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Abstract

The assumption that response and predictor be-

long to the same statistical unit may be violated

in practice. Unbiased estimation and recovery

of true label ordering based on unlabeled data

are challenging tasks and have attracted increas-

ing attentions in the recent literature. In this

paper, we present a relatively complete analy-

sis of label permutation problem for the gener-

alized linear model with multivariate responses.

The theory is established under different scenar-

ios, with knowledge of true parameters, with par-

tial knowledge of underlying label permutation

matrix and without any knowledge. Our results

remove the stringent conditions required by the

current literature and are further extended to the

missing observation setting which has never been

considered in the field of label permutation prob-

lem. On computational side, we propose two

methods, “maximum likelihood estimation” al-

gorithm and “two-step estimation” algorithm, to

accommodate for different settings. When the

proportion of permuted labels is moderate, both

methods work effectively. Multiple numerical ex-

periments are provided and corroborate our theo-

retical findings.

1. Introduction

A key assumption in regression problems is that response-

predictor pairs correspond to the same statistical unit.

In practice, this assumption may be violated when dif-

ferent subsets of variables are collected asynchronously

and are merged together with certain label disagreements.

That is, responses and predictors may not be perfectly

paired together so that the statistical inferences based

on such label-contaminated data sets could be inaccu-
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rate and biased. Research on the unlabeled problem has

a long history and can be traced back to 1970s under

the name “broken sample problem” (DeGroot et al., 1971;

Goel, 1975; DeGroot and Goel, 1976; 1980; Chan and Loh,

2001; Bai and Hsing, 2005; Slawski et al., 2020). In recent

years, we have witnessed a renaissance of this problem due

to its wide applications, such as data integration, privacy

protection, computer vision, robotics, sensor networks,

etc. See Unnikrishnan et al. (2015); Pananjady et al. (2018;

2017); Slawski and Ben-David (2019); Zhang et al. (2019);

Slawski et al. (2020); Zhang et al. (2022); Zhang and Li

(2023a) and the references therein for more explanations.

Important applications of label permutation include linkage

record, data de-anonymization, and header-free communi-

cation. In linkage record (Newcombe and Kennedy, 1962;

Fellegi and Sunter, 1969), people would like to integrate

multiple databases, where each contains different pieces of

information about the same identity, into one comprehen-

sive database. In this process, the biggest challenge is how

to find the matching across different databases. For data de-

anonymization (Nazarov et al., 2018), the task is to identify

the labels, which aims to preserve privacy, with public data.

It can be seen as the inverse problem of privacy protection.

For the header-free communication (Pananjady et al., 2017;

Shi and Shi, 2019), we have a sensor network where the

sensor identity is omitted during communication to reduce

the transmission cost and latency. In this scenario, recon-

struction of signal involves recovering the unknown corre-

spondence.

In the literature, for the sake of simplicity, linear mod-

els are often considered for studying the label permuta-

tion problem. However, the linear model assumption may

be violated when the error distribution is skewed or heavy

tailed. Additionally, linear models cannot capture the struc-

ture of count data which is another popular data type

and is becoming increasingly ubiquitous (e.g. survival

analysis (Fleming and Harrington, 2011), online stream-

ing services (Cugola and Margara, 2012), educational test-

ing (Templin and Henson, 2010), etc). With these in mind,

in this paper, we specifically adopt the formulation of gen-

eralized linear model (GLM) to take care of multivariate
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non-Gaussian responses. The problem is formulated as,

Y = Π♯Y ♯, (1)

where Y ♯ is the response matrix when the data are labeled

correctly. For each entry of Y ♯, Y ♯[i, l] admits the density

fil(y) = exp{yλil − ψ(λil) + c(y)}

for i ∈ [n] and l ∈ [m] with λil = xTi b
♯
l . Here, n is

the number of units/individuals, m is the number of ob-

servations for each unit/individual, λil refers to the natu-

ral parameter. c(y) is a nuisance function free of parame-

ter. (E.g. c(y) = exp{−y2/2}/
√
2π for standard normal

density; c(y) = log(y!) for Poisson density.) Unobserved

Π♯ ∈ R
n×n denotes an underlying row permutation ma-

trix. In other words, we only observe the response matrix

up to certain label permutations. X := (xi) ∈ R
n×p rep-

resents the covariate/design matrix which is fully observed;

B♯ := (b♯l ) ∈ R
p×m is the underlying true parameter co-

efficient matrix, which may be unknown. Our task is to re-

cover the label permutation matrix Π♯ based on permuted

data Y and design matrix X .

Related work. There is a rapidly growing body of lit-

erature on regression problems with unknown label per-

mutation, starting from Unnikrishnan et al. (2015; 2018);

Pananjady et al. (2018). Paper (Pananjady et al., 2018)

presents necessary and sufficient conditions for permu-

tation recovery for linear models with Gaussian de-

sign. Extensions to multivariate linear models are con-

sidered in Pananjady et al. (2017); Zhang et al. (2019);

Zhang and Li (2020); Zhang et al. (2022); Zhang and Li

(2023a). The papers (Abid et al., 2017; Hsu et al., 2017)

show that consistent estimation of the regression param-

eter is impossible without substantial additional assump-

tions. Tsakiris et al. (2018); Tsakiris (2018) have stud-

ied important theoretical aspects such as well-posedness

from an algebraic perspective, and have also put forth

practical computational schemes such as a branch-and-

bound algorithm (Emiya et al., 2014) and concave maxi-

mization (Peng and Tsakiris, 2020). An approximate EM

scheme with a Markov-Chain-Monte-Carlo (MCMC) ap-

proximation of the E-step is discussed in Abid and Zou

(2018). Additionally, approaches to linear and multivari-

ate linear regression with sparsely mismatched data are

studied in Slawski and Ben-David (2019); Slawski et al.

(2020; 2021; 2019). A tight analyses on sparse re-

gression problem is provided in Zhang and Li (2021;

2023b). Nevertheless, on the other hand, a rela-

tively small amount of papers have considered regres-

sion with unlabeled/permuted data outside the standard

linear model. The topics of those papers include spher-

ical regression (Shi et al., 2020), univariate isotonic re-

gression and statistical seriation (Carpentier and Schlueter,

2016; Rigollet and Weed, 2019; Flammarion et al., 2019;

Ma et al., 2020; Balabdaoui et al., 2021), and binary regres-

sion (Wang et al., 2018).

The most related work is Wang et al. (2020), where they

consider a generalized linear regression models within ex-

ponential family. The difference is that they only consider

the case m = 1 and the corresponding theoretical analy-

ses are established when the true parameter B♯ is assumed

to be known. The case m > 1 should be of independent

interest for the following reasons. First, in the context of

record linkage, it is natural to assume that both predictor

matrix X and response Y are multi-dimensional. Second,

the availability of multiple responses affected by the same

permutation is expected to facilitate estimation. Stronger

assumptions are required for label recovery when m = 1,

while such assumptions can be relaxed when m grows as

n grows. In addition, the estimation problem is more chal-

lenging when the true parameter B♯ is unknown. The the-

ory under unknown parameter settings is waiting to be de-

veloped. To be reader-friendly, Table 1 summarizes the key

differences of our setting from the existing ones.

Linear model GLM
Uni-dim Pananjady et al. (2018)

Wang et al. (2020)
(m = 1) Unnikrishnan et al. (2018)

Multi-dim
Zhang et al. (2019)

OursZhang and Li (2020)
(m > 1) Slawski et al. (2020)

Table 1. A categorization summary of literature review.

Contributions. In this paper, we study the label permu-

tation problem under generalized linear model framework

which is different from the classical linear model in the fol-

lowing ways. The response could be discrete instead of con-

tinuous such that the resulting estimator does not admit a

nice closed form. In the linear model, the signal-to-noise ra-

tio (SNR) plays an important role in recovering the underly-

ing labels. In contrast, there is no such unified criteria in the

generalized linear model. The existing work of Wang et al.

2020 for generalized linear model only considers the case

of m = 1. When the regression parameter B is assumed

to be known, the sufficient condition for label permutation

recovery requires min1≤i1 6=i2≤n |ψ′(λi1)−ψ′(λi2)| grows

as n grows. There are no theoretical guarantees under the

situation m > 1 or the situation when regression parameter

B is unknown. In this paper, we bridge this gap and show

the perfect label recovery results under different scenarios.

Moreover, we also consider the situation of missing obser-

vations, i.e., each entry in response Y may be missing com-

pletely at random with certain probability. The correspond-

ing theory has also been established in this paper. Such

missing observation case has not been studied yet in the lit-

erature for unlabeled regression problems. On the technical

side, we also want to point out the analysis of generalized

linear models is harder than that of linear models due to
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the existence of exponential function whose second order

derivative may not be bounded. Additionally, we need to

take special care of analyzing the maximum likelihood esti-

mator which admits no closed form and involves n! differ-

ent possible permutations. The results in current paper add

theoretical values in many applications, e.g., data integra-

tion, privacy protection, etc.

Outline. The rest of paper is organized as follows. Sec-

tion 2 introduces the generalized linear model setting and

useful notations. Section 3 presents the permutation recov-

ery analysis when parameters are assumed to be known. In

Section 4, the main theory is established when parameters

are unknown and underlying permutation matrix is partially

known or unknown. Moreover, we further extend the re-

sults to the missing observation setting in Section 5. The

concluding remarks are given in Section 6. Numerical re-

sults and technical proofs are deferred to appendices.

2. Permutation Problem

2.1. Toy example

An illustrative example is shown in Table 2. On the left side,

it presents the personal information (i.e. salary and age) of

five individuals in the correct label order. On the right side,

information of salary and age is coupled in a wrong label

order due to the privacy reasons or errors caused by merg-

ing data from different sources. Obviously, salary and age

are impossible to follow Gaussian distributions. Our goal

is to recover the true label order given the permuted data

set and under certain model assumptions in the framework

of generalized linear model.

Table 2. A toy example of label permutation problem.

Original Permuted

Label Salary Age Salary (Label) Age (Label)

1 6500 50 6500 (1) 45 (3)

2 4300 30 5000 (3) 30 (2)

3 5000 45 3200 (4) 50 (1)

4 3200 25 4300 (2) 25 (4)

5 8000 55 8000 (5) 55 (5)

2.2. Model

In this paper, we specifically study the generalized linear

model with label permutation. The problem can be written

in the following matrix form,

Y = Π♯Y ♯, (2)

where Y ♯ ∼ f(XB♯), i.e., Y ♯[i, l] ∼ fil(y) with

fil(y) = exp{yλil − ψ(λil) + c(y)}, λil = xTi b
♯
l

for i ∈ [n] and l ∈ [m]. Unobserved Π♯ ∈ R
n×n de-

notes an underlying row permutation matrix (i.e. a bi-

nary matrix with each row/column containing one and only

one non-zero entry), X ∈ R
n×p represents the covari-

ate/design matrix, and B♯ ∈ R
p×m is the underlying true

parameter coefficient matrix. Here ψ(·) is a smooth uni-

variate convex function over R. When we take function

ψ(x) = x2, then the density is a normal density. When

we take ψ(x) = exp{x}, then it becomes a Poisson distri-

bution. Our goal is to recover the underlying permutation

matrix Π♯ given mislabeled observations Y and X .

For a fixed permutation Π, the log-likelihood function af-

ter removing the nuisance parts (the term not related to the

parameters) is given by

L(Π, B) =
n∑

i=1

m∑

l=1

{

Y [i, l](xTΠ(i)bl)− ψ(xTΠ(i)bl)

}

= 〈−ψ(ΠXB) + Y ◦ΠXB〉. (3)

In the rest of paper, we consider to recover Π♯ by maxi-

mizing the above log-likelihood function. When the true

parameter matrix B♯ is known, the estimator will be Π̂ :=
argmaxΠ L(Π, B

♯). When the parameter matrix B is un-

known, the estimator will be

Π̂ := argmax
Π

max
B

L(Π, B).

Notation. We use ♯ to denote the true value and use

a & b (a . b) to represent a ≥ Kb (a ≤ b/K) for some

sufficiently large constant K. ‖a‖ and ‖A‖ represent ℓ2
norm of vector a and spectral norm of matrix A, respec-

tively. For any S , its cardinality is denoted by |S|. For

two positive real numbers a and b, b = O(a), b = Ω(a)
and b = Θ(a) indicate the relations, b ≤ C2a, b ≥ a/C1

and a/C1 ≤ b ≤ C2a, correspondingly, where C1, C2 are

some constants. For random sequences, xn = op(1) means

xn converges to 0 in probability and xn = Op(yn) means

xn/yn is stochastically bounded as n → ∞. For an arbi-

trary univariate function f , f(a) and f(A) are obtained via

applying f to vector a and matrix A elementwisely. We let

ψ′(λ) and ψ′′(λ) be the first and second order derivative

of ψ(λ). Generic constants c, c0, c1, C, cψ may vary from

place to place. A complete notation list is given in Table 3.

3. Recovery Analysis when B♯ is known

3.1. Permutation Recovery

When B♯ is known, we only need to estimate Π by max-

imizing the likelihood function without estimating B. In

other words, the best estimator should be

Π̂ := argmax
Π

L(Π, B♯)

= argmax
Π

〈−ψ(ΠXB♯) + Y ◦ΠXB♯〉.
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Table 3. Notation List.

Notation Definition

n the number of individuals
m the number of observations for each individual
p the number of covariates/predictors
X the covariate/design matrix (n by p)
Y the observed/response matrix (n bym)
yi the response vector for individual i
B the coefficient/parameter matrix

xTi the ith row ofX
bl the lth column ofB
Π the row permutation matrix (n by n)
I the identity of row permutation matrix
Π(i) the permuted label for individual i
d(Π1,Π2) the Hamming distance, i.e.,

∑n
i=1

1{Π1(i) 6= Π2(i)}
λi

(xTi b1, . . . ,x
T
i bm), i.e.,

the vector of linear component for individual i
〈a〉 / 〈A〉 the sum of all entries in vector a / matrixA
a[l] the lth element of vector a
A[i, j] the element of matrixA in ith row and jth column
A[S, :]/A[:,S] the sub-matrix ofA with row/column indices from set S
A1 ◦ A2 the Hadamard product ofA1 andA2

[K] {1, . . . , K} for any positive integer K.
‖x‖ / ‖x‖1 ℓ2-norm / ℓ1-norm for vector x.
|Ω| the cardinality of set Ω.

Successful recovery of label permutation matrix (i.e. Π̂ =
Π♯) means that inequality

〈−ψ(ΠXB♯) + Y ◦ΠXB♯〉
< 〈−ψ(Π♯XB♯) + Y ◦Π♯XB♯〉

holds for any Π 6= Π♯. In other words, we need to iden-

tify certain sufficient conditions to ensure that the follow-

ing probability

P
(
sup
Π6=Π♯

〈−ψ(ΠXB) + Y ◦ΠXB〉

≥ 〈−ψ(Π♯XB) + Y ◦Π♯XB〉
)

is vanishing as both n and m go to infinity in a suitable

asymptotic regime.

Before moving to our main results, we first introduce the

following row-wise quantities.

Information Gap For each pair of individuals i and j, we

define

∆ij := 〈ψ′(λi) ◦ λi − ψ(λi)〉 − 〈ψ′(λi) ◦ λj − ψ(λj)〉,
(4)

where λi = (xTi b
♯
1, . . . ,x

T
i b

♯
m) for i ∈ [n].

Variance For each pair of individuals i and j, we define

vij := 〈ψ′′(λi) ◦ (λi − λj)
2〉

=
m∑

l=1

ψ′′(λi[l])(λi[l]− λj [l])
2, (5)

where ψ′ and ψ′′ are the first and second order derivative

of function ψ.

It can be checked that ∆ij and vij are the expectation and

variance of 〈yi ◦ λi − ψ(λi)〉 − 〈yi ◦ λj − ψ(λj)〉, re-

spectively. We can show that all labels are distinguish-

able when ∆ij is relatively large compared with vij for

all pairs of i and j. In other words, mini,j∈[n] ∆
2
ij/vij

can be viewed as the counterpart of signal-to-noise ratio

(SNR, Pananjady et al. (2018)) in the linear models.

Theorem 3.1. Assume B♯ is known and suppose X , B♯

and Π♯ satisfy that

∆ij &
√

(log n)vij and vij & log n ∀i, j ∈ [n]. (6)

We have the perfect label recovery with high probability,

P (Π̂ 6= Π♯)

≤ n2 max
i6=j

max{exp{−∆2
ij/(4vij)}, exp{−vijc2ψ/4}}

→ 0,

where cψ is a constant depending on function ψ.

When each element of X are i.i.d. sub-Gaussian random

variables, it can be checked that both ∆ij = Θ(m) and

vij = Θ(m). By simplifying requirements in (6), it suffices

to have m & log n to satisfy (6).

3.2. Examples

In this section, multiple examples are given to illustrate the

relationship between m and n (see Section D for more de-

tailed explanations) for perfect permutation recovery. Ex-

amples 3.2 - 3.5 given below describe four different data

generation mechanisms. We can observe that, in those

cases, it is impossible to recover Π♯ when m = 1. Hence,

the sufficient conditions,

min
i1 6=i2

|ψ′(λi1)− ψ′(λi2)| &
√

log n (linear model),

min
i1 6=i2

|
√

ψ′(λi1)−
√

ψ′(λi2)| &
√

log n (poisson model)

given by Wang et al. (2020) are too restrictive.

Example 3.2. Consider the scenario p = 1, thenX = x is a

vector. Assume x[i] ∼ Uniform[a1, a2] for all i and assume

each entry of B♯ is bounded between b1 and b2 (0 < b1 <
b2). Without loss of generality, a1, a2, b1, b2 are all positive.

