
Under review as a conference paper at ICLR 2024

LINEAR PROGRAMMING USING DIAGONAL LINEAR
NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Linear programming has played a crucial role in shaping decision-making, re-
source allocation, and cost reduction in various domains. In this paper, we investi-
gate the application of overparametrized neural networks and their implicit bias in
solving linear programming problems. Specifically, our findings reveal that train-
ing diagonal linear networks with gradient descent, while optimizing the squared
L2-norm of the slack variable, leads to solutions for entropically regularized linear
programming problems. Remarkably, the strength of this regularization depends
on the initialization used in the gradient descent process. We analyze the conver-
gence of both discrete-time and continuous-time dynamics and demonstrate that
both exhibit a linear rate of convergence, requiring only mild assumptions on the
constraint matrix. For the first time, we introduce a comprehensive framework for
solving linear programming problems using diagonal neural networks. We under-
score the significance of our discoveries by applying them to address challenges
in basis pursuit and optimal transport problems.

1 INTRODUCTION

Large-scale optimization algorithms play a crucial role in the rapid advancement of modern ma-
chine learning and artificial intelligence. Interestingly, these algorithms often introduce an ”implicit
bias” toward specific solutions, even when such biases are not explicitly defined in the objective or
problem formulation. For instance, when tackling the unregularized least squares problem, apply-
ing the gradient descent (GD) method typically converges to a solution with minimum Euclidean
norm Friedman & Popescu (2004); Yao et al. (2007); Ali et al. (2019), while the coordinate de-
scent method tends to find a solution with the minimum ℓ1-norm Gunasekar et al. (2018). These
algorithm-induced biases result in a form of ”algorithmic regularization” that effectively constrains
model complexity. This phenomenon offers insights into the generalization capabilities of deep
neural networks trained using (stochastic) gradient descent.

In pursuit of a deeper comprehension of training overparametrized neural networks, recent re-
search has delved into the implicit bias of gradient descent when applied to a reparametrized model
Neyshabur et al. (2015); Zhang et al. (2017); Amid & Warmuth (2020a). While traditional gradient
descent seeks minimum ℓ2-norm solutions in the original space, performing gradient descent within
a reparametrized space can induce various other forms of regularization. For instance, in the con-
text of matrix factorization, applying gradient descent with a quadratic reparametrization yields an
approximately low-rank solution, provided that the initialization is suitably small Gunasekar et al.
(2017); Li et al. (2018). Similarly, when dealing with linear regression, applying gradient descent
under a quadratic (or even higher-order) reparametrization with a small initialization typically leads
to a sparse solution Vaskevicius et al. (2019); Woodworth et al. (2020); Zhao et al. (2022). Moreover,
for a broad range of reparametrizations, it has been established that employing gradient descent with
an infinitesimal step size (referred to as gradient flow) is equivalent to utilizing mirror descent (MD)
with infinitesimal stepsizes (referred to as mirror flow) and a specific reference divergence Amid &
Warmuth (2020b); Azulay et al. (2021); Li et al. (2022).

Most of the existing works on the reparametrized GD focus on the dynamics of GD with infinitesimal
stepsizes. This approach provides an elegant characterization of the limit solution given in terms of
a regularized optimization problem. In particular, this limit solution is dependent on the size of the
initialization. It is not clear how discretization would change the trajectory and the limiting solution

1

Under review as a conference paper at ICLR 2024

– even basic convergence guarantees seem to be missing in the literature. There are a few recent
papers such as Even et al. (2023), in which the authors studied reparametrized GD under a practical
stepsize rule. As a tradeoff, these works make some regularity assumptions on the data that may not
be readily verified. Therefore, it is a remaining problem to understand the reparametrized GD from
a pure algorithmic perspective:

• How does reparametrized GD converge under discretized stepsizes? How to characterize
the limiting solution?

In this work, we provide an answer to this question by studying the reparametrized GD under a
classical setting of solving a linear program (LP):

min
x

c⊤x s.t. Ax = b, x ≥ 0. (1)

where A ∈ Rm×n with m ≤ n, b ∈ Rm, and c ∈ Rn satisfies c > 0, that is, all elements of c are
strictly positive. Note that we assume c > 0 for simplicity – see Remark 1.1 that how a general c
can be reduced to this case.

OUR CONTRIBUTIONS

• We present a new and simple framework for solving linear programming problems by harnessing
the implicit bias of overparametrized neural networks. Our analysis delves into the convergence
behaviors of both discrete and continuous-time gradient descent dynamics, establishing a linear
rate of convergence. Notably, our investigation of discrete-time dynamics, especially demonstrating
global linear convergence (see Theorem 3.4) for diagonal linear networks which we introduce below
represents a unique and, to the best of our knowledge, an unprecedented achievement.

• Our work uniquely enables us to elucidate the influence of gradient descent initialization on its
convergence to specific solutions. A similar influence on the initialization was shown in Woodworth
et al. (2020) for general initialization. However, leveraging this initialization insight, we illustrate
how the ultimate outcome of gradient descent dynamics in least squares problems can correspond to
the solution of a regularized linear programming problem.

• We conducted a comparative analysis of gradient descent dynamics with mirror gradient descent
for the basis pursuit problem and the Sinkhorn algorithm for the optimal transport problem. While
there are notable similarities between gradient descent on diagonal networks and these previous
algorithms, we demonstrate their distinctions in Section 2.2 and Section 2.3 through explicit eluci-
dation and supported by simulations in Section 4.

Although the formulation (1) was not explicitly discussed in recent literature on reparametrized GD,
it includes the well-studied example of sparse linear regression that appeared in Vaskevicius et al.
(2019); Woodworth et al. (2020); Zhao et al. (2022), as shown by the following example.

Example 1.1 (Basis pursuit) For sparse linear regression with data X ∈ Rn×p and y ∈ Rn, the
basis pursuit estimator finds an exact fitting with minimum ℓ1-norm:

min
β

∥β∥1 s.t. Xβ = y. (2)

By a transformation β = w − z with both w ≥ 0 and z ≥ 0, problem (2) is equivalent to

min
w,z

1⊤n (w + z) s.t. Xw −Xz = y, w ≥ 0, z ≥ 0. (3)

which is in the form of (1) with A = [X,−X], b = y, c = 12n and x = (w; z).

For the sparse linear regression problem, recent literature Vaskevicius et al. (2019); Woodworth
et al. (2020); Zhao et al. (2022) considered reparametrizing β = u ◦ u− v ◦ v and running gradient
descent steps on the nonconvex loss ∥X(u ◦ u − v ◦ v) − y∥22 for variables u, v ∈ Rn, where ◦
denotes the element-wise product of vectors. It was shown that the limiting solution of the GD steps
is an approximate solution to (2), given that we take the initialization u = v = α1n for some small
value α > 0 and infinitesimal stepsizes.

2

Under review as a conference paper at ICLR 2024

In this paper, we adopt a similar reparametrization x = u ◦ u for the more general problem (1), and
show that the limit of GD on ∥A(u ◦ u)− b∥22 is an approximate solution of (1) for proper initializa-
tion. Note that our reparametrization coincides with the one considered in the literature for the basis
pursuit problem, following the reduction in Example 1.1. This specific form of reparameterization is
commonly referred to as ”Diagonal Linear Networks” (DLNs). This quadratic reparameterization is
loosely likened to the impact of composing two layers in a neural network. We give a strict analysis
of the limiting behavior of GD, without any heuristic assumptions such as the infinitesimal stepsizes
or the existence of the limit point – see Sections 2 and 3 for details.

Example 1.2 (Optimal transport) Given starting and target distributions w ∈ ∆m and v ∈ ∆n

where ∆k := {x ∈ Rk
+ | 1⊤k x = 1}, and given a cost matrix C ∈ Rm×n, the optimal transport from

u to v is given by the solution of

min
X∈Rm×n

⟨C,X⟩ s.t. 1⊤mX = w⊤, X1n = v, X ≥ 0. (4)

Note that ⟨X, 1m1⊤n ⟩ = 1⊤mX1n = 1⊤mv = 1. So we can assume Cij > 0 for all (i, j) ∈ [m]× [n],
since otherwise we can add a multiple of ⟨X, 1m1⊤n ⟩ into the objective.

Optimal transport is a classical problem in mathematics, economics and operations research dating
back to 1780s Monge (1781); Villani et al. (2009). Recently it has regained popularity in the machine
learning community with successful applications in computer vision, clustering, sampling etc. For
large-scale optimal transport, a popular algorithm is the Sinkhorn algorithm Sinkhorn (1967); Cuturi
(2013); Peyré et al. (2019). In particular, the Sinkhorn algorithm finds an approximate solution of
(4) with an entropy regularization. For the general LP (6), the entropy regularized LP solves the
problem

min
z

c⊤z + λ

n∑
i=1

zi log(zi) s.t. Ãz = b̃, z ≥ 0. (5)

where λ > 0 are fixed parameters. If λ is small, the solution of (5) is an approximate solution of
(6). See Weed (2018) for a precise analysis. Interestingly, as we show in Sections 2 and 3, using
gradient descent on the quadratic reparametrized LP automatically leads to an approximate solution
with entropy regularization. See Sections 2.2 and 2.3 for further discussions on the connections of
reparametrized GD, mirror descent, and the Sinkhorn algorithm.

In the program (1), the cost vector is assumed to have positive coordinates. This appears to be
restricted for general LP with possible negative costs. However, below we show that a general LP
can be reduced to the form (1) via a big-M constraint.

Remark 1.1 (Reduction of general LP) Consider a general linear program in the standard form

min
z

c̃⊤z s.t. Ãz = b̃, z ≥ 0. (6)

where Ã ∈ Rm×n, b̃ ∈ Rn, and where c̃ ∈ Rn is a general cost vector, possibly with negative
elements. Note that any linear program can be reduced to the above standard form Bertsimas &
Tsitsiklis (1997). Suppose (6) has a solution z∗ (not necessarily unique), and suppose we can find a
number M such that 1⊤n z

∗ ≤ M , then problem (6) is equivalent to

min
z,t

c̃⊤z s.t. Ãz = b̃, 1⊤n z + t = M, z ≥ 0, t ≥ 0. (7)

We can take λ > 0 such that c̃+λ1n > 0. Adding λ multiples of the equality constraint 1⊤n z+t = M
into the objective, we have an equivalent form

min
z,t

(c̃+ λ1n)
⊤z + λt s.t. Ãz = b̃, 1⊤n z + t = M, z ≥ 0, t ≥ 0. (8)

The formlation above is in the form of (1) with A =

[
Ã 0
1⊤n 1

]
, b = [b̃;M], c = [c̃ + λ1n;λ] and

x = [z; t].

By the argument above, a general linear program in standard form can be reduced to the problem
(1). In general, the reduction requires finding a big-M constraint that is valid for an optimal solution.
For many applications, such a parameter M can be easily computed from Ã and b̃.

