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ABSTRACT

Diversity is a growing research topic in Reinforcement Learning (RL). Previous
research on diversity has mainly focused on promoting diversity to encourage
exploration and thereby improve quality (the cumulative reward), maximizing
diversity subject to quality constraints, or jointly maximizing quality and diversity,
known as the quality-diversity problem. In this work, we present the quality-similar
diversity problem that features diversity among policies of similar qualities. In
contrast to task-agnostic diversity, we focus on task-specific diversity defined by
a set of user-specified Behavior Descriptors (BDs). A BD is a scalar function of
a trajectory (e.g., the fire action rate for an Atari game), which delivers the type
of diversity the user prefers. To derive the gradient of the user-specified diversity
with respect to a policy, which is not trivially available, we introduce a set of BD
estimators and connect it with the classical policy gradient theorem. Based on the
diversity gradient, we develop a population-based RL algorithm to adaptively and
efficiently optimize the population diversity at multiple quality levels throughout
training. Extensive results on MuJoCo and Atari demonstrate that our algorithm
significantly outperforms previous methods in terms of generating user-specified
diverse policies across different quality levels (see Atari and MuJoCo videos).

1 INTRODUCTION

Existing research on policy diversity in deep Reinforcement Learning (RL) can be generally divided
into three categories, according to the role diversity plays. The first category (Hong et al., 2018;
Eysenbach et al., 2018; Conti et al., 2018; Parker-Holder et al., 2020; Kumar et al., 2020; Peng et al.,
2020; Tang et al., 2020; Han & Sung, 2021; Chenghao et al., 2021; McKee et al., 2022) focuses on
maximizing the final quality (the cumulative reward) of a policy, and policy diversity only serves
as a means to better fulfill this goal via improving the efficiency of exploration. Therefore, the
diversity measure is preferred to be task-agnostic as the knowledge of what type of task-specific
diversity benefits the quality may not be accessible in most cases. The second category (Masood
& Doshi-Velez, 2019; Zhang et al., 2019; Sun et al., 2020; Ghasemi et al., 2021; Zahavy et al.,
2021; Zhou et al., 2022) is concerned with constrained optimization problems, where either diversity
is optimized subject to quality constraints or vice-versa. Again, existing methods in this category
have mainly focused on task-agnostic diversity, thereby the obtained diversity is often explained
in hindsight, i.e., it is unknown what type of policy diversity to expect until the optimization is
finished. The third category optimizes quality and diversity simultaneously, which is usually known
as the Quality-Diversity (QD) method (Cully et al., 2015; Mouret & Clune, 2015; Pugh et al., 2016;
Colas et al., 2020; Fontaine & Nikolaidis, 2021; Nilsson & Cully, 2021; Pierrot et al., 2022; Wang
et al., 2021; Tjanaka et al., 2022). In contrast to task-agnostic diversity, most QD methods focus on
task-specific diversity, where users are allowed to specify a set of interested Behavior Descriptors
(BDs). A BD is a scalar function of a trajectory (i.e., the whole game episode) and thus does not
have an analytical function form with respect to a single policy or state. Therefore, the gradient
of a BD with respect to a policy is not trivially available, and this extends to the diversity measure
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defined on multiple BDs. As a result, previous QD methods (Cully et al., 2015; Mouret & Clune,
2015; Pugh et al., 2016) rely on black-box optimization techniques, such as evolutionary algorithms,
to evolve a population of diverse policies. Some recent QD methods (Colas et al., 2020; Fontaine
& Nikolaidis, 2021; Nilsson & Cully, 2021; Pierrot et al., 2022; Tjanaka et al., 2022) try to inject
gradient information into the evolutionary optimization process.

In this work, we formulate the Quality-Similar Diversity (QSD) problem where the objective is to
produce a set of diverse policies at multiple quality levels. We propose a new QD metric called the
QSD score that clusters policies of similar qualities, and the diversity is evaluated at each quality
level. In QSD problems, diverse policies of non-optimal qualities are also preferred, which directly
meet practical needs in some real-world AI applications. For example, in the field of game AI
(Zhang et al., 2021; Fu et al., 2021), it is often desirable to provide diverse accompanying AIs whose
qualities are matched to a beginner, an amateur, and a master, respectively. Besides, measuring
the diversity between a beginner and a master would be of little interest. The QSD problem also
connects with adaptive curricula (Wang et al., 2019; Team et al., 2021; Parker-Holder et al., 2022),
where the environment gradually increases curriculum levels from simple to complex. Optimizing
the intermediate diversity at non-optimal quality levels helps a faster and better convergence of the
agent’s capabilities than training directly at a complex curriculum level.

Moreover, the ability to generate task-specific diversity is superior and supplementary to task-agnostic
diversity when the user has a clear preference for the type of diversity in practice. For example, diverse
hand gestures are of no interest if the user only needs gait diversity in robot locomotion tasks. Hence,
in this work, we optimize an explicit diversity measure function defined on several user-specified
BDs, as opposed to the non-differentiable cell coverage percentage in most QD methods. To the
best of our knowledge, none of existing methods has obtained the exact gradient of a user-specified
BD (defined on trajectories) with respect to a policy, nor has any derived an unbiased estimation
of this gradient using state-action samples. In particular, the diversity gradient is approximated by
generating samples in the policy parameter space (Colas et al., 2020; Tjanaka et al., 2022), or simply
assumed in Fontaine & Nikolaidis (2021), which might not hold in many real-world situations. A set
of ‘state’ BDs (essentially a type of intrinsic reward) are introduced in Pierrot et al. (2022), expecting
that a positive correlation between state and trajectory BDs might suffice.

To fill this gap, we propose a set of BD estimators that predict the corresponding BD value for the
current policy. Equipped with these BD estimators, we build on the policy gradient theorem (Sutton
et al., 1999; Silver et al., 2014) to derive the gradient of user-specified BDs with respect to a policy
for discrete or continuous actions. Based on the population-based training (PBT) (Jaderberg et al.,
2017), we develop an RL diversity algorithm, named QSD-PBT, that leverages diversity gradient and
adaptively adjusts diversity loss to preserve similar qualities of the population. QSD-PBT efficiently
optimizes the diversity of multiple quality levels in a single run and outperforms previous methods in
terms of the QSD score in both MuJoCo and Atari environments. Meanwhile, QSD-PBT demonstrates
strong abilities in achieving user-specified diversity by discovering visually distinct policies across a
variety of environments. To summarize, the contributions of this work are as follows:

• We formulate the Quality-Similar Diversity (QSD) problem and propose a new performance metric.
• We derive the gradient of user-specified BDs defined on trajectories with respect to a policy.
• We develop a population-based RL algorithm that efficiently optimizes the diversity of multiple

quality levels in a single run.

2 PROBLEM DEFINITION

We focus on the episodic Markov Decision Processes (MDPs), which can be defined by a tuple
(S,A, T , r, γ). S and A stand for the state space and action space respectively. T : S ×A → S is
the environment transition function, and r : S ×A → R is the expected reward function. A policy
π(s) maps a state s to a probability distribution over A. A trajectory τ is a state-action sequence
[s0, a0, s1, a1, ..., sT ], which is obtained by executing a policy from the initial step t = 0 to the
terminal step T in the environment. The objective of RL is to find a policy π that maximizes its
expected cumulative rewards (also known as the quality in this work: J(π) = Eτ∼π[R(τ)], where
R(τ) =

∑T
t=0 γ

tr(st, at) is the return of a trajectory, and γ ∈ [0, 1] is the discount factor. The state
value function V π(s) = E[

∑T
t=i γ

t−ir(st, at)|si = s] measures the quality following π from state
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s. In particular, we define V π(sT ) = 0. The Q-function Qπ(s, a) = E[
∑T

t=i γ
t−ir(st, at)|si =

s, ai = a] measures the quality following π after taking action a in state s.

Behavior descriptor. We would like to maximize a task-specific diversity measure at different
quality levels in this work. Hence, users are allowed to specify a set of BDs, bi(τ) (1 ≤ i ≤ L)
that reflect the type of interested policy diversity. bi(τ) is an evaluation function of a trajectory that
is finite and easy to be implemented. For instance, a BD could be the ratio between left and right
movements in the trajectory of Atari MsPacMan. The trajectory BD is a general form and can be
simplified to state or action BD when the user is only interested in certain states or actions of the
environment, e.g., the terminal position in MsPacMan. Accordingly, the BD value of a policy πθ

(parameterized using θ) is defined as Bi(πθ) = Eτ∼πθ
[bi(τ)]. We denote all the BD values of a

policy πθ by B(πθ) = [B1(πθ), B2(πθ), ..., BL(πθ)].