We define xgap := mini,j xgap,ij := mini,j |x[i] − x[j]|,
which is the minimum difference between any pair, x[i] and

x[j]. It is not hard to see that xgap = Θp(
1
n2 ). Moreover,

when m & n4 log n, it is sufficient for recovery of Π♯.

Example 3.3. Consider the scenario p = log2(n) + 1 and

n = 2n1 (n1 is a positive integer) and the design matrix X
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is complete in the sense that it satisfies

X =










1 0 0 · · · 0
1 1 0 · · · 0
1 0 1 · · · 0
...

...
...

. . .
...

1 1 1 · · · 1










.

For instance, in the educational test-

ing (Templin and Henson, 2010), each of n rows

corresponds to a student with certain skill sets. The

first column represents the intercept and rest of columns

represent p different skills. Entries are binary-valued

indicating the possess (1) or non-possess (0) of certain

skills for different students. Without loss of generality,

we assume that each entry of B♯ is generated from the

standard normal distribution. In this case, it suffices to

require m ≥ log n for correctly estimating Π♯ for any

strictly convex ψ with bounded second derivative.

Example 3.4. Consider the scenario p and n with Csp ≥
n. (Csp is the sth coefficient in polynomial (1 + x)p) with

s being a fixed constant. The design matrix X is sparse

and bounded, that is, X satisfies that ‖xi‖0 ≤ s for any

i ∈ [n] and a1 ≤ |X| ≤ a2. Each entry of matrix B♯

is generated by a standard normal distribution. We also

assume that each row of X has different support. Under

this setting, m & log n suffices for permutation recovery

for any strictly convex ψ with bounded second derivative.

Example 3.5. Consider the scenario that each entry of X
follows N(0, 1/p) independently and entry of B♯ is gener-

ated from N(0, 1) independently. Under this setting, it can

be shown that m & log n suffices for permutation recovery

for any strictly convex ψ with bounded second derivative.

3.3. On the lower bound of m

In this section, we discuss the minimum required number

of m for permutation recovery. In particular, it suffices to

consider the case that B♯ is known, which is an easier task

compared with the case whenB♯ is unknown. To start with,

we recall the following Fano’s lemma (Assouad, 1996).

Lemma 3.6 (Fano’s Lemma). Let X be a random variable

following probability distribution f , where f is from set

{f1, . . . , fr+1} which satisfies that

KL(fi‖fj) ≤ β for all i 6= j.

Let ψ(X) ∈ {1, . . . , r + 1} be an estimate of index of dis-

tribution. Then

inf
ψ

sup
i
P (ψ(X) 6= i) ≥ 1− β + log 2

log r
. (7)

We consider the following n! models. For any permutation

matrix Πk (k = 1, . . . , n!), we define fk as the probability

distribution of Y = ΠkY
♯. Therefore, the KL divergence

between fk1 and fk2 is

KL(fk1‖fk2)
=Efk1 〈Y ◦Λk1 − ψ(Λk1)〉 −Efk1 〈Y ◦Λk2 − ψ(Λk2)〉
:=Λk1(Πk1 , B

♯)− Λk1(Πk2 , B
♯), (8)

where Λk := ΠkXB
♯. We let ∆(X,B♯) :=

maxk1 6=k2{Λk1(Πk1 , B♯)− Λk1(Πk2 , B
♯)}. Therefore, by

Fano’s lemma, we have

inf
Π̂

sup
Πk

P (Π̂ 6= Πk) ≥ 1− ∆(X,B♯) + log 2

log(n!)
.

In particular, if ∆(X,B♯) ≤ Cmn, we consequently have

inf
Π̂

sup
Πk

P (Π̂ 6= Πk) ≥ 1− Cmn+ log 2

n log n
≥ 1/2, (9)

whenm . log n. In other words,m = log n is the minimal

number for perfect permutation recovery up to a multiplica-

tive constant in Example 3.5.

On the other hand, m & log n may not be tight under some

situations. For instance, in Example 1, we can see that there

exist i1 and i2 such that |xi1 − xi2 | is Θ(1/n2). We let

Π1 = I and set Π2(i) = i for i 6= i1, i2 and Π2(i1) = i2
and Π2(i2) = i1. Under such case, we have the following

result.

Corollary 3.7. By the constructions of Π1 and Π2, we have

inf
Π̂

sup
Πk∈{Π1,Π2}

P (Π̂ 6= Πk) ≥ 1− cm/n4 + log 2

log 2
. (10)

Thus, the minimum requirement ofm is at least of order n4

(≫ 1) in Example 3.2.

4. Recovery Analysis when B♯ is unknown

However, in practice, we have no prior knowledge ofB and

need to estimate the parameter matrix B and permutation

matrix Π simultaneously. For a fixed Π, we define B̂(Π) to

be the best estimator maximizing the log-likelihood func-

tion, that is,

B̂(Π) = argmax
B

〈−ψ(ΠXB) + Y ◦ΠXB〉. (11)

On the computational side, this is a concave optimization

and B̂(Π) can be solved efficiently. On theoretical side,

B̂(Π) does not admit explicit form which makes analysis

harder. In the following, we discuss situations under which

the labels can be recovered perfectly.

First of all, we note that the model is not identifiable when

p ≥ n and X has full row rank. This is because, there
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exists a p by n matrix Px such that I = XPx. We can find

that

Π♯XB♯ = Π♯ΠΠXB♯ = (Π♯Π)X(PxΠXB
♯).

Thus, the underlying Π♯ and B♯ are again not identifiable.

Such non-identifiability means that we have no chance to

recover the true label permutation matrix, since there ex-

ist multiple global optimal values. In Unnikrishnan et al.

(2015), it is further shown that n ≥ 2p is a necessary

condition for perfect permutation recovery under the linear

model setting with m = 1 and zero noise.

In the rest of paper, we only consider the case that p < n for

the generalized linear model. Moreover, we only focus on

the situation that p is na with a < 1/2 so that the estimator

has nice asymptotic properties even if we do not know the

true Π♯.

We recall the definition of log-likelihood function

L(Π, B) = 〈−ψ(ΠXB) + Y ◦ (ΠXB)〉 and introduce its

corresponding population version,

Λ(Π, B) :=E〈−ψ(ΠXB) + Y ◦ (ΠXB)〉
=〈−ψ(ΠXB) + ψ′(Π♯XB♯) ◦ (ΠXB)〉,

(12)

where the expectation is taken with respect to Y .

4.1. Scenario 1: d(I,Π♯) is small

If we have the prior knowledge that the underlying permuta-

tion matrix Π♯ is close to I (i.e. d(I,Π♯) is small), we then

consider a “two-step estimation” computational method for

dealing such case. In the first step, “two-step” algorithm

aims to find a reasonable estimator ofB♯ by treating Π = I.

In the second step, we plug in this estimator to the objective

and obtain the permutation matrix by maximizing the log-

likelihood function. The implementation details are given

in Algorithm 1.

Algorithm 1 Two-step Estimation.

Input: Observation matrix Y and design matrix X .

Output: Estimated permutation matrix Π̂ and estimated

coefficient matrix B̂.

1. Solve B̂ := argmaxB{〈−ψ(XB) + Y ◦XB〉}.

2. Solve Π̂ := argmaxΠ{〈−ψ(ΠXB̂) + Y ◦ΠXB̂〉}.

In below, we provide a theoretical analysis of the proposed

two-step estimator. Under mild conditions, we show that

Π̂ returned by Algorithm 1 perfectly matches Π♯ with high

probability. To start with, we first assume the following

assumptions on function ψ and design matrix, X .

A0 We assume that ψ′′(·) is either monotonic or

bounded.

A1 Each entry of X is bounded (i.e. |X[i, j]| ≤ C0

for universal constant C0).

A2 There exist constants c1 > 0, and γ1p (which may

depend on p) such that ♯{i : X[i, :]b ≥ c1} ≥ n/γ1p
and ♯{i : X[i, :]b ≤ −c1} ≥ n/γ1p hold for any b

with ‖b‖ = 1.

Remark 4.1. Assumption A0 is satisfied by most general-

ized linear models. For examples, ψ′′ is bounded for Gaus-

sian or Bernoulli distribution; ψ′′ is monotonic for Poisson

or Gamma distribution.

Remark 4.2. For a general n by p matrix X , its largest

singular value is bounded by
√
n
√
pmaxi,j |X[i, j]| =

O(
√
np). For an n × p matrix X with each entry being

sampled from sub-Gaussian distribution, then its largest

singular value is Op(
√
n +

√
p). (Here we say Z is a sub-

Gaussian random variable if E exp{tZ} ≤ exp{t2σ2/2}
holds for all t > 0 and fixed constant σ.)

Remark 4.3. It can be checked that Assumption A2 is satis-

fied with high probability whenX is a matrix with i.i.d sub-

Gaussian random variables as its entries. Under such case,

γ1p is reduced to some constant. Furthermore, A2 tells us

that the smallest singular value of X is bounded from be-

low. In fact, σmin(X) ≥
√

c21n/γ1p = c1
√
n/

√
γ1p.

We further need introduce the following notations:

xmax := maxi ‖xi‖, ψ
′♯
max := maxi,j ψ

′(xTi b
♯
j), ψ

′′♯
max

:= maxi,j ψ
′(xTi b

♯
j) ∨ 1, and ψ

′′♯
min := mini,j ψ

′′(xTi b
♯
j)

which represent the maximum expected value of Yij’s,

maximum variance/minimum variance of Yij’s respectively.

We also write ψ♯cb = ψ
′♯
max+ψ

′′♯
max and define permutation-

wise variance term, vΠ,partial

=
∑

i:Π♯(i) 6=Π(i)

m∑

l=1

ψ′′(λ♯
Π♯(i)

[l])(λ♯Π(i)[l]− λ
♯
Π♯(i)

[l])2

and minimum pairwise variance term vmin

= min
i,j

m∑

l=1

ψ′′(λ♯i [l])(λ
♯
i [l]− λ

♯
j [l])

2

to quantify the differences between X’s rows.

Theorem 4.4. With the knowledge that d(I,Π♯) ≤ hmax
and assumptions A0 - A2, we also assume that p = O(na)
(a < 1

2 ) and hmax . n/(pγ1p log n). Then it holds that

‖b̂l − b
♯
l‖ (13)

= Op(

√
p(
√

ψ♯cb
√
n− hmax + ψ♯cbhmax log n)

nψ
′′♯
min

γ1p

︸ ︷︷ ︸

=:δ∗

)
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for l ∈ [m]. Furthermore, if

Λ(Π♯, B♯)− Λ(Π, B♯) & vΠ,partial ·
√

log n/vmin (14)

and

Λ(Π♯, B♯)− Λ(Π, B♯) & md(Π,Π♯)ψ♯cbxmaxδ
∗, (15)

then it holds that P (Π̂ 6= Π♯) → 0.

Here, δ∗ defined in (13) is the estimation error for regres-

sion parameter. The first term can be viewed as the variance

term and the second term is the bias term. Conditions (14)

and (15) require that the information gap should dominate

the errors caused by variance and bias, respectively. The

requirement hmax ≤ n/(pγ1p log n) restricts the number

of permuted labels. When p is fixed, then n/(log n) is sim-

ilar to the condition hmax ≤ cn/(log(n/hmax)) required

in Slawski et al. (2020) for linear models. The additional p
in the denominator appears since that we do not have the

access to the explicit form of B̂(Π) in generalized linear

model setting.

Particularly, when X is sub-Gaussian, we can find that

Λ(Π♯, B♯) − Λ(Π, B♯) is Ω(md(Π,Π♯)), vΠ,partial is

O(md(Π,Π♯)) and vmin = Ω(m) when λ
♯
i [l] is bounded

and mini,j ‖λ♯i − λ
♯
j‖1 is Ω(m). Then condition (14) can

be simplified to

md(Π,Π♯) & md(Π,Π♯)
√

log n/m,

which requires m ≥ K log n for some large constant K.

This leads to the following corollary.

Corollary 4.5. Under the sub-Gaussian design matrix

X with knowledge that d(I,Π♯) ≤ hmax, we assume

hmaxp = n/ log n, p = O(na) (a < 1
2 ), and m & log n.

We have

P (Π̂ 6= Π♯) → 0 as n→ ∞.

4.2. Scenario 2: no knowledge of d(I,Π♯)

For general Π♯, we also aim to recover the underlying per-

mutation matrix without any knowledge of d(I,Π♯) and

B♯. To facilitate the theoretical analysis, we first define

B(Π) := argmaxB Λ(Π, B). Then it is straightforward to

check that B(Π♯) = B♯. We also define

Λ(Π) := max
B

Λ(Π, B) = Λ(Π, B(Π)). (16)

We additionally introduce the following permutation-wise

quantities.

Information Gap For each permutation Π, we define

∆(X,B♯,Π♯,Π) = Λ(Π♯)− Λ(Π). (17)

This quantity can be interpreted as the information gap

between permutation Π♯ and Π. It can be seen that

∆(X,B♯,Π♯,Π) is always non-negative.

Variance For each fixed permutation Π, we define

vΠ,B =

n∑

i=1

m∑

l=1

ψ′′(λΠ♯(i)[l])(λΠ(i)[l])
2. (18)

It can be easily checked that vΠ,B is the variance of

L(Π, B).

Theorem 4.6. Under assumptions A0 - A2 and with no

knowledge of B♯ and Π♯, we assume that p = O(na)
(a < 1

2 ) and there exists a constant c0 such that

∆(X,B♯,Π♯,Π) &max{
√

(n+mp)mnψ
′′♯
maxx2max log n,

(n log n+mp)xmax} (19)

for any Π satisfying d(Π,Π♯) > c0
n

pγ1p logn , and

Λ(Π♯, B♯)− Λ(Π, B♯) &max{vΠ,partial ·
√

log n/vmin,

md(Π,Π♯)ψ♯cbxmaxδ
∗} (20)

for any Π satisfying d(Π,Π♯) ≤ c0
n

pγ1p logn . Then it holds

that

P (Π̂ 6= Π♯) → 0 (21)

as n → ∞. Furthermore, ‖b̂l − b
♯
l‖ = Op(

γ1p

√

pψ♯
cb√

nψ♯min
) for

all l ∈ [m].

Based on Theorem 4.6, we have the following corollary.

Corollary 4.7. Without any knowledge of B♯ and Π♯,
we assume that ∆(X,B♯,Π♯,Π) ≥ c1md(Π,Π

♯) for

d(Π,Π♯) > c0n
p logn and Λ(Π♯, B♯) − Λ(Π, B♯) ≥

c2md(Π,Π
♯) for d(Π,Π♯) ≤ c0n

p logn (c0, c1, c2 are uni-

versal constants). Then it holds that P (Π̂ 6= Π♯) → 0, as

long as m/(x2max log n) → ∞, γ1p = O(1) and p = na

(0 < a < 1
2 ).

4.3. On Computation of Maximum Likelihood

Estimator

We aim to compute the maximum likelihood estimator,

(Π̂, B̂) = argmax
Π,B

〈−ψ(ΠXB) + Y ◦ΠXB〉. (22)

Unfortunately, when p > 1, the above optimization prob-

lem (even for the linear models) is NP-hard. We consider

a coordinate ascent method, i.e., alternatively maximizing

Π given B and maximizing B given Π. The method will

always converge to some stationary point, Π̃, B̃, satisfying

L(Π̃, B̃) ≥ L(Π′, B̃) for ∀ Π′ 6= Π̃ and ∇BL(Π̂, B̃) = 0.

For the choice of a good initial permutation matrix Πini,
we consider the following heuristic objective,

Πini = argmax
Π

〈Π, YψY Tψ XXT 〉, (23)

7
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where Yψ = (ψ′)−1(Y + 1) be the inverse transformation

of the original data through link function ψ′. The intuition

is that Yψ ≈ Π♯XB♯. It can be calculated that

〈Π, YψY Tψ XXT 〉 ≈ 〈Π,Π♯XB♯(Π♯XB♯)TXXT 〉
= ‖B♯‖2〈X,Π♯X〉〈ΠX,Π♯X〉, (24)

when m = 1 and p = 1. If term 〈X,Π♯X〉 is positive,

then the maximum value of (24) is achieved when Π =
Π♯. Such warm start computational scheme is presented in

Algorithm 2 and maximum likelihood estimation scheme is

given in Algorithm 3.

Algorithm 2 Warm start for maximum likelihood estima-

tion.
Input: Response matrix Y and design matrix X
Output: A good initial permutation matrix Πini.
1. Compute the matrix Yψ = (ψ′)−1(Y + 1).
2. Compute the matrix C = YψY

T
ψ XX

T .

3. Solve Πini := argmaxΠ〈Π, C〉.
4. Return Πini as the initial Π.

Algorithm 3 Maximum likelihood (ML) estimation.

Input: Response matrix Y , design matrix X and initial

permutation matrix Πini.
Output: Estimated permutation matrix Π̂ and estimated

coefficient matrix B̂.

Let Π̂ = Πini.
while the likelihood is not converged do

1. Solve B̂ := argmaxB{〈−ψ(Π̂XB)+Y ◦Π̂XB〉}.

2. Solve Π̂ := argmaxΠ{〈−ψ(ΠXB̂)+Y ◦ΠXB̂〉}.

end while

Return B̂ and Π̂.

4.4. Remarks

The technical challenge in the generalized linear model set-

ting lies in the facts that the second derivative of likelihood

function is associated with ψ′′(·) functions which are not

bounded. To be more specific, the Hessian matrix can be

written as

∇2L(I,b) = −XTDX,

with D = diag(d1, . . . , dn) and di = ψ′′(xTi b) when

m = 1. For example, ψ′′(x) = exp{x} is obviously un-

bounded for Poisson model. Moreover, for any fixed Π, the

maximizer,

b̂(Π) = argmax
b

L(Π,b),

does not admit the closed form and it brings additional diffi-

culty. By contrast, there are no such afore-mentioned issues

in the standard linear models.