3

Under review as a conference paper at ICLR 2024

RELATED WORKS

Implicit bias of the training algorithm of a neural network plays a significant role in converging
toward a specific global minimum. This has been observed in the past in many occasions in train-
ing deep neural network models including Neyshabur et al. (2015); Zhang et al. (2017); Keskar
et al. (2017); Soudry et al. (2018) where optimization algorithms, frequently variations of gradient
descent, appears to favor solutions with strong generalization properties. This intriguing generaliza-
tion has also been seen in a rather simpler architecture of neural networks such as diagonal linear
networks. The 2-layer diagonal linear network under scrutiny in our study is a simplified neural
network that has garnered considerable recent interest Woodworth et al. (2020); Vaskevicius et al.
(2019); HaoChen et al. (2021); Pillaud-Vivien et al. (2022). Despite its simplicity, it intriguingly ex-
hibits training behaviors akin to those observed in much more intricate architectures, thus allowing
it to be used as a proxy model for a deeper understanding of neural network training. Some prior re-
search Woodworth et al. (2020); Pesme et al. (2021); Nacson et al. (2022) has extensively examined
the gradient flow and stochastic gradient flow dynamics in diagonal linear networks, particularly
in the context of the basis pursuit problem. These studies have shown that the limit of gradient
flow or stochastic gradient flow solves an optimization problem that interpolates between ℓ1-norm
(the so-called ’rich’ regime) and ℓ2-norm (neural tangent kernel regime) minimization. While our
work shares some commonalities with these findings, we broaden the scope by connecting the limit
of continuous and discrete-time gradient descent with a significantly broader class of optimization
problems through reevaluation of the influence of initialization on the dynamics. We plan to investi-
gate the impact of step size and small initialization on the generalization properties of the output of
diagonal linear networks in future research, building on recent works Even et al. (2023); Pesme &
Flammarion (2023); Berthier (2022) in this area.

2 REPARAMETRIZED GRADIENT DESCENT

The problem of finding a feasible solution for problem (1) can be formulated as

min
x∈Rn

g(x) :=
1

2
∥Ax− b∥22 s.t. x ≥ 0. (9)

If problem (1) is feasible, then the optimal value of (9) is 0. Since problem (9) has multiple optimal
solutions, using different algorithms for (9) leads to different feasible solutions for (1). In this
paper, we consider reparametrizing the nonnegative variable x = u ◦ u, leading to a non-convex
optimization problem:

min
u∈Rn

f(u) :=
1

2
∥A(u ◦ u)− b∥22 s.t. u ≥ 0. (10)

Let Rn
+ := {x ∈ Rn | x ≥ 0} and Rn

++ := {x ∈ Rn | x > 0}. We use gradient descent to solve
(10):

Algorithm 1 Gradient Descent for Problem (10)

• Initialize from some u0 ∈ Rn
++.

• For k = 0, 1, 2, make the updates:

uk+1 =uk − ηk∇f(uk) = uk ◦
(
1n − 2ηkA

⊤rk
)

(11)

where rk := Axk − b with xk := uk ◦ uk, and ηk > 0 is the stepsize.

Note that in the updates (11), the nonnegativity constraint u ≥ 0 is not explicitly imposed. There-
fore, to ensure that the iterates uk satisfy the nonnegativity constraint, we need to take the stepsizes
ηk properly. The following lemma provides a practical choice of stepsizes that ensures the non-
negativity of iterates and guarantees the decrease of objective value. Let L := ∥A∥22 (∥A∥2 is the
operator norm of A).

4

Under review as a conference paper at ICLR 2024

Lemma 2.1 (Per-iteration decrease) Given any k ≥ 0, suppose uk > 0, and suppose we take
ηk > 0 such that

ηk ≤ min

{
1

4∥A⊤rk∥∞
,

1

5L∥uk∥2∞

}
. (12)

Then, for all integer k > 0, we have 1
2u

k ≤ uk+1 ≤ 3
2u

k, and

f(uk+1)− f(uk) ≤ −ηk∥∇g(xk) ◦ uk∥22 = −ηk
2
∥∇f(uk)∥22. (13)

In particular, since u0 > 0, if we take stepsizes ηk satisfying the condition (12), then it holds uk > 0
for all k ≥ 0. Since both the vectors A⊤rk and uk are available in the progress of the algorithm,
and an upper bound of L can be estimated initially, the stepsize rule (12) is not hard to implement.
Suppose the iterations {uk}k≥0 are bounded (which will be formally proved in Section 3), then we
can take {ηk}k≥0 uniformly bounded away from 0 such that (12) is still satisfied.

2.1 A CONTINUOUS VIEWPOINT

Before the rigorous analysis of Algorithm 1, we first investigate its continuous version. With in-
finitesimal stepsizes, the gradient descent updates (11) reduce to the gradient flow:

d

dt
u(t) = −2u(t) ◦

(
A⊤r(t)

)
(14)

where r(t) = A(u(t) ◦ u(t))− b. In particular, the integrated form of (14) can be written as

u(t) = u(0) ◦ exp
(
−2A⊤

∫ t

0

r(s) ds

)
.

Therefore, for a positive initialization u(0) > 0, the path u(t) will remain in the positive orthant.
This is consistent with the result in Lemma 2.1 that the iterates remain positive as long as stepsizes
are taken small enough.

The following theorem characterizes the limit of gradient flow under some heuristic assumptions of
the convergence.

Theorem 2.2 Suppose we initialize the gradient flow (14) with u(0) = α for some α ∈ (0, e−1)n.
Suppose lim

t→∞

∫ t

0
r(s) ds exists, then u(t) converges as t → ∞. Let u∗ := limt→∞ u(t) and

x∗ = u∗ ◦ u∗, then x∗ is the solution of

min
x∈Rn

n∑
i=1

xi log
(xi

α2
i

)
− xi s.t. Ax = b, x ≥ 0. (15)

In particular, given λ > 0, if we take αi = exp(−ci/(2λ)) for all i ∈ [n], then x∗ is the solution of

min
x∈Rn

c⊤x+ λ

n∑
i=1

(
xi log(xi)− xi

)
s.t. Ax = b, x ≥ 0. (16)

Theorem 2.2 shows an interesting relationship of the limiting solution and the initialization. The
limiting solution is an optimal solution of an entropy-regularized LP. The cost of this regularized
LP depends on the initialization α. In particular, if we take α following αi = exp(−ci/(2λ))
with a small value of λ (which corresponds to small values of αi), then the limiting solution is an
approximate solution of the LP (1) since the entropy regularization term in (16) can be made small by
choosing λ small. On the other hand, if we take larger λ (which corresponds to larger initialization),
then the entropy term in (16) is not negligible, and the limiting solution is pushed away from the
boundary of Rn

+. Such a dependence on initialization has been observed in the special case of basis
pursuit Woodworth et al. (2020).

Note that in Theorem 2.2, we have made the technical assumption that lim
t→∞

∫ t

0
r(s) ds exists, fol-

lowing a similar assumption in the literature Woodworth et al. (2020). However, as far as we know,
this has not been properly justified by a rigorous analysis. In this paper, We give a rigorous analysis
directly for the discretized version – see Section 3 for details.

5

Under review as a conference paper at ICLR 2024

2.2 CONNECTIONS TO MIRROR DESCENT

The connections between mirror descent and reparametrized gradient descent have been exten-
sively studied in previous works Amid & Warmuth (2020b); Azulay et al. (2021); Li et al. (2022).
When the entropy function is used as a mirror (relative smoothness) function, mirror descent
yields multiplicative updates of the iterates . Let H(x) :=

∑n
i=1 xi log(xi) for x ∈ Rn

+, and let
DH(x, y) := H(x) −H(y) − ⟨∇H(y), x − y⟩ be the Bregman divergence of H . Specifically, for
problem (9), the mirror descent has updates:

x̃k+1 ∈ argmin
x∈Rn

+

{
⟨∇g(x̃k), x− x̃k⟩+ Lk ·DH(x, x̃k)

}
(17)

where Lk > 0 is a parameter controlling the stepsizes. Equivalently (by the optimality condition),

−∇g(x̃k) = Lk(∇H(x̃k+1)−∇H(x̃k)) = Lk log
(x̃k+1

x̃k

)
= 2Lk log

(ũk+1

ũk

)
(18)

where ũk :=
√
x̃k. Therefore, the updates in ũk are given by

ũk+1 = ũk ◦ exp
(
− 1

2Lk
∇g(x̃k)

)
. (19)

In particular, if we take Lk = 1/(2ηk) with a small value of ηk → 0 (i.e. large value of Lk → ∞),
then by the first-order Taylor approximation,

ũk+1 ≈ ũk ◦
(
1n − ηk∇g(x̃k)

)
. (20)

The RHS of (20) is the same as the update in (11). Therefore, with infinitesimal stepsizes, quadratic
reparametrized GD for (9) is equivalent to mirror descent with the entropy as the reference function.
However, for any finite value of Lk, the RHS of (20) is strictly smaller than the RHS of (19), and
reparametrized GD is different to mirror descent.

Mirror descent (with entropy as reference function) is also known as exponentiated gradient descent
Kivinen & Warmuth (1997); Ghai et al. (2020); Amid & Warmuth (2020a), and both mirror descent
and Algorithm 1 belongs to the more general class of multiplicative weight algorithm Arora et al.
(2012) – both algorithms involve a rescaling of positive iterates. Although the convergence prop-
erties of the mirror descent is well known Beck & Teboulle (2003); Duchi et al. (2010); Lu et al.
(2018), the convergence of reparametrized GD is less understood. We provide a rigorous analysis of
the convergence of reparametrized GD in Section 3.

2.3 CONNECTIONS TO THE SINKHORN ALGORITHM

Algorithm 1 has some similarity to the Sinkhorm algorithm when applied to the optimal transport
problem. The Sinkhorm algorithm solves the entropy-regularized LP (5) for the optimal transport
problem:

min
X

⟨C,X⟩+ λ
∑

i∈[m],j∈[n]

(
Xij log(Xij)−Xij

)
s.t. 1⊤mX = w⊤, X1n = v, X ≥ 0. (21)

By the KKT condition of the convex program (21), it can be shown (see e.g. Peyré et al. (2019)) that
the (unique) optimal solution X∗ has the structure:

X∗
ij = p∗iKijq

∗
j ∀i ∈ [m], j ∈ [n]. (22)

where Kij := e−Cij/λ, and p∗ ∈ Rm
+ and q∗ ∈ Rn

+ are two unknown vectors. The Sinkhorn
algorithm initializes with p(0) = 1m, q(0) = 1n, X(0) = K, and iteratively rescales the rows and
columns to match the constraints:

p(t) =
w

Kq(t−1)
, q(t) =

v

K⊤p(t)
, X(t) = D(p(t))KD(q(t)) (23)

for t ≥ 1, where the division is elementwise. It is known that the iterates p(t) and q(t) converge to
p∗ and q∗ respectively, hence X(t) converges to the optimal solution X∗. See e.g. Altschuler et al.
(2017); Dvurechensky et al. (2018); Lin et al. (2019) for analysis of the converge rate.

6

Under review as a conference paper at ICLR 2024

It is worth noting that the Sinkhorn algorithm initializes with X
(0)
ij := e−Cij/λ, which is the same

initialization as Algorithm 1 discussed in Theorem 2.2 in order that the limit solution (for the con-
tinuous version) is the entropy regularized LP (16). Moreover, for the optimal transport problem,
the updates of Algorithm 1 can be rewritten as

(Uk+1)ij = (Uk)ij

(
1− ηk(gi + hj)

)
(24)

where gi := e⊤i X
k1n − wi, hj := 1⊤mXkej − vj , and we have used Uk and Xk instead of uk and

xk to highlight that the variables are matrices. In particular, if the stepsizes ηk is very small, then

(Uk+1)ij ≈ (Uk)ij

(
1− ηk(gi + hj) + η2kgihj

)
= (Uk)ij(1− ηkgi)(1− ηkhj). (25)

Hence the updates above can also be viewed as row and column rescalings, although with different
rescaling rules.