Diversity measure function. Since BD values of a policy form an L-dimensional vector, we
need a function f that measures the overall diversity of the population as a scalar: Div(Π) :=
f(B(πθ1),B(πθ2), ...,B(πθN )), where Π = {πθj |1 ≤ j ≤ N} denotes a set of policies. The
choice of the f should follow these properties: (1) f should be bounded and non-negative for easy
implementation; (2) Since we do not define the order of an agent in the population, f should be
invariant of any permutation of the policies; (3) f should be differentiable such that we can derive its
gradient. Two recommended measure functions are detailed in Section C.2: the mean of all pair-wise
euclidean distances, and the Determinantal Point Process (DPP) (Parker-Holder et al., 2020).

Quality-similar diversity score. Note that the quality of a policy for a task is usually real-valued
and one-dimensional, obtaining a diverse set of policies at every possible quality level would require
an infinite number of policies. Hence, we approximately evaluate an algorithm’s QSD performance
by partitioning the obtained quality range into M disjoint intervals, and only the diversity of policies
within the same quality interval is evaluated by f . The QSD score is defined as follows:

QSD score :=

M∑
m=1

Div(Πm), (1)

where Πm denotes the set of policies obtained throughout training with qualities in the m-th interval.

3 POPULATION-BASED RL FOR QUALITY-SIMILAR DIVERSITY

The gradient of the user-specified BD with respect to a policy is not tractable since it is defined on a
trajectory. Hence, a possible solution to our QSD problem would be adapting derivative-free methods,
such as conventional QD methods (Mouret & Clune, 2015). However, derivative-free methods often
scale poorly with large-scale neural networks that are necessary to handle complex inputs, such as
the image feature in Atari. Note that the form in our definition of user-specified BD is similar to
the quality, it would be feasible to directly derive the diversity gradient using the policy gradient
theorem (Sutton et al., 1999). Given the diversity gradient, there exist two choices as how to obtain a
diverse population: sequential training (Zhang et al., 2019; Zahavy et al., 2021; Zhou et al., 2022) and
population-based training (Jaderberg et al., 2017; Jung et al., 2019; Parker-Holder et al., 2020). The
population-based training is more appropriate in our case, because the diversity measure is defined
on a population that can not be factorized into incremental diversity settings as in Zhang et al. (2019);
Zahavy et al. (2021); Zhou et al. (2022). Based on the above discussion, we develop an efficient
population-based RL algorithm, named QSD-PBT, for optimizing user-specified diversity BDs across
different quality levels. Each component of QSD-PBT is elaborated in the following.

3.1 DERIVING THE DIVERSITY GRADIENT

Using the chain rule, we can write the gradient of the diversity of a population Π = {πθj |1 ≤ j ≤ N}
with respect to the policy θj (without loss of generality, we use θ hereafter) as:

∂Div(Π)

∂θ
=

L∑
i=1

∂f

∂Bi(πθ)

∂Bi(πθ)

∂θ
. (2)

The partial derivative of f with respect to Bi(πθ) is easily obtained, as long as f is an explicit
diversity measure function, such as the mean pair-wise distance or the determinant in DPP. Note
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that in Bi(πθ) = Eτ∼πθ
[bi(τ)], bi(τ) is a scalar function evaluating the i-th user-specified BD with

respect to a trajectory τ . Following the policy gradient theorem (Sutton et al., 1999), we have:

∂Bi(πθ)

∂θ
= Eτ∼πθ

[

T∑
t=0

bi(τ)∇θ log πθ(at|st)]. (3)

The gradient in Equation 3 is preferred to be estimated by samples [st, at, st+1, b̂i(τ)] in practice. To
this end, a set of state and state-action BD estimators parameterized by ϕi are introduced:

V πθ

Bi
(τ0:t−1, st;ϕi) : = Eat,τt+1:T∼πθ

[bi(τ)], (4)

Qπθ

Bi
(τ0:t−1, st, at;ϕi) : = Eτt+1:T∼πθ

[bi(τ)], (5)

where τi:j denotes a segment of a trajectory starting from time step i to j: τi:j = [si, ai, ..., sj , aj ]. It is
worth noting that bi(τ) can not be factorized into a sum of quantities at each time step. For this reason,
V πθ

Bi
(τ0:t−1, st) at state st depends on the whole historical state-action sequence τ0:t−1. Similar

to the advantage in RL, we define the BD advantage Aπθ

Bi
(τ0:t−1, st, at) = Qπθ

Bi
(τ0:t−1, st, at) −

V πθ

Bi
(τ0:t−1, st). Since V πθ

Bi
(τ0:t−1, st) is action-independent, the gradient in Equation 3 can be

estimated using a mini-batch of samples {(τ (k)0:t−1, s
(k)
t , a

(k)
t , Â

(k)
Bi

)}Kk=1 as:

∂Bi(πθ)

∂θ
≈ 1

K

K∑
k=1

Â
(k)
Bi

∇θ log πθ(a
(k)
t |s(k)t ), (6)

where the sampled BD advantage Â
(k)
Bi

can be estimated using the conventional methods, e.g.,
Generalized Advantage Estimator (GAE) (Schulman et al., 2016), Direct Advantage Estimation (Pan
et al., 2021). The above derives the diversity gradient for the discrete-action policy. Based on the
deterministic policy gradient theorem (Silver et al., 2014), we have the following proposition for
deterministic policy πθ(s) in continuous action space.
Proposition 1. In deterministic policy and continuous action space case, the derivative of Bi(πθ)
with respect to policy parameters θ is:

∂Bi(πθ)

∂θ
=

T∑
t=0

∫
s0:t

p(s0 → st)∇θπθ(st)∇atQ
πθ

Bi
(τ0:t−1, st, at)|at=πθ(st)ds0:t, (7)

where
∫
s0:t

and ds0:t are short for
∫
s0

∫
s1
...

∫
st

and ds0ds1...dst respectively, and p(si → sj) =

p(si)
∏j−1

k=i p(sk+1|sk, πθ(sk)). Using a mini-batch of samples{(τ (k)0:t−1, s
(k)
t , a

(k)
t )}Kk=1, we can

develop an unbiased estimator of the gradient above:

∂Bi(πθ)

∂θ
≈ 1

K

K∑
k=1

∇θπθ(s
(k)
t )∇

a
(k)
t

Qπθ

Bi
(τ

(k)
0:t−1, s

(k)
t , a

(k)
t )|

a
(k)
t =πθ(s

(k)
t )

. (8)

The proof of proposition 1 is in Appendix A.1. Based on the proposition, at each training step, we
can sample a mini-batch {(τ (k)0:t−1, s

(k)
t , a

(k)
t )}Kk=1 to estimate the gradient. It is worth noting that the

trajectory τ0:t−1 may be a quite long sequence, e.g., more than 10k state-action pairs in Atari games.
Hence, a feature extractor is needed to encode the trajectory. As for training BD estimators, We use
the final BD value of a trajectory as the target and apply the mean squared error loss function. More
implementation details are provided in Appendix C.4.

3.2 OVERALL TRAINING SCHEME

In the QSD problem, we focus on maximizing the diversity at different quality levels. Previous
methods applied to QD problems such as the constrained optimization subject to some quality
constraints are inconsistent with our objective. Another possible solution is to combine the quality
loss and the diversity loss with a coefficient and adjust the coefficient using some online learning
algorithms, such as bandits (Parker-Holder et al., 2020). However, it is not obvious what the online
learning objective should be and how to adapt the coefficient optimally. To solve the QSD problem,
we start from dealing with the sub-problem of QSD, i.e., maximizing diversity at one quality level.
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Optimizing diversity at one quality level. Considering a population with N policies, the diversity
and the average quality of the population are Div(Π) and 1

N

∑N
j=1 J(πθj ) respectively. Each sub-

problem corresponds to optimizing a combined quality loss and diversity loss with a fixed coefficient
λ, saying the target weight λ∞. Instead of training with λ∞ from start to end, we let λ start from a
large initial value λ0 and gradually decay to λ∞ at the end of training. Specifically, at each training
step t, the combined loss for the population is Lt(Π) = − 1

N

∑N
j=1 J(πθj )− λtDiv(Π), where we

require λt+1 < λt and limt→∞ λt = λ∞. This is motivated by a general observation that exploration
is important in population-based RL training, and a larger λ focuses more on the diversity and thus
helps exploration. Apart from encouraging exploration throughout training, our decaying method
preserves the convergence property under some assumptions, which is proved in the following.
Proposition 2. Let f(x) : Rn → R, g(x) : Rn → R be Lipschitz smooth, convex, bounded
functions with derivative bounded, and a positive decreasing series {λt}∞t=0 converges to λ. Denote
ht(x) = f(x) + λtg(x). Then using the gradient descent algorithm and choosing a proper step size,
the algorithm will converge to the global minimum of f(x) + λg(x).

The proof is in Appendix A.2. We can see that the decaying method converges in convex and Lipschitz
smooth cases. In non-convex cases, we validate it experimentally in Section 4 and Appendix B.1.

