
but is incomplete compared to the “ideal” trace: it contains one obvious omission, one subtler error,
and one issue where the LLM fails to explicitly check the compatibility of the units for an extracted
value. Although none of these affect the final answer in this example, such flaws are undesirable in
consequential tasks. Human experts performing similar tasks are often expected to carefully follow
explicit instructions—variously called rubrics, cookbooks, or policies depending on the domain—to
ensure that reasoning is complete and decisions are made consistently. This observation motivates the
central research question: can we detect when an LLM deviates from a desired reasoning strategy?

Since analyzing arbitrary reasoning traces is difficult, we begin by training an LLM to generate
semi-structured reasoning traces, as shown in Figure 2 (Top). Following prior work (Cohen & Cohen,
2024), we adopt a Pythonic syntax that labels different types of reasoning steps using a restricted,
task-specific vocabulary and specifies the inputs and outputs of each step, without requiring the steps
to be executable. Because the steps can perform arbitrary computations and consume or produce
arbitrary strings of text, this semi-structured format is highly general. In this paper we provide
new evidence for this generality by showing that training models to generate semi-structured traces
achieves performance comparable to similarly trained free-form reasoning models and other baselines.

1

https://anonymous.4open.science/r/ICLR2026-DCAC

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Overview of the problem addressed. Top: a question that requires the LLM to extract
information and apply reasoning to answer correctly. Bottom left: a desired reasoinng trace. Bottom
right: a flawed reasoning trace. The flawed trace differs from the desired one in three ways: (1) the
incorrect patient measurement is used to determine applicability of the first rule; (2) the second rule is
skipped; (3) the units associated with a patient measurement are not explicitly checked against those
required by the third rule. In this example, none of these reasoning flaws affects the final answer, so
this flawed reasoning trace will be reinforced during reinforcement learning with an outcome reward.

Figure 2: Overview of our approach. An LLM is trained to generate a semi-structured trace
comprising a function name, its inputs, and its outputs for each reasoning step. Two plausible
constraints on this semi-structured trace are also shown, given in natural language (gray boxes) and
as executable tests (bottom left). The executable tests are reasoning trace audits, and in this case are
hand-written. We also explore typicality audits, which are learned from a corpus of reasoning traces.

We further show that semi-structured reasoning facilitates the scalable detection of reasoning flaws.
For example, in Figure 2, one can observe that a desired rule was skipped by comparing the number
of evaluate rule steps with the length of the rule list returned by analyze input. We refer to such

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

checks as reasoning audits. Figure 2 also provides natural-language descriptions of two audits
alongside their corresponding structured reasoning audits. Our results indicate that these manually
implemented audits can identify potential reasoning flaws and flag outcomes that are likely incorrect.

Our DSL for structured queries uses trace that has been encoded as a Pandas DataFrame, and audits
also look like Python unit tests—two widely-used programming constructs. Because of these design
choices, we show that structured reasoning audits are also easily generated automatically by modern
LLMs given minimal guidance, substantially reducing the cost of auditing reasoning in a new domain.

Beyond enabling structured reasoning queries, semi-structured reasoning facilitates additional forms
of analysis. A recurring question in the literature (Kambhampati et al., 2025) is whether reasoning
LLMs generate novel “reasoning patterns” or simply reproduce patterns that are seen during training.
This issue is difficult to address without a formal definition of “reasoning patterns.” In this work, we
explore certain definitions of a “reasoning pattern” for semi-structured reasoners and use it to build
probabilistic models of reasoning patterns for specific tasks. We evaluate the hypothesis that model
accuracy correlates with the probability assigned to its reasoning patterns. By analogy with structured
audits, we term this a typicality audit, and show that they can also identify potential reasoning errors.

In summary, this paper makes the following contributions:

• We introduce two-stage training recipes for SSRMs that produce semi-structured reasoning traces.
• We illustrate that both manually-generated and LLM-generated structured audits can effectively

reveal potential reasoning flaws, and that failing certain audits increases the probability of error.
• We show that typicality audits can reveal common reasoning patterns linked to better outcomes.
• We demonstrate that auditability comes without cost in generalization performance, as SSRMs

achieve results comparable to similarly trained unstructured reasoning models and other baselines.

2 RELATED WORK

Faithfulness and Process Models. CoT prompting has been shown to sometimes produce predictions
that preserve underlying LLM biases, accompanied by explanations that obscure those biases (Turpin
et al., 2024). This observation has motivated extensive research on explanation faithfulness in CoT
prompting Jacovi & Goldberg (2020); Turpin et al. (2024); Lanham et al. (2023); Bao et al. (2024).
Nevertheless, defining and measuring faithfulness remains challenging, with some prior studies
advocating quantitative approaches that assess mechanistic influence in neural networks through
numerical metrics (Parcalabescu & Frank, 2024; Bentham et al., 2024; Chen et al., 2025b). In this
work, we propose reasoning audits as a concrete and testable alternative to measuring faithfulness.

Other studies have proposed methods verifying reasoning chains using process reward models (Paul
et al., 2024; Sun et al., 2024b) and step reward models Viteri et al. (2024); Wang et al. (2023); Saparov
& He (2022); Lai et al. (2024). However, these reward models are typically tailored to specific
domains—such as mathematics (Paul et al., 2024; Sun et al., 2024b) or theorem-proving (Saparov
& He, 2022; Lai et al., 2024)—and often rely on Monte Carlo Tree Search (Kocsis & Szepesvári,
2006) to explore and evaluate multiple candidate reasoning chains, a computationally expensive
procedure. While our work is largely orthogonal, the symbolic and statistical audits we propose could
provide complementary signals for future reward-model training. In particular, the statistical audits
we proposed refine the notion of reasoning patterns, which have previously been identified either
through task-specific analyses (Zhang et al., 2025) or via LLM pipeline methods (Zhou et al., 2025).

Semi-structured LLM Reasoning. Various prompting strategies—such as CoT (Wei et al., 2022),
Tree-of-Thought (ToT) (Yao et al., 2023), Chain-of-Code (CoC) (Li et al., 2023), and Program-of-
Thought (PoT) (Chen et al., 2022)—have been widely employed to enhance the reasoning capabilities
of LLMs. More recently, research has shifted from prompting toward inference-time scaling by
incorporating search algorithms, particularly tree-based search (including Monte Carlo Tree Search
variants) and beam search, into the sampling process (Feng et al., 2023; Trinh et al., 2024; Xin
et al., 2024; Kocsis & Szepesvári, 2006); by ensembling multiple reasoning trajectories through
self-consistency (Wang et al., 2022; Huang et al., 2025; Aggarwal et al., 2023); and by applying
reinforcement learning (RL) to extend the length of reasoning (OpenAI, 2024; Shao et al., 2024; Guo
et al., 2025; Qwen, 2024; Kumar et al., 2024; Yang et al., 2025). Despite these, LLMs frequently
produce reasoning traces that appear plausible yet incorrect, and such errors can be difficult to detect.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Previous studies have proposed that faithfulness can be improved by using a code-like format for
LLM outputs. Prior work assumes this format is either fully executable Python programs (Chen et al.,
2022; Gao et al., 2023; Lyu et al., 2023; Paranjape et al., 2023) or partially executable pseudocode (Li
et al., 2023; Weir et al., 2024; Chae et al., 2024). While enabling the use of Python as a tool often
improves performance, the reasoning process used to generate the pseudocode remains obscured.
These works have also argued (sometimes implicitly) that faithfulness is qualitatively improved with
code-based outputs. In contrast, we pursue the more concrete goal of auditing the reasoning process.

We build most on the reasoning-chain syntax used in Program Trace Prompting (PTP) (Cohen &
Cohen, 2024). While PTP uses few-shot prompting to extrapolate “partial programs” and sample
traces for novel inputs, SSRMs achieve strong performance without task-specific few-shot prompts.

3 TRAINING METHODS

We use a two-stage training recipe for a Semi-Structured Reasoning Model (SSRM). The first stage
performs SFT to teach the model to produce the semi-structured reasoning traces, while the second
stage uses reinforcement learning with verifiable rewards (RLVR) to enhance the reasoning ability.

Supervised Fine-Tuning. To collect SFT data for semi-structured reasoning, we follow the PTP
approach (Cohen & Cohen, 2024). We generate semi-structured reasoning traces with PTP using
both Claude Sonnet 3.5 and 3.7 (Anthropic, 2024; 2025) on a subset of BBH tasks (Suzgun et al.,
2022) as well as subsets of the training data from GSM8K (Cobbe et al., 2021), MATH500 (Lightman
et al., 2023), and MedCalcBenchV2 (please see Section 4). Only traces that produce a correct final
answer are retained. To verify correctness, we extract answers from the answer tags and evaluate their
accuracy. We also perform a simple formatting check to remove samples whose partial programs
or traces cannot be parsed. For the final dataset, we apply downsampling to balance the number of
samples across tasks. The distribution of the resulting SFT data is provided in Appendix E.1 Table 9.

Chain-of-Thought Baseline. To establish a fair baseline for comparison, we construct a standard
CoT dataset. We generate CoT traces on BBH using the original few-shot prompts applied to Claude
Sonnet 3.5, and augment the training data with ground-truth CoT solutions from GSM8K, MATH500,
and MedCalcBenchV2, for the same problem instances used in the semi-structured SFT training data.

Training Template. We structure each example using a consistent markup format. In the semi-
structured setting, partial programs are wrapped in <partial program> tags, reasoning traces in
<program trace> tags, both enclosed within a <think> tag. The final answer is placed inside the
<answer> tag for easy parsing. For the CoT baseline, only <think> and <answer> tags are used.

RLVR Dataset. In the second stage, we enhance the SFT model with RLVR. We construct the RLVR
dataset by sampling eight responses per problem from the English subset of DAPO-Math-17K (Yu
et al., 2025), using the SFT checkpoint. We randomly discard half of the samples with pass rates of
either zero or one. We further include a held-out subset of MedCalcBenchV2 excluded from SFT.

Reward Design. We adopt a rule-based reward combining outcome accuracy and structural validity.
Outcome accuracy measures the correctness of the final answer, while format rewards are assigned if
the reasoning trace conforms to the semi-structured or CoT format, evaluated via regular expressions.