In Wang et al. (2020), their analysis only considers the case

when m = 1, d(I,Π♯) is small and B♯ is known. Our re-

sults include the most general cases, i.e., we have no prior

knowledge of Π♯ and B♯. Therefore, we need to take spe-

cial care of uniform bound over all possible permutations

in our analyses.

From the computational perspective, note that both ”two-

step estimation” and ”ML” methods require computing

Π̂ := argmaxΠ{〈−ψ(ΠXB̂) + Y ◦ ΠXB̂〉}. Since the

number of candidates for the permutation matrix is n!,

we cannot directly solve this optimization problem. How-

ever, we can reformulate this problem into a linear assign-

ment problem which can be solved efficiently by special-

ized techniques such as Hungarian algorithm (Kuhn, 1955)

or the Auction algorithm (Bertsekas and Castañón, 1992).

To be more specific, we define an n by n cost matrix

C = (C[i, j]), with

C[i, j] = 〈ψ(xiB)− yj ◦ (xiB)〉.

Note that permutation matrix Π has only one non-zero ele-

ment ”1” in each row and column. It is then equivalent to

solve the assignment problem,

min
τ

∑

i∈[n]

C[τ(i), i],

where τ is an one-to-one mapping from [n] to [n]. Hence

Π̂ can be solved via using Hungarian algorithm or Auction

algorithm.

Compared with Wang et al. (2020), they adopt an ℓ1 reg-

ularization framework for computing Π̂ and B̂, while our

method does not. This is due to the fact that Wang et al.

(2020) assume a sparsely mismatch regime that d(I,Π♯) is

small. That is the reason they introduce ℓ1 regularizer to en-

courage recovering a sparse permutation. By contrast, we

do not necessarily need d(I,Π♯) to be small in our theory.

5. Extension to Missing Observation Case

In many real applications, the observations are usu-

ally not fully observed (Rubin, 1976; Allison, 2001;

Little and Rubin, 2019). The data may be missing at ran-

dom during the collection process. Therefore, in this sec-

tion, we generalize our results to the situations when data

are not fully observed. To be specific, we consider the fol-

lowing model

Ymiss = E ◦ Y = E ◦ (Π♯Y ♯), (25)

where E is a binary matrix such that “1” means the entry is

observed and “0” means the entry is missing. The elements

in E are independent Bernoulli(q) random variables and q
(0 < q < 1) is the observation rate.

8
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The log-likelihood function with missing observations can

be written as

L(Π, B,E) = 〈E ◦ (Y ◦ (ΠXB)− ψ(ΠXB))〉

and its expectation can be computed as

Λ(Π, B, q) =q · Λ(Π, B), (26)

where the expectation is taken over both E and Y . We also

define

Λ(Π, q) := max
B

Λ(Π, B, q) = q · Λ(Π).

5.1. When B♯ is known

In this scenario, we similarly define the following terms,

the row-wise information gap ∆ij(q) and the row-wise vari-

ance vij(q). (See appendix for exact definition.)

Theorem 5.1. Assume B♯ is known and suppose X , B♯,
Π♯ satisfy that

∆ij(q) &
√

(log n)vij(q) and vij(q) & log n ∀i, j ∈ [n],

then it holds that

P (Π̂ 6= Π♯)

≤ n2 max
i6=j

max{exp{−
∆2
ij(q)

8vij(q)
}, exp{−vij(q)c2ψ/8}},

for some constant cψ .

Remark 5.2. Especially when λ♯il’s are bounded and

mini,j
∑

l∈[m](λ
♯
il − λ♯jl)

2 = Ω(m), then q ≥ logn
m is re-

quired for the perfect permutation recovery. In other words,

the number of required observations (m) for each individ-

ual is reciprocal to observation rate (q).

5.2. When B♯ is unknown and d(I,Π♯) is small

Under this scenario, we further define the partial variance

term vΠ,partial,q and minimum variance gap vmin,q, whose

detailed definitions are given in Appendix A. We also as-

sume the following assumptions on design matrix.

E1. Entries of X are bounded by some constant C0.

E2. Let Sl = {i : E[i, l] = 1} (l = 1, . . . ,m). There exist

constants c2 > 0 and γ2p such that ♯{i : xTi b ≥ c2, i ∈
Sl} ≥ |Sl|/γ2p and ♯{i : xTi b ≤ −c2, i ∈ Sl} ≥ |Sl|/γ2p
hold for any b with ‖b‖ = 1.

Remark 5.3. Assumptions E1 and E2 are parallel to A1 and

A2. They put the restrictions on sub-design matricesX[Sl, :
]’s. In particular, E2 holds by taking γ2p = Θ(1) with high

probability, when each entry of X follows i.i.d. standard

Normal distribution and qn & p.

Theorem 5.4. With the knowledge that d(I,Π♯) ≤ hmax
and assumptions A0, E1 and E2, we assume p = O((qn)a)
(a < 1

2 ) and hmax . nq/(pγ2p log n). We then have that

‖b̂l − b
♯
l‖ = Op(δ

∗
q ), (27)

where δ∗q equals

√

qψ
′′♯
max + q(1− q)ψ♯2cb

√
n− hmax + ψ

′′♯
maxhmax log n

qnψ♯min/(γ2p
√
p)

.

Furthermore, if

Λ(Π♯, B♯)− Λ(Π, B♯) &
1

q
vΠ,partial,q ·

√

log n/vmin,q

and

Λ(Π♯, B♯)− Λ(Π, B♯) &
1

q
md(Π,Π♯)ψ♯cbxmaxδ

∗
q ,

then it holds that

P (Π̂ 6= Π♯) → 0.

Remark 5.5. Under the setting of sub-Gaussian design, it

is sufficient to have m ≥ log n/q for permutation recovery

when d(I,Π♯) ≤ c0
nq

p logn for some constant c0.

Remark 5.6. The permutation recovery result is also estab-

lished, when there is no any prior knowledge of B♯ and

d(I,Π♯). See Appendix A for explanations.

6. Conclusion

In this paper, we provide theoretical analyses of label per-

mutation problem for the generalized linear model. The

theory takes multivariate responses into account and is es-

tablished under three different scenarios, with knowledge

of B♯, with knowledge of d(I,Π♯) and without any knowl-

edge. Our results are more general and remove the stringent

conditions which are required by the case when m = 1.

A detailed comparisons with existing literature are also

provided to emphasize the technical challenges of consid-

ered setting. We also propose two computational methods,

“maximum likelihood estimation” algorithm with warm

start and “two-step estimation” algorithm. When the pro-

portion of permuted labels is not too large, both methods

work effectively under different settings of generating de-

sign matrix X . We further extend our results to the miss-

ing observation setting which has never been considered in

the literature of label permutation problem. Experimental

results match our theoretical findings. In practice, our com-

putational methods sometimes may fail to find the global

optimum when the proportion of permuted labels is large.

Developing more efficient estimation methods constitutes a

further promising direction.
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Appendices of ”Regression with Label Permutation in Generalized Linear Model”

The organization of appendix is given as followed. In Section A, we provide detailed explanations of permutation recovery

results when there exist missing data. In Section B, simulation results are given to help readers to understand our theory

better. A real data application is shown in Section C to illustrate the effectiveness of our proposed algorithm. Section D is

dedicated to explain the relationship betweenm and n for perfect permutation recovery. An explanation of ∆(X,B♯,Π♯,Π)
is provided in Section E. All technical proofs are collected in Sections F - I. Finally, a remark on computational approach

for linear models is given in Section J.

A. Missing details under ”Missing Observation Case”

In this section, we provide more details of the case when there exist missing observations. The model becomes

Ymiss = E ◦ Y = E ◦ (Π♯Y ♯), (28)

where E is a binary matrix such that “1” means the entry is observed and “0” means the entry is missing. The elements in

E are independent Bernoulli(q) random variables and q (0 < q < 1) is the observation rate.

The log-likelihood function with missing observations can be written as

L(Π, B,E) = {
∑

i,l:E[i,l]=1

Y [i, l](xTΠ(i)bl)− ψ(xTΠ(i)bl)}

= 〈E ◦ (Y ◦ (ΠXB)− ψ(ΠXB))〉 (29)

and its expectation can be computed as

Λ(Π, B, q) = E{
∑

i,l:E[i,l]=1

Y [i, l](xTΠ(i)bl)− ψ(xTΠ(i)bl)}

= q · Λ(Π, B), (30)

where the expectation is taken over both E and Y . We also define

Λ(Π, q) := max
B

Λ(Π, B, q) = q · Λ(Π).

A.1. When B♯ is known

In this scenario, we can similarly define the following terms, the row-wise information gap,

∆ij(q) := E

∑

l

1{E[Π♯(i), l] = 1}{(ψ′(λ♯i [l])λ
♯
i [l]− ψ(λ♯i [l]))− (ψ′(λ♯i [l])λ

♯
j [l]− ψ(λ♯j [l]))}

= q
∑

l

{(ψ′(λ♯i [l])λ
♯
i [l]− ψ(λ♯i [l]))− (ψ′(λ♯i [l])λ

♯
j [l]− ψ(λ♯j [l]))} = q∆ij (31)

and the row-wise variance,

vij(q) := q

m∑

l=1

ψ′′(λ♯i [l])(λ
♯
i [l]− λ

♯
i [l])

2

+ q(1− q)

m∑

l=1

(ψ′(λ♯i [l])(λ
♯
i [l]− λ

♯
j [l])− (ψ(λ♯i [l])− ψ(λ♯j [l])))

2, (32)

which is the variance of var(〈E[Π♯(i), :] ◦ (yi ◦ λ♯i − ψ(λ♯i))〉 − 〈E[Π♯(i), :] ◦ (yi ◦ λ♯j − ψ(λ♯j))〉).
Theorem A.1. [Restatement of Theorem 5.1] Assume B♯ is known and suppose X , B♯, Π♯ satisfy that

∆ij(q) &
√

(log n)vij(q) and vij(q) & log n ∀i, j ∈ [n], (33)
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then it holds that

P (Π̂ 6= Π♯) ≤ n2 max
i6=j

max{exp{−
∆2
ij(q)

8vij(q)
}, exp{−vij(q)c2ψ/8}}, (34)

for some constant cψ .

Remark A.2. Especially when λ♯il’s are bounded and mini,j
∑

l∈[m](λ
♯
il − λ♯jl)

2 = Ω(m), then q ≥ logn
m is required for

the perfect permutation recovery. In other words, the number of required observations (m) for each individual is reciprocal

to observation rate (q).

A.2. When B♯ is unknown and d(I,Π♯) is small

Under this scenario, we further define the partial variance term

vΠ,partial,q = q
∑

i:Π(i) 6=Π♯(i)

m∑

l=1

{

ψ′′(λ♯i [l])(λΠ(i)[l]
♯ − λi[l]

♯)2

+q(1− q)(ψ′(λi[l]
♯)(λΠ(i)[l]

♯ − λi[l]
♯)− ψ(λ♯Π(i)[l]) + ψ(λi[l]

♯))2
}

and minimum variance gap

vmin,q = min
i,j

{q
m∑

l=1

ψ′′(λ♯i [l])(λi[l]
♯ − λj [l]

♯)2 + q(1− q)
m∑

l=1

(ψ′(λ♯i [l])(λi[l]
♯ − λj [l]

♯)− ψ(λi[l]
♯) + ψ(λj [l]

♯))2}.

We also assume the following assumptions on design matrix.

E1 Entries of X are bounded by some constant C0.

E2 Let Sl = {i : E[i, l] = 1} (l = 1, . . . ,m). There exist constants c2 > 0 and γ2p such that ♯{i : xTi b ≥ c2, i ∈
Sl} ≥ |Sl|/γ2p and ♯{i : xTi b ≤ −c2, i ∈ Sl} ≥ |Sl|/γ2p hold for any b with ‖b‖ = 1.

Remark A.3. Assumptions E1 and E2 are parallel to A1 and A2. They put the restrictions on sub-design matrices X[Sl, :]’s.

In particular, E2 holds by taking γ2p = Θ(1) with high probability, when each entry of X follows i.i.d. standard Normal

distribution and qn & p.

Theorem A.4. [Restatement of Theorem 5.4] With the knowledge that d(I,Π♯) ≤ hmax and assumptions A0, E1 and E2,

we assume p = O((qn)a) (a < 1
2 ) and hmax . nq/(pγ2p log n). We then have that

‖b̂l − b
♯
l‖ = O(

√
p(
√

qψ
′′♯
max + q(1− q)ψ♯2cb

√
n− hmax + ψ

′′♯
maxhmax log n)

qnψ♯min/γ2p
︸ ︷︷ ︸

=:δ∗q

). (35)

Furthermore, if

Λ(Π♯, B♯)− Λ(Π, B♯) &
1

q
vΠ,partial,q ·

√

log n/vmin,q (36)

and

Λ(Π♯, B♯)− Λ(Π, B♯) &
1

q
md(Π,Π♯)ψ♯cbxmaxδ

∗
q , (37)

then it holds that

P (Π̂ 6= Π♯) → 0. (38)

Remark A.5. Under the setting of sub-Gaussian design, it is sufficient to have m ≥ log n/q for permutation recovery when

d(I,Π♯) ≤ c0
nq

p logn for some constant c0.
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A.3. Without knowledge of B♯ and d(I,Π♯)

In this situation, we further assume the following conditions.

E2’ There exist constants c3 > 0 and γ3p such that ♯{i : xTi b ≥ c3, i ∈ S} ≥ qn/γ3p and ♯{i : xTi b ≤ −c3, i ∈
S} ≥ qn/γ3p hold for any b with ‖b‖ = 1 and S with |S| ≥ qn/2. (It is a modified and stronger version of E2.)

Additionally, we let ∆q(X,B
♯,Π,Π♯) := Λ(Π

′′♯, q)−Λ(Π, q) which is equal to q∆(X,B♯,Π,Π♯), and define the follow-

ing variance-related quantity,

V2(q) = (qnψ♯max + q(1− q)nψ♯2cb)(ψ(xmax))
2.

Theorem A.6. Under assumptions A0, E1 and E2’, we assume that there exists c0 such that

∆q(X,B
♯,Π,Π♯) & max{

√

(n log n+mp log(n))mV2(q), ψ
♯
cb(n log

2 n+mp log n)} (39)

holds for any Π with d(Π,Π♯) > c0
nq

pγ3p logn , and

Λ(Π♯, B♯)− Λ(Π, B♯) & max{1
q
vΠ,partial,q ·

√

log n/vmin,q,
1

q
md(Π,Π♯)ψ♯cbxmaxδ

∗
q} (40)

holds for any Π with d(Π,Π♯) ≤ c0
nq

pγ3p logn . (δ∗q is the same as defined in (35) in Theorem A.4.)

Then it holds that

P (Π̂ 6= Π♯) → 0 (41)

as n→ ∞. Furthermore,

‖b̂l − b
♯
l‖ = Op(

√
pn(

√

qψ
′′♯
max + q(1− q)ψ♯2cb)

qnψ
′′♯
min/γ3p

) (42)

for all l ∈ [m].

Especially, when γ3p, ψ
′′♯
min, ψ

′′♯
max, ψ♯cb are O(1), and mini6=j

∑

l∈[m] |λ
♯
i [l]− λ

♯
j [l]| = Ω(m), it suffices to require

m &
(ψ(xmax))

2 log n

q
, q &

p(ψ(xmax))
2 log n

n

for exact permutation recovery.

A.4. ML Estimator with Missing Observations

The warm-start stage of ML estimation algorithm is modified in the missing observation setting. In particular, we use

SoftImpute (Hastie et al., 2015) method to impute the missing entries of the data matrix. The procedure is given as below

in Algorithm 4.
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Algorithm 4 ML estimation with warm start for missing observations.

Input: Observations with missing entries Ymiss, design matrix X
Output: A good initial permutation matrix Πini.
1. Compute the matrix Yψ,miss = (ψ′)−1(Ymiss + 1).
2. Use SoftImpute method to complete the matrix, Yψ,miss, to get Yψ,comp.

3. Compute the matrix C = Yψ,compY
T
ψ,compXX

T .

4. Solve Πini := argmaxΠ〈Π, C〉.
5. Set Π̂ = Πini as the initial permutation matrix.

while The likelihood not converged do

6.a. Solve B̂ := argmaxB{〈−E ◦ ψ(Π̂XB) + E ◦ Ymiss ◦ Π̂XB〉}.

6.b. Solve Π̂ := argmaxΠ{〈−E ◦ ψ(ΠXB̂) + E ◦ Ymiss ◦ΠXB̂〉}.

end while

7. Return B̂ and Π̂.

A.5. Two-step Estimator with Missing Observations

Similarly, we introduce the two-step estimator under the missing observation setting. The procedure is given as follows in

Algorithm 5.

Algorithm 5 Two-step Estimation with missing observations.

Input: Observations with missing entries Ymiss, indicator matrix E and design matrix X
Output: Estimated permutation matrix Π̂ and estimated coefficient matrix B̂.

1. Solve B̂ := argmaxB{〈−E ◦ ψ(XB) + E ◦ Ymiss ◦XB〉}.

2. Solve Π̂ := argmaxΠ{〈−E ◦ ψ(ΠXB̂) + E ◦ Ymiss ◦ΠXB̂〉}.

B. Simulation Studies

Setting 1 In the first simulation setting, we consider to evaluate the performance of maximum likelihood estimation method.

We set n to be 256 and 512 and let 25% or 33 % labels be permuted. We vary m from {log2 n, 2 log2 n, . . . , 20 log2 n}
and set observation rate q at different levels. For design matrix X , each row independently follows a multivariate Gaussian

distribution N(0, Ip/p) (p = 10). For coefficient matrix B, each element is i.i.d. standard Gaussian random variable. The

curves of probability for successful permutation recovery are plotted in Figure 1.
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Figure 1. The curves of label permutation recovery under different m, q and h by using maximum likelihood estimation algorithm. Upper

left: n = 256, h = 0.25n; Upper right: n = 512, h = 0.25n; Bottom left: n = 256, h = 0.33n; Bottom right: n = 512, h = 0.33n.