Preserving the quality similarity. Constraining only the average quality of the population at certain
levels does not guarantee similar qualities in the population. To encourage quality similarity among
agents in a population, we distribute λt to each agent in the population, denoted as λ

(j)
t for the

j-th agent, and adapt each λ
(j)
t during training. The loss function for the j-th agent (policy) is

L
(j)
t (πθj ) = −J(πθj )−λ

(j)
t Div(Π). Specifically, policies with better qualities should focus more on

diversity optimization, and vice-versa. Following the discussion above, the scheme of λ(j)
t throughout

the training process is designed as λ(j)
t = λ∞ + (λ0 − λ∞)exp(− t

t0
· maxj R

(j)
t

R
(j)
t

), where λ0 is an

initial coefficient. t0 indicates the preferred decay step, and t is the current training step. R(j)
t is the

evaluation of the current quality of the j-th policy in the population. We assume that the quality of
any policy is non-negative and upper bounded. As a result, we have limt→∞ λ

(j)
t = λ∞.

Optimizing diversity across multiple quality levels. Once a target λ∞ is designated, the objective
function Lt(Π) corresponds to maximizing diversity at a certain quality level. Since our goal in
QSD is to obtain policy diversity at multiple quality levels, a straightforward way is to optimize
the objective function Lt(Π) multiple times with a set of target weights {λ∞,h}Hh=1. Alternatively,
we could obtain policy diversity at multiple quality levels in a single run. Given two target weights
λ∞,1 > λ∞,2, when we have finished the optimization with λ∞,1, we can continue the optimization
from λ∞,1 to solve the quality level targeted by λ∞,2, rather than re-initializing the model and training
from the initial λ0. This can be extended to multiple target weights, if λ is decayed slowly enough
from a large value λ0 to 0. In practice, we find it much more efficient than independent training with
multiple target values {λ∞,h}Hh=1. As a result, we apply a single training with λ decaying from λ0 to
0 to integrally solve the QSD problem, which gives the overall training loss for the j-th policy as :

L
(j)
t (πθj ) = −J(πθj )− λ

(j)
t Div(Π), (9)

with λ
(j)
t = λ0 · exp(− t

t0
· maxj R

(j)
t

R
(j)
t

). We employ PPO (Schulman et al., 2017) as the backbone

for discrete actions. As for scenarios with continuous action space, the TD3 (Fujimoto et al., 2018)
algorithm is applied as the backbone. We term our diversity optimization along with population-based
RL backbones as QSD-PBT. The pseudocode is given in Appendix C.5, and the code is open-sourced.

4 EXPERIMENTS

The effectiveness of QSD-PBT is validated on both MuJoCo (Brockman et al., 2016) continuous
control tasks and Atari games (Bellemare et al., 2013) with discrete action spaces. For the diversity
measure, we use the mean of pair-wise Euclidean distance between the BD vectors of two policies.
For the specification of BDs, we follow common practices in MuJoCo tasks by incorporating the
built-in joint torques as BDs, similar to Parker-Holder et al. (2020). For Atari games, we estimate
the advantage by the widely-adopted GAE method and follow the PPO Schulman et al. (2017)
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implementation that normalizes the advantage to make the training more robust. We design general-
proposed BDs from the perspective of human players for the five Atari games. It is worth noting that
the design of all the BDs does not unfairly favor any particular algorithm. Hence, the comparison
among different methods is fair and unbiased (also illustrated in Appendix B.3). We compare
QSD-PBT with independent PPO (Schulman et al., 2017) (driven only by the quality), two QD-style
methods: QD-PG (Pierrot et al., 2022) (diversity gradient by ‘state’ BDs) and EDO-CS (Wang
et al., 2021) (diversity gradient by evolution strategies), and two population-based RL algorithms:
PBT (Jaderberg et al., 2017) (driven only by the quality) and DvD (Parker-Holder et al., 2020) (driven
by both the quality and task-agnostic diversity).

For each environment, the range of quality is firstly estimated by training a state-of-the-art quality-
driven method (TD3 for MuJoCo tasks and PPO for Atari games) and then partitioned into M = 10
disjoint intervals of equal scope. The highest quality Rmax achieved by TD3 or PPO is considered
as the ‘optimal’ quality and shared by all the comparing methods. To calculate the QSD score for
each method, we save a number of candidate policies within each quality interval during training.
The time overhead for each method is estimated by the number of training steps till the average
quality of the population reaches a near-optimal quality (0.9Rmax). Error bars plotted in the figures
or standard deviations presented in the tables are obtained using 5 independent runs. The population
size N is 8 for MuJoCo experiments and 10 for Atari experiments. Other implementation details
are presented in Appendix C. Additional results that demonstrate the versatility of QSD-PBT for
different user-specified BDs and diversity measure functions are included in Appendix B.3 and B.1.2.

4.1 MUJOCO TASKS

Three tasks from the MuJoCo environment are selected: Humanoid, Hopper, and Walker2d. We
define two types of BDs: (1) Scoring speed is the final score divided by the number of time steps
used, indicating how fast the agent scores. (2) Built-in joint torques are the average torques applied
to the hinge joints over a trajectory, which have a dimension of 17, 3, and 6 respectively.

Table 1: The QSD scores on MuJoCo tasks. #step denotes the time overhead of each method.

MuJoCo Tasks QD-PG EDO-CS PBT DvD-TD3 QSD-PBT (Ours)

Humanoid
Rmax: 5.5k

score > 0% 1.78 ± 0.12 1.56 ± 0.13 1.20 ± 0.20 3.02 ± 0.10 3.45 ± 0.07
score > 60% 0.40 ± 0.02 0.62 ± 0.03 0.30 ± 0.15 1.13 ± 0.02 1.39 ± 0.03
#step (k) 760 ± 160 782 ± 176 120 ± 1 107 ± 7 90 ± 15

Hopper
Rmax: 3k

score > 0% 0.59 ± 0.01 0.72 ± 0.09 0.63 ± 0.03 0.80 ± 0.02 1.26 ± 0.08
score > 60% 0.08 ± 0.01 0.18 ± 0.02 0.17 ± 0.01 0.24 ± 0.01 0.26 ± 0.01
#step (k) 222 ± 31 200 ± 27 111 ± 7 208 ± 27 150 ± 19

Walker2d
Rmax: 5k

score > 0% 0.91±0.04 0.86 ± 0.10 0.78 ± 0.03 1.68 ± 0.16 2.28 ± 0.05
score > 60% 0.07±0.01 0.13 ± 0.06 0.19 ± 0.01 0.47 ± 0.04 0.79 ± 0.02
#step (k) 350 ± 51 471 ± 102 155 ± 2 191 ± 2 186 ± 14

Table 1 shows each method’s QSD score, where we also report the QSD score calculated using
only intervals with high quality (above 60% of Rmax). PBT gets the lowest 3 out of 6 QSD scores,
indicating that methods considering only quality result in considerable degradation of diversity.
QD-PG gets trapped in terms of quality, which results in a low QSD score. EDO-CS performs
slightly better than QD-PG, which is consistent with the experimental results in Wang et al. (2021).
QD-PG and EDO-CS are much more time-consuming than other RL-style methods. The performance
of DvD-TD3 (Parker-Holder et al., 2020) comes as the second best, and QSD-PBT consistently
achieves the highest QSD scores. Similar conclusions can be arrived at in Figure 1, where we plot the
quality-diversity curves throughout training. One important reason for the superiority of QSD-PBT is
the unbiased diversity gradient with respect to the user-specified diversity and the estimation using
samples in the state-action space, while other methods are either biased (QD-PG using ‘state’ BDs
and DvD-TD3 using task-agnostic BDs) or estimated using samples in the policy parameter space
(EDO-CS). Another reason is that the diversity is better exploited within each quality interval due to
the adaptive diversity loss, which is further studied in Appendix B.1. Additional illustration of the
diversity at different quality levels is in Figure 8.
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Figure 1: The quality similar diversity across 10 quality intervals on MuJoCo tasks.

4.2 ATARI GAMES

We select five Atari games. MsPacMan and RiverRaid are PvE (i.e., single-agent) games where
players obtain scores by achieving pre-designed goals. FishingDerby, IceHockey, and Boxing are PvP
(i.e., multiagent) games where the final score is the score difference between the player and a built-in
AI competitor. Five general-proposed BDs are constructed from the perspective of human players:
(1) Game time is the number of time steps in an episode. (2) Fire rate is the frequency of fire
action in an episode. (3) Action continuity measures the continuity of an agent’s actions by counting
the number of action changes, which is actually an AI version of APM (actions per minute, widely
applied to human players). For example, this BD for the action sequence {noop-noop-left-left-noop}
is 2. (4) Two orientation BDs (left_right and up_down) measure the preference of moving directions.