RL Algorithm. We optimize with the Group Relative Policy Optimization (GRPO) (Shao et al., 2024),
which estimates token-level advantages without requiring a critic. For a specific question-answer pair
(q, a), the policy model first samples a group of G individual responses {oi}Gi=1. Subsequently, the

advantage of the i-th response is calculated as Ai,t =
ri−mean({Ri}G

i=1)
std({Ri}G

i=1)
. And the training objective is

JGRPO(θ) = E(q,a)∼D,{oi}G
i=1∼πθold

(·|q) 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

(min (ri,t(θ)Ai,t, clip (ri,t(θ), 1− ε, 1 + ε)Ai,t)− βDKL (πθ∥πref))

 ,

where ri,t(θ) =
πθ (oi,t | q,oi,<t)

πθold (oi,t | q,oi,<t)
(1)

Differ from standard GRPO, we adopt fully on-policy training and token-level loss (Yu et al., 2025).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

In this section, we present a series of experiments conducted across diverse benchmarks—including
mathematics, medical, and health domains—covering both in-domain datasets and those outside the
training mixture. We also compare SSRMs to strong prompted baselines. Our goal is to address three
key questions: (1) Can the reasoning traces of SSRMs be audited, either through structured queries or
statistical methods? (2) Can prompted models be audited in a similar manner? (3) Is semi-structured
reasoning more difficult to learn? Detailed setups and dataset descriptions are listed in Appendix F.

Experimental Setup. We use Qwen2.5-7B (Yang et al., 2024) as the base model for SSRM and
conduct auditability analysis on its generated semi-structured reasoning traces. To further validate
the performance, we also train an SSRM based on Llama3.1-8B (Grattafiori et al., 2024). All models
are trained using verl (Sheng et al., 2024) on 8 H100 GPUs, with evaluations conducted on 1 H100.

In addition to similarly trained unstructured baselines, we compare SSRMs against baselines of
comparable size. Non-reasoning baselines include Llama3.1-8B-Instruct (Grattafiori et al., 2024),
Medical Llama (ContactDoctor, 2024) (fine-tuned for biomedical knowledge), and the Qwen se-
ries (Yang et al., 2024). Reasoning baselines include the DeepSeek-Distilled series (Guo et al., 2025).
For prompted baselines, we evaluate Claude Sonnet 3.5 (Anthropic, 2024) and Qwen2.5-7B-Instruct.

We use greedy decoding and report accuracy for all tasks, except for AIME24, where we sample 32
responses and report Pass@1 with a temperature of 0.7. The maximum generation length is set to
32,768 tokens. All tasks are evaluated in a zero-shot setting, except for prompted baselines, which
use two-shot prompts. Reasoning baselines follow the recommended setting (temperature 0.6, top-p
0.95) (Guo et al., 2025). For Qwen2.5-7B, we omit the chat template following Liu et al. (2025).

Primary Evaluation: MedCalcBenchV2. Our primary evaluation benchmark is MedCalcBenchV2,
a cleaned version of MedCalcBench (Khandekar et al., 2024) (See Appendix F.1). MedCalcBenchV2
measures an LLM’s ability to extract information from clinical text (patient note) and perform
calculations using either explicit rules or formulas provided in the prompt. We observe that rule-based
tasks are substantially more challenging than formula-based tasks. Errors in formula-based problems
primarily arise from computation or extraction mistakes, whereas errors in rule-based problems more
often involve failures to follow explicit instructions, consistent with prior findings on rule-following
tasks (Sun et al., 2024a). To account for this discrepancy, we treat the two categories as two distinct
tasks: MedCalcV2 Rules and MedCalcV2 Formulas. Evaluation follows the original MedCalcBench
criteria, which allow small numeric deviations and employ rule-based checks for date-based answers.

Domain-Specific Language for structured audits. Our DSL for structured audits looks like Python
unit tests: they are class methods, can be called without arguments, and contain assertion statements
invoked by the class method self.assertTrue. An audit fails if it raises an exception or if an
assertTrue call does not hold. The method can access a Pandas DataFrame self.df that represents
the semi-structured trace, and assertions usually operate on this data structure using Pandas operations.

Additional Evaluation. To evaluate the generalizability of the SSRMs beyond in-domain data, we
conduct additional experiments on a range of benchmarks: general reasoning (GPQA-Diamond (Rein
et al., 2024)), mathematical reasoning (AIME24), commonsense reasoning (CommonsenseQA (Tal-
mor et al., 2018)), truthfulness (TruthfulQA (Lin et al., 2021)), as well as several medical and
health-related tasks, namely MedQA (Jin et al., 2020), the biology and health subsets of MMLU-
Pro (Wang et al., 2024), and PubMedQA (Jin et al., 2019), which we convert to multiple-choice.

4.1 EXPERIMENTAL RESULTS

Both hand-crafted and LLM-generated structured audits are effective for auditing semi-
structured reasoning traces generated by SSRMs. To validate that semi-structured reasoning can
be systematically audited, we first apply hand-crafted audits for the two MedCalcV2 tasks based on
the analysis of the training examples. Table 1 reports results for all individual audits that are applied
with sufficient frequency1 and are sufficiently discriminative—specifically, audits that succeed at
least 5% of the time and fail at least 5% of the time. The second audit for MedCalcV2 Formulas (e.g.,
“math is correct”) uses Python’s eval function; whereas all other audits inspect only trace structure.

1Audits may not be applied to all traces—for example, one cannot confirm that number of rules evaluated is
the same as the number of rules extracted if rule extraction fails to produce a legal output.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Hand-crafted structured audits for Qwen SSRM generated semi-structured traces on two
MedCalcV2 tasks. For each, we report the failure rate, the outcome accuracy conditioned on audit
failing or passing, the accuracy difference (∆) between passing and failing cases, and the p-value for
testing ∆ ̸= 0. One star (*) for statistical significance at p < 0.1 and two stars (**) for p < 0.05.

− accuracy and difference −
%Failed Failing Passing ∆ p-val description of audit

MedCalcV2 Formulas 22.0 0.77 0.86 0.09 solve formula output is formatted well
49.0 0.84 0.83 -0.01 solve formula math is correctmath

MedCalcV2 Rules 13.2 0.22 0.46 0.24 ** one get data step per extracted rule
13.4 0.22 0.47 0.25 ** get data called on all rules
14.0 0.21 0.47 0.26 ** one eval rule step per rule
20.3 0.26 0.48 0.22 ** all rule outputs summed correctly

Table 2: LLM-generated structured audits on the same set of Qwen SSRM traces for MedCalcV2.

− accuracy and difference −
%Failed Failing Passing ∆ p-val description of audit

MedCalcV2 Formulas 5.7 0.76 0.84 0.08 step 4 output feeds into step 5 input
6.4 0.45 0.86 0.41 ** step 3 output feeds into step 4 input
8.3 0.62 0.86 0.24 step 2 output feeds into step 3 input
9.3 0.82 0.84 0.02 convert units called once per datapoint

10.2 0.81 0.84 0.03 convert units receives formula as first input
12.6 0.80 0.84 0.05 convert units correct second input
14.4 0.37 0.92 0.55 ** get data receives formula from analyze input

MedCalcV2 Rules 13.4 0.22 0.47 0.25 ** get data called for each rule
13.9 0.21 0.47 0.26 ** consistent rules across get data steps

As suggested in Figure 2, reasoning flaws do not always yield incorrect outcomes. In Table 1, for
each audit a, we present test accuracy when a fails (“Failing” column), when a passes (“Passing”
column), the accuracy difference ∆, and the statistical significance of the difference being non-zero.

The results suggest that reasoning errors are more frequent in MedCalcV2 Rules than in Formulas.
While math errors in Formulas occur frequently, they do not correlate with outcome errors.2 In
contrast, reasoning errors in Rules are common and associated with substantial accuracy losses. The
most common failure is mis-summing rule contributions, followed by skipping a rule. Other failing
audits indicate mismatches between the counts of patient data extraction and rule application steps.

Because manually generating audits is expensive, we also explore automatic generation of structured
audits using LLMs. We manually write audits for three additional tasks from BBH, and use those
as few-shot examples to prompt Claude Sonnet 4.0 to output structured audits given a set of three
correct sample traces. The results, shown in Table 2, show that LLM-generated structured audits are
comparably useful to hand-crafted ones. (For more results and details, please check Appendix F.4)

Typicality audits are also applicable for auditing semi-structured reasoning traces generated by
SSRMs. Typicality audits provide a complementary use of the semi-structured format by analyzing
abstract versions of reasoning processes, aka “reasoning patterns” (Zhang et al., 2025). Prior work has
conjectured that LLMs predominantly reproduce “reasoning patterns” observed in the training data
and struggle to generate novel sequences—i.e., LLM reasoning often relies on retrieving previously
seen reasoning examples (Kambhampati et al., 2025). If this holds, reasoning within a given task
should exhibit regularity, thereby enabling statistical analyses to flag outlier traces as potential errors.

In past work, “reasoning patterns” are typically identified heuristically or by LLMs (Zhang et al., 2025;
Zhou et al., 2025). Here we define “reasoning patterns” as the sequence of step names. For example,
in Figure 2, the pattern is “analyze input extract patient data convert units evaluate rule
accumulate score extract patient data evaluate rule accumulate score”. We then construct a
probabilistic model M over these sequences, treating them as language tokens. This formulation
yields a precise version of the conjecture above: LLM correctness is positively correlated with the

2MedCalcV2 numerical answers are soft-matched to the target, whereas the implemented audits check exact
equivalence before and after simplification.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

probability of the required reasoning pattern under M . To test this, we compute the correlation
between outcome correctness and the probability of the reasoning pattern generated by the SSRMs.

We consider the following types of reason pattern typicality models M : a unigram language model
smoothed with a Dirichlet prior (referred to as multinomial in the tables below); bigram and trigram
models, implemented simply by extending the base vocabulary to consider all n-grams of step names
for n = 2, 3; an HMM with three hidden states over trigrams, denoted HMM(3,3) in the table; and a
final model, HMM∗, in which we perform a grid search over different n-gram sizes and numbers of
hidden states, selecting the configuration that optimizes the BIC criterion (Please see Appendix F.2).

