
Function-to-Style Guidance of LLMs for Code Translation

Longhui Zhang 1 Bin Wang 1 Jiahao Wang 1 Xiaofeng Zhao 2 Min Zhang 2 Hao Yang 2

Meishan Zhang 1 Yu Li 3 Jing Li# 1 Jun Yu 1 Min Zhang 1

Abstract
Large language models (LLMs) have made sig-
nificant strides in code translation tasks. How-
ever, ensuring both the correctness and readabil-
ity of translated code remains a challenge, lim-
iting their effective adoption in real-world soft-
ware development. In this work, we propose
F2STRANS, a function-to-style guiding paradigm
designed to progressively improve the perfor-
mance of LLMs in code translation. Our ap-
proach comprises two key stages: (1) Functional
learning, which optimizes translation correct-
ness using high-quality source-target code pairs
mined from online programming platforms, and
(2) Style learning, which improves translation
readability by incorporating both positive and
negative style examples. Additionally, we in-
troduce a novel code translation benchmark that
includes up-to-date source code, extensive test
cases, and manually annotated ground-truth trans-
lations, enabling comprehensive functional and
stylistic evaluations. Experiments on both our
new benchmark and existing datasets demon-
strate that our approach significantly improves
code translation performance. Notably, our ap-
proach enables Qwen1.5B to outperform prompt-
enhanced Qwen32B and GPT-4 on average across
20 diverse code translation scenarios.

1. Introduction
Code translation involves converting code from one pro-
gramming language to another, a task usually required for
application porting or software migration (Nguyen et al.,
2013). Traditionally, this task primarily relied on rule-based
methods that required skilled programmers to handle com-

1Harbin Institute of Technology, Shenzhen, China. 2Huawei
Translation Services Center, Beijing, China. 3Zhejiang Uni-
versity, Hangzhou, China. Correspondence to: Jing Li
<jingli.phd@hotmail.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

#include <iostream>
using namespace std;
int main() {

ios::sync_with_stdio(false);
cin.tie(0);
string seq;
cin >> seq;
for (int i=0; i<seq.size()-1; i++) {

if (seq[i] == seq[i + 1]) {
cout << "Bad" << endl;
return 0;

}
}
cout << "Good" << endl;

}

s = input()
n = len(s)
for i in range(n - 1):

if s[i] == s[i + 1]:
print("Bad")

print("Good")

Correctness Evaluation:

• Lack of loop termination

Readability Evaluation:

• Inconsistent variable names (s)

• Redundant variables (n)

• Function encapsulation mismatch (main)

• Ignored I/O optimization

(a) C++ code and its functional and style information.
(b) Python code translated by Qwen-7B,

with correctness and readability evaluations.

Figure 1: Limitations in the correctness and readability of
code translation by LLMs.

plex cases manually (Zhong et al., 2010). The advent of
deep learning has led to the development of various learning-
based strategies. A prominent approach involves pretraining
on monolingual code datasets, followed by fine-tuning with
bilingual corpora to improve translation accuracy (Lachaux
et al., 2020; Wang et al., 2021). Although learning-based
techniques have significantly outperformed traditional rule-
based methods, their performance remains insufficient for
real-world deployment (Yang et al., 2024).

Large language models (LLMs), such as GPT-4 (Achiam
et al., 2023), have revolutionized various coding tasks, in-
cluding code generation (Liu et al., 2024a) and program
repair (Fan et al., 2023), with their remarkable performance.
This success has spurred growing interest among researchers
in leveraging LLMs for code translation (Yan et al., 2023b).
Simple prompt-based learning allows LLMs to translate
code effectively, and optimized prompts can further enhance
their performance. For example, Bhattarai et al. (2024a;b)
improved translation accuracy using a retrieval-augmented
generation (RAG) strategy. Yang et al. (2024); Pan et al.
(2024) utilized compiler feedback to iteratively refine trans-
lations. Powered by LLMs, current code translation models
have reached unprecedented levels of performance, surpass-
ing traditional approaches (Tao et al., 2024).