Finally, we note that the Sinkhorn updates are equivalent to iterative Bregman projections under
KL divergence Benamou et al. (2015), hence in some literature, it is also called a mirror descent
type method. See Aubin-Frankowski et al. (2022) for recent results on the connections between the
Sinkhorn algorithm and mirror descent.

3 CONVERGENCE GUARANTEES

In this section, we provide a rigorous analysis of the convergence of discretized GD for the non-
convex problem 10. Problem (10) is a non-convex optimization problem. For a general non-convex
optimization problem, it is possible that the GD converges to a saddle point or a local minimum.
However, in this section, we prove that GD must converge to the global minimum with a linear rate.
Moreover, we will provide a characterization of the limit solution of (discretized) GD, similar to that
in Theorem 2.2.

3.1 GLOBAL CONVERGENCE

We make the following assumptions on the problem parameters A and b.

Assumption 3.1 (1) Matrix A ∈ Rm×n has full row rank.

(2) Problem (1) is strictly feasible, i.e., there exists vector x ∈ Rn satisfying x > 0 and Ax = b.

Note that Assumption 3.1 (1) is a standard assumption for general linear programs. If A does not
satisfy Assumption 3.1 (1), it contains some redundant rows, which can be detected and removed by
a basic linear algebra procedure. Assumption 3.1 (2) is also a mild assumption, which is satisfied
for most LP problems in practice.

To establish the global convergence of Algorithm 1, we first prove the boundedness of the iterates,
given that stepsizes are taken properly.

Lemma 3.2 (Boundedness of iterates) Suppose Assumption 3.1 (1) holds true. Suppose we take
ηk > 0 such that (12) holds for all k ≥ 0. Then it holds

sup
k≥0

∥uk∥22 ≤ R2 :=
√
n max

I⊆[n]
AI invertible

∥(AI)
−1∥2

(
∥r0∥2 + ∥b∥2

)
+ en∥u0∥22 (26)

where AI is the submatrix of A with columns in I.

Note that the boundedness of the iterates cannot be directly obtained via a level set argument, be-
cause the level set of the objective function f(u) = ∥A(u◦u)− b∥22 might be unbounded, e.g. in the
case when there exists a nonzero vector x ∈ Rn

+ satisfying Ax = 0. Instead, the proof of Lemma 3.2
relies on an in-depth analysis of the dynamic of iterates itself – see Section E for details.

Lemma 3.2 ensures that the iterates will not diverge to infinity, which has an immediate implication
on the stepsizes that can be taken.

7

Under review as a conference paper at ICLR 2024

Corollary 3.3 Suppose Assumption 3.1 (1) holds true. Then there exists η̄ = η̄(A, b,R) > 0 such
that if we take ηk ≤ η̄ for all k ≥ 0, then the conclusion of Lemma 2.1 holds true.

In particular, we can take constant stepsizes ηk = η for some η ∈ (0, η̄] such that the per-iteration
decrease in (13) holds true. In the following, we present the main result of this section under the
assumption that constant stepsizes are used.

Theorem 3.4 (Global linear convergence) Suppose Assumption 3.1 holds true, and suppose we take
ηk = η for some η ∈ (0, η̄] and for all k ≥ 0. Then there exists a constant ρ = ρ(A, b, u0, η) ∈ (0, 1)
such that

f(uk) ≤ (1− ρ)kf(u0), ∀ k ≥ 1. (27)

Theorem 3.4 shows that for the nonconvex problem 10, as long as we take stepsizes small enough,
GD always converges to the global optimal solution (which is 0), and has a linear convergence
rate. Note that for simplicity, we make the assumption that constant stepsizes are used. The same
result still holds true if one uses varying stepsizes {ηk}k≥0 satisfying (12) and infk≥0 ηk > 0. In
particular, for the convergence of GD, it is not needed to take diminishing stepsizes that vanish as
k → ∞. Note that our analysis is significantly different from (and stronger than) the results that can
be obtained by an application of the general convergence results of GD for non-convex problems.
See Section A for a discussion.

3.2 LIMIT POINT AS AN APPROXIMATE SOLUTION

For the gradient flow, we have shown in Theorem 2.2 that its limiting point is the optimal solution
of an entropy-regularized LP. In the following, we show a similar result for the discrete version.

Theorem 3.5 Suppose Assumption 3.1 holds true, and suppose we take u0 = α ∈ (0, 1/2)n and
ηk = η for some η ∈ (0, η̄] and for all k ≥ 0. Then the limit u∞ := limk→0 u

k exists. Let
x∞ := u∞ ◦ u∞. Then there exists a constant C = C(A, b,R) and a vector w ∈ Rn

+ with
∥w∥1 ≤ C such that x∞ is the optimal solution of

min
x

n∑
i=1

xi log
(xi

α2
i

)
− xi + η log(1/α)wixi s.t. Ax = b, x ≥ 0. (28)

where α = mini∈[n] αi. In particular, given λ > 0, if we take αi = exp(−ci/(2λ)) and denote
c̄ := maxi∈[n] ci, then x∞ is the optimal solution of

min
x

c⊤x+ λ

n∑
i=1

(
xi log(xi)− xi

)
+

η

2
(λ+ c̄)w⊤x s.t. Ax = b, x ≥ 0. (29)

As shown by Theorem 3.5, if we take the initialization properly, the limit point x∞ is an optimal
solution of the entropy regularized LP given by (29). The objective function in (29) consists of three
terms. The first term is the linear objective c⊤x as in (1). The second term is an entropy regular-
ization, which also appears in the limit characterization of the gradient flow (in Theorem 2.2). In
particular, if we take a small value of λ, this entropy regularization is small. The third term is an
“error term” from the discrete stepsizes, which does not appear in the counterpart of gradient flow.
This error term is proportional to the stepsize η. If η → 0, then this error term vanishes, which is
consistent with our result in Theorem 2.2. In the appendix, we provide a more precise characteri-
zation of the iteration complexity of obtaining an ϵ-approximation solution using Algorithm 1 – see
Lemma J.2.

4 EXPERIMENTS

We verify the theoretical findings via simulations. We generate a random matrix A ∈ Rm×n with
i.i.d. N(0, 1) entries, and a random vector x̄ ∈ Rn

+ with i.i.d. entries following uniform distribution
on [0, 1]. Then we generate b := Ax̄. In the following, we set m = 300 and n = 3000.

Comparison with mirror descent. First, we numerically verify the connections between Algo-
rithm 1 and the mirror descent method discussed in Section 2.2. In Section 2.2, it is shown that the

8

Under review as a conference paper at ICLR 2024

0 1000 2000 3000 4000
Iterations

10 2

10 1

100

Lo
ss

Reparamatrized GD
Mirror Descent

0 250 500 750 1000 1250 1500 1750
Iterations

10 13

10 11

10 9

10 7

10 5

10 3

10 1

Lo
ss

Reparamatrized GD
Mirror Descent

Figure 1: Comparison of reparametrized GD and mirror descent. Left panel: small stepsize. Right
panel: large stepsize.

iterates of Algorithm 1 is close to that of mirror descent if the stepsizes are small, while the two
algorithms are different for larger stepsizes.

Figure 1 presents iteration-vs-loss plottings of Algorithm 1 and mirror descent under different step-
sizes. The y-axis is the normalized loss ∥Axk − b∥22/∥b∥22. Both algorithms are initialized at
x0 = 10−6 · 1n. In the left figure, we adopt the stepsizes ηk suggested by Lemma 2.1, and set
Lk = 1/(2ηk) for the mirror descent method. This theoretical choice of ηk is very conservative
(small). As a result, in the left figure, the iterates of reparametrized GD and mirror descent are very
close to each other, which is consistent with the discussions in Section 2.2. On the other hand, the
small stepsizes cause slow progress of both algorithms – the loss is quite large even after 5000 iter-
ations. In the right figure, we scale up the stepsizes for both algorithms by a factor of 30. Under this
large stepsize, the iterates of reparametrized GD and mirror descent turn out to be significantly dif-
ferent, and both algorithms make fast progress and reach a high accuracy quickly. Reparametrized
GD is slightly faster on this example. Moreover, it can be seen that reparametrized GD has an
asymptotic linear convergence, which verifies the conclusion of Theorem 3.4.

Performance under different initializations. We explore the performance of Algorithm 1 under
different initializations. In particular, we consider initializations of the form u0 = α1n, where α > 0
is a scaler. By Theorems 2.2 and 3.5, under this initialization with a small value of α, the limit point
of the iterates of Algorithm 1 is an approximate solution of problem (1) for c = 1n. Let x∗ be an
optimal solution of (1) with c = 1n. Let û be the iterate of Algorithm 1 after 5000 iterations, and let
x̂ := û ◦ û. We define the relative gap as 1⊤n (x̂− x∗)/max{1, 1⊤n x∗}.

1e-3 1e-4 1e-5 1e-6 1e-7
alpha

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Re
la

tiv
e

ga
p

0 1000 2000 3000 4000
Iterations

10 13

10 11

10 9

10 7

10 5

10 3

10 1

Lo
ss

alpha = 1e-3
alpha = 1e-4
alpha = 1e-5
alpha = 1e-6
alpha = 1e-7

Figure 2: Performance of Algorithm 1 under different sizes of the initialization.

The left panel of Figure 2 presents the relative gap under different values of α ∈
{10−3, 10−4, 10−5, 10−6, 10−7}. In particular, for smaller initializations, the limit solution has a
smaller relative gap, hence is a better approximate solution of problem (1). But this higher accu-
racy is not without cost. In the right panel, we present the loss-vs-iteration plottings of Algorithm 1
under these values of α. For smaller values of α, Algorithm 1 makes slower progress and can only
compute a less accurate solution. For instance, with α = 10−3, the loss is below 10−13 after 5000
iterations, but it is only roughly 10−5 if we set α = 10−7.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Alnur Ali, J Zico Kolter, and Ryan J Tibshirani. A continuous-time view of early stopping for least
squares regression. pp. 1370–1378, 2019.

Jason Altschuler, Jonathan Niles-Weed, and Philippe Rigollet. Near-linear time approximation al-
gorithms for optimal transport via sinkhorn iteration. Advances in neural information processing
systems, 30, 2017.

Ehsan Amid and Manfred K Warmuth. Winnowing with gradient descent. pp. 163–182, 2020a.

Ehsan Amid and Manfred KK Warmuth. Reparameterizing mirror descent as gradient descent.
Advances in Neural Information Processing Systems, 33:8430–8439, 2020b.

Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a meta-
algorithm and applications. Theory of computing, 8(1):121–164, 2012.

Pierre-Cyril Aubin-Frankowski, Anna Korba, and Flavien Léger. Mirror descent with relative
smoothness in measure spaces, with application to sinkhorn and EM. In Alice H. Oh, Alekh
Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Pro-
cessing Systems, 2022. URL https://openreview.net/forum?id=kCU2pUrmMih.