Table 3: The results prove that atypical reasoning
pattern in the MedCalcV2 tasks are more likely
to result in errors. We evaluate several typicali-
ty/probability models, all of which correlate with
correctness, though the correlation is weaker on
MedCalcV2 Rules. In additional to Kendall’s τ
for correlation, we also partition the test data into
three equal groups by probability and report accu-
racy in the lowest and highest tertiles, the accuracy
difference (∆), and the p-value of this difference.

MedCalcV2 Formulas − accuracy and difference −
τ Tertile 1 Tertile 3 ∆ p-val

multinomial 0.25 0.72 0.95 0.22 *
bigram 0.25 0.72 0.95 0.23 *
trigram 0.26 0.72 0.95 0.23 *
HMM(3,3) 0.26 0.72 0.97 0.25 **
HMM∗ 0.21 0.74 0.97 0.07

MedCalcV2 Rules − accuracy and difference −
τ Tertile 1 Tertile 3 ∆ p-val

multinomial 0.17 0.32 0.57 0.25 **
bigram 0.17 0.32 0.57 0.25 **
trigram 0.17 0.32 0.57 0.25 **
HMM(3,3) 0.17 0.32 0.57 0.25 **
HMM∗ 0.08 0.43 0.52 0.09

Table 3 summarizes the results obtained by fit-
ting these models to the test data.3 We use
Kendall’s τ to measure correlation because it
makes no parametric assumptions and observe
only moderate correlations ranging from 0.08 to
0.26. As another way of testing if highly typical
reasoning patterns correspond to higher accura-
cies than atypical ones, we sort all test predic-
tions by pattern probability and compare the ac-
curacy of the least probable third with that of the
most probable third, excluding the middle third.
Using this method, we observe significant differ-
ences in many models. For example, under the
HMM(3,3) model, the accuracy difference (∆)
between the least and most probable tertiles is
approximately 25% for both MedCalcV2 tasks.
These results suggest that a typicality model M
can approximate the behavior of a structured au-
dit by: (a) sorting predictions by typicality, (b)
splitting predictions into quantiles, and (c) in-
terpreting the top quantile as audit-passed cases,
the bottom quantile as audit-failed cases, and
any other intermediate quantiles as unevaluable.
Following this approach, the typicality audits function as an abstaining classifier Pietraszek (2005)
for evaluating outcome correctness, abstaining specifically on intermediate scores. The abstention
rate can be adjusted by splitting the predictions into different numbers of quantiles: for instance,
dividing predictions into two groups yields no abstentions, whereas dividing them into eight groups
results in abstention for the middle six octiles—i.e., 6

8 = 3
4 of the time. As shown in Figure 3, higher

abstention rates are associated with larger accuracy difference (∆) across both MedCalcV2 tasks.

0% 25% 50% 75%
0.00

0.10

0.20

0.30

0.40

0.50

Dataset
MedCalcV2 Formulas
MedCalcV2 Rules

Abstention Rate vs. Delta on MedCalcV2

Abstention Rate (%)

D
el

ta
 (

A
cc

u
ra

cy
 D

if
fe

re
n

ce
)

Figure 3: Abstention Rate vs. ∆ (accuracy differ-
ence between the highest- and lowest- probability
quantiles) on MedCalcV2 under a typicality audit.

Given the effectiveness of both structured and
typicality audits in identifying potential reason-
ing errors, a straightforward extension is to ap-
ply at inference time. For example, when com-
bining typicality audits with self-consistency,
reasoning traces in the lowest tertile can be
resampled more extensively, whereas those in
the highest tertile—more likely to be correct—
might require no additional sampling. This strat-
egy can help concentrate the sampling budget
on the most error-prone cases. We evaluate this
approach on the MedCalcV2 Rules tasks and
report the results in Appendix F.7. Our findings
show that audit-guided self-consistency reduces
computational cost while maintaining compara-
ble or slightly improved performance relative to vanilla self-consistency with a fixed sampling budget.
However, we do not observe significant improvements over greedy decoding with a single sample.

3Note that the correctness label is not used in this step. Moreover, the distribution of reasoning patterns in
the training data may differ for tasks with ground-truth reasoning chains.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Results of applying structured audits to Claude Sonnet 3.5 with semi-structured prompting
on both MedCalcV2 Formulas and Rules. Overall, the results resemble those of SSRM, although the
prompted MedCalcV2 Formulas system does have some rarely-failing audits that impact accuracy.

− accuracy and difference −
%Failed Failing Passing ∆ p-val description of audit

MedCalcV2 Formulas 1.7 0.000 0.662 0.662 one get datastep
2.1 0.000 0.664 0.664 * one insert variables step

Claude Sonnet 3.5 3.8 0.091 0.673 0.582 ** solve formula output is a numbermath

(65.1% acc) 9.2 0.593 0.657 0.064 solve formula output is formatted correctly
47.3 0.667 0.636 -0.030 solve formula math is correctmath

MedCalcV2 Rules 5.8 0.182 0.399 0.218 analyze input returns correct # values
14.7 0.196 0.420 0.223 ** one convert units step per rule

Claude Sonnet 3.5 14.7 0.196 0.420 0.223 ** one get data step per rule
(38.7% acc) 15.8 0.183 0.425 0.242 ** one evaluate rule step per rule

17.1 0.169 0.432 0.263 ** one accumulate score step per rule

We hypothesize that traces flagged as incorrect by audits may correspond to problems that the model
struggles to solve even with additional sampling budget. We leave this to future work.

Table 5: Results of applying typicality audits to
semi-structured reasoning traces from few-shot
prompted Claude Sonnet 3.5 on both MedCalcV2
Formulas and Rules. Overall, the results indicate
that the hypothesis—that atypical reasoning pat-
terns correspond to higher error rates—holds for
MedCalcV2 Formulas but not for the noisier Rules.

− accuracy and difference −
τ Tertile 1 Tertile 3 ∆ p-val

MedCalcV2 Formulas
Claude Sonnet 3.5 (65.1% acc)
trigram 0.13 0.56 0.67 0.11
HMM(3,3) 0.21 0.56 0.70 0.14
HMM∗ 0.30 0.54 0.87 0.33 **

MedCalcV2 Rules
Claude Sonnet 3.5 (38.7% acc)
trigram -0.06 0.47 0.33 -0.14
HMM(3,3) -0.06 0.46 0.32 -0.14
HMM∗ -0.05 0.43 0.33 0.00

Both structured and typicality audits can
be applied to semi-structured traces from
few-shot prompted models. Table 4 presents
the results of structured audits applied to few-
shot prompted Claude Sonnet 3.5 on both Med-
CalcV2 tasks, while Table 5 shows typicality
audit results for the same model (limited to three
representative typicality models for brevity).
Overall, Claude Sonnet 3.5 behaves similarly
to SSRMs under these audits, except for the
typicality audit for Rules, where more typical
reasoning traces exhibit higher error rates on
average (although not significantly so). This
may be attributed to the high error rate of the
prompted model itself: even typical reasoning
processes often lead to errors. In Appendix F.4,
we present results for Qwen2.5-7B-Instruct—
a weaker prompted model and the instruction-
tuned version of the Qwen2.5-7B base used as
the backbone for SSRMs—as well as LLM-generated structured audit results on prompted Claude.

Figure 4: Comparison of SSRM against similarly
trained and prompted baselines on MedCalcV2.

Semi-structured reasoning is learnable and
achieves performance and generalization on
par with unstructured reasoning. We con-
sider two different model families for training
SSRMs: a stronger one based on Qwen2.5-7B
and a weaker one based on Llama3.1-8B. Our
trained Qwen SSRM achieves strong results, as
shown in Table 6. On average, it outperforms
the unstructured reasoning baseline trained with
the same procedure. On the two challenging
MedCalcV2 tasks, it exceeds six other strong
baselines of comparable size. Within the train-
ing mixture, it outperforms the best baseline by
nearly ten points. Moreover, it generalizes effectively to tasks outside the training mixture: while it
does not match the top math-specialized reasoning models, it outperforms all non-reasoning baselines.
On a range of medical QA benchmarks, it achieves performance comparable to reasoning models,
lagging only slightly behind BioMedical-Llama-3-8B, a specialized model for biomedical knowledge.
By contrast, although the Llama SSRM is based on a weaker backbone, it delivers performance com-
parable to similarly trained unstructured reasoning baselines on both in-domain and out-of-domain
benchmarks, further supporting that semi-structured reasoning does not compromise performance.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 6: Our models are initialized from Qwen2.5-7B and Llama3.1-8B, trained with SFT followed by
RLVR on a mix of MedCalcV2 and other math tasks. Underlined results indicate the best performance
among our comparably trained models; starred results denote best among non-reasoning models; and
bold results are best overall. On average, SSRM outperforms the unstructured CoT format and six
strong, comparably sized baseline models.4 We sample 32 times and report Pass@1 for AIME24.

SSRM from Qwen2.5-7B (ours) SSRM from Llama3.1-8B (ours) Instr/reasoning LLMs
(Qwen2.5-7B)

Instr/reasoning LLMs
(Llama3/3.1-8B)

Base unstr.
+SFT

unstr.
++RL

semi-str.
+SFT

semi-str.
++RL

unstr.
+SFT

unstr.
++RL

semi-str.
+SFT

semi-str.
++RL Instr ∗OpR1 ∗DSeek BioL Instr ∗DSeek

MedCalcV2 Formulas 3.0 52.4 75.9 63.3 ∗83.6 48.7 58.9 56.9 75.0 56.4 44.8 36.9 12.6 10.0 29.7
MedCalcV2 Rules 0.0 27.4 38.4 38.9 ∗43.2 27.9 28.4 20.8 36.3 32.1 22.6 14.2 16.6 9.5 9.2
GSM8k 85.4 74.4 90.5 76.6 ∗90.9 42.3 43.8 57.4 36.2 ∗90.9 94.8 89.2 51.9 81.1 75.7
MATH500 69.2 44.6 77.0 45.4 75.2 15.6 15 22.6 12.4 ∗78.8 91.0 94.0 17.4 46.2 87.2
train mix avg 39.4 49.7 70.5 56.1 ∗73.2 33.6 36.5 39.4 40 64.6 63.3 58.6 24.6 36.7 50.5