Table 2: The QSD scores on Atari games. #step denotes the time overhead of each method.
Atari Games PPO PBT DvD-PPO QSD-PBT (Ours)

PvE

MsPacMan
Rmax: 15k

score > 0% 1.28 ± 0.13 1.14 ± 0.09 1.40 ± 0.05 2.47 ± 0.06
score > 60% 0.53 ± 0.06 0.42 ± 0.07 0.56 ± 0.04 1.02 ± 0.04
#step (k) 456 ± 86 269 ± 52 415 ± 52 902 ± 108

RiverRaid
Rmax: 15k

score > 0% 0.92 ± 0.12 0.84 ± 0.08 1.32 ± 0.12 2.66 ± 0.13
score > 60% 0.43 ± 0.08 0.38 ± 0.05 0.60 ± 0.05 1.32 ± 0.04
#step (k) 204 ± 31 154 ± 36 352 ± 144 734 ± 183

PvP

FishingDerby
Rmax: 48

score > 0% 1.60 ± 0.17 1.55 ± 0.13 2.32 ± 0.08 3.64 ± 0.12
score > 60% 0.78 ± 0.09 0.76 ± 0.06 1.01 ± 0.06 1.68 ± 0.05
#step (k) 262 ± 138 109 ± 25 168 ± 87 242 ± 25

IceHockey
Rmax: 40

score > 0% 1.68 ± 0.16 1.04 ± 0.14 2.74 ± 0.30 4.81 ± 0.27
score > 60% 0.81 ± 0.05 0.43 ± 0.07 1.13 ± 0.12 1.92 ± 0.08
#step (k) 551 ± 100 520 ± 152 443 ± 42 404 ± 61

Boxing
Rmax: 100

score > 0% 0.56 ± 0.08 0.69 ± 0.07 0.92 ± 0.28 1.28 ± 0.17
score > 60% 0.24 ± 0.07 0.30 ± 0.05 0.40 ± 0.13 0.59 ± 0.09
#step (k) 24 ± 4 23 ± 1 29 ± 7 27 ± 3

In Atari games we find that the quality of QD-PG and EDO-CS algorithms reach much lower levels
than other PPO-based methods, therefore we have not included them for comparison and introduced a
PPO baseline. The results are summarized in Table 2 and Figure 2, most of which are consistent with
that in the MuJoCo experiment. The exploitation strategy in PBT accelerates the training of quality
at a considerable cost of diversity. DvD-PPO performs relatively well, even though it optimizes
the task-agnostic diversity defined on action probabilities. Yet, the BDs for Atari games are more
macroscopical than those for MuJoCo tasks, so the improvement of DvD-PPO over PBT is smaller in
Atari games than that in MuJoCo tasks. Due to our diversity gradient and the adaptive diversity loss,
QSD-PBT algorithm consistently achieves the highest QSD scores, though with more time overhead
in MsPacMan and RiverRaid due to a relatively large diversity loss coefficient at the beginning.

We further demonstrate the ability of QSD-PBT in generating user-specified diversity, using the two
orientation diversity BDs in MsPacMan, as shown in Figure 3 and in the video. In this game, there
are shortcuts connecting the left and right ends of the maze, which allows an agent to return to the
middle of the maze via consistent (e.g., always left) moving directions. The orientation preference
is a macroscopic BD that is significantly different from any task-agnostic diversity investigated in
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Figure 2: The quality similar diversity across 10 quality intervals on Atari games.

previous literature. As shown in Figure 3, QSD-PBT achieves diverse (in a user-specified way) and
visually distinct policies with good quality while other comparing methods perform unsatisfactorily
(including DvD-PPO which optimizes a task-agnostic diversity).
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Figure 3: Visualization of orientation diversity in MsPacMan.

5 RELATED WORK

Diversity as a means to improve quality. A diversity-driven approach for exploration (Hong et al.,
2018) was proposed by adding a distance regularization between the current policy and a previous
policy. Unsupervised learning of diverse policies was studied in Eysenbach et al. (2018) to serve as
an effective pretraining mechanism for downstream RL tasks. Novelty search was hybridized with
the OpenAI ES to improve exploration in sparse or deceptive deep RL tasks (Conti et al., 2018).
A population determinant diversity measure (Parker-Holder et al., 2020) was proposed to improve
exploration. Diverse opponent policies have a large influence on the online performance of opponent
modelling Fu et al. (2022).

Diverse behaviors were learned in order to effectively generalize to varying environments that are
different from training (Kumar et al., 2020). A diversity-regularized collaborative exploration strategy
was proposed in Peng et al. (2020). Reward randomization (Tang et al., 2020) was employed to
discover diverse policies in multi-agent games with the aim of improving the final policy quality.
Trajectory diversity was maximized for better zero-shot coordination in a collaborative multi-agent
environment (Lupu et al., 2021). Diversity was studied in multi-agent open-ended learning (Liu et al.,
2021; Perez-Nieves et al., 2021) to improve the final exploitability (another definition of quality).

Maximizing diversity subject to high quality constraints or vice-versa. A maximum mean
discrepancy regularizer was proposed to produce a set of near-optimal policies having different
distributions of trajectories (Masood & Doshi-Velez, 2019). A two-objective update technique (Zhang
et al., 2019) was developed for sequentially obtaining a set of novel policies, each of which solves a
given task in the meantime executing distinct action sequences. A method based on the Frank-Wolfe
algorithm (Frank & Wolfe, 1956) was introduced to compute a set of diverse and near-optimal policies
(Ghasemi et al., 2021). A set of diverse policies in the space of successor features (Barreto et al.,
2017) were sequentially obtained by solving a line of constrained MDPs (Zahavy et al., 2021), where
an intrinsic diversity reward was maximized subject to a quality constraint. A reward-switching
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technique was recently proposed (Zhou et al., 2022) to discover a diverse set of high-quality policies
by sequentially solving a novelty-constrained optimization problem for the current policy.

Maximizing both quality and diversity via QD-style methods. QD algorithms (Pugh et al., 2016;
Cully & Demiris, 2017) are a type of evolutionary algorithms, where the goal is to evolve a set of
diverse and high-quality solutions in a single run. A representative QD algorithm is MAP-Elites
(Cully et al., 2015; Mouret & Clune, 2015). In order to scale to large policy neural networks, several
recent attempts have been made to combine QD with policy gradient (Cideron et al., 2020; Nilsson &
Cully, 2021; Pierrot et al., 2022) or ES (Colas et al., 2020; Wang et al., 2021). Evolutionary multi-
objective deep reinforcement learning was employed (Shen et al., 2020) to generate behavior-diverse
game AIs. A kernel-based method with Stein variational gradient descent was proposed (Gangwani
et al., 2020) for training a set of QD policies. Assuming that both the quality and the BD are fully
differentiable (which is generally not true in the RL settings), a new MAP-Elites algorithm was
developed in Fontaine & Nikolaidis (2021). A subsequent work (Tjanaka et al., 2022) extended
differentiable QD (Fontaine & Nikolaidis, 2021) to RL settings, where the quality and BD gradients
were estimated using TD3 and ES respectively.

6 DISCUSSION AND CONCLUSION

In this work, motivated by the practical need in generating task-specific diverse policies of similar
qualities, we formulate the QSD problem and a new performance metric called the QSD score. For
the first time, we derive the gradient of the user-defined diversity measure with respect to a policy and
approximate the gradient using samples in the state action space (as opposed to the policy parameter
space). Based on our diversity gradient, an efficient population-based RL algorithm (i.e., QSD-PBT)
is then developed and has demonstrated strong performance, in terms of maximizing user-specified
diversity across different quality levels, on both MuJoCo and Atari.

BD definition. We are aware in some real-world situations it might be non-trivial to express the user-
intended diversity via a set of BDs but relatively easy via a similarity function Sim(τi, τj) between
two trajectories. Sim(τi, τj) is more general than BDs, since we can derive Sim(τi, τj) using BDs but
the opposite is not true. We look forward to extending QSD-PBT to such and more general situations.

BD estimator. In order to estimate our diversity gradient, we need to train the state BD (Equation
4) or state-action BD estimators (Equation 5). Note that both BD estimators depend on previous
state-action sequence τ0:t−1, which might cause problems in very long trajectories. It is currently
handled by applying LSTM models (in MuJoCo) or sufficient statistics (in Atari). More advanced
techniques, such as attention (Vaswani et al., 2017), may be needed for more accurate estimation.

Population-based training. We use a separate neural network for each agent in the population,
which increases the overall training time and memory overhead linearly with the population size
N . A more efficient approach may be sharing most of the feature extraction part, e.g., the 3-layer
convolution model in DQN, for all agents and building separate policy and value heads for each agent
in the population. This implementation is connected with the ensemble and multi-task learning (An
et al., 2021; Flet-Berliac & Preux, 2019). From experience in previous research, parameter sharing
accelerates training convergence yet in our case degrades the diversity of PPO and PBT, since they
are optimized without explicit diversity objectives. For fair comparisons, parameter sharing is not
implemented in this paper but is recommended in practice.