Each point is the average of 500 replications.

Setting 2 In the second simulation setting, we illustrate the performance of two-step estimation method. We deliberately

permute the true label by some proportions (5%, 10%, . . . , 100 %). We set n to be 256 / 512 and set m = 10 log2 n /

20 log2 n. The observation rate q varies from 0.4 to 1.0. The design matrix and coefficient matrix remains the same as in

the first setting. The curves of probability for successful permutation recovery are plotted in Figure 2.

Setting 3 In the third simulation setting, we compare with the results by fitting a linear model directly to the original

data (“linear”) or to the log-transform of data (“log-trans”) under different generation schemes. (We use the ADMM-based

algorithm in Section J for implementation.)

1. For design matrixX , each row independently follows a multivariate Gaussian distributionN(0, Ip/p). For coefficient

matrix B, each element is i.i.d. standard Gaussian random variable. In this case, we set n = 256 and p = 10.

2. Matrix X is a complete design matrix . For coefficient matrix B, each element is i.i.d. uniform random variable on

U(0, 2). In this case, n = 256, p = 1 + log2 n.

3. For sparse design matrix X , each row has at most s non-zero entries and positions of non-zero elements are sampled

uniformly. For coefficient matrix B, each element is i.i.d. uniform random variable on U(0, 2). In this case, we set

n = 256, p = 20 and s = 5.

Such comparisons under model mis-specification are shown in Figure 3.
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Figure 2. The curves of label permutation recovery under different n, m and h by using two-step estimation algorithm. Upper left:

n = 256,m = 80; Upper right: n = 512,m = 90; Bottom left: n = 256,m = 160; Bottom Right: n = 512,m = 180. Each point is

the average of 500 replications.

Setting 4 In the fourth simulation setting, we consider to evaluate the performance of maximum likelihood estimator when

p varies. We set n to be 256 and 512 and let 25% of labels be permuted. We vary m from {log2 n, 2 log2 n, . . . , 20 log2 n}.

For design matrix X , each row independently follows a multivariate Gaussian distribution N(0, Ip/p) with p =
5, 10, 15, 20 or 25. For coefficient matrix B, each element is i.i.d. standard Gaussian random variable. The curves of

probability for successful permutation recovery are shown in the bottom-right plot in Figure 3.

From Figure 1, we can see that the probability of successful label recovery increases as m increases. The probability

changes drastically from 0 to 1 when m ≈ 10 log2 n. This matches our theory. In addition, we can see that m required for

perfect permutation recovery gets larger as observation rate q decreases. From Figure 2, we can observe that the probability

of successful label recovery decreases as proportion of wrong label increases. The probability changes drastically from 1

to 0 when 20% of individuals are given with wrong labels. Additionally, as the observation rate decreases, the successful

recovery probability also decreases. From Figure 3, we can see that the recovery results will get worse if we fit the data

generated from log-linear model by using linear methods. Thus, model mis-specification (i.e. non-Gaussian setting) may

lead to bad recovery results. Furthermore, we can see that the value of p does not effect the recovery result when it is in

the suitable regime of n, i.e., p & log n and p . n1/2. This matches our findings in theory and Example 3.5.
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Figure 3. The top left, top right and bottom left plots show the curves of label permutation recovery under different design settings by

using different estimation methods. The bottom right plot shows the permutation recovery curves under different p.

C. Real Data Example

In this section we apply our methods to a real financial dataset. The Dow Jones Industrial Average is a stock market index

that measures the stock performance of 30 large companies listed on stock exchanges in the United States. The dataset

consists of weekly price for each of thirty stocks in the first half of year 2011. There are 13 data columns in total, including

open price, close price, volume, percent of change in price, percent of return of next dividend, etc.. Table 4 shows the data

of first 5 weeks in 2011 for American Airline (AA). We pre-processed the dataset to transform it into a suitable form. We

set n = 30 and m = 25 since there are 30 different stocks and 25 different dates. For each i ∈ {1, . . . , 30}, we let yil be

the close price of ith on lth date (round to integer). We construct the design matrix by letting p = 4. We set Xi1 to be the

log of average open price for ith stock, set Xi2 to be the log of average volume for ith stock, set Xi3 to be the the percent

of return of next dividend and set Xi4 = 1 to incorporate the intercept term. We further scale columns X[:, 1], X[:, 2] and

X[:, 3] to make them have mean 0 and standard deviation 1.

We set the different values of observation rates (i.e. q = 0.4 − 1.0) and make different proportions of stocks assigned

with wrong labels (i.e h = d(I,Π♯) = 0, 2, 4, 8, 12). We fit the data by using Algorithm 4 and Algorithm 5 respectively.

The results are given in Table 5 and Table 6. As we can see, both maximum likelihood estimation algorithm and two-step

algorithm work well when the number of wrong labels is small and observation rate is 1. When the number of wrong

labels gets larger, the maximum likelihood estimation algorithm is more robust, while two-step algorithm has a vanishing

chance to recover the label permutation perfectly. On the other hand, when the observation rate decreases, the maximum

likelihood estimation algorithm becomes less competitive.
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Table 4. Illustration of Dow Jones Industrial Average dataset.

stock date open close volume . . . percent return next dividend

1 AA 1/7/2011 $15.82 $16.42 239655616 . . . 0.182704

2 AA 1/14/2011 $16.71 $15.97 242963398 . . . 0.187852

3 AA 1/21/2011 $16.19 $15.79 138428495 . . . 0.189994

4 AA 1/28/2011 $15.87 $16.13 151379173 . . . 0.185989

5 AA 2/4/2011 $16.18 $17.14 154387761 . . . 0.175029
...

...
...

...
...

...
. . .

...

Table 5. Dow Jones Index Data: Permutation Recovery by Maximum Likelihood Estimation

q = 0.4 q = 0.5 q = 0.6 q = 0.7 q = 0.8 q = 0.9 q = 1.0
h = 0 0.06 0.24 0.39 0.43 0.52 0.50 1.00

h = 2 0.08 0.19 0.33 0.43 0.54 0.61 0.80

h = 4 0.03 0.17 0.26 0.38 0.52 0.50 0.55

h = 8 0.01 0.07 0.17 0.21 0.31 0.36 0.35

h = 12 0.01 0.04 0.09 0.12 0.16 0.16 0.16

Table 6. Dow Jones Index Data: Permutation Recovery by “Two-step” Algorithm

q = 0.4 q = 0.5 q = 0.6 q = 0.7 q = 0.8 q = 0.9 q = 1.0
h = 0 0.83 0.90 0.94 0.99 0.98 0.99 1.00

h = 2 0.54 0.57 0.66 0.67 0.70 0.73 0.72

h = 4 0.12 0.13 0.19 0.22 0.26 0.26 0.29

h = 8 0.00 0.00 0.00 0.00 0.01 0.01 0.03

h = 12 0.00 0.00 0.00 0.00 0.00 0.00 0.01

D. Explanation of Four Examples

In this appendix, we provide detailed explanations for examples given in Section 3.

Example 3.2. In this case, by convexity of ψ, we find that

∆ij = 〈ψ′(λi) ◦ λi − ψ(λi)〉 − 〈ψ′(λi) ◦ λj − ψ(λj)〉 ≥
1

2
κ0

∑

l

(x[i]B♯[l]− x[j]B♯[l]|)2 ≥ mκ0
2

x2gap,ijb
2
1,

where κ0 is the minimum ψ′′(x) over the range of x = z1 · z2 with z1 ∈ [a1, a2] and z2 ∈ [b1, b2]. We also have

vij =

m∑

l=1

ψ′′(λi[l])(λj [l]− λi[l])
2 ≤ mκ1b

2
2x

2
gap,ij ,

where κ0 is the maximum ψ′′(x) over the range of x = z1z2 with z1 ∈ [a1, a2] and z2 ∈ [b1, b2].

Therefore, even with the knowledge of true parameter matrix B♯, we still need large m to ensure the recovery of Π♯. That

is,

mκ0
2

x2gap,ijb
2
1 &

√

(log n)mκ1b22x
2
gap,ij

for any pair of i, j. By simplification, we require m ≥ maxi,j K
logn
x2

gap,ij

≈ n4 log n with some constant K.

Example 3.3. In this case, we define wl,ij := xTi bl − xTj bl and dij :=
∑

k 1{X[i, k] 6= X[j, k]} (dij ≥ 1). We can find

that w2
l,ij/dij has mean 1 and variance O(1). Then we have

∑m
l=1 w

2
l,ij = Θp(mdij).

Note that ψ(x) is strictly convex, then there is a constant κ0 such that ψ(y) ≥ ψ(x) + ψ′(x)(y − x) + κ0

2 (y − x)2 for any

x, y.
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By the same reason in Example 3.2, for any i 6= j, we have

∆ij = 〈ψ′(λi) ◦ λi − ψ(λi)〉 − 〈ψ′(λi) ◦ λj − ψ(λj)〉 ≥
κ0
2

m∑

l=1

w2
l,ij

held for some constant c and also have

vij =

m∑

l=1

ψ′′(λi[l])(λj [l]− λi[l])
2 ≤ κ1

m∑

l=1

w2
l,ij .

Therefore, when the true parameter matrix B♯ is known, we need large m to ensure the recovery of Π♯. That is,

κ0
2

m∑

l=1

w2
l,ij &

√
√
√
√(log n)κ1

m∑

l=1

w2
l,ij .

By simplification, we require

m∑

l=1

w2
l,ij ≥

2κ1
κ0

log n.

Using
∑m
l=1 w

2
l,ij = Θp(mdij), it suffices to require m & maxij

logn
dij

= O(log n).

Example 3.4. In this case, by repeating the same procedure as in Example 3.3, we require

m∑

l=1

w2
l,ij ≥

2κ1
κ0

log n.

It suffices to find the lower bound of
∑m
l=1 w

2
l,ij . In this case, with high probability, w2

l,ij is lower bounded by ca21dij ,
where dij =

∑

l 1{X[i, l]−X[j, l] 6= 0} ≥ 1 according to the assumption that each row of X has different support. Thus
∑m
l=1 w

2
l,ij is bounded below by ca21m. We hence require that m & log n for perfect recovery.

Example 3.5. Following the same reason in Example 3.3, we require

m∑

l=1

w2
l,ij ≥

2κ1
κ0

log n.

It also suffices to find the lower bound of
∑m
l=1 w

2
l,ij . In this case, given fixed xi,xj , w

2
l,ij , w

2
l,ij/‖xi − xj‖2 follows a

Chi-square distribution with degree 1 bounded by ca21dij . With high probability, it holds
∑

l w
2
l,ij = Θp(m‖xi − xj‖2)

Therefore, it suffices to have m & maxi,j
logn

‖xi−xj‖2 = Θp(log n).

E. Explanation of ∆(X,B♯,Π♯,Π)

By the definition, we can see that there is no explicit form for ∆(X,B♯,Π♯,Π). In this appendix, we provide a discussion

on the lower bound of ∆(X,B♯,Π♯,Π).

Note that we can always rewrite Π♯X as X and treat Π(Π♯)−1 as Π. We then assume that Π♯ = I for the sake of simplicity.

Moreover, we only need to considerm = 1 by noticing that Λ(Π, B) can be written as the separate function of each column

of B.

Take any Π 6= I and let h := d(Π, I). Here, without loss of generality, we assume that Π(i) = i for any i > h. By the
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definition that Λ(Π) = maxb Λ(Π,b) = maxb
∑n
i=1 Λi(Π,b), and b♯ is the true parameter, we then have that

Λ(I)− Λ(Π) = Λ(I,b♯)−max
b

Λ(Π,b)

=

n∑

i=1

Λi(I,b
♯)−max

b

n∑

i=1

Λi(Π,b)

≥
n∑

i=1

Λi(I,b
♯)− (max

b

h∑

i=1

Λi(Π,b) + max
b

n∑

i=h+1

Λi(Π,b))

≥
h∑

i=1

Λi(I,b
♯)−max

b

h∑

i=1

Λi(Π,b)

≥ min
b

h∑

i=1

{Λi(I,b♯)− Λi(Π,b)}

≥ λ0 min
b

h∑

i=1

(X[i, :]b♯ −X[Π(i), ]b)2

≥ λ0 min
b
d2gap, (43)

where dgap := minb ‖XΠ,1b−X1b
♯‖ with X1 := X[1 : h, ] and XΠ,1 = (ΠX)[1 : h, ] and λ0 is equal to

mini{ψ′′(xTi b
♯), ψ′′(xTi b(Π))}. Moreover, dgap admits an explicit form, which is,

dgap = ‖PXΠ,1
X1b

♯‖,

where PXΠ,1
= I −XΠ,1(X

T
Π,1XΠ,1)

−1XT
Π,1.

When p = 1, we know that XT
Π,1XΠ,1 is equal to ‖XΠ,1‖2 . Thus

‖(XT
Π,1XΠ,1)

−1XT
Π,1X1‖ ≤ ‖XT

Π,1X1‖/‖XΠ,1‖2 = 1−
‖XΠ,1‖2 − ‖XT

Π,1X1‖
‖XΠ,1‖2

= (1−
‖XΠ,1‖2 − ‖XT

Π,1X1‖
‖XΠ,1‖2

)

= (1−
‖XΠ,1‖2 − ‖XT

Π,1X1‖+ ‖X1‖2 − ‖XT
1 XΠ,1‖

2‖XΠ,1‖2
)

≤ (1− ‖XΠ,1 −X1‖2
2‖XΠ,1‖2

).

Thus

dgap = ‖X1b
♯ −XΠ,1(X

T
Π,1XΠ,1)

−1XT
Π,1X1b

♯‖ ≥ ‖X1b
♯‖

︸ ︷︷ ︸

Ω(
√
h)

‖XΠ,1 −X1‖2
2‖XΠ,1‖2

︸ ︷︷ ︸

Θ(1)

= Ω(
√
h).

Therefore Λ(I)− Λ(Π) ≥ c0md(I,Π) for some constant c0 which is related to the design matrix X .

When p > 1, there exists a rotation matrix W such that Wb♯ = e1‖b♯‖ (e1 is a vector with all entries being zero but the

first entry being 1). Write X1 = X̃1W . Then,

dgap = min
b

‖XΠ,1b−X1b
♯‖ = min

b
‖X̃Π,1b− X̃1e1‖b♯‖‖ = ‖b♯‖min

b
‖X̃Π,1b− X̃1e1‖.

Thus, we have dgap = ‖b♯‖‖(I − X̃Π,1(X̃
T
Π,1X̃Π,1)

−1X̃T
Π,1)X̃1e1‖ ≥ c0‖b♯‖‖X̃1e1‖ = c0Ω(

√
h), where c0 is the

distance from X̃1e1/‖X̃1e1‖ to the space spanned by X̃Π,1. Thus Λ(I) − Λ(Π) ≥ c′0md(I,Π) by adjusting the constant

c′0.
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F. Proof of Results when B is Known: Theorem 3.1

In this section, we prove the results when B is known. We additionally use A[i, :]/A[:, j] to represent the ith row/jth
column of matrix A; diag(a) is the diagonal matrix with lth diagonal element being a[l]; ‖A‖F is the Frobenius norm

of matrix A; ‖A‖col := maxj ‖A[:, j]‖; σmin(A)/σmax(A) represents the minimum/maximum positive singular value of

matrix A. Note that the log-likelihood function is a separable function of each column of parameter matrix B, therefore

we sometimes also treat B as a column vector for notational simplicity.

To prove the result, we only need to show the following probability,

P ( sup
Π6=Π♯

L(Π, B) ≥ L(Π♯, B)), (44)

goes to zero as n and m increase. The naive union bound will give an upper bound,

∑

Π6=Π♯

P (L(Π, B) ≥ L(Π♯, B)).

Note that there are n! possible permutations. The above probability could be exponentially large.

Fortunately, we can find that log-likelihood L(Π, B) =
∑n
i=1〈−ψ((ΠXB)[i, :])+Y ◦(ΠXB)[i, :]〉 is an additive function

of X’s rows. Therefore, (44) is bounded by

≤ P (max
j 6=i

〈−ψ((XB)[j, :]) + (Y [i, :] ◦ (XB)[j, :])〉 ≥ 〈−ψ((XB)[i, :]) + (Y ◦XB)[i, :]〉)

≤
∑

j 6=i
P (〈−ψ((XB)[j, :]) + (Y [i, :] ◦ (XB)[j, :])〉 ≥ 〈−ψ((XB)[i, :]) + (Y ◦XB)[i, :]〉)

Next we bound each term, P (〈−ψ((XB)[j, :]) + (Y [i, :] ◦ (XB)[j, :])〉 ≥ 〈−ψ((XB)[i, :]) + (Y ◦XB)[i, :]〉), in above

inequality.

Recall the definition of λi, we thus have

E〈yi ◦ λi − ψ(λi)〉
= 〈ψ′(λi) ◦ λi − ψ(λi)〉. (45)

It can be checked that

∆ij = 〈ψ′(λi) ◦ λi − ψ(λi)〉 − 〈ψ′(λi) ◦ λj − ψ(λj)〉 ≥ 0 (46)

for any convex function ψ.

For any i 6= j, we next calculate the variance of 〈yi ◦ λi − ψ(λi)〉 − 〈yi ◦ λj − ψ(λj)〉.

var(〈yi ◦ λi − ψ(λi)〉 − 〈yi ◦ λj − ψ(λj)〉)

≤
m∑

l=1

var(Y [i, l](λi[l]− λj [l]))

=

m∑

l=1

ψ′′(λi[l])(λi[l]− λj [l])
2 =: vij . (47)

To characterize the difference between ∆ij and 〈Y [i, :]◦λi−ψ(λi)〉−〈Y [i, :]◦λj−ψ(λj)〉, we use the following lemma.