Shahar Azulay, Edward Moroshko, Mor Shpigel Nacson, Blake E Woodworth, Nathan Srebro, Amir
Globerson, and Daniel Soudry. On the implicit bias of initialization shape: Beyond infinitesimal
mirror descent. pp. 468–477, 2021.

Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for
convex optimization. Operations Research Letters, 31(3):167–175, 2003.

Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna, and Gabriel Peyré. Iterative
bregman projections for regularized transportation problems. SIAM Journal on Scientific Com-
puting, 37(2):A1111–A1138, 2015.

Raphaël Berthier. Incremental Learning in Diagonal Linear Networks. arXiv e-prints, art.
arXiv:2208.14673, August 2022. doi: 10.48550/arXiv.2208.14673.

Dimitris Bertsimas and John N Tsitsiklis. Introduction to linear optimization, volume 6. Athena
scientific Belmont, MA, 1997.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26, 2013.

Didier D’Acunto and Krzysztof Kurdyka. Explicit bounds for the łojasiewicz exponent in the gra-
dient inequality for polynomials. 1(87):51–61, 2005.

John C Duchi, Shai Shalev-Shwartz, Yoram Singer, and Ambuj Tewari. Composite objective mirror
descent. In COLT, volume 10, pp. 14–26. Citeseer, 2010.

Pavel Dvurechensky, Alexander Gasnikov, and Alexey Kroshnin. Computational optimal transport:
Complexity by accelerated gradient descent is better than by sinkhorn’s algorithm. In Interna-
tional conference on machine learning, pp. 1367–1376. PMLR, 2018.

Mathieu Even, Scott Pesme, Suriya Gunasekar, and Nicolas Flammarion. (S)GD over Diagonal
Linear Networks: Implicit Regularisation, Large Stepsizes and Edge of Stability. arXiv e-prints,
art. arXiv:2302.08982, February 2023. doi: 10.48550/arXiv.2302.08982.

Jerome Friedman and Bogdan E Popescu. Gradient directed regularization. Unpublished
manuscript, http://www-stat. stanford. edu/˜ jhf/ftp/pathlite. pdf, 2004.

Udaya Ghai, Elad Hazan, and Yoram Singer. Exponentiated gradient meets gradient descent. pp.
386–407, 2020.

Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Sre-
bro. Implicit regularization in matrix factorization. Advances in neural information processing
systems, 30, 2017.

10

https://openreview.net/forum?id=kCU2pUrmMih

Under review as a conference paper at ICLR 2024

Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias in
terms of optimization geometry. pp. 1832–1841, 2018.

Jeff Z. HaoChen, Colin Wei, Jason Lee, and Tengyu Ma. Shape matters: Understanding the im-
plicit bias of the noise covariance. In Mikhail Belkin and Samory Kpotufe (eds.), Proceedings of
Thirty Fourth Conference on Learning Theory, volume 134 of Proceedings of Machine Learning
Research, pp. 2315–2357. PMLR, 15–19 Aug 2021. URL https://proceedings.mlr.
press/v134/haochen21a.html.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In
International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=H1oyRlYgg.

Jyrki Kivinen and Manfred K Warmuth. Exponentiated gradient versus gradient descent for linear
predictors. information and computation, 132(1):1–63, 1997.

Jason D Lee, Max Simchowitz, Michael I Jordan, and Benjamin Recht. Gradient descent only
converges to minimizers. pp. 1246–1257, 2016.

Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized
matrix sensing and neural networks with quadratic activations. pp. 2–47, 2018.

Zhiyuan Li, Tianhao Wang, Jason D Lee, and Sanjeev Arora. Implicit bias of gradient descent
on reparametrized models: On equivalence to mirror descent. Advances in Neural Information
Processing Systems, 35:34626–34640, 2022.

Tianyi Lin, Nhat Ho, and Michael Jordan. On efficient optimal transport: An analysis of greedy
and accelerated mirror descent algorithms. In International Conference on Machine Learning,
pp. 3982–3991. PMLR, 2019.

Haihao Lu, Robert M Freund, and Yurii Nesterov. Relatively smooth convex optimization by first-
order methods, and applications. SIAM Journal on Optimization, 28(1):333–354, 2018.

Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. Mem. Math. Phys. Acad. Royale
Sci., pp. 666–704, 1781.

Mor Shpigel Nacson, Kavya Ravichandran, Nathan Srebro, and Daniel Soudry. Implicit bias of the
step size in linear diagonal neural networks. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,
pp. 16270–16295. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.press/
v162/nacson22a.html.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias: On
the role of implicit regularization in deep learning. In ICLR (Workshop), 2015. URL http:
//arxiv.org/abs/1412.6614.

Javier Pena, Juan C Vera, and Luis F Zuluaga. New characterizations of hoffman constants for
systems of linear constraints. Mathematical Programming, 187:79–109, 2021.

Scott Pesme and Nicolas Flammarion. Saddle-to-Saddle Dynamics in Diagonal Linear Networks.
arXiv e-prints, art. arXiv:2304.00488, April 2023. doi: 10.48550/arXiv.2304.00488.

Scott Pesme, Loucas Pillaud-Vivien, and Nicolas Flammarion. Implicit bias of SGD for diagonal
linear networks: a provable benefit of stochasticity. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL
https://openreview.net/forum?id=vvi7KqHQiA.

Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data
science. Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

11

https://proceedings.mlr.press/v134/haochen21a.html
https://proceedings.mlr.press/v134/haochen21a.html
https://openreview.net/forum?id=H1oyRlYgg
https://openreview.net/forum?id=H1oyRlYgg
https://proceedings.mlr.press/v162/nacson22a.html
https://proceedings.mlr.press/v162/nacson22a.html
http://arxiv.org/abs/1412.6614
http://arxiv.org/abs/1412.6614
https://openreview.net/forum?id=vvi7KqHQiA

Under review as a conference paper at ICLR 2024

L. Pillaud-Vivien, J. Reygner, and N. Flammarion. Label noise (stochastic) gradient descent implic-
itly solves the Lasso for quadratic parametrisation. Proceedings of Machine Learning Research,
8, 2022.

Richard Sinkhorn. Diagonal equivalence to matrices with prescribed row and column sums. The
American Mathematical Monthly, 74(4):402–405, 1967.

Daniel Soudry, Elad Hoffer, and Nathan Srebro. The implicit bias of gradient descent on sep-
arable data. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=r1q7n9gAb.

Tomas Vaskevicius, Varun Kanade, and Patrick Rebeschini. Implicit regularization for optimal
sparse recovery. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/5cf21ce30208cfffaa832c6e44bb567d-Paper.pdf.

Cédric Villani et al. Optimal transport: old and new, volume 338. Springer, 2009.

Jonathan Weed. An explicit analysis of the entropic penalty in linear programming. pp. 1841–1855,
2018.

Blake Woodworth, Suriya Gunasekar, Jason D. Lee, Edward Moroshko, Pedro Savarese, Itay Golan,
Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In Jacob
Abernethy and Shivani Agarwal (eds.), Proceedings of Thirty Third Conference on Learning The-
ory, volume 125 of Proceedings of Machine Learning Research, pp. 3635–3673. PMLR, 09–12
Jul 2020. URL https://proceedings.mlr.press/v125/woodworth20a.html.

Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. On early stopping in gradient descent learn-
ing. Constructive Approximation, 26:289–315, 2007.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. In International Conference on Learning Rep-
resentations, 2017. URL https://openreview.net/forum?id=Sy8gdB9xx.

Peng Zhao, Yun Yang, and Qiao-Chu He. High-dimensional linear regression via implicit regular-
ization. Biometrika, 109(4):1033–1046, 2022.

12

https://openreview.net/forum?id=r1q7n9gAb
https://openreview.net/forum?id=r1q7n9gAb
https://proceedings.neurips.cc/paper_files/paper/2019/file/5cf21ce30208cfffaa832c6e44bb567d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/5cf21ce30208cfffaa832c6e44bb567d-Paper.pdf
https://proceedings.mlr.press/v125/woodworth20a.html
https://openreview.net/forum?id=Sy8gdB9xx

Under review as a conference paper at ICLR 2024

A A COMPARISON WITH THE GENERAL CONVERGENCE THEORY OF GD FOR
NONCONVEX OBJECTIVES

One intuition for the global convergence of GD stems from the fact that every local minimum of f(·)
is a global minimum of f(·) – this can be seen that if u is a local minimum of f , then u ◦u is a local
minimum of g on Rn

+, and hence a global minimum of g (because g is convex). Moreover, it can be
shown that every saddle point of f(·) is a strict saddle point, so intuitively, if the iterates approach
any saddle point, it will be pushed away (instead of converging to this saddle). This reminds us
of the general convergence theory of GD for smooth nonconvex optimization Lee et al. (2016). In
particular, Corollary 9 of Lee et al. (2016) shows that a randomly initialized GD converges to a
local minimum almost surely if the objective function only has countable saddle points and every
saddle point is strict. Our analysis is significantly different from this result in the following aspects:
First, it is possible that the number of saddle points of f(·) is uncountable, hence Corollary 9 of Lee
et al. (2016) cannot be directly applied. Second, the results in Lee et al. (2016) hold for a random
initialization, while our results hold for an arbitrary initialization u0 ∈ Rn

++. Finally, Theorem 3.4
proves a linear convergence rate, which cannot be derived from the general results in Lee et al.
(2016).

B NOTATIONS IN THE PROOFS

Let Rn
+ := {x ∈ Rn | x ≥ 0} and Rn

++ := {x ∈ Rn | x > 0}. For any u, v ∈ Rn, let u ◦ v ∈ Rn

be the elementwise multiplication of u and v. If all coordinates of v are nonzero, let u
v be the

elementwise division of u and v. For u ∈ Rn
++ and any univariate function φ, let φ(u) be the vector

[φ(u1), ..., φ(un)]. For any matrix A, let ∥A∥2 be the operator norm of A.

For any set X,Y ⊆ Rn, denote dist(X,Y) := infx∈X,y∈Y ∥x − y∥2. If X contains only a single
point: X = {x}, then we write dist(x, Y) := dist({x}, Y). For any ϵ > 0, define

Bϵ(X) := {y ∈ Rn | dist(y,X) < ϵ}, B̄ϵ(X) := {y ∈ Rn | dist(y,X) ≤ ϵ}. (30)
If X = {x} (a single point), then we simply write Bϵ(x) := Bϵ(X) and B̄ϵ(x) := B̄ϵ(X).

For any vector x ∈ Rn, let D(x) ∈ Rn×n be the diagonal matrix with the diagonal being x; let x+

be the vector whose i-th element is max{xi, 0}, and let x− := x+ − x.

C PROOF OF LEMMA 2.1

Since ∇g is L-Lipschitz continuous, we have

g(xk+1)− g(xk) ≤ ⟨∇g(xk), xk+1 − xk⟩+ L

2
∥xk+1 − xk∥22. (31)

Note that
xk+1 − xk = uk+1 ◦ uk+1 − uk ◦ uk = (uk+1 + uk) ◦ (uk+1 − uk)

= − 2ηk(u
k+1 + uk) ◦ uk ◦ ∇g(xk) = −2ηkD

(
(uk+1 + uk) ◦ uk

)
∇g(xk).