AIME24 9.1 1.1 12.1 3.7 ∗12.4 0.3 0.5 0.2 0.9 11.8 45.3 53.4 0.1 2.1 45.2
GPQA-D 31.8 31.8 ∗38.4 30.3 34.3 25.8 33.8 22.2 26.3 32.8 41.4 50.5 26.8 31.8 43.9
TruthfulQA 49.7 57.3 56.3 41.1 54.3 41.6 39.8 31.3 32.9 ∗55.6 42.6 47.5 53.0 54.3 52.6
CommonsenseQA 70.5 70.1 72.8 70.8 ∗75.7 52.7 52.4 58.6 60.4 66.8 54.0 52.3 39.3 50.4 63.1

MedQA 57.4 62.4 62.0 55.9 61.4 55.4 57 50.4 53 ∗62.8 31.1 36.4 76.9 68.9 58.1
MMLU Pro Bio 64.6 68.6 71.8 59.3 69.9 58 58.4 55.4 59.3 ∗73.5 50.9 66.7 64.6 67.8 73.1
MMLU Pro Health 42.1 53.2 53.1 40.5 51.7 40.1 41.6 40.1 39.7 ∗54.8 22.0 33.4 53.1 58.3 46.5
PubmedQA 66.3 73.4 71.4 70.2 ∗76.2 73.9 75.5 68.2 73.4 73.5 73.3 72.7 77.1 75.6 73.8
med/health avg 57.6 64.4 64.6 56.5 64.8 56.9 58.1 53.5 56.4 66.2 44.3 52.3 ∗67.9 67.7 62.9

overall avg 45.3 51.3 60.8 50.2 ∗61.7 39.7 41.7 40.3 42 58.0 52.1 54.3 39.5 45.6 54.6

4All accuracies are percentages. “Instr” models are instruction-trained, “DSeek” are distilled from
DeepSeek-R1, and OpR1 is OpenR1-Qwen-7B. BioL is Bio-Medical-Llama-3-8B.

In Figure 4, we show that Qwen SSRM not only outperforms the Claude Sonnet 3.5, which is used to
seed the SFT training data, but also significantly outperforms the Qwen instruction-tuned variant.
For Claude Sonnet 3.5 and Qwen2.5-7B-Instruct, we employ two-shot prompting, using two fixed
demonstrations across all MedCalc “calculators”.5 For each prompted model, we evaluate two prompt
variants: one with unstructured free-form CoT prompts and one with the semi-structured format.

We also analyze the token usage of Qwen SSRM and unstructured reasoning baselines (see Ap-
pendix F.5 for details). In summary, SSRM consume more tokens than the unstructured reasoning
baselines on MedCalcV2 Tasks, while token usage is comparable on MATH500 and GPQA-D. One
factor contributing to the increased usage is redundant argument and variable referencing, as shown
in Figure 2. We leave the development of a more efficient referencing mechanism to future work.

5 CONCLUSION

We have presented methods for scalably testing whether an LLM adheres to a prescribed reasoning
strategy on specific critical tasks. Our methods combine a Semi-Structured Reasoning Model (SSRM),
which outputs reasoning steps in a semi-structured format, with methods for auditing these reasoning
traces. We consider two challenging tasks: (a) extracting information from clinical text and (b)
performing a series of calculations using the extracted values, based on either predefined rules or
given formulas. These tasks are adapted from MedCalcBench, which has been cleaned, deduplicated,
and restructured to separate the simpler formula-based tasks from the more complex rule-based ones.

We show that structured reasoning audits can reveal meaningful classes of likely reasoning errors for
these tasks and qualitatively distinguish between the types of errors made across tasks and models.
We further introduce typicality audits, which are probabilistic models trained on a corpus of semi-
structured reasoning traces. Typicality audits approximate structured audits by (a) sorting predictions
by typicality, (b) splitting predictions into quantiles, and (c) interpreting the top quantile as a pass
and the bottom quantile as a fail. Both types of audits can be applied to few-shot prompted models.

Importantly, auditability appears to come without a cost in accuracy: overall, our Qwen SSRM model
outperforms plausible baselines, including strong closed-source prompted models, an identically-
trained unstructured baseline, and many other strong comparably-sized models. Likewise, the Llama
SSRM demonstrates comparable performance relative to its identically-trained unstructured baseline.

5This also diverges from the MedCalcBench few-shot evaluation, which selects a single demonstration from
the same calculator as the test instance.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we provide detailed information on the datasets used (please see Ap-
pendix F), implementation details (please see Appendix E), and code (Anonymous Github Link).

REFERENCES

Pranjal Aggarwal, Aman Madaan, Yiming Yang, et al. Let’s sample step by step: Adaptive-consistency for
efficient reasoning and coding with llms. arXiv preprint arXiv:2305.11860, 2023.

Anthropic. Claude 3.5 sonnet. https://www.anthropic.com/news/claude-3-5-sonnet, 2024.

Anthropic. Claude 3.7 sonnet. https://www.anthropic.com/news/claude-3-7-sonnet, 2025.

Guangsheng Bao, Hongbo Zhang, Linyi Yang, Cunxiang Wang, and Yue Zhang. Llms with chain-of-thought are
non-causal reasoners. arXiv preprint arXiv:2402.16048, 2024.

Oliver Bentham, Nathan Stringham, and Ana Marasović. Chain-of-thought unfaithfulness as disguised accuracy,
2024. URL https://arxiv.org/abs/2402.14897.

Hyungjoo Chae, Yeonghyeon Kim, Seungone Kim, Kai Tzu-iunn Ong, Beong-woo Kwak, Moohyeon Kim,
Seonghwan Kim, Taeyoon Kwon, Jiwan Chung, Youngjae Yu, et al. Language models as compilers:
Simulating pseudocode execution improves algorithmic reasoning in language models. arXiv preprint
arXiv:2404.02575, 2024.

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu, Yuhang Zhou,
Te Gao, and Wangxiang Che. Towards reasoning era: A survey of long chain-of-thought for reasoning large
language models. arXiv preprint arXiv:2503.09567, 2025a.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompting: Disentangling
computation from reasoning for numerical reasoning tasks. arXiv preprint arXiv:2211.12588, 2022.

Yanda Chen, Joe Benton, Ansh Radhakrishnan, Jonathan Uesato, Carson Denison, John Schulman, Arushi
Somani, Peter Hase, Misha Wagner, Fabien Roger, et al. Reasoning models don’t always say what they think.
arXiv preprint arXiv:2505.05410, 2025b.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert,
Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Cassandra A Cohen and William W Cohen. Watch your steps: Observable and modular chains of thought. arXiv
preprint arXiv:2409.15359, 2024.

ContactDoctor. Bio-medical: A high-performance biomedical language model.
https://huggingface.co/ContactDoctor/Bio-Medical-Llama-3-8B, 2024.

Noura Dridi and Melita Hadzagic. Akaike and Bayesian information criteria for hidden Markov models. IEEE
Signal processing letters, 26(2):302–306, 2018.

Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and Jun
Wang. Alphazero-like tree-search can guide large language model decoding and training. arXiv preprint
arXiv:2309.17179, 2023.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and Graham
Neubig. Pal: Program-aided language models. In International Conference on Machine Learning, pp.
10764–10799. PMLR, 2023.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning.
arXiv preprint arXiv:2501.12948, 2025.

Chengsong Huang, Langlin Huang, Jixuan Leng, Jiacheng Liu, and Jiaxin Huang. Efficient test-time scaling via
self-calibration. arXiv preprint arXiv:2503.00031, 2025.

10

https://anonymous.4open.science/r/ICLR2026-DCAC
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://arxiv.org/abs/2402.14897

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Alon Jacovi and Yoav Goldberg. Towards faithfully interpretable NLP systems: How should we define and
evaluate faithfulness? In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 4198–4205, Online,
July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.386. URL https:
//aclanthology.org/2020.acl-main.386.

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What disease does this
patient have. A Large-scale Open Domain Question Answering Dataset from Medical Exams. arXiv [cs. CL],
2020.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William Cohen, and Xinghua Lu. Pubmedqa: A dataset for
biomedical research question answering. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pp. 2567–2577, 2019.

Subbarao Kambhampati, Kaya Stechly, and Karthik Valmeekam. (how) do reasoning models reason? Annals of
the New York Academy of Sciences, 2025.

Nikhil Khandekar, Qiao Jin, Guangzhi Xiong, Soren Dunn, Serina Applebaum, Zain Anwar, Maame Sarfo-
Gyamfi, Conrad Safranek, Abid Anwar, Andrew Zhang, et al. Medcalc-bench: Evaluating large language
models for medical calculations. Advances in Neural Information Processing Systems, 37:84730–84745,
2024.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European conference on machine
learning, pp. 282–293. Springer, 2006.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli, Shariq
Iqbal, Colton Bishop, Rebecca Roelofs, et al. Training language models to self-correct via reinforcement
learning. arXiv preprint arXiv:2409.12917, 2024.

Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xiangru Peng, and Jiaya Jia. Step-dpo: Step-wise
preference optimization for long-chain reasoning of llms. arXiv preprint arXiv:2406.18629, 2024.

Tamera Lanham, Anna Chen, Ansh Radhakrishnan, Benoit Steiner, Carson Denison, Danny Hernandez, Dustin
Li, Esin Durmus, Evan Hubinger, Jackson Kernion, et al. Measuring faithfulness in chain-of-thought reasoning.
arXiv preprint arXiv:2307.13702, 2023.

Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen, Karol Hausman, Dorsa Sadigh, Sergey Levine, Li Fei-Fei,
Fei Xia, and Brian Ichter. Chain of code: Reasoning with a language model-augmented code emulator. arXiv
preprint arXiv:2312.04474, 2023.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan Leike, John
Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth International Conference
on Learning Representations, 2023.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human falsehoods.
arXiv preprint arXiv:2109.07958, 2021.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min Lin.
Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783, 2025.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki, and Chris
Callison-Burch. Faithful chain-of-thought reasoning, 2023. URL https://arxiv.org/abs/2301.13379.

OpenAI. Learning to reason with llms, 2024. URL https://openai.com/index/
learning-to-reason-with-llms/.

Bhargavi Paranjape, Scott Lundberg, Sameer Singh, Hannaneh Hajishirzi, Luke Zettlemoyer, and Marco Tulio
Ribeiro. Art: Automatic multi-step reasoning and tool-use for large language models. arXiv preprint
arXiv:2303.09014, 2023.

Letitia Parcalabescu and Anette Frank. On measuring faithfulness or self-consistency of natural language
explanations, 2024. URL https://arxiv.org/abs/2311.07466.