While the effectiveness of LLMs in code translation tasks
is widely acknowledged, most models face two critical lim-
itations, as illustrated in Figure 1: (i) Correctness: For
instance, StarCoder3B achieves an average success rate of
only 7% on the traditional code translation benchmark Co-

1

Function-to-Style Guidance of LLMs for Code Translation

deNet (Pan et al., 2024). (ii) Readability: Even when
translations are functionally correct, they often fail to pre-
serve the source code’s style, including code structure and
variable naming conventions (Weisz et al., 2022). This lack
of readability imposes a substantial burden on developers,
as reading poorly structured code often takes longer than
writing it from scratch (Martin, 2009). Undeniably, more
powerful LLMs can produce higher-quality code transla-
tions, but they come with notable drawbacks, such as mas-
sive model sizes (e.g., Qwen32B (Qwen et al., 2025)) or
limited accessibility (e.g., GPT-4). Relying solely on the
inherent capabilities of LLMs to overcome these issues is
only a short-term solution.

To address these challenges, we propose F2STRANS, a
two-stage guidance framework to improve both correct-
ness and readability: functional learning followed by style
learning. Functional learning involves training the model
to generate target code that preserves the functionality of
the source code. To achieve this, F2STRANS mines cross-
language code pairs from online programming platforms,
selects pairs with consistent solutions and functionality, and
utilizes these pairs for functional learning. Style learning
ensures the model accurately preserves the stylistic features
of the source code in the translated target code, thereby
improving readability. In this stage, F2STRANS generates
target code samples exhibiting both good and poor stylis-
tic quality, enabling the model to recognize and prioritize
maintaining stylistic consistency through the style learning.

We conduct extensive experiments to validate our approach.
To overcome the limitations of existing benchmarks, such
as outdated source code, insufficient test cases, and missing
ground-truth translations, we construct a new benchmark.
Utilizing this new benchmark, along with the traditional
benchmarks, we evaluate F2STRANS across 20 code trans-
lation scenarios encompassing five programming languages:
C, C++, Go, Java, and Python. The results demonstrate
that our approach is effective across LLMs of varying types
and scales, including StarCoder3B and Qwen0.5−7B . No-
tably, with our approach, Qwen1.5B surpasses GPT-4 in
code translation tasks.

We summarize the key contributions of our work as follows:

• We propose F2STRANS, a function-to-style guid-
ance framework designed to enhance both the correct-
ness and readability of code translations generated by
LLMs.

• We create a comprehensive benchmark to rigorously
evaluate the functional accuracy and stylistic consis-
tency of code translations.

• Our approach significantly improves the quality of
translated code across various types and sizes of LLMs
in 20 investigated translation scenarios.

2. Methodology
As illustrated in Figure 2, F2STRANS employs a two-stage
progressive learning paradigm. First, to ensure functionally
consistent code translation, we perform a functional learning
using function-consistent code pairs. Second, to improve
the style alignment between source and target code, we
propose a novel style-learning mechanism based on positive
and negative style translation examples.

2.1. Function-oriented Guidance

A fundamental requirement of code translation is func-
tional consistency—ensuring that source and target code
produce identical outputs for the same inputs. A simple strat-
egy (Khan et al., 2024) is to fine-tune LLMs using source
and target language code that solves the same programming
problem on online programming platforms. Platforms such
as Codeforces host numerous programming problems, along
with test cases and code solutions submitted by developers
worldwide, making this strategy feasible.

However, this strategy can create ambiguity in the model’s
understanding of the optimal translation, since program-
ming problems typically have multiple solutions. More
critically, solution inconsistencies may lead to divergent
output behaviors between technically correct code solutions.
For example, while both Dijkstra’s and Floyd-Warshall’s
algorithms solve the shortest path problem, they may pro-
duce different but equally valid results for the same graph.
Obviously, training on code pairs with inconsistent outputs
is sub-optimal. These limitations motivate us to enhance the
quality of the data generated by this strategy.

Function-consistent Data Construction. To develop our
dataset, we first select highly relevant source-target code
pairs from a large number of solutions to the same program-
ming problem, and then retain those exhibiting identical
input-output behavior.