Lemma F.1. There exists a constant cψ (may depends on ψ) such that,

P (|〈yi ◦ λi − ψ(λi)〉 − 〈yi ◦ λj − ψ(λj)〉 −∆ij | ≥ vijx) ≤ exp{−vij(min{x, cψ})2/4}, (48)

holds for any x > 0.
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Proof of Lemma F.1. With some calculations, we know

P (|〈yi ◦ λi − ψ(λi)〉 − 〈yi ◦ λj − ψ(λj)〉 −∆ij | ≥ vijx)

= P (|〈(yi − ψ′(λi)) ◦ (λi − λj)〉| ≥ vijx)

≤ inf
0<t<c′

ψ

exp{−tvijx} exp{vijt2} (using MGF and Markov inequality) (49)

≤ exp{−vijx2/4} (taking t =
x

2
), (50)

where (49) utilizes the property of moment generating function of generalized linear model. That is, it is well known that

E[exp{tY }] = exp{ψ(λ+ t)− ψ(λ)}, where the density of random variable Y is proportional to exp{yλ− ψ(λ)}.

By calculations, we know

exp{t〈(yi − ψ′(λi)) ◦ (λi − λj)〉}

=

m∏

l=1

exp{ψ(λi[l] + t(λi[l]− λj [l]))− ψ(λi[l])− tψ′(λi[l])(λi[l]− λj [l])}

≤
m∏

l=1

exp{ψ′′(λi[l])(λi[l]− λj [l])
2t2} (∀t satisfying

1

2
ψ′′(λi[l]) > |ψ′′′(λi[l])(λi[l]− λj [l])t|)

= exp{t2
m∑

l=1

ψ′′(λi[l])(λi[l]− λj [l])
2}

= exp{vijt2}.

In other words,

exp{t〈(yi − ψ′(λi)) ◦ (λi − λj)〉} ≤ exp{vijt2}

holds for any 0 < t < mini,j,l
1

2
ψ′′(λi[l])

ψ′′′(λi[l])|λi[l]−λj [l]| =: c′ψ . By taking cψ = 2c′ψ , it completes the proof for any 0 < x < cψ .

Finally, by noticing that the left hand side of (55) is decreasing function of x (x > 0). We have

P (|〈yi ◦ λi − ψ(λi)〉 − 〈yi ◦ λj − ψ(λj)〉 −∆ij | ≥ vijx) ≤ exp{−vijc2ψ/4}

for any x > cψ . This concludes the proof.

By taking x = ∆ij/vij in (55), this gives

P (〈−ψ((XB)[j, :]) + (Y [i, :] ◦ (XB)[j, :])〉 ≥ 〈−ψ((XB)[i, :]) + (Y ◦XB)[i, :]〉)
≤ P (|〈−ψ((XB)[j, :]) + (Y [i, :] ◦ (XB)[j, :])〉 − 〈−ψ((XB)[i, :]) + (Y ◦XB)[i, :]〉 −∆ij | ≥ ∆ij)

≤ max{exp{−∆2
ij/(4vij)}, exp{−vijc2ψ/4}}. (51)

Finally, by union bound with summing over all possible pairs of i and j, this completes the proof of Theorem 3.1.

G. Proof of Results with Knowledge that d(I,Π♯) is Small: Theorem 4.4

In this section, we prove the results when we have the prior knowledge that d(I,Π♯) is small. For ease of presentation,

we treat Π♯ as I. (By doing this, it will not change the technical difficulty.) In order to prove the recovery consistency,

we need to control the quantity supB∈Bδ(B♯)

{

(L(I, B) − L(Π, B)) − (Λ(I, B) − Λ(Π, B))
}

(where Bδ(B
♯) := {B :

‖bl − b
♯
l‖2 ≤ δ, l ∈ [m]}) and identify a δ, which is an upper bound of ‖B − B♯‖col (recalling the definition of norm

‖A‖col := maxj ‖A[:, j]‖.)

We first to derive the high probability bound of supB:‖B−B♯‖col≤δ

{

(L(I, B)−L(Π, B))−(Λ(I, B)−Λ(Π, B))
}

through

the following three lemma. In the following, constants cψ, c
′
ψ, C, C

′ may vary from place to place.
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Lemma G.1. Define

DIFF(I,Π, B) := (L(I, B)− L(Π, B))− (Λ(I, B)− Λ(Π, B))

=
∑

l

∑

i:Π(i) 6=i

{

Y [i, l](xTi bl)− ψ(xTi bl)− Y [i, l](xTΠ(i)bl)− ψ(xTΠ(i)bl)
}

(52)

−
∑

l

∑

i:Π(i) 6=i

{

− ψ(xTi bl) + ψ′(xTi bl)x
T
i bl − (−ψ(xTΠ(i)bl) + ψ′(xTΠ(i)bl)x

T
Π(i)bl)

}

.

It holds

|DIFF(I,Π, B)− DIFF(I,Π, B′)|
≤

∑

l

∑

i:Π(i) 6=i

{

2xmaxYmaxδ + 2cψxmaxδ
}

≤ c′ψmd(I,Π)xmaxδ (53)

for some constants cψ, c
′
ψ which depend on ψ and any B,B′ satisfying ‖B −B′‖col ≤ δ.

Proof of Lemma G.1. By (52), we know

|DIFF(I,Π, B)− DIFF(I,Π, B′)|
=

∑

l

∑

i:Π(i) 6=i

{

Y [i, l](xTi (bl − b′
l))− Y [i, l](xTΠ(i)(bl − b′

l))
}

︸ ︷︷ ︸

D1

−
∑

l

∑

i:Π(i) 6=i

{

ψ′(xTi bl)x
T
i bl − ψ′(xTi b

′
l)x

T
i b

′
l − ψ′(xTΠ(i)bl)x

T
Π(i)bl + ψ′(xTΠ(i)b

′
l)x

T
Π(i)b

′
l

}

︸ ︷︷ ︸

D2

. (54)

It is easy to get that D1 ≤ ∑

l

∑

i:Π(i) 6=i 2xmaxYmaxδ by Cauchy-Schwartz inequality. For D2, we first observe that

|ψ′(x1)x1 − ψ′(x2)x2| ≤ supx′∈[x1,x2]{ψ′′(x′)x′ + ψ′(x′)}|x1 − x2| for any x1 < x2 ∈ R. Moreover, we define

cψ := max
i,l

sup
x′∈[xTi bl−xmaxδ,xTi bl+xmaxδ]

{ψ′′(x′)x′ + ψ′(x′)}.

Therefore,

D2 ≤
∑

l

∑

i:Π(i) 6=i
2cψxmaxδ.

Combining the upper bounds of D1 and D2, we get the desire result by adjusting constant c′ψ .

Lemma G.2. There exists a constant cψ (may depends on ψ) such that,

P (|(L(I, B♯)− L(Π, B♯))− (Λ(I, B♯)− Λ(Π, B♯))| ≥ vΠ,partialx) ≤ exp{−vΠ,partial(min{x, cψ})2/4}, (55)

holds for any x > 0

Proof of Lemma G.2. Proof is the same as that of Lemma F.1 by treating vΠ,partial as vij there.

Lemma G.3. For any x and δ such that c′ψmd(I,Π)xmaxδ < vΠ,partialx and x < cψ , it holds

P ( sup
B∈Bδ(B♯)

|(L(I, B)− L(Π, B))− (Λ(I, B)− Λ(Π, B))| ≥ 2vΠ,partialx)

≤ exp{−1

4
vΠ,partialx

2}. (56)

Here constant cψ is the same as that in Lemma G.2 and c′ψ is the same as that in Lemma G.1.
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Proof of Lemma G.3.

P ( sup
B∈Bδ(B♯)

|(L(I, B)− L(Π, B))− (Λ(I, B)− Λ(Π, B))| ≥ 2vΠ,partialx)

≤ P (|(L(I, B♯)− L(Π, B♯))− (Λ(I, B♯)− Λ(Π, B♯))| ≥ vΠ,partialx)

+P (|DIFF(I,Π, B)− DIFF(I,Π, B′)| ≥ vΠ,partialx)

≤ exp{−1

4
vΠ,partialx

2}. (Use Lemma G.2 and the following fact.) (57)

The last inequality holds due to the fact that

|DIFF(I,Π, B)− DIFF(I,Π, B′)| ≤ c′ψmd(I,Π)xmaxδ < vΠ,partialx

leading to

P (|DIFF(I,Π, B)− DIFF(I,Π, B′)| ≥ vΠ,partialx) = 0.

Main Idea of Proof : Suppose we have already known that the estimator B̂ which is close to the truth B♯, i.e., in the

δ-neighborhood of B♯. Then by Lemma G.3, we know that

P ( sup
B∈Bδ(B♯)

|(L(I, B)− L(Π, B))− (Λ(I, B)− Λ(Π, B))| ≥ 2vΠ,partialx) (58)

vanishes for any fixed Π, where δ(= δ∗) is a sufficiently small constant which is determined later.

Hence, with straight forward calculations, we have

P (max
Π

sup
B∈Bδ(B♯)

|(L(I, B)− L(Π, B))− (Λ(I, B)− Λ(Π, B))| ≥ 2vΠ,partialx)

≤
∑

Π

P (|(L(I, B♯)− L(Π, B♯))− (Λ(I, B♯)− Λ(Π, B♯))| ≥ vΠ,partialx) (union bound)

≤
∑

h

∑

Π:d(Π,I)=h

exp{−vΠ,partialx2/4} (Lemma G.2)

≤
∑

h

n!/(n− h)! · exp{−vΠ,partialx2/4}

≤
∑

h

nh · exp{−hvminx2/4} (using fact: |{Π : d(Π, I) = h}| ≤ n!/(n− h)! ≤ nh)

=
∑

h

exp{−h(vminx2/4− log n)}

≤ exp{−2(vminx
2/4− log n)}

1− exp{−(vminx2/4− log n)} , (59)

where vmin := mini,j
∑

l λ
♯
il log

2(λ♯jl/λ
♯
il).

By (59), we know that

L(Π, B̂) ≤ L(I, B̂)− Λ(I, B̂) + Λ(Π, B̂) + x · vΠ,partial (60)

via taking

x := C
√

log n/vmin

(C is some constant) with probability going to 1 as n→ ∞. This tells us that if we can show that

Λ(I, B̂)− Λ(Π, B̂)− x · vΠ,partial > 0 (61)

for any Π with d(I,Π) ≤ hmax and B̂ within δ-neighborhood of B♯. Together with (60), it implies

L(Π, B̂) ≤ L(I, B̂)

with probability going to 1. Then we can conclude that Π̂ = I which gives the desired result.

In the following subsections, we characterize the neighborhood radius δ in G.1-G.2 and prove (61).
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G.1. First bound of ‖B̂ −B♯‖col
Since the likelihood function can be written as the sum of separate functions of b1, . . . ,bm, we only need to focus on

single bl for l ∈ [m] one by one. This reduces to the case: m = 1. Then the estimator b̂ is

b̂ = argmax
b

{〈−ψ(Xb) + Y ◦Xb〉}. (62)

When d(I,Π♯) ≤ hmax, we aim to show b̂ is a consistent estimator of b♯.

For simplicity, we can assume Π♯(i) = i for i > hmax and let L(b) = 〈−ψ(Xb) + Y ◦Xb〉. In the following, we aim to

find a δn such that for any b with ‖b − b♯‖ ≥ δn, it holds L(b) < L(b♯). By the definition that L(b̂) ≥ L(b♯), we will

arrive at ‖b̂− b♯‖ ≤ δn.

Following curvature inequality technique (see (90)) described in Section H.1. We can specifically take

δ2n := Cγ1p

√
vb♯ + ψ♯maxhmax

(n− hmax)ψ
♯
min

with some large constant C and vb :=
∑n
i=1 ψ

′′(λ♯i)(λi(b))
2. With this choice of δn, we can easily check that

L(b♯)− L(b) > 0

for any b with ‖b−b♯‖ = δn when p = O(na) (a < 1
2 ) and δn = op(1). By the concavity of likelihood function, we then

know that the estimator b̂ must lie in the ball {b : ‖b− b♯‖ ≤ δn}.

G.2. Second bound of ‖B̂ −B♯‖col
The first bound of ‖B̂ −B♯‖col implies that ‖B̂ −B♯‖col = op(1). In this section, we can further improve this bound.

We consider the Taylor expansion of L(b) at value b♯. Then, it can be computed that

0 = ∇L(b̂) = ∇L(b♯) +∇2L(b̄)(b̂− b♯) (63)

where b̄ is some point between b̂ and b♯. By the formula ∇2L(b) =
∑n
i=1 ψ

′′(xTi b)xix
T
i , we then know that

|∇2L(b♯)−∇2L(b̄)| = |
n∑

i=1

ψ′′(xTi b
♯)xix

T
i (1− ψ′′(xTi b̄)/ψ

′′(xTi b
♯))|

≤ |
n∑

i=1

ψ′′(xTi b
♯) · op(1) · xixTi |, (64)

since ‖b̄− b♯‖ ≤ ‖b̂− b♯‖ = op(1) according to the first bound result. Then we know that

σmin(∇2L(b̄)) = (1 + op(1))σmin(∇2L(b♯)) ≥ σmin(∇2L(b♯))/2.

We thus have

‖b̂− b♯‖ = ‖(∇2L(b̄))−1∇L(b♯)‖ ≤ 2

σmin(∇2L(b♯))
‖∇L(b♯)‖. (65)

For l-th (l = 1, . . . , p) element of ∇L(b♯), we can find that

∇L(b♯)[l] =
∑

i≤hmax
∇Li(b♯)[l] +

∑

i>hmax

∇Li(b♯)[l]. (66)

The first term of (66) is bounded by

bs := |
∑

i≤hmax
(Y [i]− ψ′(xTi b

♯))X[i, l]}|,
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which is order of log n
∑

i≤hmax(ψ
′′♯
max log n + ψ

′♯
max)|X[i, l]|. Here we use the observation that, for sub-exponential

random variables,

Y [i, j] = Op(

√

ψ
′′♯
max log n+ ψ

′♯
max) = Op(ψ

′′♯
max log n+ ψ

′♯
max) (67)

for all i ∈ [n], j ∈ [m]. In the following, without loss of generality, we treat all observed entries in Y are at most of order

log n.

The second term of (66) is bounded by C
√

var(
∑

i>hmax
∇Li(b♯)[l]) and the upper bound of var(

∑

i>hmax
∇Li(b♯)[l])

can be computed explicitly, i.e.,

vs := max
l∈[p]

∑

i>hmax

ψ′′(xTi b
♯)(X[i, l])2.

Putting all above together, we get

‖b̂− b♯‖ ≤ √
p(
√
vs + bs)/σmin(∇2L(b♯)) = Op(

√
p(

√

ψ
′′♯
max‖X‖2,∞ + (ψ

′′♯
max log n+ ψ

′♯
max)hmax)

σ2
min(X)

)

= Op(

√
p(

√

ψ
′′♯
max

√
n− hmax + (ψ

′′♯
max log n+ ψ

′♯
max)hmax)

nψ
′′♯
min

γ1p) := δ∗. (68)

It is clear that the bound δ∗ is tighter than the first bound, δn.

Remark: Especially, when ψ
′′♯
max, ψ

′′♯
min and ψ

′♯
max are bounded and γ1p is O(1), then δ∗ can be simplified as

√
p(

√
n−hmax+(logn)hmax)

n .

G.3. Difference of Λ(I, B̂)− Λ(Π, B̂)

Since Λ(I, B̂) is the separate function of each column of B̂, we can only focus on one column of B̂ (denoted as b̂) in the

rest of this section.

By straightforward calculation, we get

Λ(I, b̂)− Λ(Π, b̂)

= (Λ(I, b̂)− Λ(I,b♯))− (Λ(Π, b̂)− Λ(Π,b♯)) + (Λ(I,b♯)− Λ(Π,b♯))

≥ −4hmaxλ
♯
maxxmaxδ

∗ + Λ(I,b♯)− Λ(Π,b♯), (69)

where the last inequality depends on the following fact

(Λ(I, b̂)− Λ(I,b♯))− (Λ(Π, b̂)− Λ(Π,b♯))

= (Λ(I, b̂)− Λ(Π, b̂))− (Λ(I,b♯)− Λ(Π,b♯))

=
∑

i≤d(I,Π)

{

− ψ(xTi b̂) + ψ′(xTi b
♯)xTi b̂+ ψ(xTi b

♯)− ψ′(xTi b
♯)xTi b

♯

+ψ(xTΠ(i)b̂)− ψ′(xTi b
♯)xTΠ(i)b̂− ψ(xTΠ(i)b

♯) + ψ′(xTi b
♯)xTΠ(i)b

♯

}

≤
∑

i≤d(I,Π)

4ψ
′♯
max · xmax · ‖b̂− b♯‖ ≤ 4d(I,Π)ψ

′♯
maxxmaxδ

∗, (70)

where ψ
′♯
max = maxi ψ

′(xTi b
♯) and xmax = maxi ‖xi‖.

By (69) and summing over l ∈ [m], we arrive at that

Λ(I, B̂)− Λ(Π, B̂)

≥ −4md(I,Π)ψ
′♯
maxxmaxδ

∗ + Λ(I, B♯)− Λ(Π, B♯),

& x · vΠ,partial, (71)
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when the conditions (14)-(15) are met, that is,

Λ(I, B♯)− Λ(Π, B♯) & x · vΠ,partial (72)

and

Λ(I, B♯)− Λ(Π, B♯) & md(I,Π)ψ
′♯
maxxmaxδ

∗. (73)

This completes the proof of Eq. (61) and Theorem 4.4 as well.