Debjit Paul, Robert West, Antoine Bosselut, and Boi Faltings. Making reasoning matter: Measuring and
improving faithfulness of chain-of-thought reasoning. arXiv preprint arXiv:2402.13950, 2024.

Tadeusz Pietraszek. Optimizing abstaining classifiers using roc analysis. In Proceedings of the 22nd international
conference on Machine learning, pp. 665–672, 2005.

11

https://aclanthology.org/2020.acl-main.386
https://aclanthology.org/2020.acl-main.386
https://arxiv.org/abs/2301.13379
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://arxiv.org/abs/2311.07466

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Qwen. Qwq: Reflect deeply on the boundaries of the unknown, 2024. URL https://qwenlm.github.io/
blog/qwq-32b-preview/.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani, Julian
Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In First Conference
on Language Modeling, 2024.

Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis of chain-of-
thought. arXiv preprint arXiv:2210.01240, 2022.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang,
YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models.
arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng, Haibin Lin,
and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint arXiv:2409.19256, 2024.

Wangtao Sun, Chenxiang Zhang, XueYou Zhang, Xuanqing Yu, Ziyang Huang, Pei Chen, Haotian Xu, Shizhu
He, Jun Zhao, and Kang Liu. Beyond instruction following: Evaluating inferential rule following of large
language models. arXiv preprint arXiv:2407.08440, 2024a.

Zhiqing Sun, Longhui Yu, Yikang Shen, Weiyang Liu, Yiming Yang, Sean Welleck, and Chuang Gan. Easy-
to-hard generalization: Scalable alignment beyond human supervision. arXiv preprint arXiv:2403.09472,
2024b.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung, Aakanksha
Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks and whether chain-of-
thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question answering
challenge targeting commonsense knowledge. arXiv preprint arXiv:1811.00937, 2018.

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry without human
demonstrations. Nature, 625(7995):476–482, 2024.

Miles Turpin, Julian Michael, Ethan Perez, and Samuel Bowman. Language models don’t always say what they
think: unfaithful explanations in chain-of-thought prompting. Advances in Neural Information Processing
Systems, 36, 2024.

Scott Viteri, Max Lamparth, Peter Chatain, and Clark Barrett. Markovian agents for truthful language modeling.
arXiv preprint arXiv:2404.18988, 2024.

Jun Wang. A tutorial on llm reasoning: Relevant methods behind chatgpt o1. arXiv preprint arXiv:2502.10867,
2025.

Junlin Wang, Shang Zhu, Jon Saad-Falcon, Ben Athiwaratkun, Qingyang Wu, Jue Wang, Shuaiwen Leon Song,
Ce Zhang, Bhuwan Dhingra, and James Zou. Think deep, think fast: Investigating efficiency of verifier-free
inference-time-scaling methods. arXiv preprint arXiv:2504.14047, 2025.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Y Wu, and Zhifang Sui.
Math-shepherd: A label-free step-by-step verifier for llms in mathematical reasoning. arXiv preprint
arXiv:2312.08935, 2023.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. Self-consistency improves chain of thought reasoning in language models. arXiv preprint
arXiv:2203.11171, 2022.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming Ren, Aaran
Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-task language
understanding benchmark. arXiv preprint arXiv:2406.01574, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information
processing systems, 35:24824–24837, 2022.

Nathaniel Weir, Muhammad Khalifa, Linlu Qiu, Orion Weller, and Peter Clark. Learning to reason via program
generation, emulation, and search. arXiv preprint arXiv:2405.16337, 2024.

12

https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Huajian Xin, ZZ Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu, Liyue Zhang, Xuan
Lu, Qiushi Du, et al. Deepseek-prover-v1. 5: Harnessing proof assistant feedback for reinforcement learning
and monte-carlo tree search. arXiv preprint arXiv:2408.08152, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint arXiv:2412.15115, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen
Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of
thoughts: Deliberate problem solving with large language models. Advances in neural information processing
systems, 36:11809–11822, 2023.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong Liu,
Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at scale. arXiv preprint
arXiv:2503.14476, 2025.

Yufeng Zhang, Xuepeng Wang, Lingxiang Wu, and Jinqiao Wang. Enhancing chain of thought prompting in large
language models via reasoning patterns. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 39, pp. 25985–25993, 2025.

Ben Zhou, Sarthak Jain, Yi Zhang, Qiang Ning, Shuai Wang, Yassine Benajiba, and Dan Roth. Self-supervised
analogical learning using language models. arXiv preprint arXiv:2502.00996, 2025.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A LIMITATIONS

We demonstrate SSRMs’ effectiveness on Qwen2.5-7B and Llama3.1-8B. Experiments with different
architectures and larger scales could help clarify the generalizability of the technique.

While symbolic audits provide a novel mechanism for monitoring behavior of LLMs, they can only
capture some aspects of intended behavior. If audit coverage is incomplete, a model might pass all
audits while following a logically incorrect reasoning process. (This limitation is analogous to the use
of unit tests in software development, where test coverage is often incomplete). Additionally, models
can execute individual steps incorrectly—a failure mode that reasoning audits typically fail to detect.

Typicality audits identify reasoning traces that are unusual, which need not be correlated with traces
that are incorrect (e.g., if a model has a high error rate, highly typical traces might still be incorrect.)

In this study, we conducted only preliminary experiments integrating test-time-scaling with audits.
Further investigations into effectively combining audits with test-time-scaling methods—such as
audit-based self-consistency—to show their utility during inference time are left for future work.

B BROADER IMPACTS

This paper introduces Semi-Structured Reasoning Models (SSRMs) and presents two types of audits
to identify probable reasoning errors in the semi-structured reasoning traces: (1) hand-crafted or
LLM-generated structured audits and (2) probabilistic model-based typicality audits. Our goal is to
detect undesirable reasoning shortcuts for LLMs while maintaining good downstream performance.

C BACKGROUND: PROGRAM TRACE PROMPTING

Program Trace Prompting (PTP) Cohen & Cohen (2024) was proposed to make CoT explanations
easier to analyze while preserving the generality and flexibility. In prior PTP work, existing few-
shot CoT demonstrations were manually reformatted by wrapping them in a semi-formal syntax
resembling a program trace. Functionally, the trace format (1) identifies and names steps, (2) defines
the input/output behavior of steps, and (3) replaces every CoT explanation in a demonstration with a
chain of formalized steps. The named steps were also documented with a Python “stub” that specifies
type signatures for the inputs and outputs, and gives a short summary of the semantics of a step in a
Python “docstring”. Additionally, a top-level stub was created that specifies the task and contains, in
its docstring, each of the sample traces. The resulting structure is referred to as a “partial program”:
it contains no executable code or pseudo-code, just documentation and a few high-level traces.

The partial program is then passed to an LLM along with a new program input, and the LLM is
asked to predict a trace. An example of a partial program (with one demonstration, lightly edited for
brevity) and the PTP system prompt is shown in Figure 5.

PTP performs comparably to traditional CoT prompting when CoT demonstrations are mapped
directly to traces. A limitation of PTP, however, is that constructing the partial program requires the
prompt designer to provide more explicit guidance on how to decompose a problem. SSRMs address
this issue by using a fine-tuned model to generate partial programs as well as traces, thereby reducing
the associated manual overhead.

D AUDIT-GUIDED QUALITATIVE ANALYSIS OF REASONING TRACES

D.1 AUDITS IMPLEMENTATION

The output of SSRMs includes both the partial program and the trace, which appear as a series of
function calls, as shown in Figure 6. These function calls may be nested. Before running the audits,
each completed step is converted into a structured object that contains the following fields:

These function calls might be nested. Before audits are run, each completed step is converted to a
structured object which always contains these fields.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

PTP partial program with one CoT demo encoded as a trace

def analyze_sentence(sentence: str) -> tuple[str, str, str]:
"""From a sentence about sports, extract the name of a player, an
action, and an event. The event will be an empty string if no event
is mentioned in the sentence.
"""
...

def sport_for(x: str)-> str:
"""Return the name of the sport associated with a player, action, or event.
"""
...

def consistent_sports(sport1: str, sport2: str) -> bool:
"""Compare two descriptions of sports, and determine if they are consistent.

Descriptions are consistent if they are the same, or if one is more
general than the other.
"""
...

def sports_understanding(sentence):
"""Determine if a sentence about sports is plausible or not.

>>> sports_understanding('Santi Cazorla scored a touchdown.')
Calling analyze_sentence('Santi Cazorla scored a touchdown.')...
...analyze_sentence returned ('Santi Cazorla', 'scored a touchdown.', '')
Calling sport_for('Santi Cazorla')...
...sport_for returned 'soccer'
Calling sport_for('scored a touchdown.')...
...sport_for returned 'American football and rugby'
Calling consistent_sports('soccer', 'American football and rugby')...
...consistent_sports returned False
Final answer: no
False
"""
...

System Prompt Template for PTP

Consider the program fragment below. This program fragment is incomplete,
with key parts of the implementation hidden by replacing them
with "..." markers.

PROGRAM:
```python
{{PARTIAL_PROGRAM}}
```

QUESTION: Predict what the output of the program above will be, given
the input shown below. Respond with the FULL program output, and ONLY
the expected program output: you will be PENALIZED if you introduce
any additional explanatory text.

>>> {{TASK_NAME}}({{TASK_INPUT}})

Figure 5: PTP partial program with one CoT demo encoded as traces (Top). System Prompt (Bottom).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

SSRMs Partial Program

<partial_programs>

. . . omitted . . .

@traced
def analyze_input(input_str: str) -> tuple[str, list[str], list[str]]:

"""Accepts an input and extracts the question being asked, a list of rules to follow to answer
the question, and the patient note.↪→

"""
...

@traced
def get_data(formula: str, patient_note: str) -> list[str]:

"""Accepts a formula and a patient note, and extracts datapoints from the patient note required
to evaluate the rule.↪→

"""
...

. . . omitted . . .

</partial_programs>

SSRMs output trace

. . . omitted . . .

<program_trace>
13 Calling get_data('Age: <50 years = 0 points, 50-59 years = +1 point, 60-69 years = +2 points,

70-79 years = +3 points, >=80 years = +4 points', ['79-year-old gentleman'])...↪→
14 ...get_data returned '79 years old'
15 Calling eval_rule('Age: <50 years = 0 points, 50-59

years = +1 point, 60-69 years = +2 points, 70-79 years = +3 points, >=80 years = +4 points', '79 years
old')...↪→

16 ...eval_rule returned 3

. . . omitted . . .