Quality and diversity optimization. In this paper, we break the QSD problem into a set of sub-
problems (each corresponding to maximizing diversity at a certain quality level) and solve them
integrally in a single run, and the resulting algorithm is termed QSD-PBT. In spite of achieving
better empirical performance than other baselines, whether QSD-PBT is the most efficient method
in optimizing the QSD score defined in Equation 1 is unclear. One possible solution is combining
the strength of our diversity gradient (Equation 6 and 8) with existing QD-style methods. Another
is regarding the QSD problem as a Pareto front optimization problem and applying continuous
exploration (Ma et al., 2020).
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A THEORY ANALYSIS

A.1 PROOF OF PROPOSITION 1

Proof. We prove the correctness of Equation 7 and that Estimation 8 is an unbiased estimation of the
gradient in Equation 7 with a constant scale. We denote a segmentation of a trajectory starting from
time step i to j as τi:j := [si, ai, ..., sj , aj ], with specially τ−1 := ∅ and τ0 := [s0, a0]. Recall the
definitions of state BD estimator and state-action BD estimator:

V πθ

Bi
(τ0:t−1, st) : = Eat,τt+1:T∼πθ

[bi(τ)], (10)

Qπθ

Bi
(τ0:t−1, st, at) : = Eτt+1:T∼πθ

[bi(τ)]. (11)

We consider a determinate policy for continuous actions, and the output of the policy πθ(st) is a
scalar, i.e., at = πθ(st). As a result, the following two equations hold between the state BD estimator
and the state-action BD estimator:

Qπθ

Bi
(τ0:t−1, st, at) =

∫
st+1

p(st+1|st, πθ(st))V
πθ

Bi
(τ0:t, st+1)dst+1, (12)

V πθ

Bi
(τ0:t−1, st) = Qπθ

Bi
(τ0:t−1, st, πθ(st)), (13)

where p(st+1|st, πθ(st)) is the transition probability from st to st+1 after taking the action πθ(st).
We use pπ(si → sj) to represent the probability p(si)

∏j−1
k=i p(sk+1|sk, πθ(sk)). We omit the index

π for clarity in the following. Note that the BD of a policy can be written as:

Bi(πθ) =

∫
s0

p(s0)Q
πθ

Bi
(τ−1, s0, πθ(s0))ds0, (14)

and the gradient is:

∂Bi(πθ)

∂θ
=

∫
s0

p(s0)∇θQ
πθ

Bi
(τ−1, s0, πθ(s0))ds0. (15)

Further, we have:

∇θQ
πθ

Bi
(τ−1, s0, πθ(s0)) = ∇θ

∫
s1

p(s1|s0, πθ(s0))V
πθ

Bi
(τ0, s1)ds1

=

∫
s1

∇θπθ(s0)∇a0p(s1|s0, a0)|a0=πθ(s0)V
πθ

Bi
(τ0, s1)ds1 +

∫
s1

p(s1|s0, πθ(s0))∇θV
πθ

Bi
(τ0, s1)ds1

=∇θπθ(s0)

∫
s1

∇a0
p(s1|s0, a0)|a0=πθ(s0)V

πθ

Bi
(τ0, s1)ds1 +

∫
s1

p(s1|s0, πθ(s0))∇θV
πθ

Bi
(τ0, s1)ds1

=∇θπθ(s0)∇a0
Qπθ

Bi
(τ−1, s0, a0)|a0=πθ(s0) +

∫
s1

p(s1|s0, πθ(s0))∇θQ
πθ

Bi
(τ0, s1, πθ(s1))ds1.

(16)

Equation 16 shows the relation between the gradient of the current state-action BD estimator and that
of the next state-action BD estimator. Generalizing this result, we have

∇θQ
πθ

Bi
(τ0:t−1, st, πθ(st)) =∇θπθ(st)∇atQ

πθ

Bi
(τ0:t−1, st, at)|at=πθ(st)

+

∫
st+1

p(st+1|st, πθ(st))∇θQ
πθ

Bi
(τ0:t, st+1, πθ(st+1))dst+1. (17)
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We can apply Equation 17 to Equation 15 recursively:
∂Bi(πθ)

∂θ
=

∫
s0

p(s0)∇θπθ(s0)∇a0
Qπθ

Bi
(τ−1, s0, a0)|a0=πθ(s0)ds0

+

∫
s1

∫
s0

p(s0)p(s1|s0, πθ(s0))∇θQ
πθ

Bi
(τ0, s1, πθ(s1))ds0ds1

=

∫
s0

p(s0)∇θπθ(s0)∇a0Q
πθ

Bi
(τ−1, s0, a0)|a0=πθ(s0)ds0

+

∫
s0:1

p(s0 → s1)∇θQ
πθ

Bi
(τ0, s1, πθ(s1))ds0:1

=

∫
s0

p(s0)∇θπθ(s0)∇a0Q
πθ

Bi
(τ−1, s0, a0)|a0=πθ(s0)ds0

+

∫
s0:1

p(s0 → s1)∇θπθ(s1)∇a1
Qπθ

Bi
(τ0, s1, a1)|a1=πθ(s1)ds0:1

+

∫
s0:2

p(s0 → s2)∇θQ
πθ

Bi
(τ0:1, s2, πθ(s2))ds0:2

= ...

=

T∑
t=0

∫
s0:t

p(s0 → st)∇θπθ(st)∇at
Qπθ

Bi
(τ0:t−1, st, at)|at=πθ(st)ds0:t, (18)

where
∫
s0:t

is short for
∫
s0

∫
s1
...
∫
st

and ds0:t is short for ds0ds1...dst. The first equality is according
to Equation 16, and the successive equality is according to Equation 17.

Proof. We further prove that with a constant scale, Equation 8 is an unbiased estimation of Equation 7.
Note that in practice we obtain sampled trajectories by executing policy π(θ), and the samples in
the trajectories are added into a replay buffer. As a result, a sample (st, at, τ0:t−1) is added into the
replay buffer with a probability p(s0)

∏t−1
k=0 p(sk+1|sk, πθ(sk)), i.e., p(s0 → st). In other words, the

probability that the sample (st, at, τ0:t−1) is in the current mini-batch is proportional to p(s0 → st),
which we denote by p(s0→st)

C (C is a constant). The expectation of the sampled gradient is:

E [∇θπθ(st)∇atQ
πθ

Bi
(τ0:t−1, st, at)|at=πθ(st)]

=

T∑
t=0

∫
s0:t

∇θπθ(st)∇at
Qπθ

Bi
(τ0:t−1, st, at)|at=πθ(st)

p(s0 → st)

C
ds0:t

=
1

C

∂Bi(πθ)

∂θ
, (19)

where the last equality is according to Equation 18.

A.2 PROOF OF PROPOSITION 2

Proof. Denote h(x) = f(x) + λg(x). By assumption, we have h(x) is Lipschitz smooth, i.e., there
exists L > 0, s.t.

||∇h(x)−∇h(y)|| ≤ L||x− y||,∀x, y ∈ Rn (20)
So,

|h(y)− h(x)−∇h(x)T (y − x)| = |
∫ 1

0

∇h(x+ t(y − x))T (y − x)dt−∇h(x)T (y − x)|

≤
∫ 1

0

||∇h(x+ t(y − x))T −∇h(x)T || · ||y − x||dt

≤
∫ 1

0

tL||y − x||2dt

=
L

2
||y − x||2 (21)
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i.e.,

h(y)− h(x) ≤ ∇h(x)T (y − x) +
L

2
||x− y||2. (22)

Since g(x) is bounded, we can assume g(x) > 0. Otherwise, let C = minx g(x), we rewrite ht(x) =
f(x)+λt(g(x)−C)+λtC and perform the following analysis on ht(x)new = f(x)+λt(g(x)−C)
(note that both ht(x)new and ht(x) have the same derivatives and minimums). Hence, for each fixed
x, the series {ht(x)}∞t=0 is decreasing to h(x).

Consider an optimizing algorithm which starts at x0, and, at each time step t, updates xt using the
gradient descent xt+1 = xt − η∇ht(xt). By Equation 22, we have,

ht(xt+1)− ht(xt) ≤ ∇ht(xt)
T (xt+1 − xt) +

L

2
||xt+1 − xt||2

≤ −η||∇ht(xt)||2 +
Lη2

2
||∇ht(xt)||2 (23)

Choosing η = 1
L , we have, ht(xt+1) ≤ ht(xt), and since ht+1(xt+1) ≤ ht(xt+1), we obtain

ht+1(xt+1) ≤ ht(xt). Hence limt→∞ ht(xt) exists (h(x) is bounded). It is easy to prove that
{ht(x)}∞t=0 converge to h(x) uniformly, hence, limt→∞ ht(xt) = limt→∞ h(xt). We denote M =
limt→∞ h(xt).