(32)

By (31) and (32), and note that f(uj) = g(xj), we have

f(uk+1)− f(uk) ≤ − 2ηk∇g(xk)⊤D
(
(uk+1 + uk) ◦ uk

)
∇g(xk)

+ 2Lη2k∇g(xk)⊤
[
D

(
(uk+1 + uk) ◦ uk

)]2 ∇g(xk).
(33)

Note that ηk ≤ 1
4∥A⊤rk∥∞

and uk+1 = uk ◦ (1n − 2ηkA
⊤rk), so we have

1

2
uk ≤ uk+1 ≤ 3

2
uk.

As a result, we have

2Lη2k∇g(xk)⊤
[
D

(
(uk+1 + uk) ◦ uk

)]2 ∇g(xk)

≤ 2Lη2k · 5
2
∥uk∥2∞∇g(xk)⊤D

(
(uk+1 + uk) ◦ uk

)
∇g(xk)

≤ ηk∇g(xk)⊤D
(
(uk+1 + uk) ◦ uk

)
∇g(xk),

(34)

13

Under review as a conference paper at ICLR 2024

where the second inequality made use of ηk ≤ 1
5L∥uk∥2

∞
. By (33) and (34) we have

f(uk+1)− f(uk) ≤− ηk∇g(xk)⊤D
(
(uk+1 + uk) ◦ uk

)
∇g(xk)

≤− ηk∇g(xk)⊤D
(
uk ◦ uk

)
∇g(xk) = −ηk∥∇g(xk) ◦ uk∥22.

D PROOF OF THEOREM 2.2

By the gradient flow (14) we have

u(t) = u(0) ◦ exp
(
−2A⊤

∫ t

0

r(s) ds

)
where the exp(·) is applid elementwise. Recall that x(t) := u(t) ◦ u(t) and u(0) = α, we have

x(t) = (α ◦ α) ◦ exp
(
−4A⊤

∫ t

0

r(s) ds

)
or equivalently,

log
(x(t)

α ◦ α

)
= −4A⊤

∫ t

0

r(s) ds,

where log(·) is applid elementwise. Take t → ∞, and let ν := −4
∫∞
0

r(s) ds, we have

log
(x∗

α ◦ α

)
= A⊤ν.

Denote G(x) :=
∑n

i=1 xi log(xi/α
2
i) − xi. Then it can be checked that ∇G(x) = log

(
x

α◦α

)
, so

we have ∇G(x∗) = A⊤ν. As a result, x∗ satisfies the KKT condition of the problem

min
x∈Rn

G(x) =

n∑
i=1

xi log(xi/α
2
i)− xi s.t. Ax = b, x ≥ 0.

E PROOF OF LEMMA 3.2

For any vector v ∈ Rm, let X ∗(v) := {x ∈ Rn
+ | Ax = v}. Given k ≥ 0. Let p1, ..., pN be the

extreme points of X ∗(Axk), and let q1, ..., qM be the unit vectors of extreme rays of X ∗(Axk) (it
is possible that X ∗(Axk) does not have extreme ray, with M = 0). Then we have ps ≥ 0 for all
s ∈ [N], and qℓ ≥ 0 and Aqℓ = 0 for all ℓ ∈ [M]. Moreover, there exist {λs}Ns=1 and {µℓ}Mℓ=1 with
λs ≥ 0, µℓ ≥ 0 and

∑N
s=1 λs = 1 such that

xk =

N∑
s=1

λsp
s +

M∑
ℓ=1

µℓq
ℓ. (35)

Define p :=
∑N

s=1 λsp
s and q :=

∑M
ℓ=1 µℓq

ℓ, then we have p ≥ 0, q ≥ 0, Aq = 0, and xk = p+ q.
By Lemma K.1 we have

4A⊤
(k−1∑

j=0

ηjr
j
)
≥ log

(
xk

x0

)
= log

(
p+ q

x0

)
≥ log

(q

x0

)
where the last inequality is because p ≥ 0. Because q ≥ 0 and Aq = 0, the inequality above implies

q⊤ log
(q

x0

)
≤ 4q⊤A⊤

(k−1∑
j=0

ηjr
j
)
= 0. (36)

Note that for any i ∈ [n], by Lemma K.6 we know

qi log(qi/(x
0)i) ≥ −(x0)i/e. (37)

14

Under review as a conference paper at ICLR 2024

As a result, for each t ∈ [n], we have

qt log(qt/(x
0)t) ≤ −

∑
i∈[n]\{t}

qi log(qi/(x
0)i) ≤

∑
i∈[n]\{t}

(x0)i/e ≤ 1⊤n x
0/e

where the first inequality is by (36), and the second inequality is by (37). Note that if qt ≥ e(x0)t,
then by the inequality above we have qt ≤ 1⊤n x

0/e. So we know

qt ≤ max
{
e(x0)t, 1

⊤
n x

0/e
}
≤ e1⊤n x

0 ∀t ∈ [n]. (38)

On the other hand, for any s ∈ [N], ps is an extreme point of X ∗(Axk), so there exists I ⊆ [n] such
that AI is invertible, and ps = (AI)

−1(Axk). Therefore, we have

∥ps∥2 ≤ ∥(AI)
−1∥2∥Axk∥2 ≤ max

I⊆[n]
AI invertible

∥(AI)
−1∥2

(
∥Axk − b∥2 + ∥b∥2

)
≤ max

I⊆[n]
AI invertible

∥(AI)
−1∥2

(
∥r0∥2 + ∥b∥2

)
where the third inequality made use of ∥Axk − b∥2 ≤ ∥r0∥2 by Lemma 2.1. As a result,

1⊤n p
s ≤

√
n max

I⊆[n]
AI invertible

∥(AI)
−1∥2

(
∥r0∥2 + ∥b∥2

)
. (39)

Making use of (35), (38) and (39), we have

1⊤n x
k =

N∑
s=1

λs(1
⊤
n p

s) + 1⊤n q ≤
√
n max

I⊆[n]
AI invertible

∥(AI)
−1∥2

(
∥r0∥2 + ∥b∥2

)
+ en1⊤n x

0.

The proof is complete by noting that 1⊤n x
k = ∥uk∥22 and 1⊤n x

0 = ∥u0∥22.

F PROOF OF COROLLARY 3.3

Define

η̄ := min
u∈B̄R(0)

{
min

{
1

4∥A⊤(A(u ◦ u)− b)∥2
,

1

5L∥u∥∞

}}
. (40)

Then we know η̄ > 0. By Lemma 3.2 we know uk ∈ B̄R(0) for all k ≥ 0. Therefore, as long as we
take η ∈ (0, η̄] and set ηk = η for all k ≥ 0, then the condition (12) holds true, and the conclusion
follows Lemma 2.1.

G PROOF OF THEOREM 3.4

We first need the following technical result regarding the global convergence of iterates, whose proof
is relegated in Section H. Let α := mini∈[n](u

0)i.

Lemma G.1 Suppose Assumption 3.1 holds true, and suppose we take ηk = η for some η ∈ (0, η̄]
and for all k ≥ 0. For any ϵ > 0, there exists a constant K = K(A, b,R, ϵ) such that for all
k ≥ ⌈(η−1 + 1)(log(1/α) + 1)⌉K, it holds f(uk) ≤ ϵ.

Our proof of Theorem 3.4 adopts a two-step argument. We first prove a local sub-linear rate (The-
orem G.2) using the error bound condition of polynomials. Then using this local convergence rate,
we show that the iterates uk are bounded away from the boundary of Rn

+ (Lemma G.4). Finally, the
proof of Theorem 3.4 is complete by a simple application of Lemma G.4.

Theorem G.2 (Local convergence: sublinear rate) Suppose Assumptions 3.1 (1) is satisfied, and
suppose we take ηk = η for some η ∈ (0, η̄] and for all k ≥ 0. Let δ = δ(A, b,R) and τ =
τ(A, b,R) be the constants given by Lemma K.4. Let k0 > 0 be an iteration such that f(uk0) ≤ δ.
Then it holds

f(uk) ≤
(
δ−(1−τ) +

ηc(1− τ)

2
(k − k0)

)− 1
1−τ

∀ k ≥ k0 + 1. (41)

15

Under review as a conference paper at ICLR 2024

Proof. By Corollary 3.3 and Lemma K.4 we have

f(uk)− f(uk+1) ≥ η

2
∥∇f(uk)∥22 ≥ ηc

2
f(uk)2−τ . (42)

The conclusion (91) can be derived by using Lemma K.5 with ak = f(uk), K ′ = k0, τ ′ = τ and
c′ = τc/2. □

Corollary G.3 Under the assumptions of Theorem G.2, it holds
∞∑

k=k0+1

∥rk∥22 = 2

∞∑
k=k0+1

f(uk) ≤ 4

ηcτ
δτ . (43)

Proof. By (91) we have
∞∑

k=k0+1

f(uk) ≤
∞∑

k=k0+1

(
δ−(1−τ) +

ηc(1− τ)

2
(k − k0)

)− 1
1−τ

≤
∫ ∞

0

(
δ−(1−τ) +

ηc(1− τ)

2
s

)− 1
1−τ

ds

=
2

ηc(1− τ)

∫ ∞

0

(
δ−(1−τ) + w

)− 1
1−τ

dw =
2

ηcτ
δτ .

□

Lemma G.4 Suppose Assumption 3.1 holds true, and suppose we take ηk = η for some η ∈ (0, η̄]
and for all k ≥ 0. Then there exists a constant σ = σ(A, b, u0, η) > 0 such that uk ≥ σ1n for all
k ≥ 0.

Proof. Given any k ≥ 1, define vk := 4η
∑k−1

j=0 r
j and wk := 16η2

∑k−1
j=0 (A

⊤rj) ◦ (A⊤rj). By
Lemma K.1 we have

A⊤vk − wk ≤ 2 log
(uk

u0

)
≤ A⊤vk.

Recall that xk = uk ◦ uk and x0 = u0 ◦ u0, so we have

A⊤vk − wk ≤ log
(xk

x0

)
≤ A⊤vk. (44)

By Assumption 3.1 (2), there exists a strict feasible point x̃ ∈ Rn
++ such that Ax̃ = b. By (44) we

have

(x̃− xk)⊤+ log
(xk

x0

)
≥ (x̃− xk)⊤+(A

⊤vk − wk), (45)

and

−(x̃− xk)⊤− log
(xk

x0

)
≥ −(x̃− xk)⊤−A

⊤vk. (46)

Combining (45) and (46) we have

(x̃− xk)⊤ log
(xk

x0

)
≥ (x̃− xk)⊤A⊤vk − (x̃− xk)⊤+w

k

= − (rk)⊤vk − (x̃− xk)⊤+w
k

(47)

where the equality made use of Ax̃ = b and rk = Axk − b. Note that

|(rk)⊤vk| = 4η
∣∣∣(rk)⊤ k−1∑

j=0

rj
∣∣∣ ≤ 4η∥rk∥2

k−1∑
j=0

∥rj∥2 ≤ 4η

k−1∑
j=0

∥rj∥22 ≤ 4η

∞∑
j=0

∥rj∥22 (48)

where the second inequality made use of the fact that ∥rj∥2 is decreasing (by Lemma 2.1), and∣∣∣(x̃− xk)⊤+w
k
∣∣∣ ≤ ∥x̃− xk∥∞∥wk∥1 ≤ 16η2∥x̃− xk∥2

k−1∑
j=0

∥A⊤rj∥22

≤ 16Lη2
(
∥x̃∥2 +R

) k−1∑
j=0

∥rj∥22 ≤ 16Lη2
(
∥x̃∥2 +R

) ∞∑
j=0

∥rj∥22.