</program_trace>

Figure 6: SSRMs partial program (Top). SSRMs output trace (Bottom).

An Audit Example

class MedCalcRulesAuditor(audit.Auditor):

. . . omitted . . .

def test_each_rule_applied(self):
df = self.df
there is one step that extracts the rules to apply

_, rules, _ = df.query('step_fn == "analyze_input"').output.iloc[0]
check that there is a step to extract data for each rule
get_data_steps = df[df.step_fn=='get_data']
self.assertTrue(

msg='one "get_data" step per rule',
expr=(len(get_data_steps)==len(rules)))

check that there is a step to evaluate each rule

eval_rule_steps = df[df.step_fn=='eval_rule']
self.assertTrue(

msg='one "eval_rule" step per rule',
expr=(len(eval_rule_steps)==num_rules))

check that the first inputs of get_data are all rules,
and that every rule is used as input to get_data at least once
self.assertTrue(

msg='"get_data" called on all rules',
expr=(set(rules) == set(get_data_steps.input1)))

Figure 7: An audit exmaple for MedCalcRules.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

• step fn: the name of the “function” being “traced”, e.g., “eval rule” for the second
function call in the figure.

• start line: the first line of the step, e.g., 15.

• end line: the last line, e.g. 16. (If there are nested calls in between, the end line and start
lines can be far apart).

• str inputs: a string with the tuple of function inputs, e.g., “(’Age: <50 years = 0
points, 50-59 years = +1 point, 60-69 years = +2 points, 70-79 years = +3
points, >=80 years = +4 points’, ’79 years old’)

• str output: analogous, e.g., “3”.

If the inputs can be parsed as a Python tuple, the following additional fields are added:

• input: a Python tuple of the inputs.

• input1, input2, ...: the Python values of the individual inputs.

• len input: the length of the input tuple.

• output: the parsed Python value of the output.

• output1, output2, ...: when output is a tuple, the Python values of the individual
outputs.

Finally, a Pandas DataFrame is constructed from all structured objects, with NaN used for missing
fields (e.g., input2 is absent for steps with only one input, and output is absent when str output
cannot be parsed as Python). The DSL for audits makes use of these DataFrames, combining
DataFrame operations with a unit-test-like syntax. An example audit is provided in Figure 7.

D.2 EXAMPLE OF A TRACE WITH REASONING FLAWS

To illustrate how audits can be useful, we randomly selected a problem from the MedCalcV2 Rules
dataset (id #22) for which SSRM’s output failed several audits. This problem asks the model to
compute the Pneumonia Severity Index (PSI) for a 25-year-old male patient, given the patient note
(which is about 150 words long) and 20 rules. (See Figure 8 (Top).)

In the resulting reasoning trace, only 19 rules of the 20 rules are called. For each of these 19 rules, an
appropriate data extraction step is called and a result is returned, but the final score is computed by
summing only 17 of the returned scores. Consequently, this trace fails r audits.6

• one "get data" step per rule and one "eval rule" step per rule both fail because
neither a get data nor eval rule step was called for the 20th rule.

• all outputs summed fails because some rule outputs are not included in the sum for the
final score.

• get data called on all rules fails because the 20th rule was never used as an argument
to get data.

D.3 DISTINCT PATTERNS OF AUDIT FAILURES INDICATE DISTINCT REASONING FLAWS

The example in Figure 8 is typical of the MedCalcV2 Rules dataset: many audits are correlated, so
examples that fail one often fail several others. In particular, the audits one "get data" step per
rule, one "eval rule" step per rule, and get data called on all rules often fail together.
Table 7 reports the most common combinations of failed audits and summarizes the reasoning flaws
typically associated with each combination (as determined by manual inspection). In brief, one
recurring issue is the failure to check every rule, which we had noted in preliminary experiments with
prompted models; but failure to accurately collect and sum all the results of rule evaluations are even
more common for SSRMs.

6There is also at least one flaw in executing a single step, which we did not audit for this task: the (incorrectly)
selected outputs are also incorrectly summed.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Example of a flawed reasoning trace

Original input:
A 25-year-old male patient presents at the clinic for a routine physical examination. The patient

describes a recent episode of fever and altered mental state. He denies any past history of heart
disease, renal disease, cerebrovascular disease, liver disease, or cancer. The patient is currently
unemployed and lives alone. Upon physical examination, the patient has a measured body temperature of
34 degrees celsisus, a heart rate of 101 beats per minute, and a respiratory rate of 32 breaths per
minute. His blood pressure measures at 123/85 mm Hg. Laboratory findings show a hematocrit level of
35, a blood glucose level of 15 mmol/L, and a BUN of 33.21 mg/dL. His sodium level is moderately low
at 123 mmol/L. Arterial blood gas results show a PaO2 of 67 mm Hg and a slightly acidotic pH of 7.17.
The patient's chest X-ray shows no signs of pleural effusion.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

What is the patient's Pneumonia Severity Index (PSI)?

Calculate PSI Score: Pneumonia Severity Index for CAP by summing the results of the following rules:
Age: Enter age in years (age score will be equal to age in years)
Sex: Female = -10 points, Male = 0 points
Nursing home resident: No = 0 points, Yes = +10 points
Neoplastic disease: No = 0 points, Yes = +30 points

. . . rest of rules omitted . . .

Reasoning trace:
Calling analyze_input(...

rest of input omitted for brevity . . .

...analyze_input returned (
"What is the patient's Pneumonia Severity Index (PSI)?",
['Age: Enter age in years (age score will be equal to age in years)',
'Sex: Female = -10 points, Male = 0 points',

. . . rest of rules omitted from return value . . .

])
Calling get_data('Age: Enter age in years (age score will be equal to age in years)', ['25-year-old'])...
...get_data returned '25 years old'
Calling eval_rule('Age: Enter age in years (age score will be equal to age in years)', '25 years old')...
...eval_rule returned 25
Calling get_data('Sex: Female = -10 points, Male = 0 points', ['25-year-old male'])...
...get_data returned 'male'
Calling eval_rule('Sex: Female = -10 points, Male = 0 points', 'male')...
...eval_rule returned 0
Calling get_data('Nursing home resident: No = 0 points, Yes = +10 points', ['lives alone'])...
...get_data returned 'no'
Calling eval_rule('Nursing home resident: No = 0 points, Yes = +10 points', 'no')...
...eval_rule returned 0

. . . omitted . . .

Calling get_data('Partial pressure of oxygen <60 mmHg or <8 kPa: No = 0 points, Yes = +10 points', ['PaO2
of 67 mm Hg'])...↪→

...get_data returned 'no'
Calling eval_rule('Partial pressure of oxygen <60 mmHg or <8 kPa: No = 0 points, Yes = +10 points',

'no')...↪→
...eval_rule returned 0
Calling sum_rules([25, 0, 0, 0, 0, 0, 0, 0, 20, 20, 0, 15, 0, 30, 20, 20, 0])...
...sum_rules returned 130

Figure 8: Example of a flawed reasoning trace.

Set of failed audits N Ncorrect Acc Comments
(no failures) 266 135 50.75%

all outputs summed 51 18 35.9% Typically the score for 1–2 of the rules
evaluated are not included in the final
summation.

"get data" called on all
rules; one \"eval rule" step
per rule; one "get data" step
per rule

26 9 34.6% Typically one or more rules extracted
from the input are not evaluated.

(all audits above fail) 22 2 9.1% Similar to the example of Section D.2.

Table 7: More detailed analysis of the most common patterns of failed audits.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A more detailed qualitative analysis of the reasoning patterns reveals a more nuanced picture.
Additional insight into unusual reasoning behaviors can be gained either by examining atypical
combinations of audit failures or by instrumenting individual audits further.

As an example of the first type of analysis, only one trace (#291) fails exactly the two audits all
outputs summed and one "eval rule" step per rule. Manual inspection shows an unusual
(but correct) reasoning pattern. For this example, the data are extracted for one particular rule is
a common-separated list of three conditions relevant to the rule from the patient node. The model
evaluates the rule three times on the same extraction, obtaining the correct total score for that rule.
The final output is also correct. However, we argue that in a consequential task, detecting anomalous
reasoning patterns is nearly as important as detecting errors, if the end goal is a reliable system with
predictable behavior.

As an example of the second type of analysis, we instrumented the all outputs summed audit to
report additional information. By tracking the total number of extracted rules, the number of rules
scored, and the number of values summed, we observed that most of the time (more than 70%) only
one or two rules were missed from the summation. In many of these cases, the omitted value was
zero; thus, in more than 25% of the cases, the sum of the extracted values was numerically correct
even though not all extracted values were included.

More interestingly, this instrumentation also revealed additional unusual reasoning patterns, in this
case incorrect ones. In 7 of the failures for this audit, the number of values summed was greater than
the number of rule evaluations. In most of these cases, the issue was again related to the problem of
rules that match in multiple ways, as above: on these cases, the score reported for the rule is indicated
by reporting a string containing the result of each match, as well as the final score, e.g., by returning
“1 + 1 = 2” as the result of the rule evaluation.

E TRAINING DETAILS

Detailed hyperparameters configurations for both Stage 1 (SFT) and Stage 2 (RLVR) are provided in
Table 8. We provide the detailed settings in subsequent subsections to support reproducibility.

Table 8: Hyperparameter settings for supervised fine-tuning (SFT) and reinforcement learning with
verifiable rewards (RLVR). Both the semi-structured reasoning and CoT baseline settings use the
same set of hyperparameters. †: max sequence length for SFT and max generation length for RLVR.

Hyperparameter SFT RLVR

Optimizer AdamW AdamW
Actor Learning Rate 1e-5 1e-6
Weight Decay 1e-4 0.1
Warmup Ratio 0.1 0.01
Prompt Length - 2048
Max Length† 16384 4096
Loss Agg Mode - token mean
Grad Clip 0.2 1.0
Batch Size 128 256
MiniBatch Size - 256 (On-Policy)
Num Responses Per Prompt - 8
Temperature - 1.0
Sequence Packing False True
Entropy Coeff - 0.0
KL Loss Coeff - 0.0
Epochs 5 10

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

E.1 SUPERVISED FINE-TUNING (SFT) DATA

We primarily follow the PTP approach (Cohen & Cohen, 2024) for generating semi-structured traces.
A limitation of PTP, however, is that it requires manually written task-specific partial programs. For
our experiments, we reuse the partial programs provided for BBH and manually construct those for
GSM8K, MATH500, and MedCalcV2.