We claim that limt→∞ ∇h(xt) = 0, hence M = minx h(x). We prove the claim by contradiction.
Otherwise, there exists ϵ0 satisfies that for any T , ∃t0 > T, s.t.||∇h(xt0)|| > ϵ0.

Similar to Equation 23,

h(xt+1)− h(xt) ≤ ∇h(xt)
T (xt+1 − xt) +

L

2
||xt+1 − xt||2

≤ −η∇h(xt)
T∇ht(xt) +

Lη2

2
||∇ht(xt)||2

= η(∇ht(xt)
T∇ht(xt)−∇h(xt)

T∇ht(xt)) + (
Lη2

2
− η)||∇ht(xt)||2

= η(∇ht(xt)−∇h(xt))
T∇ht(xt) +−η

2
||∇ht(xt)||2. (24)

In the last equation, we choose η = 1
L . Since limt→∞ ∇ht(x) = ∇h(x), we have

limt→∞ |(∇ht(xt) − ∇h(xt))
T∇ht(xt)| ≤ limt→∞ ||∇ht(xt) − ∇h(xt)|| · ||∇ht(xt)|| = 0.

Since whatever how large the T is, we can find t0 > T s.t. ||∇h(xt0)|| > ϵ0, so we can find
|h(xt0+1)− h(xt0)| >

η
4 ϵ0, which is contradict to the convergence of {h(xt)}∞t=0 (Cauchy principle

of convergence).

Hence we prove the claim.

Finally, since h(x) is convex, the algorithm will converge to a global minimum of h(x).

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 ABLATION STUDY

B.1.1 THE ADAPTIVE DIVERSITY LOSS

We demonstrate the effects of adaptive diversity loss constrained by the population quality described
in Section 3.2. The Atari game FishingDerby is used for the ablation study, and three training settings
are compared: (1) The baseline setting is the diversity loss function with a fixed coefficient λ∞. (2)
In the decay setting, we apply exponential decay of the coefficient λ∞ with decay step t0. (3) In the
adaptive setting, we apply an adaptive coefficient λj(t, Rt,j) that considers both the relative quality
of the agent and the current training steps according to Section 3.2. The hyperparameters for this
ablation study are detailed in Table 10.

The experimental results of the ablation study are shown in Figure 4. For the training setting of a fixed
coefficient λ(0), it is worth noting that the qualities of some agents can get trapped into local optima,
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Figure 4: Comparison of three diversity training settings: the fixed diversity loss (fixed), the decayed
diversity loss (decayed), and the adaptive diversity loss with quality constraint (adaptive). Left:
typical training curves of the qualities of a population of 10 agents with the fixed setting. Middle:
training curves of the qualities of a population of 10 agents for the three settings. Right: the QSD
performance for the three settings.

as shown in Figure 4 (left), which hinders the optimization of diversity among policies of similar
qualities. Moreover, as shown in Figure 4 (middle), the qualities of agents improve slowly for both
the fixed and the decay training settings, which may have a negative effect on maximizing diversity
among policies of near-optimal qualities, e.g., quality levels above 40 in this game. By introducing
the adaptive quality constraint, we observe a much faster improvement of the population quality
in Figure 4 (middle). The overall QSD performances of the three settings are shown in Figure 4
(right). We can observe that the quality constraint optimization has slightly better QSD scores at
higher quality levels (>60%) although it improves the quality at the cost of diversity degradation at
low quality levels. We recommend applying the adaptive diversity loss balanced by the population
quality in practice.

We further investigate the effect of the hyperparameter decay rate t0 and initial λ0 in the QSD-PBT
algorithm. In the Atari game FishingDerby, we first fix the initial λ0 to 0.1 and vary the decay rate
t0 from 20k to 500k training steps, then fix the decay rate t0 to 500k and vary the initial λ0 from
0.05 to 0.4. Ablation results are shown in Figure 5, where computational/time overheads and QSD
scores are measured in the same way as in Table 1 and Table 2. From the experimental results, we can
conclude that the initial λ0 significantly affects the training convergence and demonstrates a trade-off
between the final QSD score and the training overhead in a large range (from 0.05 to 0.3). When
λ0 is too large (λ0 = 0.4), QSD-PBT can not reach the optimal quality within an acceptable time
overhead (500k steps), then the partial sum of the quality intervals is reported and thereby the QSD
score degrades. Compared with λ0, QSD-PBT algorithm is less sensitive to the decay rate t0, higher
decay rates (20 and 50) lead to similar results as lower initial λ0, while a suitable decay rate (200)
would both maintain the QSD score and reduce the time overheads.
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Figure 5: The final QSD scores and the time overheads under different settings of decay rate t0 and
initial λ0.
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B.1.2 OTHER DIVERSITY MEASURE

In this section, we provide more analysis of the measure function. Note that the measure function is
in need in our algorithm to measure the diversity among the policies, so that our algorithm can train
to improve the diversity. In the main experiment, we choose the MSE function to be the measure
function. We note that our method theoretically can be applied to any measure function as long as
the measure function is differentiable. We provide one experiment for example below. However,
the choice of the measure function absolutely will affect the performance of the algorithm, and we
discuss this later.

We claim that QSD-PBT can be applied to any diversity measure as long as the diversity measure
is differentiable with respect to the BDs. We here provide additional experimental results using
a different (from the main experiments) diversity measure, i.e., the determinant of DPP, using the
MuJoCo task Hopper.

Table 3: The QSD scores on the MuJoCo task Hopper using the determinant of DPP as the diversity
measure. #step denotes the number of training steps.

MuJoCo Task EDO-CS PBT DvD-TD3 QSD-PBT (Ours)

Hopper
Rmax: 3k

score > 0% 0.95 ± 0.43 0.80 ± 0.14 2.32 ± 0.96 9.49 ± 2.83
score > 60% 0.10 ± 0.04 0.09 ± 0.03 0.31 ± 0.09 0.45 ± 0.12
#step (k) 200 ± 27 111 ± 7 208 ± 27 170 ± 10

From the results presented in Table 3, we can conclude that QSD-PBT still outperforms other methods
when the diversity measure is the determinant of DPP. The results are consistent with that in Table 1
when the pair-wise distance is employed as the diversity measure. One reason is that QSD-PBT
optimizes the user-defined diversity objective directly, while the other methods optimize a task-
agnostic diversity measure (PBT, DvD) or quality within different cells of the BD space (EDO-CS).
Besides, QSD scores within intervals above 60% of the maximum qualities in Table 3 drop faster
compared to the results on the pair-wise distance diversity measure in Table 1. The reason is that
the determinant of DPP is much more sensitive to the changes in BDs, in comparison with the mean
pair-wise distance measure. Therefore, we recommend the mean pair-wise Euclidean distance as the
first choice for users and experiments in this paper.

The choice of measure function will have an impact on the training overheads from two aspects:

(1) The measure function itself may have high computational complexity, e.g., O(n3) in DPP, where
n is the population size. However, n is small in practice (8 in MuJoCo and 10 in Atari) and the
complexity is negligible compared to neural network models. For example, when we increase
population size n from 10 to 100, we do not observe any decrease of GPU sample speed during
training.

(2) Different measure functions will affect the convergence of QSD-PBT and hence affect the
computational sources. In Figure 6, we provide training curves of MSE and DPP measure functions in
MuJoCo tasks. From the figure, we can see the convergence rate of DPP is slightly slower than MSE.
The reason is that MSE calculates the pairwise distance of BDs among all policies in the population
and averages them by equal weights, while the DPP is more sensitive to the most similar policies and
is unstable. For example, the DPP of a population that contains two same policies in it will be zero,
regardless of how diverse the other policies are in the population.

B.2 RESULTS ON RANDOMLY DESIGNED BDS

Since the trajectory BD can be technically anything, the design principles in this paper are focused on
generality and practicality. The BDs in previous experiments include various forms, e.g., action BD
(MuJoCo joint torques), state BD (Atari game time), and trajectory BD (Atari left/right preference).
However, we find that particular choices of BD still favor certain algorithms. For example, BD defined
on actions favors the DvD algorithm since it directly optimizes the KL distance of agents’ actions.
Hence the improvement of DvD over PBT is more significant in the MuJoCo results (Figure 1) than
in the Atari results (Figure 2). Instead of defining meaningful and explicit BDs, we further investigate
the performance of QSD-PBT on implicit BDs that would less favor certain algorithms. Since we can
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Figure 6: Comparison of the training curve between MSE and DPP measure function. Lines and
shadings represent the mean and 1-std range of the qualities among the policies in the population.

only get states as raw pixel images from the Atari environment, we focus on actions and the implicit
BD is designed as the randomly weighted action rate:

bi(τ) = wT
i a, wi ∼ {(w1

i , ...w
K
i )|

K∑
j=1

wj
i = 1;wj

i > 0,∀j} (25)

where weight wi is sampled from the normal distribution and normalized by the softmax function,
K = 6, action rates a is a 6-dimension vector [fire, noop, up, down, left, right], the calculation
of action rates is in Table 8. We generate five random BDs, i.e., the weights form a 5 × 6 matrix,
and provide additional training in the Atari game FishingDerby, the results are shown in Figure 7.
Besides, QSD-PBT checkpoints trained on generally designed BDs in Section 4.2 are cross-evaluated
by random BDs, marked as “CE”. From the experiment, the results are consistent with Figure 1 and
Figure 2. QSD-PBT CE is trained with the BD fire rate and the diversity of DvD-PPO is defined by
action pairs, therefore both of them favor certain random BDs and perform slightly better than PPO
and PBT. Comparing QSD-PBT and QSD-PBT CE, we conclude that our algorithm is capable of
“what you will get is what you have defined” since it allows for the direct computation of the diversity
gradient.
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Figure 7: The quality similar diversity across 10 quality intervals on random BDs, “CE” means
cross-evaluation on these BDs.