(49)

16

Under review as a conference paper at ICLR 2024

Let C1 := 4η
∑∞

j=0 ∥rj∥22+16Lη2(∥x̃∥2+R)
∑∞

j=0 ∥rj∥22. Then by Corollary G.3 we know C1 is
a finite constant that only depends on A, b, u0 and η. As a result of (47), (48), (49) and the definition
of C1, we have

(x̃− xk)⊤ log
(xk

x0

)
≥ −C1.

This implies

x̃⊤ log
(xk

x0

)
≥ (xk)⊤ log

(xk

x0

)
− C1 ≥ −n∥x0∥1

e
− C1 (50)

where the second inequality made use of Lemma K.6. Recall that α2 = mini∈[n](x
0)i. Note that

for any i ∈ [n],

x̃⊤ log
(xk

x0

)
= x̃i log

((xk)i
(x0)i

)
+

∑
j∈[n]\{i}

x̃j log
((xk)j
(x0)j

)
≤ x̃i log

((xk)i
(x0)i

)
+

∑
j∈[n]\{i}

x̃j log
((xk)j

α2

)
≤ x̃i log

((xk)i
(x0)i

)
+ ∥x̃∥∞

∑
j∈J

log
((xk)j

α2

)
(51)

where J := {j ∈ [n] \ {i} | (xk)j > α2}. We assume J is not empty, otherwise, the second term in
the RHS of (51) is 0. By Jensen’s inequality, we have

x̃⊤ log
(xk

x0

)
≤ x̃i log

((xk)i
(x0)i

)
+ ∥x̃∥∞|J | log

(1

|J |
∑
j∈J

(xk)j
α2

)
≤ x̃i log

((xk)i
(x0)i

)
+ n∥x̃∥∞ log

(R2

α2

) (52)

where the second inequality is because n ≥ |J | ≥ 1 and
∑

j∈J (xk)j ≤ ∥xk∥1 = ∥uk∥22 ≤ R2 by
Lemma 3.2. As a result of (50) and (52), we have

x̃i log
((xk)i
(x0)i

)
≥ x̃⊤ log

(xk

x0

)
− n∥x̃∥∞ log

(R2

α2

)
≥ − n∥x0∥1

e
− C1 − n∥x̃∥∞ log

(R2

α2

)
.

(53)

Let C2 be the RHS of (53), then we have

(xk)i ≥ (x0)i exp

(
−C2

x̃i

)
∀i ∈ [n].

The proof is complete by defining

σ :=

√
min
i∈[n]

{
(x0)i exp

(
−C2

x̃i

)}
.

□

COMPLETING THE PROOF OF THEOREM 3.4

By Corollary 3.3 we have

f(uk)− f(uk+1) ≥η∥uk ◦ ∇g(xk)∥22 ≥ ησ2∥A⊤(Axk − b)∥22
≥µησ2∥Axk − b∥22 = 2µησ2f(uk)

for any k ≥ 0, where µ is the smallest eigenvalue of AA⊤, which satisfies µ > 0 because of
Assumption 3.1 (1). The proof is complete by defining ρ := 2µησ2.

17

Under review as a conference paper at ICLR 2024

H PROOF OF LEMMA G.1

Below we first set up some notations and some technical results in Section H.1. Then the proof of
Lemma G.1 is presented in Section H.2.

H.1 NOTATIONS AND TECHNICAL RESULTS

Denote X ∗ := {x ∈ Rn
+ | Ax = b} and U∗ := {u ∈ Rn

+ | A(u ◦ u) = b}. Define the mapping
φ(u) := A(u◦u)−b. Let S be the set of stationary points of f in Rn

+, i.e., S := {u ∈ Rn
+ | ∇f(u) =

0}. For any I ∈ [n], let PI(b) be the projection of b onto the set {Ax | x ≥ 0, xi = 0 ∀i ̸∈ I}.
Define

R(b) := {PI(b)− b | I ⊆ [n], PI(b) ̸= b} .
In particular, note that R(b) is a finite set.

Lemma H.1 For any r̄ ∈ R(b), there exists i ∈ [n] such that (A⊤r̄)i < 0.

Proof. Suppose (for contradiction) A⊤r̄ ≥ 0 for some r̄ = PI(b)− b ∈ R(b). Let x̄ be a point such
that PI(b) = Ax̄, then it holds A⊤(Ax̄− b) = A⊤r̄ ≥ 0. As a result, x̄ is an optimal solution of

min
x∈Rn

∥Ax− b∥22 s.t. x ≥ 0.

Therefore, by Assumption 3.1 (2), we know r̄ = Ax̄ − b = 0, which is a contradiction to the
definition of R(b). □

Lemma H.2 Let S1 := Rn
+ ∩ φ−1(R(b)) = {u ∈ Rn

+ | φ(u) ∈ R(b)}, then it holds S ⊆ U∗ ∪ S1.

Proof. For any u ∈ S, it holds

∇f(u) = 2u ◦ [A⊤φ(u)] = 0. (54)

(Case 1) If A⊤φ(u) = 0, because A has full row rank (Assumption 3.1 (1)), it holds u ∈ U∗.

(Case 2) If A⊤φ(u) ̸= 0, let I := {i ∈ [n] | (A⊤φ(u))i = 0}. Therefore, by (54), it holds ui = 0
for all i ∈ [n] \ I. By the definition of I and the KKT condition, we know that x̃ := u ◦ u is an
optimal solution of

min
x

∥Ax− b∥22 s.t. xi = 0 ∀ i ∈ [n] \ I. (55)

So we have PI(b) = Ax̃, hence φ(u) = Ax̃ − b = PI(b) − b ̸= 0, where the last inequality is by
the assumption of (Case 2). As a result, we have φ(u) ∈ R(b), and hence u ∈ S1. □

Define

δ1 = δ1(A, b) := min
r̄∈R(b)

{
max
i∈[n]

(−A⊤r̄)i

}
> 0, (56)

where δ1 > 0 is by Lemma H.1 and the fact that R(b) is a finite set. Let δ2 = δ2(A, b) > 0 be small
enough such that

min
r̄∈R(b)

max
i∈[n]

inf
r∈Bδ2

(r̄)
(−A⊤r)i ≥

δ1
2

> 0 (57)

and
dist

(
φ−1(Bδ2(r̄

1)), φ−1(Bδ2(r̄
2))

)
≥ δ2 ∀ r̄1, r̄2 ∈ R(b). (58)

Next, define the set Ωf (ϵ) := {u ∈ Rn
+ | f(u) ≥ ϵ} and

F := B̄R(0)
⋂ ⋂

r̄∈R(b)

(φ−1
(
Bδ2(r̄))

)c⋂
Ωf (ϵ) (59)

where R is the constant defined in Lemma 3.2. Then we know that F is a compact set. Moreover,
by the definition of F , we know that S1 ∩ F = ∅ and U∗ ∩ F = ∅. As a result, by Lemma H.2, we
know S ∩ F = ∅, so ∇f(u) ̸= 0 for all u ∈ F . As a result, we can define

δ3 = δ3(A, b,R, ϵ) := min
u∈F

∥∇f(u)∥2 > 0. (60)

18

Under review as a conference paper at ICLR 2024

H.2 COMPLETING THE PROOF OF LEMMA G.1

First, we have the following claim.

Claim H.3 Let k0 := ⌈(η−1 + 1)(log(1/α) + 1)⌉ and define

M = M(A, b,R) := sup
u∈B̄R(0)

∥A⊤φ(u)∥2, T = T (A, b,R) :=
⌈ 8

δ1
max{1,M}

⌉
.

Then for any k ≥ k0, at least one of the two cases occurs:

(1) f(uTk) < ϵ.

(2) f(uk)− f(uTk) ≥ δ4, where

δ4 = δ4(A, b,R, ϵ) := min

{
δ23
2
,

1

2 + 4η̄
δ22 ,

8δ21
81e4M

}
. (61)

Proof of Claim H.3.

Fix any k ≥ k0. Let k̄ := 2(T + 1)k. We assume that (1) does not occur, and prove that (2) occurs.
Define JF := {j ∈ [k, k̄) | uj ∈ F} and JFc := {j ∈ [k, k̄) | uj ∈ Fc}. We discuss a few different
cases.

(Case 1) |JF | > η−1. By Lemma 2.1, for all j ∈ JF , we have

f(uj)− f(uj+1) ≥ η

2
∥∇f(uj)∥22 ≥ η

2
δ23 (62)

where the last inequality is by the definition of δ3 in (60). As a result,

f(uk)− f(uk̄) ≥
∑
j∈JF

f(uj)− f(uj+1) ≥ ⌈η−1⌉η
2
δ23 ≥ δ23

2
. (63)

(Case 2) |JF | ≤ η−1. Note that for any j ∈ JFc , it holds uj /∈ F , but we also have uj ∈ B̄R(0)

(by Lemma 3.2) and f(uj) ≥ ϵ (by the assumption that f(uk̄) ≥ ϵ). So by the definition of F , we
know that there exists r̄ ∈ R(b) such that uj ∈ φ−1(Bδ2(r̄)). Below we discuss two cases.

(Case 2.1) There exist r̄1, r̄2 ∈ R(b) with r̄1 ̸= r̄2 such that there exist j1, j2 ∈ JFc with j1 < j2
and uj1 ∈ φ−1(Bδ2(r̄

1)), uj2 ∈ φ−1(Bδ2(r̄
2)). Since |JF | ≤ η−1 (by the assumption of (Case 2)),

we can take j1 < j2 with j2 − j1 ≤ η−1 + 2. As a result,

f(uk̄)− f(uk) ≥f(uj1)− f(uj2) ≥ 1

2η

j2−1∑
j=j1

∥uj+1 − uj∥22 ≥ 1

2η(j2 − j1)

(j2−1∑
j=j1

∥uj+1 − uj∥2
)2

≥ 1

2η(η−1 + 2)
∥uj1 − uj2∥22 ≥ 1

2 + 4η̄
δ22

where the second inequality is by Lemma 2.1 and the fact uj+1 = uj−η∇f(uj); the third inequality
is by Jensen’s inequality; the fourth inequality is by j2 − j1 ≤ η−1 + 2 and triangular inequality;
the last inequality is by (58).