Beyond validating the final accuracy, we also perform a simple formatting check to remove samples
whose partial programs or traces cannot be parsed. For the final dataset, we apply downsampling to
balance the number of samples across tasks. Table 9 presents the distribution of SFT data for SSRMs.

Table 9: Distribution of Semi-Structured SFT data.

Task Count %
BBH 2,727 64.76
GSM8K 393 9.33
Math500 393 9.33
MedCalc Formulas 528 12.54
MedCalc Rules 170 4.04

Total 4,211 100.00

E.2 SUPERVISED FINE-TUNING (SFT) CONFIGURATIONS

Figure 9 presents the system prompt template we used for SSRMs. The same system prompt is used
for both Stage 1 and 2. Figure 10 shows a semi-structured reasoning trace from GSM8K used for
SFT.

System Prompt Template for Semi-Structured Reasoning Models (SSRMs)

A conversation between User and Assistant. The User asks a question, and the Assistant solves it. The
assistant first reasons through the problem by generating high-level partial programs with key parts
hidden using "..." markers. It then simulates programs trace based on the incomplete partial programs.
The partial program must be general enough to solve all instances of the problem type, not just
specific examples. The partial programs and traces are enclosed within <partial_program>
</partial_program> and <program_trace> </program_trace> tags, while the overall reasoning process and
final answer are enclosed within <think> </think> and <answer> </answer> tags, respectively. You
should also wrap your final answer in $\\boxed{{ANSWER}}$ if it is a mathematical expression.

↪→
↪→
↪→
↪→
↪→
↪→
↪→

Format:
<think>
<partial_program>
[Partial Program here]
</partial_program>
<program_trace>
[Program Trace here]
</program_trace>
</think>
<answer>
[Final Answer here]
</answer>

Figure 9: System Prompt Template for Semi-Structured Reasoning Models (SSRMs).

E.3 REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS (RLVR) CONFIGURATIONS

Reward Design. We employ two types of rule-based rewards functions for reinforcement learning:

• Outcome Rewards: The generated response will be assigned a reward of 1 for correct answers
and 0 for incorrect answers. For the MedCalcV2 data, we follow the original proposed protocol
and allow for a range-based evaluation; for the DAPO math data, we use an exact-match criterion.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Semi-Structured Reasoning Trace for GSM8K

<think>
<partial_program>
@traced
def analyze_input(input_str: str) -> tuple[str, ...]:
"""From an input, extract a tuple of individual questions and given values, as well as the final

question to be answered.↪→
"""
...

@traced
def convert_to_equations(input_questions: tuple[str, ...]) -> tuple[str, ...]:
"""Takes a list of questions and converts them to a list of mathematical equations.
"""
...

@traced
def simplify_equation(input_equation: str, given_values: tuple[str, ...]) -> str:
"""Takes an input equation and simplifies it by replacing a variable with the value of the variable as

found in a list of given values if possible or performing algebraic operations if not, returning the
simplified equation.

↪→
↪→
"""
...

</partial_program>

<program_trace>
Calling analyze_input("Two-fifths of the seats in an auditorium that holds 500 people are currently taken.

It was found that 1/10 of the seats are broken. How many seats are still available?")...↪→
...analyze_input returned ('An auditorium holds 500 people.', 'Two-fifths of the seats are currently

taken.', '1/10 of the seats are broken.', 'How many seats are still available?')↪→
Calling convert_to_equations(('An auditorium holds 500 people.', 'Two-fifths of the seats are currently

taken.', '1/10 of the seats are broken.', 'How many seats are still available?'))...↪→
...convert_to_equations returned ('total_seats = 500', 'occupied_seats = total_seats * 2/5',

'broken_seats = total_seats * 1/10', 'available_seats = total_seats - occupied_seats - broken_seats')↪→
Calling simplify_equation('available_seats = total_seats - occupied_seats - broken_seats', ('total_seats

= 500', 'occupied_seats = total_seats * 2/5', 'broken_seats = total_seats * 1/10'))...↪→
...simplify_equation returned 'available_seats = 500 - occupied_seats - broken_seats'
Calling simplify_equation('available_seats = 500 - occupied_seats - broken_seats', ('total_seats = 500',

'occupied_seats = total_seats * 2/5', 'broken_seats = total_seats * 1/10'))...↪→
...simplify_equation returned 'available_seats = 500 - (500 * 2/5) - broken_seats'
Calling simplify_equation('available_seats = 500 - (500 * 2/5) - broken_seats', ('total_seats = 500',

'occupied_seats = total_seats * 2/5', 'broken_seats = total_seats * 1/10'))...↪→
...simplify_equation returned 'available_seats = 500 - 200.0 - broken_seats'
Calling simplify_equation('available_seats = 500 - 200.0 - broken_seats', ('total_seats = 500',

'occupied_seats = total_seats * 2/5', 'broken_seats = total_seats * 1/10'))...↪→
...simplify_equation returned 'available_seats = 500 - 200.0 - (500 * 1/10)'
Calling simplify_equation('available_seats = 500 - 200.0 - (500 * 1/10)', ('total_seats = 500',

'occupied_seats = total_seats * 2/5', 'broken_seats = total_seats * 1/10'))...↪→
...simplify_equation returned 'available_seats = 500 - 200.0 - 50.0'
Calling simplify_equation('available_seats = 500 - 200.0 - 50.0', ('total_seats = 500', 'occupied_seats =

total_seats * 2/5', 'broken_seats = total_seats * 1/10'))...↪→
...simplify_equation returned 'available_seats = 250.0'
</program_trace>
</think>
<answer>
250
</answer>

Figure 10: Semi-Structured Reasoning Trace for GSM8K.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

• Format Rewards: We require all models to format its responses using tags such as <think>
and <answer>. For SSRMs specifically, additionally require the tags <partial program> and
<program trace>, define at least three functions within the <partial program> block, and ex-
clusively invoke these functions within the <program trace> block. Given the regular syntax of
semi-structured reasoning traces, these constraints can be enforced via regular expressions.

F EXPERIMENTAL DETAILS

F.1 MEDCALCBENCH V2

The original MedCalcBench (Khandekar et al., 2024) contains examples from 55 distinct calculators,
including target quantities such as the SIRS score from Figure 1. In the original study, average scores
were reported across all calculators: 37.9% in the zero-shot setting with GPT-4 and 50.9% in the
one-shot setting. In the latter, the demonstration always used the same calculator as the test case,
thereby evaluating the model’s ability to extract data and reproduce an identical reasoning chain.

For our input, we concatenate the patient note and the original question, followed by a concise
definition of the relevant formulas or rules. In the long-context CoT setting (for SSRMs), this
concatenation serves as the sole input. In prompt-based settings, we employ a single two-shot CoT
demonstration involving calculations of the same type (formula or rules), though not necessarily the
same calculator, thereby testing the LLM’s ability to extract data and perform a potentially different
calculation. Therefore, MedCalcV2 scores are not directly comparable to those of MedCalcBench.

We implement two additional changes. First, we remove training samples in the original MedCal-
cBench that overlap with the test data to ensure a clean evaluation. Second, during testing, we
discovered errors in results for the Glasgow Coma Scale Calculator: each ground-truth explanation
duplicates the verbal-response rule and erroneously adds its value twice, leading to incorrect final
scores. We manually correct these errors by deleting the duplicate lines and adjusting the final values
in both the ground-truth explanations and the expected outputs. MedCalcV2 will be made available.

F.2 TYPICALITY AUDIT CONFIGURATION

Results labeled HMM* are obtained via a grid search over hidden-state counts (1, 2, 5, 10) and
n-gram sizes (1, 2, 3, 10, 25, 50), selecting the model with the lowest Bayesian Information Criterion
(BIC) score (Dridi & Hadzagic, 2018). HMM are implemented using the CategoricalHMM class
from hmmlearn, with preprocessing to convert sequences into n-gram representations. Each sequence
is augmented with start and end tokens, an unknown-word token, and padded to a uniform length.
We use the Fisher’s exact test in scipy.stats for statistical significance of proportional differences.

F.3 PROMPT FOR LLM-GENERATED AUDITS

Generated audits are created by prompting Claude-Sonnet-4-20250514 using the following prompt,
replacing the label [TASKNAME] with the name of the task the audits are being generated for.

F.4 ADDITIONAL RESULTS

Table 10 presents the comparison between the prompted Sonnet 3.5 model and a smaller prompted
model, Qwen2.5-7B-Instruct, which is similar to the model we trained. The structured audits reveal
that Qwen2.5-7B-Instruct’s performance diverges significantly from the larger Sonnet model. In
the Formula task, Sonnet 3.5 exhibits no significant reasoning errors, whereas Qwen2.5-7B-Instruct
frequently commits errors in the initial reasoning steps, resulting in substantially poorer outcomes.
In the Rule task, Qwen2.5-7B-Instruct demonstrates a distinct failure mode than Sonnet model: it
generates correctly structured solution traces, but then fails to execute each individual step correctly.

Table 11 shows results with LLM-generated audits on 21 tasks from the BBH benchmark suite. We
report the number of lines of code in the generated audits, and the average number of audits that
are run on each example. As a concise measure of the utility of the audits, we report the smallest
p-value of any audit, as computed in Table 1 (i.e., for the null hypothesis that audit failure is not
associated with incorrect outputs.) A small p-value indicates that some LLM-generated audit does

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Prompt for LLM-Generated Audits

The attached file 'Example Audits' contains examples of audit functions which run on the traced outputs
of functions called mocks. Each audit function tests the output to ensure that the mock has been run
correctly by testing individual parts of the traced output, ensuring that each function the mock
expects has been called, that the correct outputs lead to the correct inputs, and so on.

↪→
↪→
↪→

The attached file 'audit.py' contains the code which runs audit functions. Use this file to reference the
expected structure of the dataframe that audit functions call on.↪→

The attached file 'Audit Targets for [TASKNAME]' contains several traced outputs for a mock function ,
[TASKNAME]. Generate a set of audit functions matching the format and construction of the examples
from 'Example Audits', which will test other traced outputs of the function [TASKNAME]. Your
generated audits should not programmatically generate the messages for success or failure.