B.3 DIVERSITY RESULTS ON EACH INDIVIDUAL BD

We claim that QSD-PBT can generate user-intended diversity as long as a diversity measure function
and a set of user-defined BDs are provided. We illustrate this ability of QSD-PBT in the main text
using orientation BDs in Figure 3. We here provide additional results using the four Atari games for
each of the five BDs defined for the Atari experiments.

Results in Table 2 and Figure 2 are further decomposed into each individual BD in Figure 9, where
we plot the QSD for a single BD one at a time, i.e., B(πθ) = [B1(πθ)]. After being normalized by

19



Published as a conference paper at ICLR 2023

scale factors in Table 8, the five BDs have similar ranges. Overall from Figure 9, we can conclude
that QSD-PBT outperforms previous methods in terms of the QSD performance for each of the five
BDs defined for the Atari experiments in most cases.

We observe that some user-defined BDs are highly correlated with the quality, e.g., the game time in
PvE-style games (MsPacMan and RiverRaid), where QSD-PBT achieves only slight improvements
compared with other methods. How to adaptively handle the correlation between a BD and the
quality remains an interesting question. Besides, for the left_right BD in the game RiverRaid, the
river course is narrow (shown in supplementary videos), and there is no shortcut (as in the game
MsPacMan) that connects the left and right areas. Therefore, left and right actions are restricted to
have similar numbers, and the resulting diversity scores are small for all the methods in this game.

B.4 ADDITIONAL VISUALIZATIONS

We illustrate the diversity at different quality levels in Figure 8 using the Humanoid-v2 task. In this
task, an agent can be rewarded by standing or walking, and walking at faster speeds often leads to
higher rewards. In Figure 8(a), agents at a lower quality level (4000-5000) learn to stand and balance
in various poses, e.g., with open or closed legs and different hand gestures. In contrast, agents at
a higher quality level (5000-6000) prefer various walking gaits, including ambling, striding, and
mincing, which is demonstrated in Figure 8(b).

(a3) standing, closed legs, speed 0.2 (a4) standing, closed legs, speed 0.4 

(b1) ambling, bending backward, speed 1.8 (b2) ambling, bending forward, speed 1.7

(b3) striding, speed 1.5 (b4) mincing, speed 1.8

(b) Diversity of policies at 5000-6000 quality level

(a) Diversity of policies at 4000-5000 quality level

(a2) standing, open legs, speed 0.2 (a1) standing, open legs, speed 0.3 

Figure 8: Visualization of diversity at different quality levels on Humanoid-v2.

Additional visualizations of diverse policies generated by QSD-PBT are provided in Atari and
MuJoCo videos. The results demonstrate that QSD-PBT is effective in both maximizing diversity
across different quality levels and generating user-intended diversity across different user-defined
BDs.

For the MuJoCo videos, we focus on demonstrating the diversity at different quality levels. For the
Humanoid task, agents at a high quality level (5000-6000) prefer various walking gaits, e.g., ambling,
striding, and mincing. Agents at a low quality level (4000-5000) only learn to stand still and balance
in various poses. For the Walker2d task, agents at a high quality level (5000-6000) learn to run or
stride, while agents at a low quality level (4000-5000) can only walk with small steps or just hop. For
the Hopper task, agents at a high quality level (3000-4000) prefer fast hopping with different poses,
while agents at a low quality level (2000-3000) only learn to stand or jump with small steps.
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Figure 9: Detailed diversity results for individual BDs in Atari games

For the Atari videos, we focus on demonstrating the diversity of the five user-defined BDs. Aside
from a video version of Figure 3 in MsPacMan, the orientation BDs (left_right and up_down) are
further visualized in FishingDerby, where PPO agents always fish in the up and left area since it is an
optimal and easy-to-explore solution. The diversity on the other three BDs (game time, fire rate, and
action continuity) are demonstrated in IceHockey and RiverRaid. In the game IceHockey, agents get
scores by various strategies, and three of them are displayed: (1) Dribble, run, and shoot (fire) in the
normal style. (2) Stand still, defend, and shoot far away. (3) Swing left and right without shooting. In
the game RiverRaid, agents can speed up or slow down by up or down actions, and therefore the total
game time differs. Our agents can generate diverse behaviors by considering multiple aspects during
driving, e.g., the speed, obstacles, and the remaining fuel.

B.5 TRADE-OFF BETWEEN QUALITY AND DIVERSITY

Generally speaking, the quality and the diversity are a trade-off, higher quality tends to result in
lower diversity. But as shown in Figure 1, Figure 2 and Figure 5, since environments and BDs are
so varied, it is hard to clarify the accurate correlation at each quality level and we need to analyze
it case-by-case. Usually it depends on (1) the correlation of the BDs and the quality, and (2) the
exploration space and complexity of the environment. Here we observe the difference between Figure
1 and Figure 2. In MuJoCo tasks, the QSD curve shows the quality and diversity trade-off, while in
Atari games, the trade-off disappears.
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We conclude with two major reasons: (1) The definition of BDs. For MuJoCo tasks, we define most
of the BDs on joint torques, which are highly correlated to the pose control of the robots and the
resulting score. While for Atari games, we define relatively coarse-grained BDs that have lower
correlations with the quality, e.g., the left or right preference in Figure 3 does not influence the score
since most games are mirror symmetric. (2) The exploration space and complexity of the environment.
Compared with MuJoCo tasks, Atari games are more complex and have more exploration space.
Take the game RiverRaid for example, at a lower quality level (<3000), the initial river course is
narrow and the agent can only go straight. When it reaches certain scores, the agent will enter into
new scenes that have a much broader course. The scene switching provides more exploration and
diversity space, resulting in the improvement of diversity along with quality.

C IMPLEMENTATION DETAILS

C.1 DESCRIPTIONS OF THE BDS

For MuJoCo tasks, the BDs are defined on the scoring speed and the built-in joint torques respectively.
The joint torques are the actions in MuJoCo tasks. The action spaces for each MuJoCo task are shown
in Table 4-6, and more details can be found here. For a trajectory, we divide its total score by the
number of frames used to obtain the BD of Scoring speed. For each joint in a trajectory, we sum the
actions, i.e., the torques, applied to it and divide the sum by the number of frames to obtain a joint
BD. As a result, the number of BDs for each MuJoCo task is the number of joints in that task plus
one, i.e., the Scoring speed. We normalize each BD to the range of [0, 1.0]. An overview of all the
BDs for each task in the MuJoCo experiment is presented in Table 7.

Table 4: Action space for Hopper.

Num Description (Torque applied to different joints) Range
1 the thigh rotor

[−1, 1]2 the leg rotor
3 the foot rotor

Table 5: Action space for Humanoid.

Num Description (Torque applied to different joints) Range
1 the hinge in the y-coordinate of the abdomen

[−0.4, 0.4]2 the hinge in the z-coordinate of the abdomen
3 the hinge in the x-coordinate of the abdomen
4 the rotor between torso/abdomen and the right hip (x-coordinate)

[−0.4, 0.4]

5 the rotor between torso/abdomen and the right hip (z-coordinate)
6 the rotor between torso/abdomen and the right hip (y-coordinate)
7 the rotor between the right hip/thigh and the right shin
8 the rotor between torso/abdomen and the left hip (x-coordinate)
9 the rotor between torso/abdomen and the left hip (z-coordinate)

10 the rotor between torso/abdomen and the left hip (y-coordinate)
11 the rotor between the left hip/thigh and the left shin
12 the rotor between the torso and right upper arm (coordinate -1)
13 the rotor between the torso and right upper arm (coordinate -2)
14 the rotor between the right upper arm and right lower arm
15 the rotor between the torso and left upper arm (coordinate -1)
16 the rotor between the torso and left upper arm (coordinate -2)
17 the rotor between the left upper arm and left lower arm

For Atari games, we define a common set of BDs for each game. There are 5 different BDs in total.
The design of these BDs are motivated by covering different ways in which diverse and meaningful
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Table 6: Action space for Walker2d.