▶ Relevance-driven Code Pair Selection. To balance ef-
fectiveness and efficiency, we employ a two-step method
to identify highly relevant code pairs. First, we use a
lightweight code embedding model Jina (Günther et al.,
2024) to retrieve the top ten similar code pairs based on
cosine similarity of embeddings. Next, we apply a rating
scale–based method where an LLM judge assesses the so-
lution consistency of code pairs using fine-grained labels.
The scoring process is defined as:

score (src, tgt) =
∑
k

p (k | Ps(src, tgt)) · k

p (k | Ps(src, tgt)) =
exp (sk)∑
k′ exp (sk′)

,

(1)

where we use Qwen7B as the LLM judge. Here, src and
tgt represent source and target code, respectively, while

2

https://huggingface.co/jinaai/jina-embeddings-v2-base-code
https://huggingface.co/Qwen/Qwen2.5-Coder-7B

Function-to-Style Guidance of LLMs for Code Translation

Stage 1. Function-oriented Guidance

Relevance-driven Code Pair Selection

Stage 2. Style-oriented Guidance

Differential

Test

Style-aware

LLM

Code Snippets LLM Judge

Mfun

Code Pairs Recall

tgt
src

Differential

Test

Mbase

(a) Function-consistent Data Construction (b) Functional Learning

(c) Style-oriented Data Construction (d) Style Learning

tgt

src

tgt+

Top-k

Style Consensus Selection

Style-poor Translation Selection

tgt-

tgt+

tgt-

src

Translate the X code

into Y:
Lfun

tgt

src

Translate the X code

into Y:

src

Source Code

Snippets

Mstyle

Lsty

Input

Top-1

Input

tgt-

tgt+

StyleSim

Mfun

Mfun

Figure 2: Overview of our F2STRANS. Firstly, the base LLM Mbase is transformed into an intermediate model Mfun after
function-oriented guidance. Subsequently, Mfun is refined into the final model Msty through style-oriented guidance.

Ps(src, tgt) is the prompt for the LLM judge, shown in
Appendix F.1. The variable k is an integer ranges from 1
to K, with higher values signifying greater relevance, and
sk is the log-likelihood score of label k generated by the
LLM judge when prompted with Ps(src, tgt). We use fine-
grained labels {1, . . . ,K} instead of binary labels, because
code pairs for the same programming problem often exhibit
varying degrees of solution similarity. Besides, to ensure
each code pair receives a distinct score, we aggregate the
log-likelihood scores s∗ of all labels to obtain continuous
relevance scores.

▶ Differential Testing. To ensure functional consistency, we
perform differential testing (McKeeman, 1998) on the most
relevant code pairs. This process involves executing identi-
cal input on both the source and target code and comparing
their outputs for discrepancies. Only code pairs whose input
and output behavior are exactly the same are retained.

Functional Learning. Instruction Fine-tuning (IFT) in-
volves training LLMs on instruction-output pairs with a next-
token prediction objective to enhance the models’ ability to
follow instructions (Zhang et al., 2024). We preliminary im-
prove the code translation performance of base LLM Mbase
by applying IFT on the constructed function-consistent code
translation data as follow:

Lfun(scr, tgt) = −
∑
i

log p
(
tgti | P (src) , tgt<i

)
, (2)

where tgti denotes the i-th token of target code tgt, tgt<i

represents the token sequence preceding the i-th token in
tgt, and P(src) is a code translation prompt designed to

translate the source code src. The trained model is Mfun.

2.2. Style-oriented Guidance

Although our functional guidance ensures data quality at the
solution and function levels, style inconsistencies inevitably
persist in code pairs derived from online programming plat-
forms. These inconsistencies usually include variations in
variable naming, function signatures, code structure, and
comments between source and target code. Training on such
style-inconsistent data can limit the model’s learning of the
code style, thereby diminishing the readability of the trans-
lated code. Therefore, we introduce style-oriented guidance
to alleviate this issue.

Style-oriented Data Construction. We construct positive
and negative code translation data to help Mfun discern the
desired code style through comparison. Positive translations
maintain stylistic consistency with the source code, while
negative translations do not.