↪→
↪→
↪→

Return only the python code for your output, with no extraneous introduction or afterward. Do not encase
your output in backticks. Make sure to include imports and an if-main function.↪→

Figure 11: Prompt for LLM-Generated Audits.

Table 10: Results of applying hand-coded structured audits to prompted models for MedCalcV2
tasks.

− accuracy and difference −
%Failed Failing Passing ∆ p-val description of audit

MedCalcV2 Formulas 1.712 0.000 0.662 0.662 0.162 one ”get data” step
2.055 0.000 0.664 0.664 0.086 one ”insert variables” step

Claude 3.5 3.767 0.091 0.673 0.582 0.033 ”solve formula” output is a number
(65.1% acc) 9.247 0.593 0.657 0.064 0.870 ”solve formula” output is formatted correctly

47.260 0.667 0.636 -0.030 0.852 ”solve formula” math is correct
3.425 0.000 0.296 0.296 0.126 ”solve formula” output is a string
5.479 0.188 0.292 0.104 0.777 ”solve formula” output is a number
7.192 0.381 0.279 -0.102 0.487 ”solve formula” output is formatted correctly

Qwen2.5-7B-Instruct 29.110 0.376 0.249 -0.128 0.140 ”solve formula” math is correct
(28.6% acc) 29.795 0.103 0.365 0.261 0.000 one ”get data” step

30.137 0.102 0.366 0.264 0.000 one ”insert variables” step
33.219 0.165 0.347 0.182 0.015 one ”analyze input” step

MedCalcV2 Rules 5.789 0.182 0.399 0.218 0.181 analyze input returns two values
14.737 0.196 0.420 0.223 0.028 one step per rule with step fn of ”convert units”

Claude 3.5 14.737 0.196 0.420 0.223 0.028 one step per rule with step fn of ”get data”
(38.7% acc) 15.789 0.183 0.425 0.242 0.015 one step per rule with step fn of ”check rule”

17.105 0.169 0.432 0.263 0.005 one step per rule with step fn of ”accumulate score”
1.316 0.400 0.309 -0.091 0.672 one step per rule with step fn of ”get data”
1.579 0.333 0.310 -0.023 1.000 one step per rule with step fn of ”convert units”

Qwen2.5-7B-Instruct 1.579 0.333 0.310 -0.023 1.000 one step per rule with step fn of ”accumulate score”
(31.1% acc) 1.579 0.333 0.310 -0.023 1.000 one step per rule with step fn of ”check rule”

2.632 0.500 0.305 -0.195 0.363 one step with step fn of ”analyze input”
4.737 0.389 0.307 -0.082 0.630 analyze input returns two values

indeed provide information about an “interesting” reasoning failure. Nearly half of the generated
audits have p-values less than 0.05, including all four of the tasks with the highest error rates.

Table 12 shows results of generated structured audits on the same reasoning traces used in Table 4.

F.5 TOKEN USAGE ANALYSIS

Dataset Qwen Unstructured Qwen SSRM
GSM8K 319.78 841.72
Math500 909.27 978.89
MedCalcV2 Formulas 411.80 1778.14
MedCalcV2 Rules 425.70 2260.87
GPQA Diamond 1608.33 1411.29
MedQA 359.25 1065.34

Table 13: Token usage of Qwen SSRM and corre-
sponding unstructured baseline across datasets.

As shown in Table 13, SSRM consumes more
tokens than the unstructured reasoning baselines
on MedCalcV2 Rules and Formulas, whereas
token usage is comparable on MATH500 and
GPQA-Diamond. The higher token consump-
tion primarily results from redundant arguments
and variable referencing, as illustrated in Fig-
ure 2. Developing a more efficient variable ref-
erencing mechanism is left for future work.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 11: Summary of LLM-generated audits on BBH tasks, using a prompted Claude Sonnet 3.5.

Task Task Acc Avg Audits/Example Code Lines Min p-value

geometric shapes 37.89% 14.50 128 < 0.001
formal fallacies 46.31% 10.75 107 < 0.001
causal judgement 57.48% 11.75 88 < 0.001
dyck languages 64.00% 27.00 89 < 0.001
disambiguation qa 82.63% 10.98 93
ruin names 83.16% 10.00 105
penguins in a table 87.21% 11.01 114 < 0.05
multistep arithmetic two 87.89% 12.00 95
snarks 91.53% 85.72 109
date understanding 87.89% 11.33 88
logical deduction three objects 87.89% 10.99 94
movie recommendation 91.05% 13.98 90
reasoning about colored objects 94.21% 14.00 95
word sorting 95.26% 19.82 110 < 0.05
boolean expressions 95.26% 6.09 92 < 0.05
temporal sequences 96.84% 12.98 90
sports understanding 97.37% 7.00 71 < 0.05
hyperbaton 97.89% 7.00 69 < 0.001
tracking shuffled objects 98.95% 17.00 105 < 0.05
object counting 100.00% 9.00 70
web of lies 100.00% 15.00 94

Table 12: LLM-generated structured audits Claude Sonnet 3.5 Prompted Models for MedCalcV2.

− accuracy and difference −
%Failed Failing Passing ∆ p-val description of audit

Formulas 1.71 0.00% 44.60% 44.60% * one get data step
0.34 0.00% 43.99% 43.99% one analyze input step
0.68 0.00% 44.14% 44.14% analyze input returns tuple with 2 elements
2.05 0.00% 44.76% 44.76% * one insert variables step
4.79 35.71% 44.24% 8.53% convert units called on each datapoint
3.42 50.00% 43.62% -6.38% convert units’ second input is a datapoint
0.68 50.00% 43.79% -6.21% convert units’s first input is the formula
0.68 50.00% 43.79% -6.21% insert variables’ first input is the formula
3.08 44.44% 43.82% -0.63% insert variables’ second input is an output of convert units
2.74 37.50% 44.01% 6.51% get data’s inputs match the output of analyze input
0.34 0.00% 43.99% 43.99% solve formula’s input is an output of insert variables

92.81 42.80% 57.14% 14.34% final answer matches last solve formula output

Rules 5.79 18.18% 39.94% 21.76% * analyze input returns tuple with 2 elements
14.74 19.64% 41.98% 22.33% ** get data called for each rule
14.74 19.64% 41.98% 22.33% ** consistent rules across get data steps

1.05 0.00% 39.10% 39.10% convert units inputs are outputs of get data
14.74 19.64% 41.98% 22.33% ** convert units called for each rule
14.74 19.64% 41.98% 22.33% ** consistent rules across convert units steps

2.63 0.00% 39.73% 39.73% ** check rule inputs are outputs of convert units
15.79 18.33% 42.50% 24.17% ** check rule called for each rule
15.79 18.33% 42.50% 24.17% ** consistent rules across check rule steps

0.79 0.00% 38.99% 38.99% accumulate score inputs are outputs of check rule
17.11 16.92% 43.17% 26.25% ** accumulate score called for each rule

F.6 EVALUATION CONFIGURATIONS

We use Lighteval for all evaluations. For non-reasoning models, we report accuracy using greedy
decoding. For reasoning models, we set the temperature to 0.6 and top-p to 0.95. For the AIME24
dataset—where we observe high variance—we sample 32 responses using a temperature of 0.7 for
non-reasoning models, while retaining the configurations for reasoning models, and report Pass@1.

24

https://github.com/huggingface/lighteval

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 14: Comparison of Self-Consistency and Audit-Based Self-Consistency on MedcalcV2 Rule.

Sampling Budget Self-Consistency Audit-Based Self-Consistency Effective Samples

Greedy (Temp = 0) 44.2 44.2 -
Sampling (Temp = 0.7) 44.2 44.2 -
3 46.3 45.3 306 (53.68%)
5 45.3 46.8 522 (54.95%)
7 45.3 45.3 764 (57.44%)
9 45.3 45.3 1002 (58.60%)
15 45.3 44.2 1702 (59.72%)
30 45.2 46.3 3501 (61.42%)
60 44.7 45.8 7071 (62.03%)

F.7 TEST-TIME-SCALING WITH TYPICALITY AUDITS

To investigate the effectiveness of combining test-time-scaling with audits, we apply typicality audits
(HMM*). We perform a grid search using the first half of the generated responses from the benchmark;
to ensure data integrity, we evaluate the model only on the second half. We consider two variants here:
vanilla self-consistency and audit-based self-consistency. Given a sampling budget of k responses
per question, in vanilla self-consistency we sample k times per question and use majority voting to
determine the final answer. In audit-based self-consistency, we divide the model-generated traces into
tertiles: for traces in top tertile we perform no additional sampling, for those in the middle tertile we
sample k − 3 additional times, and for those in the bottom tertile we sample k − 1 additional times.
We report accuracy on the MedCalcV2 Rule tasks, along with the effective number of samples—i.e.,
the actual number generated under the audit-based procedure. For vanilla self-consistency, the total
number of samples is k × n, where n is the number of questions in the corresponding benchmark.

As shown in Table 14, audit-based self-consistency consistently outperforms vanilla self-consistency
given the same per-question sampling budget. More specifically, when k = 5, audit-based self-
consistency outperforms vanilla self-consistency by 1.5 percentage points while using only 54.95% of
the total sampling budget. These preliminary experiments demonstrate the effectiveness of combining
typicality audits with test-time-scaling methods and suggest a promising direction for future research.

25

	Introduction
	Related Work
	Training Methods
	Experiments
	Experimental Results

	Conclusion
	Limitations
	Broader Impacts
	Background: Program Trace Prompting
	Audit-guided qualitative analysis of reasoning traces
	Audits Implementation
	Example of a trace with reasoning flaws
	Distinct patterns of audit failures indicate distinct reasoning flaws

	Training Details
	Supervised Fine-Tuning (SFT) Data
	Supervised Fine-Tuning (SFT) Configurations
	Reinforcement Learning with Verifiable Rewards (RLVR) Configurations

	Experimental Details
	MedCalcBench V2
	Typicality Audit Configuration
	Prompt for LLM-Generated Audits
	Additional results
	Token Usage Analysis
	Evaluation Configurations
	Test-Time-Scaling with Typicality Audits