Num Description (Torque applied to different joints) Range
1 the right thigh rotor

[−1, 1]

2 the right leg rotor
3 the right foot rotor
4 the left thigh rotor
5 the left leg rotor
6 the left foot rotor

Table 7: An overview of all BDs for each MuJoCo task. #frame is the total number of frames in a
trajectory.

BD Definition Normalization

Scoring speed total_score
#frame

1
5x

Joint torques in Hopper (dim = 3)
∑

actions
#frame

x+1
2

Joint torques in Humanoid (dim = 17)
∑

actions
#frame

x+0.4
0.8

Joint torques in Walker2d (dim = 6)
∑

actions
#frame

x+1
2

policies could possibly differ. We normalize each BD to a similar range. An overview of all the BDs
in the Atari experiment is presented Table 8.

Table 8: An overview of all BDs for Atari games. # indicates the total number of frames, action
changes, or specific actions in a trajectory.

BD Definition Scale factor

Game time (minute) #frame
900

1
3

Fire rate (per second) 15·#fire
#frame

1
3

Action continuity log[ 15·#action_change
#frame ] 1

15

Left_right log[ #left
max(#right,1) ]

1
15

Up_down log[ #up
max(#down,1) ]

1
15

C.2 THE DIVERSITY MEASURES

We use the mean pair-wise distance as the diversity measure for the main experimental results. For a
population of policies Π with size N, Π = {πθj |1 ≤ j ≤ N}, the mean pair-wise distance is defined
as:

2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

||B(πθi)− B(πθj )||2, (26)

where B(πθ) is the vector of all the BD values of a policy defined in Section 2.

As we stated in the main text, our method QSD-PBT can be applied to any explicit diversity measure
as long as the measure is differentiable with respect to B(πθ). Later in Appendix B.1.2, we present
results using another diversity measure, i.e., the determinant of a DPP. The DPP determinant of
Π = {πθj |1 ≤ j ≤ N} is defined as:

det[K(B(πθi),B(πθj ))
N
i,j=1], (27)

where K is a given kernel function. We set K = exp[− ||B(πθi
)−B(πθj

)||1
2 ] in our case.
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C.3 THE CALCULATION OF THE QSD SCORE

In practice, the number of policies obtained throughout training with qualities lying in the same
interval can be much larger than N , which is the population size of Π used for evaluating the diversity
measure Div(Π). To make an efficient and fair comparison across different methods in terms of the
QSD score, for each quality interval we sample a population Π of size N for 100 times. The way
we sample Π is by alternating the training index of the policy till N policies are obtained, because
policies with the same training index tend to have similar BD values. The training index of a policy
denotes which agent in the population the policy comes from during population-based training. We
calculate the diversity measure for each sampled Π and use the sample mean of the 100 evaluations
as the diversity measure for the corresponding quality interval, which is then aggregated according to
Equation 1 to produce the QSD score.

C.4 HYPERPARAMETERS AND DETAILS OF THE COMPARED BASELINE METHODS

For MuJoCo tasks, we compare QSD-PBT to three population-based training algorithms: EDO-CS,
PBT, and DvD. EDO-CS uses the ES for optimizing the quality and a selection mechanism to induce
diversity among the defined BDs. PBT uses TD3 as the backbone and mostly focuses on the quality of
each policy in the population. The Perturb exploration and Truncation selection exploitation strategies
are adopted every 10k training steps for our setting of PBT. The DvD-TD3 in the original paper is
implemented. DvD-TD3 optimizes a combined loss of quality and a task-agnostic diversity measure
defined on state action probabilities. All the hyperparameters for each method are listed in Table 9
except for EDO-CS and QD-PG, for which we implement with the architecture and hyperparameters
suggested in their papers. For QSD-PBT, we use the LSTM as a feature exactor in BD estimators. We
pass the trajectory state and trajectory action to an LSTM, respectively, then concatenate the feature
and pass it to the MLP. The ‘state’ BD we used for reproducing QD-PG is the action (a real-valued
vector, which has a dimension of 17, 3, and 6 respectively in the three MuJoCo tasks) in a state. We
believe this is a fair setting for QD-PG, because the trajectory BD we defined here is the average
torques (i.e., actions) applied to the hinge joints over a trajectory.

For Atari games, we replace the baseline method EDO-CS with PPO for training efficiency consider-
ation, where a population of N independent PPO agents are trained. As Atari games have discrete
actions and high-dimensional image inputs, all the methods employ the DQN (Mnih et al., 2015)
architecture as the backbone model. We find it effective to provide statistics from the beginning of
a game to the current state (the number of frames, the number of fire, left, right, up, down actions
and the number of action changes) as a sufficient encoding of trajectory τ0:j . Instead of the LSTM
applied in MuJoCo experiments, these additional features are applied in the DQN model to better
estimate BD defined in Table 8. Accordingly, we use PPO in the implementation of both DvD and
PBT. All the hyperparameters for each method are listed in Table 10.

C.5 PSEUDOCODE OF QSD-PBT

The developed QSD-PBT is in general a population-based RL algorithm. In QSD-PBT, we employ
parallel actors and learners to simultaneously train a population of N agents. The policy of each
agent is trained using the gradient of the loss function defined in Equation 9. Meanwhile, the policy
value functions or Q functions are trained using the mean squared error, and so are the state BD
estimators or the state-action BD estimators of each agent. Moreover, QSD-PBT maintains a running
average estimation of each agent’s quality, each agent’s BDs, and the population’s mean quality. The
pseudocode of QSD-PBT is given in Algorithm 1. Note that, without loss of clarity, we present
QSD-PBT with TD3 and QSD-PBT with PPO in one algorithm.
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Table 9: Hyperparameters for MuJoCo tasks.

Hyperparameters Value
Shared

Population size (N ) 8
Replay buffer size 106 × N
Mini-batch size 1024 × N
Optimizer Adam
Learning rate 3e-4
Discount factor (γ) 0.99
Target network update rate (τ ) 0.005
Std of gaussian exploration noise 0.1
Delayed policy update 2
Policy noise 0.1
Noise clip 0.5
Policy network MLP (state_dim-256-256-action_dim)
Critic network MLP (state_dim+action_dim-256-256-1)
BD Estimator LSTM(128) + MLP (256-256-BD_dim)

PBT
Exploitation interval every 10k steps
Truncation selection ratio 0.25

DvD-TD3
DvD loss factor 0.5
DvD embedding mini-batch size 256

QSD-PBT
Adaptive diversity loss λ(0) 0.1 (Hopper, Humanoid), 0.5 (Walker2d)
Adaptive diversity loss t0 2× 104

Algorithm 1: QSD-PBT with TD3 or PPO baseline
Initialize network parameters for a population of N agents: {θ1, θ2, ..., θN}.
Start multiple actors and learners in parallel.
Actors: while true do

Fetch the latest model from the learners, and run multiple game episodes.
Generate RL training samples in the form: x = [at, st, st+1, rt], and the encoding result of
τ0:t−1, and send them to the replay buffer.

For each agent, calculate the average BD results B̂(πθ) and the quality R using results in
multiple games, and send R, B(πθ), B̂(πθ) to a monitor.

Learners:
for t ∈ 1, 2, 3, ... do

Fetch current BD results B(πθ), B̂(πθ), and qualities R of all agents from the monitor.
Calculate the diversity measure function Div(Π).
for n ∈ 1, 2, ..., N do

Calculate the diversity gradient of Div(Π) at B̂.
Fetch a batch of samples for agent n from the replay buffer.
Calculate value loss and policy loss according to TD3 or PPO algorithm.
Calculate mean-square loss for BD estimators V πθn

B by B(πθn).
Calculate diversity loss according to Equations 6, 8.
Update critic parameters θn using gradients on value loss and BD estimator loss.
Update actor parameters θn using gradients on Ltotal(πθn) as in Equation 9.
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Table 10: Hyperparameters for Atari games.

Hyperparameters Value
Shared (PPO)

Population size (N ) 10
Number of actors 700 (CPUs)
Number of learners 8 (GPUs)
Frame skip 4
Reward shaping log(abs(r) + 1) · (2 · 1{r≥0} − 1{r<0})(Fanet al., 2021)
Replay buffer size 50000 × N
Mini-batch size 256 × N
Optimizer Adam
Learning rate 1e-4
Discount factor (γ) 0.99
GAE parameter (λ) 0.95
PPO clipping ratio 0.2
Value function coefficient c1 0.5

PBT
Exploitation interval every 20k steps
Truncation selection ratio 0.2

DvD-PPO
DvD loss factor 0.1
DvD embedding mini-batch size 512

QSD-PBT
Adaptive diversity loss λ(0) 0.1
Adaptive diversity loss t0 5× 105
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