G.4. On Λ(I, B♯)− Λ(Π, B♯)

At the end of this section, we investigate the lower bound of Λ(I, B♯)− Λ(Π, B♯). By elementary calculations, we have

Λ(I, B♯)− Λ(Π, B♯)

=
∑

l∈[m]

∑

i≤d(I,Π)

{

− ψ(xTi b
♯
l ) + ψ′(xTi b

♯
l )x

T
i b

♯
l

−(ψ(xTΠ(i)b
♯
l ) + ψ′(xTi b

♯
l )x

T
Π(i)b

♯
l )

}

≥
∑

l∈[m]

∑

i≤d(I,Π)

1

2
ψ

′′♯
min

(
(xTi − xTΠ(i))b

♯
l

)2
. (74)

Under sub-Gaussian design, it is not hard to show
∑

l∈[m]

(
(xTi − xTj )b

♯
l

)2
is Ω(m) for any pair of i, j ∈ [m] when

m & log n and p & log n. Thus, Λ(I, B♯) − Λ(Π, B♯) is Ω(md(I,Π)). Conditions (14)-(15) in Theorem 4.4 are easily

satisfied.

H. Proof of Results without any knowledge of B♯ and Π♯: Theorem 4.6

In this section, we provide the proof when we do not have any knowledge of B♯ and Π♯. For each fixed permutation Π, we

recall the definition,

vΠ,B =
n∑

i=1

m∑

l=1

ψ′′(xTΠ♯(i)b
♯
l )(x

T
Π(i)bl)

2.

It can be easily checked that vΠ,B is the variance of L(Π, B).

We first compute the high probability bound of deviation, |〈L(Π, B)− Λ(Π, B)〉|. Following the proof of Lemma F.1, the

moment generating function of 〈L(Π, B)− Λ(Π, B)〉 can be upper bounded via

E exp{t〈L(Π, B)− Λ(Π, B)〉}
= E exp{t

∑

i

〈(Y [i, :]− ψ′(λ♯i)) ◦ λπi〉}

=

n∏

i=1

m∏

l=1

exp{ψ(λ♯i [l] + tλi[l])− ψ(λ♯i [l])− tψ′(λ♯i [l])λπi [l]} (75)

≤
n∏

i=1

m∏

l=1

exp{ψ′′(λ♯i [l])(λπi [l])
2t2} (76)

= exp{t2(
∑

i,l

ψ′′(λ♯i [l])(λπi [l])
2)} = exp{vΠ,Bt2} (77)

for any t ∈ (0, cψ). Hence we have sub-Gaussian tail bound,

P (|〈L(Π, B)− Λ(Π, B)〉| ≥ vΠ,Bx)

≤ exp{−vΠ,Bx2/4} (78)
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for any x ∈ (0, 2cψ). By applying Markov inequality to E[exp{t〈L(Π, B) − Λ(Π, B)〉}] with t = 1/x̃max, where

x̃max = Cxmax for sufficiently large constant C such that 1/Cxmax < cψ . On the other hand, we also have the following

sub-exponential tail bound,

P (|〈L(Π, B)− Λ(Π, B)〉| ≥ vΠ,Bx)

≤ exp{vΠ,B/(x̃max)2} exp{−vΠ,Bx/x̃max} (79)

for any x.

Two situations In order to prove the results, we consider the following two situations, 1. d(Π,Π♯) ≤ hc 2. d(Π,Π♯) ≥ hc
where hc = c0

n
p logn . For ease of presentation, we treat Π♯ as I. (By doing this, it will not change the technical difficulty

since we can always treat Π(Π♯)−1 as new Π.)

H.1. Situation 1

We first show the difference between B(Π) and B♯. By the definition of B(Π), we know

B(Π) = argmax
B

Λ(Π, B).

Note that Λ(Π, B) is separable for each column of B, i.e.,

bj(Π) = argmax
b

n∑

i=1

{ψ′(xTΠ♯(i)b
♯
j)(x

T
Π(i)b)− exp{xTΠ(i)b}}.

Therefore, we wish to bound the difference between ‖bj(Π)− b
♯
j‖.

By the optimality of bj(Π), we then have that

n∑

i=1

ψ′(xTi b
♯
j)(x

T
Π(i)bj(Π))− ψ(xTΠ(i)bj(Π)) ≥

n∑

i=1

ψ′(xTi b
♯
j)(x

T
Π(i)b

♯
j)− ψ(xTΠ(i)b

♯
j)

which can be written as

∑

i:Π(i) 6=i

{

ψ′(xTi b
♯
j)(x

T
Π(i)bj(Π))− ψ(xTΠ(i)bj(Π))− (ψ′(xTi b

♯
j)(x

T
Π(i)b

♯
j)− ψ(xTΠ(i)b

♯
j))

}

≥
∑

i:Π(i)=i

{

ψ′(xTi b
♯
j)(x

T
Π(i)b

♯
j)− ψ(xTΠ(i)b

♯
j)− (ψ′(xTi b

♯
j)(x

T
Π(i)bj(Π))− ψ(xTΠ(i)bj(Π)))

}

.

(80)

The right hand side of (80) is bounded below by

RHS ≥ 1

2

∑

i:Π(i)=i

ψ′′(xTi b̃)(x
T
i (b

♯
j − bj(Π)))

2

≥ 1

4
cn/γ1pψ

′′♯
min‖b

♯
j − bj(Π)‖2, (81)

where the last inequality depends on the curvature property which will be described later. The left hand side of (80) is

bounded above by

LHS ≤
∑

i:Π(i) 6=i

{

ψ′(xTi b
♯
j)(x

T
i b

♯
j)− ψ(xTi b

♯
j)− (ψ′(xTi b

♯
j)(x

T
Π(i)b

♯
j)− ψ(xTΠ(i)b

♯
j))

}

≤
∑

i:Π(i) 6=i
(ψ′(xTi b

♯
j)|xTi b

♯
j − xTΠ(i)b

♯
j |+max{ψ(xTi b♯j), ψ(xTΠ(i)b

♯
jj)}). (82)
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Combining (81) and (82), we have

‖b♯j − bj(Π)‖2 ≤ C
pd(I,Π)(ψ

′♯
max + ψ♯max)γ1p

nψ
′′♯
min

, (83)

by adjusting the constant C.

Given a fixed Π, we next calculate the bound of ‖B̂(Π)−B(Π)‖. By the definition (optimality) of B̂(Π) and convexity of

negative log-likelihood function, we have that

L(Π, B♯) ≤ L(Π, B̂(Π)) = L(Π, B♯) + 〈∇L(Π, B♯), B̂(Π)−B♯〉

+
1

2
(B̂(Π)−B♯)T∇2L(Π, B̃)(B̂(Π)−B♯), (84)

which gives us that

1

2
(B̂(Π)−B♯)T∇2Lneg(Π, B̃)(B̂(Π)−B♯) ≤ |〈∇L(Π, B♯), B̂(Π)−B♯〉|

1

2
(nψ

′′♯
min/γ1p)‖B̂(Π)−B♯‖2 ≤ ‖B̂(Π)−B♯‖‖∇L(Π, B♯)‖ (85)

(nψ
′′♯
min/γ1p)‖B̂(Π)−B♯‖2 ≤ C(ψ♯max + ψ

′♯
max)‖B̂(Π)−B♯‖√p(Ch log n+

√

n log p)

(86)

‖B̂(Π)−B♯‖ ≤ C(ψ♯max + ψ
′♯
max)

γ1p
√
p(Ch log n+

√
n log p)

nψ
′′♯
min

, (87)

where we define Lneg(Π, B) = −L(Π, B). This tells us that

‖B̂(Π)−B(Π)‖ ≤ ‖B(Π)−B♯‖+ ‖B̂(Π)−B♯‖ = op(1)

as long as ph≪ n/(γ1p log n) and p = na (0 < a < 1
2 ).

Curvature Property: Here (85) depends on the following observations on the curvature of log-likelihood function. Recall

that Hessian matrix

∇2Lneg(Π, B) = (ΠX)T diag(ψ′′(ΠXB))ΠX (88)

holds for any fixed permutation Π. Then

(B̂(Π)−B♯)T∇2Lneg(Π, B̃)(B̂(Π)−B♯)

= (B̂(Π)−B♯)T (ΠX)T diag(ψ′′(ΠXB̃))ΠX(B̂(Π)−B♯)T . (89)

Let r = ‖B̂(Π) − B♯‖ and b = B̂(Π) − B♯. For any monotonically increasing ψ′′, by assumption A2, we have that the

cardinality of set I = {i|xTi b ≥ c1r} is greater than n/γ1p. For index i in I, we can find that

ψ′′(xTi B̃) ≥ min{ψ′′(xTi B̂(Π)), ψ′′(xTi B
♯)} (90)

= min{ψ′′(xTi (b+B♯)), ψ′′(xTi B
♯)}

≥ ψ
′′♯
min,

since B̃(Π) takes form of tB̂(Π) + (1− t)B♯. (Similarly, (90) also holds for monotonically decreasing or bounded ψ′′’s.)

Thus, the right hand side of (89) can be lower bounded by

(B̂(Π)−B♯)T (ΠX)T diag(ψ(ΠXB̃))ΠX(B̂(Π)−B♯)

≥ cnψ
′′♯
min/γ1pr

2

= cnψ
′′♯
min/γ1p‖B̂(Π)−B♯‖2. (91)
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Similarly, we have

BT∇2Lneg(Π, B̄)B = BT (ΠX)T diag(ψ′′(ΠXB̄))ΠXB

≥ cn/γ1p‖B‖2 (92)

for any B and B̄ = t0+ (1− t)B, (0 ≤ t ≤ 1).

We call (91) and (92) as curvature inequalities for log-likelihood at B = B♯ and B = 0 correspondingly. The most

distinguished feature of curvature inequality is that the minimum eigenvalue of Hessian matrix ∇2Lneg/n has non-trivial

lower bound. That is, the eigenvalue is strictly greater than zero.

Inequality (86) comes from the following fact. For each l ∈ [p], we consider to compute the following bound, i.e.,

sup
Π:d(Π,I)≤h

|∇L(Π, B♯)[l]| ≤ sup
Π:d(Π,I)≤h

{|∇L(Π, B♯)[l]−∇L(I, B♯)[l]|}+ |∇L(I, B♯)[l]|

≤ C(ψ♯max + ψ
′♯
max)(Ch log n+

√

n log p), (93)

by noticing that the entry of design matrix is bounded.

In situation 1, we are going to show that

L(I, B̂) > L(Π, B̂(Π))

with probability going to 1 as n→ ∞. By noticing that L(I, B̂) ≥ L(I, B̂(Π)), it suffices to show

L(I, B̂(Π)) > L(Π, B̂(Π))

for any Π with d(I,Π) ≤ hc with probability going to 1.

Uniform Bound of ‖B̂(Π)− B̂‖col

By (87), we then have

‖B̂(Π)− B̂‖col ≤ 2C(ψ♯max + ψ
′♯
max)

√
pγ1p(hmax log n+

√
n log p)

nψ
′′♯
min

=: δ1

held for any Π with d(Π,Π♯) ≤ hmax by adjusting the constant C.

Difference of |(L(I, B)− L(Π, B))− (Λ(I, B)− Λ(Π, B))|

In the following, we treat Π♯ as I for the ease of presentation. By Lemma G.3,

P (|(L(I, B)− L(Π, B))− (Λ(I, B)− Λ(Π, B))| ≥ 2vΠ,partialx)

≤ exp{−1

4
vΠ,partialx

2} (94)

for any B ∈ B(B♯, δ) with δ = δ1 and x < cψ . By using this, we can further obtain the uniform inequality, i.e.,

P ( sup
Π:d(I,Π)≤hc

1

vΠ,partial
|(L(I, B̂(Π))− L(Π, B̂(Π)))− (Λ(I, B̂(Π))− Λ(Π, B̂(Π)))| ≥ 2x)

≤
∑

Π:d(I,Π)≤hc

exp{−1

4
vΠ,partialx

2} (union bound)

=

hc∑

h=2

∑

Π:d(I,Π)=h

exp{−1

4
vΠ,partialx

2}

≤
hc∑

h=2

nh exp{−1

4
hvminx

2} (using fact that vΠ,partial ≥ h · vmin)

≤ −2(vminx
2 − log n)

1− exp{−(vminx2 − log n)} . (summation of geometric series) (95)
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On the other hand, we could compute the difference

|(Λ(I, B̂(Π))− Λ(Π, B̂(Π)))− (Λ(I, B(Π))− Λ(Π, B(Π)))|.

≤
∣
∣
∣
∣

∑

i:Π(i) 6=i

m∑

j=1

(ψ′(xTi b
♯
j)(x

T
i b̂j(Π))− ψ(xTi b̂j(Π)))− (ψ′(xTΠ(i)b

♯
j)(x

T
i b̂j(Π))− ψ(xTΠ(i)b̂j(Π)))

−
(

(ψ′(xTi b
♯
j)(x

T
i bj(Π))− ψ(xTi bj(Π)))− (ψ′(xTΠ(i)b

♯
j)(x

T
i bj(Π))− ψ(xTΠ(i)bj(Π)))

)∣
∣
∣
∣

≤ 2
∑

i:Π(i) 6=i

m∑

j=1

(ψ♯max + ψ
′♯
max)xmax‖b̂j(Π)− bj(Π)‖. (96)

Lastly, we can compute the lower bound of

Λ(I, B(Π))− Λ(Π, B(Π))

= Λ(I, B♯)− Λ(Π, B♯)−
(

Λ(I, B♯)− Λ(Π, B♯)− (Λ(I, B(Π))− Λ(Π, B(Π)))

)

≥ Λ(I, B♯)− Λ(Π, B♯)− 2
∑

i:Π(i) 6=i

m∑

j=1

(ψ♯max + ψ
′♯
max)xmax‖b♯j − bj(Π)‖

≥ 1

2
(Λ(I, B♯)− Λ(Π, B♯)) (97)

by using assumption that

Λ(Π♯, B♯)− Λ(Π, B♯) & md(Π,Π♯)(ψ♯max + ψ
′♯
max)xmaxδ

∗.

Combining (95) with x taken as min{
(

Λ(I, B(Π))− Λ(Π, B(Π))
)

/2vΠ,partial, cψ}, (96) and (97), we have

L(I, B̂(Π))− L(Π, B̂(Π)) > 0

with probability going to 1. This implies Π̂ = I = Π♯.

H.2. Situation 2

In situation 2, for any fixed Π with d(Π,Π♯) ≥ hc, we are going to bound the difference between L(Π, B) and Λ(Π, B)
uniformly over all permutation matrices and the restricted parameter space.

H.2.1. ON RESTRICTED SPACE B0

In this section, we will first determine the restricted parameter space B0. First, we know that B̂(Π) is the maximizer of

L(Π, B). We have that

〈Y ◦ (ΠXB̂(Π))− ψ(ΠXB̂(Π))〉 ≥ 〈Y ◦ (ΠX0)− ψ(ΠX0)〉. (98)

By curvature property, we have

〈Y ◦ (ΠXB̂(Π))− Y ◦ (ΠX0)− ψ′(ΠX0) ◦ (ΠX0)〉

≥ 1

2
ψ

′′0
minnγ1p‖B̂(Π)‖2col. (99)

This implies that with high probability, it holds

‖B̂(Π)‖col ≤ C
σ(X/

√
n)

γ1pψ
′′0
min

=: δb2, (100)

since each column of ‖Y ‖ is Op(
√
n). (Remark: the σ(X) is of order

√
n in many common examples, therefore δb2 can

be usually treated as a constant.)
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Then the restricted parameter space B0 can be taken as

B0 := {B | ‖B‖col ≤ δb2}.
In other words, we know that each column of the optimizer B̂ has the norm at most δb2.

H.2.2. UPPER BOUND OF vΠ,B

For any column of B ∈ B0 and i ∈ [n], we consider to compute the upper bound of |xTi B|. In fact, by Cauchy-Schwartz

inequality, we have

|xTi B| ≤ ‖xi‖‖B‖ ≤ xmaxδb2. (101)

By the formula of vΠ,B , we have that

vΠ,B =
∑

i

ψ′′(λ♯i)(x
T
πiB)2 ≤ nψ

′′♯
maxx

2
maxδ

2
b2 = O(V2). (102)

H.2.3. LOWER BOUND OF vΠ,B

We consider to obtain the lower bound of vΠ,B over the restricted parameter space B0∩B(0, δb1)
c, where δb1 is determined

in (106). By the formula of vΠ,B , we know that

vΠ,B =
∑

i

ψ′′(λ♯i)(x
T
πiB)2. (103)

According to assumption A2, we can see that there exist a constants ca and cb such that

♯{i||xTπiB| ≥ c‖B‖} ≥ n/γ1p.

Thus, we can have that

vΠ,B ≥ c2n/γ1p‖B‖2ψ
′′♯
min ≥ c2n/γ1pδ

2
b1ψ

′′♯
min. (104)

H.2.4. BOUND OF L(Π, B̂(Π))− Λ(Π, B̂(Π))

We consider two situations, ‖B̂(Π)‖col < δb1 (see (106)) and ‖B̂(Π)‖col ≥ δb1. For the former one, we argue that

|L(Π, B̂(Π))− Λ(Π, B̂(Π))|/mn is not far away from zero via straightforward calculations. For the latter case, we prove

that |L(Π, B̂(Π))−Λ(Π, B̂(Π))|/mn also vanishes with high probability via establishing uniform concentration inequality.