(Case 2.2) There exists r̄ ∈ R(b) such that uj ∈ φ−1(Bδ2(r̄)) for all j ∈ JFc . As a result, by (57),
there exists i ∈ [n] such that

(A⊤φ(uj))i ≤ −δ1
2

∀j ∈ JFc . (64)

Therefore, we have

(uj+1)i
(uj)i

= 1− η(A⊤φ(uj))i ≥ 1 +
δ1η

2
∀j ∈ JFc . (65)

19

Under review as a conference paper at ICLR 2024

On the other hand,

(uj+1)i
(uj)i

= 1− η(A⊤φ(uj))i ≥ 1− ηM ∀ j ∈ JF or j ≤ k − 1. (66)

Combining (65) and (66), and note that |JF | ≤ ⌊η−1⌋, so we have

(uk̄)i
(u0)i

=

k̄−1∏
j=0

(uj+1)i
(uj)i

≥ (1− ηM)k+⌊η−1⌋(1 + ηδ1/2)
k̄−k−⌊η−1⌋

≥(1− ηM)k+η−1

(1 + ηδ1/2)
k̄−k−η−1

≥
[
(1− ηM)(1 + δ1η/2)

T
]k+η−1

≥
[
(1− ηM)(1 + Tδ1η/2)

]k+η−1

,

(67)

where the third inequality is because k̄ = 2(T + 1)k ≥ (T + 1)(k + η−1) (since k ≥ k0 ≥ η−1).
Recall that ηM ≤ η̄M ≤ 1/2 (by the definition of η̄ in (40)), we have

(1− ηM)(1 + Tδ1η/2) =1− ηM +
δ1ηT

2
− ηM · δ1ηT

2

≥1− ηM +
δ1ηT

4
≥ 1 +

δ1ηT

8
≥ 1 + η,

(68)

where the first inequality is because ηM ≤ η̄M ≤ 1/2, then second and third inequalities are by
the definition of T . As a result of (67) and (68), we have

(uk̄)i ≥ (u0)i(1+η)k+η−1

≥ α(1+η)k0+η−1

≥ α(1+η)(1+η−1) log(1/α) ≥ αelog(1/α) = 1, (69)

where the second inequality is by the definition of α and the assumption k ≥ k0; the third inequality
is by the definition of k0; the fourth inequality is by the elementary inequality in Lemma K.7.

Now we define
J ′ := {j ∈ [k̄ − 2⌈η−1⌉ − 1, k̄ − 1] | j ∈ JFc}.

Recall that |JF | ≤ ⌈η−1⌉ (by the assumption of (Case 2)), so we know

|J ′| ≥ ⌈η−1⌉. (70)

For any j ∈ J ′, by the assumption of (Case 2.2), we have uj ∈ φ−1(Bδ2(r̄)), hence by (64) we
have (A⊤φ(uj))i < −δ1/2. Therefore

∥∇f(uj)∥2 ≥ −(∇f(uj))i = −2(uj)i(A
⊤φ(uj))i ≥ δ1(u

j)i ∀ j ∈ J ′. (71)

On the other hand, for any j ∈ J ′,

(uj)i ≥
uk̄

(1 + ηM)2⌈η−1⌉ ≥ 1

(1 + ηM)2η−1+2
≥ 4

9e2M
, (72)

where the second inequality made use of (69), and the final inequality is because

(1 + ηM)2η
−1

≤ (eηM)2η
−1

= e2M

and (1 + ηM)2 ≤ 9
4 (because ηM ≤ 1/2). By (71) and (72), we have

∥∇f(uj)∥2 ≥ 4δ1
9e2M

∀ j ∈ J ′.

As a result,

f(uk)− f(uk̄) ≥
∑
j∈J ′

f(uj)− f(uj+1) ≥
∑
j∈J ′

1

2
η∥∇f(uj)∥22 ≥ 8δ21

81e4M
η|J ′| ≥ 8δ21

81e4M
,

where the last inequality is because of (70).

The proof of Claim H.3 is complete by combining the discussions in (Case 1) and (Case 2).

□

20

Under review as a conference paper at ICLR 2024

With Claim H.3 at hand we are ready to wrap up the proof of Lemma G.1. Define

K = K(A, b,R, ϵ) := T γ , where γ := ⌈f(u0)/δ4⌉+ 1. (73)

Then for any k ≥ Kk0, suppose (for contradiction) f(uk) > ϵ, then f(uj) > ϵ for all j ≤ k, and
by Claim H.3 we have

f(u0)− f(uk) ≥ f(k0)− f(T γk0) =

γ∑
s=1

f(T s−1k0)− f(T sk0) ≥ γδ4 > f(u0),

which is a contradiction as f(uk) ≥ 0. As a result, we know that for any k ≥ Kk0 = ⌈(η−1 +
1)(log(1/α0) + 1)⌉K, it holds f(uk) ≤ ϵ.

I PROOF OF THEOREM 3.5

By the update formula (11) we have

uk = u0 ◦
k−1∏
j=0

(
1n − ηA⊤rj

)
(74)

for all k ≥ 1. Note that by Theorem 3.4, we know
∑∞

j=0 ∥rj∥2 < ∞, so the update (74) converges
as k → ∞.

By Lemma K.1 and recall that xk = uk ◦ uk we have

4η

k−1∑
j=0

A⊤rj − 16η2
k−1∑
j=0

(A⊤rj) ◦ (A⊤rj) ≤ log

(
xk

x0

)
≤ 4η

k−1∑
j=0

A⊤rj . (75)

Taking k → ∞, and denote ν := 4η
∑∞

j=0 r
j and w̃ := 16η

∑∞
j=0(A

⊤rj) ◦ (A⊤rj), we have

A⊤ν − ηw̃ ≤ log

(
x∞

x0

)
≤ A⊤ν. (76)

Note that

∥w̃∥1 ≤ 16η

∞∑
j=0

∥A⊤rj∥22 ≤ 16Lη

∞∑
j=0

∥rj∥22

≤ 16Lη

(
C̄
log(1/α)

η
K(A, b,R, δ)∥r0∥22 +

2

ηcτ
δτ
)

= 16L log(1/α)

(
C̄K(A, b,R, δ)∥r0∥22 +

2

cτ log(1/α)
δτ
)

≤ 16L log(1/α)

(
C̄K(A, b,R, δ)∥r0∥22 +

2

cτ log(2)
δτ
)

(77)

where K is the constant given in Lemma G.1, δ, c and τ are constants given in Lemma K.4, and C̄ is
a universal constant. The third inequality is by Lemma G.1 and Corollary G.3; the fourth inequality
is by our assumption that α ∈ (0, 1/2). Define

C = C(A, b,R) := 16L

(
C̄K(A, b,R, δ)∥r0∥22 +

2

cτ log(2)
δτ
)
. (78)

Then we have ∥w̃∥1 ≤ log(1/α)C. Define

w :=

(
A⊤ν − log

(x∞

x0

)) 1

η log(1/α)
. (79)

Then by (76) we have w ≥ 0, and by (77) and (78) we have ∥w∥1 ≤ ∥w̃∥1/ log(1/α) ≤ C. Define
the function

h(x) :=

n∑
i=1

xi log(xi/α
2
i)− xi + η log(1/α)wixi.

21

Under review as a conference paper at ICLR 2024

Then we have
(∇h(x∞))i = log(x∞

i /α2
i) + η log(1/α)wi = (A⊤ν)i,

where the second equality is by the definition of w in (79). Moreover, since Ax∞− b = 0, we know
that x∞ satisfies the KKT condition of the problem (28) (note that the objective function in (28)
equals h). Therefore it is an optimal solution of (28).

If we take αi = exp(−ci/(2λ)), then log(1/α2
i) = ci/λ, and log(α) = − c̄

2λ . As a result, problem
(28) is equivalent to (29).

J APPROXIMATION OF LP SOLUTIONS

Lemma J.1 Suppose Assumption 3.1 is true. Let

W (b̃) := max
x

c⊤x s.t. Ax = b̃, x ≥ 0 (80)

and let x∗(b̃) be the optimal solution. Then there exists ϵ1 > 0 and L1 = L1(A, b) > 0 and
L2 = L2(A, b) > 0 such that for any b̃ with ∥b̃− b∥2 ≤ ϵ1, it holds |W (b)−W (b̃)| < L1∥b− b̃∥2
and ∥x∗(b̃)∥2 ≤ L2.

Proof. By duality of linear programs, we have

W (b̃) = max
y

b̃⊤y s.t. A⊤y ≤ c (81)

Since (by Assumption 3.1) (80) with b̃ = b has a strictly feasible point, we know that there is ϵ1 > 0
small enough such that for any b̃ with ∥b̃− b∥2 ≤ ϵ1, the problem (80) is strictly feasible, and hence
W (b̃) is a finite value. Let E be the set of extreme points of the polytope {y|A⊤ ≤ c}. Then for any
b̃ with ∥b̃− b∥2 ≤ ϵ1, it holds

W (b̃) = max
y

b̃⊤y s.t. y ∈ E (82)

Since E is a finite set, we know that W is a Lipschitz function in the neighborhood of b, and the
first conclusion holds true. The second conclusion is also true because all coordinates of c is strictly
positive. □

Lemma J.2 Let δ = δ(A, b,R) be the constant given by Lemma K.4, and let ϵ1 be the constant given
by Lemma J.1. Given any ϵ ∈ (0,min{δ, ϵ1}), suppose we take η = O(ϵ) and λ = O(ϵ), then there
is a constant C = C(A, b) and C ′ = C ′(A, b) such that for k ≥ C ′ϵ−2, we have ∥Axk − b∥2 < ϵ,
and |c⊤xk − c⊤x∗| < Cϵ.

Proof. Let k ≥ 1 be large enough such that ∥Axk − b∥2 < ϵ. Denote b̃k := Axk. By a similar
argument as in the proof of Theorem 3.5, we know that xk is the optimal solution of

min
x

c⊤x+ λ

n∑
i=1

(xi log(xi)− xi) +
η

2
(λ+ c̄)(wk)⊤x

s.t. Ax = b̃k, x ≥ 0

(83)

for some vector wk satisfying supk≥1 ∥wk∥1 ≤ C for some constant C = C(A, b,R). Let x̃k be
the optimal solution of

min
x

c⊤x s.t. Ax = b̃k, x ≥ 0 (84)

Then by Lemma J.1 we have

|c⊤x̃k − c⊤x∗| ≤ L1∥b̃k − b∗∥2 ≤ L1ϵ (85)

and ∥x̃k∥2 ≤ L2. Let

C1 := sup
x∈{x̃k}∪{x:∥x∥2≤R}

∣∣∣ n∑
i=1

xi log(xi)− xi

∣∣∣ (86)

22

Under review as a conference paper at ICLR 2024

and
C2 :=

1 + c̄

2
C(A, b,R)max{R,L2} (87)

Then we have
sup

x∈{x̃k}∪{x:∥x∥2≤R}
sup
λ(0,1]

∣∣∣λ+ c̄

2
w⊤x

∣∣∣ ≤ C2 (88)

As a result, we have

c⊤x̃k ≤ c⊤xk ≤c⊤xk + λ

n∑
i=1

(
xk
i log(x

k
i)− xk

i

)
+

η

2
(λ+ c̄)(wk)⊤xk + λC1 + ηC2

≤c⊤x̃k + λ

n∑
i=1

(
x̃k
i log(x̃

k
i)− x̃k

i

)
+

η

2
(λ+ c̄)(wk)⊤x̃k + λC1 + ηC2

≤c⊤x̃k + 2λC1 + 2ηC2

(89)

Suppose we take λ = O(ϵ) and η = O(ϵ), then by (85) and (89) we have

|c⊤xk − c⊤x∗| ≤ C̃ϵ (90)
for some constant C̃ = C̃(A, b,R). Note that as we take λ to be small enough, R is uniformly
bounded by a value depending on A and b, so we can write C̃ = C̃(A, b).