▶ Positive Translation Construction. We use a strong LLM
Qwen32B to generate multiple style-aware translations and
then select the optimal translation from these candidates.
Specifically, we first design a style-aware prompt, as de-
tailed in Appendix F.1, which explicitly instructs the LLM
to adhere to the stylistic conventions of the source code.
Using this prompt, Qwen32B generates m translations of
the source code. Next, we perform differential testing to
filter these translations, retaining only the subset T+ that
successfully passes all test cases, thereby ensuring func-
tional correctness. Finally, we select the target code tgt+

3

https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct

Function-to-Style Guidance of LLMs for Code Translation

that best preserves the source’s style from T+.

A major challenge in this process is how to choose the best
translation tgt+ from T+. While our style-aware prompt
contributes to good code style, the occasional style error is
still inevitable. Existing style evaluation methods, such as
CSSim (Li et al., 2024), are limited to code pairs within the
same language. To avoid the use of abnormal code trans-
lation, we propose a style consensus selection mechanism,
which identifies the optimal translation by selecting the one
with the highest stylistic similarity to the other candidate
translations. The selection mechanism can be mathemati-
cally represented as follow:

tgt+ = argmax
tgti∈T+

∑
tgtj∈T+,i ̸=j

StyleSim
(
tgti, tgtj

)
, (3)

where StyleSim(.) is a function that measures the stylistic
similarity between two code snippets in the target language.
We use the CSSim metric (Li et al., 2024) as StyleSim,
which quantifies code stylistic similarity based on variable
naming, API invocation, and code structure. A detailed
explanation of CSSim can be found in Appendix A.

▶ Negative Translation Collection Construction. To ensure
that negative translations are representative, we use Mfun

as the negative translator. Specifically, Mfun first generate
multiple candidate negative translations. Then, we evaluate
their style consistency with the positive translations tgt+

using the CSSim metric and retain n negative translations
T− whose CSSim values are less than α.

Style Learning. Inspired by contrastive learning (Chen
et al., 2020), we propose a list-wise loss function to encour-
age Mfun generate style-consistent target code tgt+ while
suppressing inconsistent translations T−:

Llist(src, tgt
+, T−) = − log

exp(S(src, tgt+))∑
tgt∈T exp(S(src, tgt))

S(src, tgt) =
∏
j

p (tgtj | P(src), tgt<j) ,
(4)

where S(src, tgt) denotes the probability that Mfun trans-
lates the source code src into the target code tgt, and
T = T− ∪ {tgt+}. Additionally, we apply IFT on pos-
itive translations to emphasize their importance:

Lsty = β · Llist(scr, tgt
+, T−) + (1− β) · Lift(scr, tgt

+), (5)

where β is a trade-off hyperparameter ranging between 0
and 1, and Lift is the IFT loss, calculated the same way as
Lfun in Eq. 2.

3. Experiments
3.1. Benchmark Construction

Since pre-training LLMs requires handling vast datasets,
traditional benchmarks face the risk of data leakage even

#Lang #Code Date #Cases GT

CodeNet 5 200× 20 Pre-2021 1× 20 ✗
F2STRANS (Ours) 5 1000× 20 Mid-2024 50× 20 ✓

Table 1: Comparison of CodeNet and our evaluation bench-
mark. Both datasets cover 20 translation scenarios across
five languages (Lang). Our benchmark surpasses CodeNet
in terms of a larger and more up-to-date codebase (Code and
Date), extensive test cases (Cases), and manually annotated
ground-truth translations (GT).

after meticulous data cleaning, leading to inaccurate evalua-
tions (Xu et al., 2024). For example, the latest data for the
CodeNet benchmark comes from 2020 (Puri et al., 2021). To
accurately assess the code translation capabilities of LLMs,
a benchmark based on more recent data is essential.

Motivated by this insight, we introduce a new code transla-
tion benchmark with three key advantages over traditional
benchmarks: (i) Up-to-date source code: We first collect
the most recently released programming problems from
Codeforces, and then select up to two code solutions from
each problem as source code. (ii) Extensive test cases: Each
source code undergoes extensive manually-annotated test
cases that encompass edge conditions and difficult scenarios
of programming problems. (iii) Consistent functional and
stylistic translations: We manually translate each source
code into the target language to support functional and stylis-
tic evaluation of the translated code. The detailed statistics
presented in Table 1.