When ‖B̂(Π)‖col < δb1, we then know that

|L(Π, B̂(Π))− Λ(Π, B̂(Π))|
= |

∑

i,l

(Y [i, l]− ψ′(λ♯i [l]))(x
T
Π(i)b̂l)|

. log(mn)mn(ψ
′♯
max + ψ

′′♯
max)

√
pδb1 (105)

for any Π. We then know that

|L(Π, B̂(Π))− Λ(Π, B̂(Π))| ≤ K(n log n+mp)

holds for some large constant K, when

δb1 := (n log n+mp)/(log(mn)mn(ψ
′♯
max + ψ

′′♯
max)

√
p). (106)

When ‖B̂(Π)‖col ≥ δb1, for any B,B
′ ∈ B0 ∩B(0, δb1)

c with ‖B −B
′‖col ≤ δ, we have that

|L(Π, B′)− Λ(Π, B′)− (L(Π, B)− Λ(Π, B))|
= |

∑

i,l

(Y [i, l]− ψ′(λ♯i [l]))
(
xTΠ(i)b

′
l − xTΠ(i)bl

)
|

≤ Cmn(log n)
√
pψ♯cbδ (using fact that x’s entry is bounded and Y ’s entry is order of log n)

≤ 1

2
vΠ,Bx, (107)
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where x in the last inequality is a fixed constant and δ can be chosen to be sufficiently small such that the lower bound of

vΠ,Bx dominates the term mn(log n)
√
pψ♯cbδ. It happens whenever

δ . δ0 := xδ2b1ψ
′′♯
min/(ψ

♯
cb(log n)

√
p). (108)

With (78), we then have the following sub-Gaussian uniform concentration inequality,

P ( sup
B∈B0∩B(0,δb1)c

1

vΠ,B
|〈L(Π, B)− Λ(Π, B)〉| ≥ xΠ,B)

= P ( sup
B∈Bg

1

vΠ,B
|〈L(Π, B)− Λ(Π, B)〉| ≥ xΠ,B/2)

≤ |Bg| max
B∈Bg

P (
1

vΠ,B
|〈L(Π, B)− Λ(Π, B)〉| ≥ xΠ,B/2)

≤ |Bg| max
B∈Bg

exp{−vΠ,Bx2Π,B/16}, (109)

where Bg is the δ-covering net of B0 ∩ B(0, δb1)
c with δ ≤ δ0. Here we consider infinity norm on parameter space for

constructing δ-covering net. Similarly, with (79), we have the following sub-exponential uniform concentration inequality,

P ( sup
B∈B0∩B(0,δb1)c

1

vΠ,B
|〈L(Π, B)− Λ(Π, B)〉| ≥ xΠ,B)

≤ |Bg| max
B∈Bg

exp{vΠ,B/(x̃max)2} exp{−vΠ,BxΠ,B/x̃max}. (110)

Then by straightforward calculation, the cardinality of Bg is bounded by (C p
δ )
mp with C being some large constant.

Let x1 :=
√

(n log n+mp log n)vΠ,B , x2 := max{n log nxmax,mpxmax}, and ∆∗
Π,B := C1 max{x1, x2} (C1 is some

large constant). From (109) and (110) by taking xΠ,B = ∆∗
Π,B/vΠ,B , we can obtain the uniform concentration inequality,

P ( max
Π∈Plarge

sup
B∈B0

1

vΠ,B
|〈L(Π, B)− Λ(Π, B)〉| ≥ ∆∗

Π,B/vΠ,B)

≤ n!(C
p

δ
)mpmax

B
min{exp{−∆2

Π,B/16vΠ,B}, exp{vΠ,B/(x̃max)2} exp{−∆∗
Π,B/x̃max}},

≤ exp{−C̃(n log n+mp log n)}
→ 0 (111)

with choice of δ = 1
n2 in covering net and adjusting constant C̃.

In other words, (111) gives that

|L(Π, B̂(π))− Λ(Π, B̂(Π))| = Op(∆
∗
Π,B). (112)

To summarize, whenever ‖B̂(Π)‖col is greater than δb1 or not, we always have

L(I, B̂)− L(Π, B̂(Π)) ≥ Λ(I)− Λ(Π)−Op(∆
∗
Π,B). (113)

Lastly, by condition that

∆(X,B♯,Π♯,Π) &max{
√

(n+mp)mnψ
′′♯
maxx2max log n, (n log n+mp)xmax}

for any Π satisfying d(Π,Π♯) > c0
n

pγ1p logn and vΠ,B = O(mnψ
′′♯
maxx

2
max), we then have ∆(X,B♯,Π,Π♯) &

max{x1, x2}. Hence we get (113) is greater than 0 for all Π 6= I satisfying d(I,Π) > hc with probability going to

one. We then have Π̂ 6= Π for any Π with d(I,Π) > hc. This concludes the proof of Theorem 4.6.

34



Label Permutation

H.2.5. ON ASSUMPTION A2

At the end of this appendix, we show that assumption A2 is automatically satisfied for sub-Gaussian design setting. For

simplicity, we take the Gaussian design for example, i.e., each entry of X is sampled from standard normal distribution

independently. Fix p0 > 1/2 and take any b with ‖b‖ = 1, find c0 such that Φ(c0) = p0, where Φ(·) is the cumulative

distribution function of standard normal random variable. Therefore,

|P (|♯{xTi b > c0} − p0n| ≥ nt) ≤ 2 exp{− 2nt2

p0(1− p0)
}.

Find ǫ-cover of unit sphere, we then have that

♯{|xiδb| ≤ C1ǫ} ≥ n− n

C1
,

for any ‖δb‖ ≤ ǫ. The size of ǫ-cover is bounded by (2/ǫ+ 1)p. We then have that

P (♯{xTi β > c0 − C1ǫ} ≥ p0n− nt− n/C1; ∀β) ≤ (2/ǫ+ 1)p2 exp{− 2nt2

p0(1− p0)
}. (114)

We than can choose t, p0, C1 and ǫ such that

p log(2/ǫ+ 1) < 2nt2/(p0(1− p0)) (115)

p0n− nt− n/C1 ≥ p (116)

C1ǫ = o(1). (117)

Then we have that

♯{i||xTπib| ≥ c0/2} ≥ (p0 − t− 1/C1)n

with probability going to 1 as n → ∞. Thus, we can see that assumption A2 is satisfied by letting c1 = c0/2 and

γ1p = p0 − t− 1/C1 = Θ(1).
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I. Proof of Results in the Missing Observation Case

For the purpose of completeness, we provide proof under missing observation cases. The proof strategy is similar to that

of the previous setting, but computation is a bit more involved.

I.1. Size of Sl
By the definition, we know that Sl = {i : E[i, l] = 1}. Next, we give the upper and lower bound of Sl. By Bernstein

inequality, we have that

P (|
∑

E[i, l]− qn| ≥ nx) ≤ exp{− n2x2

2(nq(1− q) + nx/3)
}. (118)

Thus

P (|
∑

E[i, l]− qn| ≥ nq/2) ≤ exp{−3nq

7
}. (119)

In other words,

P (qn/2 ≤ min
l

|Sl| ≤ max
l

|Sl| ≤ 3qn/2) ≤ m exp{−3nq

7
}, (120)

which means the sizes of Sl’s are around qn with high probability as nq/ logm→ ∞. Hence, in the rest of proof, we treat

that |Sl| = Θ(qn).

I.2. When B♯ is known

We first establish the following concentration lemma.

Lemma I.1. There exists a constant cψ such that

P (|〈E[i, :] ◦ (yi ◦ λi − ψ(λi))〉 − 〈E[i, :] ◦ (yi ◦ λj − ψ(λj))〉 −∆ij(q)| ≥ vij(q)x)

≤ max{exp{−1

8
vij(q)x

2}, exp{−1

8
vij(q)c

2
ψ}}. (121)

Proof of Lemma I.1. We calculate the variance of 〈E[i, :] ◦ (yi ◦ λi − ψ(λi))〉 − 〈E[i, :] ◦ (yi ◦ λj − ψ(λj))〉.

var(〈E[i, :] ◦ (yi ◦ λi − ψ(λi))〉 − 〈E[i, :] ◦ (yi ◦ λj − ψ(λj))〉)

= q

m∑

l=1

var(Y [i, l](λi[l]− λj [l])− (ψ(λi[l])− ψ(λj [l])))

+q(1− q)(

m∑

l=1

E[Y [i, l]](λi[l]− λj [l])− (ψ(λi[l])− ψ(λj [l])))
2

= q

m∑

l=1

ψ′′(λi[l])(λi[l]− λj [l])
2 + q(1− q)

m∑

l=1

(ψ′(λi[l])(λi[l]− λj [l])− (ψ(λi[l])− ψ(λj [l])))
2

=
∑

l

{qxij,2[l] + q(1− q)(xij,1[l])
2} (122)

:= vij(q), (123)

where, for simplicity, we let xij,1[l] = ψ′(λi[l])(λi[l] − λj [l]) − (ψ(λi[l]) − ψ(λj [l])) and xij,2[l] = ψ′′(λi[l])(λi[l] −
λj [l])

2. We may also suppress subscript i, j in xij,1 or xij,2 in the following calculations.
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The moment generating function of 〈E[i, :] ◦ (yi ◦ λi − ψ(λi))〉 − 〈E[i, :] ◦ (yi ◦ λj − ψ(λj))〉 −∆ij(q) is

E exp{t(〈E[i, :] ◦ (yi ◦ λi − ψ(λi))〉 − 〈E[i, :] ◦ (yi ◦ λj − ψ(λj))〉 −∆ij(q))}

=
m∏

l=1

E exp

{

t

(

E[i, l](Y [i, l](λj [l]− λj [l])− (ψ(λi[l])− ψ(λj [l])))−∆ij(q)[l]

)}

=
m∏

l=1

{
(
(1− q) + qE exp{t(Y [i, l](λi[l]− λj [l])− (ψ(λi[l])− ψ(λj [l])))}

)
exp{−t∆ij(q)[l]}

}

=
m∏

l=1

{
(
(1− q) + q exp{ψ(λi[l] + t(λi[l]− λj [l]))− ψ(λi[l])− t(ψ(λi[l])− ψ(λj [l]))}

)
exp{−t∆ij(q)[l]}

}

≤
m∏

l=1

(1 + qx1[l]t+ aqx2[l]t
2 + bq(x1[l]t+ ax2[l]t

2)2)(1− qx1[l]t+ c(qx1[l]t)
2) (using fact-exp)

≤
m∏

l=1

(1 + 2(aqx2[l]t
2 + bqx21[l]t

2 + cq2x21[l]t
2 − q2x21[l]t

2)) (basic calculation)

≤
m∏

l=1

(1 + 2(aqx2[l]t
2 + bq(1− q)x21[l]t

2)) (basic calculation)

≤
m∏

l=1

exp{2(qx2[l] + q(1− q)x21[l])t
2} (using 1 + x ≤ exp{x})

= exp{2vij(q)t2}, (124)

where we suppress symbols xij,1, xij,2 to x1 and x2 respectively. We also use the Taylor expansion for multiple times in

the above inequalities which depend on the following fact,

exp{x} ≤ 1 + x+ (
1

2
+

1

5
x)x2 (fact-exp)

for any |x| < 0.5. In (124), we specifically take a = 1, c = 1− b, b = 1
2 +

1
10 (qx1t+ qax2t

2) < 1. This choice is possible

and (124) holds for any t . c′ψ := mini,j,l

{

min{1/λj [l], 1/(qx1[l]), 1/
√

qx2[l]}
}

.

Thus we have

P (|〈E[i, :] ◦ (yi ◦ λi − ψ(λi))〉 − 〈E[i, :] ◦ (yi ◦ λj − ψ(λj))〉 −∆ij(q)| ≥ vij(q)x)

≤ inf
t∈(0,c′

ψ
)
exp{2vij(q)t2} exp{−vij(q)xt}

≤ max{exp{−1

8
vij(q)x

2}, exp{−1

8
vij(q)c

2
ψ}},

with cψ = 2cψ′ .

Similar to the non-missing case when B♯ is known, the rest of proof follows by taking the union bound over all possible

pairs i and j to get the desired result.

Remark I.2. Similar to no missing observation case, we can obtain that the requirement for permutation recovery is

∆ij(q) &
√

(log n)vij(q) and vij(q) & log n.

That is,

∆ij(q)
2 & q

m∑

l=1

ψ′′(λi[l])(λi[l]− λj [l])
2 + q(1− q)

m∑

l=1

(ψ′(λi[l])(λi[l]− λj [l])− (ψ(λi[l])− ψ(λj [l])))
2 & log n.

Especially, when λ♯il’s are bounded and mini,j
∑

l∈[m](λ
♯
il − λ♯jl)

2 = Ω(m), the above inequality becomes

q2m2 & log n(qm+ q(1− q)m) and qm & log n.

Thus q ≥ logn
m is required for the perfect permutation recovery.
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I.3. With knowledge that d(I,Π♯) is small

Again, in order to prove the recovery consistency, we need to control the following quantities, ‖B − B♯‖col and

supB∈Bδ(B♯) |L(I, B,E) − L(Π, B,E)) − (Λ(I, B, q) − Λ(Π, B, q)|. For ease of presentation, we still treat Π♯ = I

here.

Suppose we have already known that the estimator B̂ which is close to the truth B♯, i.e., in the δ-neighborhood of B♯.
Then we let Bδ(B

♯) := {B : ‖B − B♯‖col ≤ δ} and δ is a sufficiently small constant which will be determined later. By

simple modifications of Lemma G.3 and Lemma I.1, for any fixed Π, we have

P ( sup
B∈Bδ(B♯)

|(L(I, B,E)− L(Π, B,E))− (Λ(I, B, q)− Λ(Π, B, q))| ≥ 2vΠ,partial,qx)

≤ P (|(L(I, B♯, E)− L(Π, B♯, E))− (Λ(I, B♯, q)− Λ(Π, B♯, q))| ≥ vΠ,partial,qx)

≤ exp{−1

4
vΠ,partial,qx

2} (125)

for x ≤ cψ .

By calculations, we get

P (max
Π

sup
B∈Bδ(B♯)

|(L(I, B,E)− L(Π, B,E))− (Λ(I, B, q)− Λ(Π, B, q))| ≥ 2vΠ,partial,qx)

≤
∑

Π

P (|(L(I, B♯)− L(Π, B♯))− (Λ(I, B♯)− Λ(Π, B♯))| ≥ vΠ,partial,qx)

=
∑

h

∑

Π:d(Π,I)=h

· exp{−vΠ,partial,qx2/4}

≤
∑

h

n!/(n− h)! · exp{−vΠ,partial,qx2/4} (basic calculation)

≤
∑

h

nh · exp{−hvmin,qx2/4} (basic calculation)

=
∑

h

exp{−h(vmin,qx2 − log n)} (using vΠ,partial,q ≥ h · vmin,q)

≤ exp{−2(vmin,qx
2 − log n)}

1− exp{−(vmin,qx2 − log n)} , (126)

where we recall that vmin,q = mini,j
∑

l

{

qψ′′(λ♯i [l])(λ
♯
j [l]− λ

♯
i [l])

2 + q(1− q)(ψ′(λ♯i [l])(λ
♯
i [l]− λ

♯
j [l])− (ψ(λ♯i [l])−

ψ(λ♯k[l])))
2

}

.

By (126), with probability going to 1, we have that L(Π, B̂, E) ≤ L(I, B̂, E)−Λ(I, B̂, q)+Λ(Π, B̂, q)+x · vΠ,B♯,q with

x = min{C
√

log n/vmin, cψ} with C being some constant. This tells us that if we can show that

Λ(I, B̂, q)− Λ(Π, B̂, q)− x · vΠ,B♯,q > 0. (127)

Then we can conclude that Π̂ = I which leads to the desired result.

I.3.1. FIRST BOUND OF ‖B −B♯‖col
Again we first show that ‖B − B♯‖col = op(1). Column-wisely, we need to construct a δn such that for any b with

‖b− b♯‖ ≥ δn, it holds L(b) < L(b♯). By the definition that L(b̂) ≥ L(b♯), we will arrive at ‖b̂− b♯‖ ≤ δn.

Similar to the non-missing case, we can take

δ2n := C

√
vb♯,q + qλ♯maxhmax

q(n− hmax)λ
♯
min/γ2p
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with some constant C and

vb,q :=

n∑

i=1

{qψ′′(λ♯i)(λi(b))
2 + q(1− q)

(
ψ′(λ♯i)λi(b)− ψ(λi(b))

)
}.

With this choice of δn, we can check that δn = op(1) and

L(b♯)− L(b) > 0

holds for any b with ‖b− b♯‖ = δn when p2/q < n and phmax < n/ log n. By the concavity of likelihood function, we

then know that ‖b̂− b♯‖ ≤ δn.

I.3.2. SECOND BOUND OF ‖B −B♯‖col
We do the Taylor expansion of L(b) at b = b♯. Then, it can be computed that

0 = ∇L(b̂) = ∇L(b♯) +∇2L(b̄)(b̂− b♯)

where b̄ is some point between b̂ and b♯. Again, by curvature inequality technique under assumption E2, we have

‖∇2L(b̄)(b̂− b♯)‖
≥ cqnψ

′′♯
min/γ2p‖b̂− b♯‖. (128)

We thus have

‖b̂− b♯‖ = ‖(∇2L(b̄))−1∇L(b♯)‖ ≤ 1

cqnψ
′′♯
min/γ2p

‖∇L(b♯)‖. (129)

For l-th element of ∇L(b♯), we can find that

∇L(b♯)[l] =
∑

i≤hmax:E[i]=1

∇Li(b♯)[l] +
∑

i>hmax:E[i]=1

∇Li(b♯)[l].

The first term is bounded by

bs := |
∑

i≤hmax
(Y [i]− ψ′(xTi b

♯))X[i, l]}|,

which is order of (log n)
∑

i≤hmax ψ
′′♯
max|X[i, l]|. The second term is bounded by C

√

var(
∑

i>hmax
∇Li(b♯)[l]) and the

upper bound of var(
∑

i>hmax:E[i]=1 ∇Li(b♯)[l]) can be computed explicitly, i.e.,

vs,q := max
l∈[p]

∑

i>hmax

qψ′′(xTi b
♯)(X[i, l])2 + q(1− q)(ψ′(xTi b

♯)X[i, l]− ψ(xTi b
♯))2.