It remains to find an upper bound on an iteration k such that ∥Axk − b∥2 < ϵ. Let δ = δ(A, b,R)
and τ = τ(A, b,R) be the constants given by Lemma K.4. Let k0 > 0 be an iteration such that
f(uk0) ≤ δ. Then by Theorem G.2 we have

f(uk) ≤
(
δ−(1−τ) +

ηc(1− τ)

2
(k − k0)

)− 1
1−τ

∀ k ≥ k0 + 1. (91)

Therefore, it takes at most C ′ϵ−2 iterations (where C ′ = C ′(A, b,R) is a constant) to reach a point
xk with f(uk) = 1

2∥Axk − b∥22 < ϵ2/2. Again, as we take λ to be small enough, R is uniformly
bounded by a value depending on A and b, so we can write C ′ = C ′(A, b). □

K TECHNICAL RESULTS

Lemma K.1 Given K ≥ 1, suppose we take ηk > 0 (for k = 0, ...,K−1) such that (12) holds true
for all k = 0, 1, ...,K − 1. Then we have

2

K−1∑
j=0

ηjA
⊤rj − 8

K−1∑
j=0

η2j (A
⊤rj) ◦ (A⊤rj) ≤ log

(
uK

u0

)
≤ 2

K−1∑
j=0

ηjA
⊤rj .

Proof. For any j ≤ K − 1 and i ∈ [n], By Taylor expansion,

log((uj+1)i)− log((uj)i) =
(uj+1)i − (uj)i

(uj)i
− 1

2

(
(uj+1)i − (uj)i

(wj)i

)2

(92)

where (wj)i is between (uj)i and (uj+1)i. This implies

log((uj+1)i)− log((uj)i) ≤
(uj+1)i − (uj)i

(uj)i
= 2ηj(A

⊤rj)i. (93)

By Lemma 2.1 we know 1
2u

j ≤ uj+1 ≤ 3
2u

j , so we have (wj)i ≥ 1
2u

j , and hence (92) implies

log((uj+1)i)− log((uj)i) ≥
(uj+1)i − (uj)i

(uj)i
− 2

(
(uj+1)i − (uj)i

(uj)i

)2

=2ηj(A
⊤rj)i − 8η2j (A

⊤rj)2i .

(94)

The proof is complete by summing (93) and (94) over j from 0 to K − 1. □

For any b̃ ∈ Rm, define X ∗(b̃) := {x ∈ Rn
+ | Ax = b̃}.

23

Under review as a conference paper at ICLR 2024

Lemma K.2 (Hoffman constant) There is a constant H = H(A) that only depends on A such that
for any b̃ such that X ∗(b̃) ̸= ∅ and any x ∈ Rn

+,

dist(x,X ∗(b̃)) ≤ H∥Ax− b̃∥2. (95)

Proof. Define Ā := [A⊤,−A⊤,−In]
⊤ ∈ R(2m+n)×n and b̄ := [b̃,−b̃, 0], then we can write

X ∗(b̃) = {x ∈ Rn | Āx ≤ b̄}. Take H to be the Hoffman constant (see e.g. Pena et al. (2021)) for
Ā, then we have

dist(x,X ∗(b̃)) ≤ H∥(Āx− b̄)+∥2 = H∥Ax− b̃∥2.
□

Lemma K.3 (Lojasiewicz’s gradient inequality for polynomials) Let h be a polynomial on Rn with
degree d. Suppose that h(0) = 0 and ∇h(0) = 0, then there exist constants c̄, ϵ̄ > 0 such that for
all ∥x∥2 ≤ ϵ̄ we have

∥∇h(x)∥2 ≥ c|h(x)|1−τ̄ (96)
where

τ̄ = τ̄n,d :=

{
1, d = 1,
d(3d− 3)−(n−1), d ≥ 2.

(97)

See Theorem 4.2 of D’Acunto & Kurdyka (2005) for a proof of Lemma K.3.

Lemma K.4 (Lojasiewicz’s gradient inequality for f) There exist constants δ = δ(A, b,R) > 0,
c = c(A, b,R) > 0 and τ ∈ (0, 1) such that

∥∇f(u)∥22 ≥ c
(
f(u)

)2−τ

(98)

for all u ∈ Rn
+ satisfying f(u) ≤ δ and ∥u∥2 ≤ R.

Proof. Recall that U∗ = {u ∈ Rn
+ | A(u ◦ u) = b}. Note that f is a polynomial on Rn with degree

4, and for any u ∈ U∗, it holds f(u) = 0 and ∇f(u) = 0. Therefore, by Lemma K.3, for each
u ∈ U∗, there exists ϵ̄u, c̄u > 0 such that

∥∇f(v)∥22 ≥ c̄u|f(v)|2−2τ̄ , ∀v ∈ Bϵ̄u(u) (99)

where τ̄ = τ̄n,4 = 4·9−(n−1). Let Ũ∗ be a compact subset of U∗ such that dist(u,U∗) = dist(u, Ũ∗)

for all u satisfying ∥u∥2 ≤ R. Then there is a finite set Ũ ⊆ Ũ∗ such that Ũ∗ ⊂ ∪u∈ŨBϵ̄u(u).
Moreover, there is ϵ̄ > 0 such that Bϵ̄(Ũ∗) ⊂ ∪u∈ŨBϵ̄u(u). Take c := minu∈Ũ c̄u > 0, we have

∥∇f(v)∥22 ≥ c|f(v)|2−2τ̄ , ∀v ∈ Bϵ̄(Ũ∗). (100)
Let H be the constant given by (K.2), and take δ := ϵ̄4/(4H2). Then for any u satisfying ∥u∥2 ≤ R
and f(u) ≤ δ, we have

2H2f(u) =H2∥A(u ◦ u)− b∥22 ≥ inf
v∈U∗

∥u ◦ u− v ◦ v∥22

= inf
v∈U∗

∥(u+ v) ◦ (u− v)∥22 ≥ inf
v∈U∗

∥u− v∥42 = dist(u,U∗)4 = dist(u, Ũ∗)4
(101)

where the first inequality is by Lemma K.2. As a result,

dist(u, Ũ∗) ≤ (2H2f(v))1/4 ≤ ϵ̄/2 < ϵ̄. (102)
Therefore, by (100) and (102) for any u satisfying ∥u∥2 ≤ R and f(u) ≤ δ,

∥∇f(u)∥22 ≥ c|f(u)|2−2τ̄ .

The proof is complete by taking τ = 2τ̄ = 8 · 9−(n−1). □

Lemma K.5 Let {ak}k≥1 be a sequence of decreasing positive numbers, and there are constants
K ′ > 0, c′ > 0 and τ ′ ∈ (0, 1) such that

ak − ak+1 ≥ c′a2−τ ′

k ∀k ≥ K ′. (103)
Then we have

ak ≤
[
a
−(1−τ ′)
K′ + c′(1− τ ′)(k −K ′)

]− 1
1−τ′

∀k ≥ K ′ + 1.

24

Under review as a conference paper at ICLR 2024

Proof. Define βk = 1/ak for k ≥ K ′. Then (103) becomes

1

βk
− 1

βk+1
≥ c′

β2−τ ′

k

(104)

Let function h(β) := β− 1
1−τ′ for β ∈ (0,∞). Note that h is a convex function, so we have

1

βk+1
− 1

βk
= h(β1−τ ′

k+1)− h(β1−τ ′

k) ≥ h′(β1−τ ′

k)(β1−τ ′

k+1 − β1−τ ′

k)

= − 1

1− τ ′
(β1−τ ′

k)−
1

1−τ′ −1(β1−τ ′

k+1 − β1−τ ′

k) = − 1

1− τ ′
β
−(2−τ ′)
k (β1−τ ′

k+1 − β1−τ ′

k)

(105)
for all k ≥ K ′. By (104) and (105) we have

c′β
−(2−τ ′)
k ≤ 1

1− τ ′
β
−(2−τ ′)
k (β1−τ ′

k+1 − β1−τ ′

k),

which implies
β1−τ ′

k+1 − β1−τ ′

k ≥ c′(1− τ ′) ∀k ≥ K ′.

As a result, for any k ≥ K ′, we have

β1−τ ′

k ≥ β1−τ ′

K′ + c′(1− τ ′)(k −K ′)

which implies

ak ≤
[
a
−(1−τ ′)
K′ + c′(1− τ ′)(k −K ′)

]− 1
1−τ′

∀k ≥ K ′ + 1

□

Lemma K.6 Given α > 0, and let h(t) = t log(t/α) for t > 0 and h(0) = 0. Then mint≥0 h(t) =
−α/e.

Proof. Let t̄ := α/e. Then we have h′(t̄) = log(t̄/α) + 1 = 0. Since h is a convex function, so we
have

h(t) ≥ h(t̄) =
α

e
log(e−1) = −α

e
for all t ≥ 0. □

Lemma K.7 For any t > 0, it holds (1 + t)1+t−1 ≥ e.

Proof. To prove the conclusion, it suffices to prove that (1 + t−1) log(1 + t) ≥ 1 for all t > 0, or
equivalently, proving (1 + t) log(1 + t) − t ≥ 0 for all t > 0. Let h(t) := (1 + t) log(1 + t) − t,
then h′(t) = log(1 + t) > 0 for all t > 0. As a result, h(t) ≥ h(0) = 0 for all t > 0. □

L ADDITIONAL EXPERIMENTS

We compare our method against the commercial LP solver Gurobi and another first-order method:
an ADMM-based solver SCS. In particular, we simulate the data with the same data-generating
process as in Section 4 of the paper, but with m = 500 and n = 50000. Here is a brief comparison
of the methods in this example:

Time (s) Primal gap Feasibility gap Preprocessing time (s)
Gurobi 16.77 0 0 10.11

SCS 100 iterations 40.49 -0.971 2.21e-10 -
SCS 200 iterations 65.06 0.008 1.57e-12 -

Alg1 1000 iterations 9.26 0.005 4.17e-11 -

where the primal gap is defined as (c⊤x̂− c⊤x∗)/c⊤x∗, with x̂ be the solution by an algorithm and
x∗ is the optimal solution (by Gurobi). The feasibility gap is defined as ∥Ax̂− b∥22/max{1, ∥b∥22}.

25

Under review as a conference paper at ICLR 2024

First, it can be seen that our method is much faster than SCS, where our method computes a solution
with a smaller primal gap in a much shorter time. Our method is also faster than Gurobi if a low-
accuracy solution with a primal gap 0.005 is satisfactory for the underlying application. Moreover,
we note that Gurobi takes 10.11 seconds for preprocessing, which is already similar to the runtime
of our method.

Admittedly, our method is not able to obtain high-accuracy solutions as fast as Gurobi, but it is
useful for quickly obtaining an approximate solution. Moreover, since Algorithm 1 only involves
matrix-vector multiplications, it is easily implemented in a GPU-acceleration setting, which can
potentially outperform Gurobi for larger problems.

26

	Introduction
	Reparametrized gradient descent
	A continuous viewpoint
	Connections to mirror descent
	Connections to the Sinkhorn algorithm

	Convergence guarantees
	Global convergence
	Limit point as an approximate solution

	Experiments
	A comparison with the general convergence theory of GD for nonconvex objectives
	Notations in the proofs
	Proof of Lemma 2.1
	Proof of Theorem 2.2
	Proof of Lemma 3.2
	Proof of Corollary 3.3
	Proof of Theorem 3.4
	Proof of Lemma G.1
	Notations and technical results
	Completing the proof of Lemma G.1

	Proof of Theorem 3.5
	Approximation of LP solutions
	Technical results
	Additional experiments