3.2. Experimental Settings

Implementation Details. In function-oriented guidance,
we set the maximum algorithmic consistency label K in
Eq. 1 to 5. In the style-oriented guidance, we set both the
numbers of positive translations T+ and negative transla-
tions T−, namely m and n, to 10, with the value of α in
negative translation collection construction set to 0.8 and
the trade-off hyperparameter β in Eq. 5 fixed at 0.6. We
combine training data from various translation scenarios for
mixed training, enabling a single LLM to translate among
all the investigated languages. The LLM-judge prompt Ps

in function-oriented guidance, the style-aware prompt in
style-oriented guidance, and the prompt P of F2STRANS in
Eq. 2 and 4 are shown in Appendix F.1. Appendix B shows
more detailed implementation details.

Baselines and Metric. We evaluate our approach against
two SOTA LLMs: Qwen32B and GPT-4. For each model,
we implement four established prompt learning strategies:
Direct Prompt Learning (Yang et al., 2024), Chain of
Thought (CoT) (Yan et al., 2023b), RAG (Bhattarai et al.,
2024a;b), Self-Debug Prompt Learning (Yang et al., 2024;
Pan et al., 2024). These strategies have been proposed and

4

Function-to-Style Guidance of LLMs for Code Translation

Method LLM
Translation C → {} Translation C++ → {} Translation Go → {} Translation Java → {} Translation Py → {}

Avg.
C++ Go Java Py C Go Java Py C C++ Java Py C C++ Go Py C C++ Go Java

(I) CodeNet Benchmark

Direct

Qwen32B

88.0 68.9 76.4 61.3 83.5 69.0 81.0 59.5 69.4 74.9 75.4 58.3 71.2 79.3 64.2 61.1 76.9 81.4 69.9 88.5 72.9
CoT 82.9 72.4 75.4 62.8 80.5 61.5 81.0 65.5 75.9 72.4 77.9 63.3 78.3 80.3 58.6 61.6 73.4 82.4 76.4 88.4 73.5
RAG 87.5 76.5 79.0 70.1 83.1 73.1 81.7 65.6 69.0 75.4 76.1 66.0 77.4 78.4 71.9 66.3 84.6 81.5 77.0 87.9 76.4

Self-debug 89.1 74.4 77.9 70.1 86.6 71.7 83.9 67.3 74.3 78.4 79.9 68.0 76.6 82.5 68.8 69.4 81.0 85.0 76.0 90.5 77.6
Direct

GPT-4

91.0 69.5 80.9 62.6 83.3 68.2 84.0 64.0 77.4 80.4 77.9 69.4 77.8 83.9 66.7 67.3 76.9 84.2 58.1 82.3 75.3
CoT 88.8 73.2 81.1 65.2 82.7 67.0 83.7 68.8 81.3 80.8 80.6 73.5 86.3 86.2 63.5 67.1 73.7 84.5 62.6 83.5 76.7
RAG 91.2 76.2 85.3 72.0 84.6 70.6 84.7 76.2 78.3 77.0 72.6 77.7 83.2 84.1 72.9 72.1 84.4 86.3 64.3 85.1 78.9

Self-debug 93.5 72.5 87.5 78.5 86.5 72.0 87.5 74.0 84.5 88.0 88.5 81.0 87.0 89.5 70.0 78.5 85.5 87.0 62.0 85.0 81.9
Qwen0.5B 91.0 78.9 81.9 73.9 84.5 82.0 84.5 75.5 70.9 73.9 77.4 76.4 74.2 85.4 77.3 75.8 74.4 80.9 73.4 85.4 78.9
Qwen1.5B 93.0 83.4 89.4 83.9 90.5 90.0 87.5 80.0 79.4 78.4 82.4 83.9 85.9 86.9 86.4 82.3 84.4 87.4 78.9 87.4 85.1
Qwen3B 93.6 86.4 90.5 82.9 90.0 89.0 93.5 84.0 79.4 81.4 86.4 83.9 85.9 88.9 85.9 84.8 89.9 88.4 85.4 91.0 87.1
Qwen7B 91.5 92.5 93.5 86.5 92.0 92.5 93.0 88.0 82.9 86.9 89.4 87.9 88.4 89.9 88.4 87.4 93.0 89.4 87.4 94.5 89.8