Thus

‖b̂− b♯‖ ≤ √
p(
√
vs,q + bs)/(cqnψ

′′♯
min/γ2p) = Op(

√
p(
√
vs,q + ψ

′′♯
maxhmax log n)

qn
)

= Op(

√
p(
√

qψ
′′♯
max + q(1− q)ψ♯2cb

√
n− hmax + ψ

′′♯
maxhmax log n)

qnψ
′′♯
min/γ2p

) := δ∗q . (130)

Thus the bound δ∗ is tighter than δn. Especially, when xTi b
♯ is bounded for all i and γ2p = O(1), then δ∗ can be simplified

as
√
p(
√
q(n−hmax)+hmax logn)

qn .
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I.3.3. DIFFERENCE OF Λ(I, b̂, q)− Λ(Π, b̂, q)

By straightforward calculation, we get

Λ(I, b̂, q)− Λ(Π, b̂, q)

= q

{

(Λ(I, b̂)− Λ(I,b♯))− (Λ(Π, b̂)− Λ(Π,b♯)) + (Λ(I,b♯)− Λ(Π,b♯))

}

≥ −4qhmaxψ
♯
cbxmaxδ

∗ + q(Λ(I,b♯)− Λ(Π,b♯)), (131)

where the last inequality holds due to the same reason as explained in no-missing observation case. By (131) and summing

over l ∈ [m], we have that

Λ(I, B̂, q)− Λ(Π, B̂, q)

≥ −4qmd(I,Π)ψ♯cbxmaxδ
∗ + q(Λ(I,b♯)− Λ(Π,b♯)),

& xvΠ,partial,q, (132)

when

q(Λ(I,b♯)− Λ(Π,b♯)) & xvΠ,partial,q

and

Λ(I,b♯)− Λ(Π,b♯) & md(I,Π)ψ♯cbxmaxδ
∗.

This completes the proof if we take x =
√

log n/vmin,q .

I.4. With no knowledge of B♯ and Π♯

We consider to compute the moment generating function of 〈L(Π, B,E) − EΛ(Π, B,E)〉. Similar to Lemma I.1, we can

obtain

E exp{t〈L(Π, B,E)− EΛ(Π, B,E)〉}

≤
n∏

i=1

m∏

l=1

E exp

{

t

(

E[i, l](Y [i, l]λΠ(i)[l]− ψ(λΠ(i)[l]))− q(ψ′(λ♯i [l])λΠ(i)[l]− ψ(λΠ(i)[l]))

)}

≤ exp{2vΠ,B,qt2}

for t ≤ c

ψ′(xmax
√
p/q)+ψ′′(xmax

√
p/q)

=: 1/g(n, p) (c is some small constant, g(n, p) is around of order ψ♯cb), where

vΠ,B,q = q

n∑

i=1

m∑

l=1

ψ′′(λ♯i [l])(λΠ(i)[l])
2 + q(1− q)

n∑

i=1

m∑

l=1

(ψ′(λ♯i [l])λΠ[l]− ψ(λΠ(i)[l]))
2.

Thus we have sub-Gaussian tail probability,

P (|〈L(Π, B)− Λ(Π, B)〉| ≥ vΠ,B,qx)

≤ exp{−vΠ,B,qx2/4}

for any x ≤ 2
g(n,p) . We also have the following exponential tail probability,

P (|〈L(Π, B)− Λ(Π, B)〉| ≥ vΠ,B,qx)

≤ exp{vΠ,B,q/(g(n, p))2} exp{−vΠ,B,qx/g(n, p)}

for any x.
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By the same logic, we still consider two situations, 1. d(Π,Π♯) ≤ hc 2. d(Π,Π♯) ≥ hc where hc = c0
nq

pγ3p logn . We first

show the difference between B(Π) and B♯. By the definition of B(Π), we know

B(Π) = argmax
B

Λ(Π, B, q).

Note that Λ(Π, B, q) is also separable for each column of B, i.e.,

bj(Π) = argmax
b

q

{ n∑

i=1

ψ′(xTi b
♯
j)(x

T
Π(i)b)− ψ(xTΠ(i)b)

}

.

Here we still assume Π♯ = I without loss of generality. Notice that that the maximizer of Λ(Π, B, q) remains the same as

that of Λ(Π, B). Thus, the difference ‖bj(Π)− b
♯
j‖ has already been obtained as before.

I.4.1. SITUATION 1

For situation 1, we are going to show

L(I, B̂, E) > L(Π, B̂(Π), E)

with high probability. It suffices to show

L(I, B̂(Π), E) > L(Π, B̂(Π), E)

for any Π with d(I,Π) ≤ hc.

Given Π, we aim to calculate the bound of ‖B̂(Π) − B(Π)‖col. By the definition of B̂(Π) and convexity of negative

log-likelihood function, we have that

L(Π, B♯, E) ≥ L(Π, B̂(Π), E) = L(Π, B♯, E) + 〈∂L(Π, B♯, E), B̂(Π)−B♯〉

+
1

2
(B̂(Π)−B♯)T∇2L(Π, B̃, E)(B̂(Π)−B♯),

which gives us that

1

2
(B̂(Π)−B♯)T∇2L(Π, B̃, E)(B̂(Π)−B♯) ≤ |〈∇L(Π, B♯, E), B̂(Π)−B♯〉|

1

2
(nqψ

′′♯
min/γ3p)‖B̂(Π)−B♯‖2 ≤ ‖B̂(Π)−B♯‖‖〈∇L(Π, B♯, E)‖

(nqψ
′′♯
min/γ3p)‖B̂(Π)−B♯‖2 ≤ Cψ♯cb‖B̂(Π)−B♯‖√p(Ch log n+

√

n log p)

(133)

‖B̂(Π)−B♯‖ ≤ Cψ♯cb

√
p(Ch log n+

√
nq log p)

ψ
′′♯
minnq/γ3p

. (134)

This tells us that

‖B̂(Π)−B(Π)‖ ≤ ‖B(Π)−B♯‖+ ‖B̂(Π)−B♯‖ = o(1)

as long as ph≪ qn/(γ3p log n) and p = (qn)1/2−o(1).

Here, (133) comes from the following fact. For each l ∈ [p], we consider to compute the following bound, i.e.,

sup
Π:d(Π,I)≤h

|∇L(Π, B♯, E)[l]| ≤ sup
Π:d(Π,I)≤h

{|∇L(Π, B♯, E)[l]−∇L(I, B♯, E)[l]|}+ |∇L(I, B♯, E)[l]|

≤ Cψ♯cb(Ch log n+
√

nq log p), (135)

by noticing that the entry of design matrix is bounded.

Uniform Bound of ‖B̂(Π)− B̂‖col By (134), we have

‖B̂(Π)− B̂‖col ≤ 2Cψ♯cb

√
p(h log n+

√
nq log p)

ψ
′′♯
minnq/γ3p

=: δ∗2
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by adjusting the constant.

Uniform Concentration Inequality Similar to non-missing case, we can obtain that

P (|(L(I, B,E)− L(Π, B,E))− (Λ(I, B, q)− Λ(Π, B, q))| ≥ vΠ,partial,qx)

≤ exp{−1

4
vΠ,partial,qx

2} (136)

for any fixed B ∈ B(B♯, δ∗2) and suitable x. By using this, we can further obtain the uniform inequality:

P ( sup
Π:d(I,Π)≤hc

1

vΠ,partial,q
|(L(I, B̂(Π), E)− L(Π, B̂(Π), E)− (Λ(I, B̂(Π), q)− Λ(Π, B̂(Π), q))| ≥ x)

≤
∑

Π:d(I,Π)≤hc

exp{−1

4
vΠ,partial,qx

2}

≤
hc∑

h=2

∑

Π:d(I,Π)=h

exp{−1

4
vΠ,partial,qx

2}

≤
hc∑

h=2

nh exp{−1

4
hvmin,qx

2}

≤ −2(vmin,qx
2 − log n)

1− exp{−(vmin,qx2 − log n)} . (137)

On the other hand, we calculate the difference

|(Λ(I, B̂(Π), q)− Λ(Π, B̂(Π), q)− (Λ(I, B(Π), q)− Λ(Π, B(Π), q))|

≤ q

∣
∣
∣
∣

∑

i:Π(i) 6=i

m∑

j=1

(ψ′(xTi b
♯
j)(x

T
i b̂j(Π))− ψ(xTi b̂j(Π)))− (ψ′(xTΠ(i)b

♯
j)(x

T
i b̂j(Π))− ψ(xTΠ(i)b̂j(Π)))

−
(

(ψ′(xTi b
♯
j)(x

T
i bj(Π))− ψ(xTi bj(Π)))− (ψ′(xTΠ(i)b

♯
j)(x

T
i bj(Π))− ψ(xTΠ(i)bj(Π)))

)∣
∣
∣
∣

≤ 2q
∑

i:Π(i) 6=i

m∑

j=1

ψ♯cbxmax‖b̂j(Π)− bj(Π)‖. (138)

Moreover, we can compute the

Λ(I, B(Π), q)− Λ(Π, B(Π), q)

= Λ(I, B♯, q)− Λ(Π, B♯, q)−
(

Λ(I, B♯, q)− Λ(Π, B♯, q)− (Λ(I, B(Π), q)− Λ(Π, B(Π)), q)

)

≥ Λ(I, B♯, q)− Λ(Π, B♯, q)− 2
∑

i:Π(i) 6=i

m∑

j=1

ψ♯cbxmax‖b
♯
j − bj(Π)‖

≥ c(Λ(I, B♯, q)− Λ(Π, B♯, q), . (139)

Combining (137), (138) with x taken as Λ(I, B(Π), q)− Λ(Π, B(Π), q)/2vΠ,partial,q and (139), we have

L(I, B̂(Π), E)− L(Π, B̂(Π), E) ≥ c(Λ(I, B♯, q)− Λ(Π, B♯, q)) > 0

with probability going to 1.
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I.4.2. SITUATION 2

In situation 2, for any Π with d(Π,Π♯) ≥ hc and parameter matrix B, we are going to show the high probability bound of

|〈L(Π, B,E)−Λ(Π, B, q)〉|. Then bound of |〈L(Π, B̂(Π), E)−Λ(Π, B̂(Π), q)〉| follows as well. The main proof strategy

is similar to that in non-missing observation setting.

On B0 In this part, we first determined the restricted parameter space B0. First, we know that B̂(Π) is the maximizer of

L(Π, B,E). We let ∇L(Π, B,E) = (ΠX)T (E ◦ Y )− (ΠX)T (E ◦ ψ′(ΠXB)) and then know that

∇L(Π, B̂(Π), E) = 0 (140)

and

∇L(Π,0, E) = (ΠX)T (E ◦ Y )− (ΠX)T (E ◦ ψ′(1)). (141)

By Talyor expansion of ∇L(Π, B,E), we have that

∇L(Π,0, E) = ∇L(Π, B̂(Π), E) +∇2L(Π, B̃(Π), E)B̂(Π). (142)

By the formula that ∇2L(Π, B,E) = ΠTXT diag(E ◦ ψ′′(ΠXB))ΠX , we can easily obtain that

‖B̂(Π)‖col ≤ C
√
p(log n)γ3pψ

♯
cb/(xmaxψ

′′0
min) := δ

′

b2.

Then the restricted parameter space B0 is taken as

B0 := {B |‖B‖col ≤ δ
′

b2}.

Upper bound of vΠ,B,q We need to estimate the upper bound of vΠ,B over the restricted parameter space. By the formula

of vΠ,B,q, we have that

vΠ,B,q = q
∑

i

ψ′′(λ♯i)(x
T
Π(i)B)2 + q(1− q)

∑

i

(ψ′(λ♯i)(x
T
Π(i)B)− ψ(xTΠ(i)B))2

≤ qnψ
′′♯
max(xmaxδ

′
b2)

2

+2q(1− q)(ψ
′♯
maxxmaxδ

′
b2)

2 + 2q(1− q)(ψ(xmaxδ
′
b2))

2 := V2(q)

(143)

Lower bound of vΠ,B,q We consider to obtain the lower bound of vΠ,B,q over the restricted parameter space B0. By the

formula of vΠ,B,q, we know that

vΠ,B,q = q
∑

i

ψ′′(λ♯i)(x
T
Π(i)B)2 + q(1− q)

∑

i

(ψ′(λ♯i)(x
T
Π(i)B)− ψ(xTΠ(i)B))2. (144)

Let δb := ‖B‖ and we have Then we will have

vΠ,B,q ≥ qc/γ3pnψ
′′♯
minδ

2
b .

For any B with δb ≤ d0/(xmaxmax{1, ψ′♯
max}) with d0 satisfying |ψ(x)| > d0/2 for any |x| < d0, it then holds

∑

i

(ψ′(λ♯i)(x
T
Π(i)B)− ψ(xTΠ(i)B))2 ≥ nd20/4.

Therefore, vΠ,B,q ≥ min{cqnψ
′′♯
minδ

2
b1/γ3p, q(1− q)n/4} := vlb,q , where δb1 := d0/(xmaxmax{1, ψ′♯

max}).

Bound of |〈L(Π, B,E)− Λ(Π, B, q)〉|
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Define ∆∗
Π,B,q := C2 max{

√

(n log n+mp log(n))vΠ,B,q, (n log n+mp)(log n)g(n, p)} with C2 being a large constant.

Similar to non-missing observation case, we can obtain the following uniform sub-Gaussian concentration inequality,

P (max
Π

sup
B∈B0

1

vΠ,B,q
|〈L(Π, B,E)− Λ(Π, B, q)〉| ≥ ∆∗

Π,B,q/vΠ,B,q)

≤ n!
∑

B∈Bg
exp{−∆∗

Π,B,qx
2/16vΠ,B,q}, (145)

and also obtain the following uniform sub-exponential concentration inequality,

P (max
Π

sup
B∈B0

1

vΠ,B,q
|〈L(Π, B,E)− Λ(Π, B, q)〉| ≥ ∆∗

Π,B,q/vΠ,B,q)

≤ n!
∑

B∈Bg
exp{vΠ,B,q/(g(n, p))2} exp{−∆∗

Π,B,q/g(n, p)}. (146)

Here Bg is again a δ-covering set with δ = 1/n2.

With straightforward calculations, the minimum probability of (145) and (146) goes to zero when n→ ∞.

Therefore, we have that

L(I, B̂, E)− L(Π, B̂(Π), E)

≥ Λ(I, q)− Λ(Π, q)−Op(∆
∗
Π,B,q).

Finally, noting that g(n, p) = O(ψ♯cb) and VΠ,B,q ≤ V2(q), then it holds that ∆2(X,B
♯,Π,Π♯) & x0 according to

Assumption (39). It then implies Π̂ 6= Π for any Π with d(I,Π) > hc with high probability. This completes the proof.

44



Label Permutation

J. ADMM Computational Approach

For self-completeness, in this section, we discuss the computational aspects of the problem in classical linear models. We

relax the ML estimation problem to a bi-convex problem and solve it via an ADMM algorithm proposed in Zhang et al.

(2019). A detailed description is given in the sequel.

ADMM formulation First, we are trying to solve

min
Π,B

‖Y −ΠXB‖2F = ‖P⊥
ΠXY ‖2F (147)

where projection matrix P⊥
ΠX is defined as I−ΠX

(
XTX

)−1
XTΠT . Note that we can decompose Y as P⊥

ΠXY +PΠXY .

Since ‖Y ‖2F = ‖P⊥
ΠXY ‖2 + ‖PΠXY ‖2 can be treated as a constant, minimizing ‖P⊥

ΠXY ‖2 is equivalent to maximizing

‖PΠXY ‖2.

By introducing two redundant variables Π1 and Π2, we formulate (147) as

min
Π1, Π2

−trace
(
Π1PXΠT2 Y Y

T
)
, s.t.Π1 = Π2, (148)

where PX := X(XTX)−1XT . We propose to solve (148) with the ADMM Algorithm (Boyd et al., 2011) and present the

details of the algorithm in Algorithm 6.

Algorithm 6 ADMM algorithm for the recovery of Π.

1: Input: Initial estimate for the permutation matrix Π(0) and create an n× n matrix µ(0) = 0.

2: For time t+ 1: Update Π
(t+1)
1 ,Π

(t+1)
2 as

Π
(t+1)
1 =argmin

Π1

〈Π1,−Y Y TΠ(t)
2 PTX + µ(t) − ρΠ

(t)
2 〉

Π
(t+1)
2 =argmin

Π2

〈Π2, Y Y
TΠ

(t+1)
1 PX − µ(t) − ρΠ

(t+1)
1 〉

µ(t+1) = µ(t) + ρ
(

Π
(t+1)
1 −Π

(t+1)
2

)

.

3: Termination: Stop the ADMM algorithm once Π
(t+1)
1 is identical to Π

(t+1)
2 .

Since ADMM may exhibit slow convergence (Boyd et al., 2011), it adopts a warm start strategy to accelerate the algorithm,

which consists of two steps:

• Compute the average values X̄ = 1
p

∑p
i=1X[:, i].

• Obtain a rough estimate Π(0) by using Algorithm 7 or 8 with X = X̄ .

Algorithm 7 Averaging estimator.

1: Compute the average 1
m

∑m
i=1 Y [:, i].

2: Compute Π̂ by maximizing
(
〈m−1

∑m
i=1 Y [:, i],ΠX〉

)2
.

Algorithm 8 Eigenvalue estimator.

1: Compute the principal eigenvector u of m−1
(∑m

i=1 Y [:, i]Y [:, i]T
)
.

2: Recover Π̂ by maximizing (〈u, ΠX〉)2.
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