F2STRANS
(Ours)

StarCoder3B 92.0 87.9 89.9 84.4 92.0 89.5 91.5 83.5 80.4 81.9 84.9 84.9 86.4 85.4 83.8 85.4 86.9 85.9 84.9 92.5 86.7

(II) F2STRANS Benchmark (Ours)

Direct

Qwen32B

81.7 44.4 68.5 48.5 57.4 33.6 56.4 39.1 63.2 69.9 61.3 48.7 71.6 77.1 48.1 63.1 32.7 37.1 32.1 43.5 53.9
CoT 80.3 43.7 68.2 51.9 54.4 34.3 56.0 42.0 66.4 72.7 64.9 53.8 68.0 78.5 44.4 63.4 29.9 40.9 37.0 45.5 54.8
RAG 81.3 57.9 67.6 57.2 56.6 46.6 55.3 41.6 61.4 69.3 60.9 54.6 71.1 77.3 59.9 69.2 34.3 37.8 34.1 44.0 56.9

Self-debug 83.1 49.0 69.8 56.0 60.4 35.7 59.0 47.2 68.5 72.2 65.8 57.9 77.8 80.1 51.3 71.8 35.3 39.4 37.3 46.0 58.2
Direct

GPT-4

89.9 58.1 81.3 51.4 68.9 52.6 70.7 52.6 70.9 81.0 74.1 68.9 77.2 87.7 60.9 62.4 34.4 44.4 38.3 46.7 63.6
CoT 88.2 60.2 80.8 54.0 69.2 50.2 71.2 56.5 75.1 82.2 75.7 72.7 81.5 89.2 57.4 63.1 34.2 42.8 40.5 44.5 64.5
RAG 89.7 61.4 87.0 59.7 69.2 56.0 72.2 61.8 71.4 80.8 73.4 75.1 81.0 87.0 64.6 67.5 39.5 47.6 42.5 49.3 66.8

Self-debug 91.3 61.5 85.6 63.2 71.4 55.7 74.1 61.4 72.4 83.6 78.7 76.7 84.5 88.7 67.4 72.9 40.6 46.8 42.8 51.7 68.5
Qwen0.5B 91.0 71.5 76.1 64.8 66.0 59.1 60.6 53.2 64.8 74.8 67.3 69.2 70.3 84.0 73.9 72.8 25.1 35.1 27.6 34.1 62.1
Qwen1.5B 93.5 75.7 83.6 71.3 75.1 68.2 71.2 62.3 70.7 79.9 73.2 76.6 79.5 89.2 83.7 82.1 35.1 44.8 35.7 44.6 69.8
Qwen3B 95.2 81.3 86.7 76.1 78.2 71.8 75.4 68.9 75.2 82.5 77.4 80.7 81.1 91.1 86.8 84.6 38.9 48.4 43.6 50.4 73.7
Qwen7B 94.6 84.0 87.6 76.1 79.5 75.8 77.6 69.4 76.4 85.1 85.1 82.0 82.7 91.0 88.2 84.7 43.2 56.5 47.5 51.3 75.9

F2STRANS
(Ours)

StarCoder3B 94.3 78.8 86.5 76.3 77.8 71.0 75.1 66.7 76.6 82.0 77.2 80.2 82.0 90.2 87.0 83.4 37.9 45.2 42.9 46.5 72.9

Table 2: Code translation results of various models on CodeNet and our benchmark. Following standard practice, we adopt
CA as the evaluation metric. The bold values represent the best results, while the underlined values indicate the second-best.

validated in related works to enhance model performance in
code translation tasks. Detailed descriptions of each strategy
are provided in Appendix C.

Following standard practice (Lachaux et al., 2020), we adopt
Computational Accuracy (CA) as our evaluation metric,
which measures the proportion of translated code that pro-
duce identical execution results to the source code across all
inputs. We allowed each LLM only one translation attempt
per source code. However, for self-debug prompt learning,
which inherently requires multiple LLM invocations, we
allow an additional iteration for bug fixing.

3.3. Main Results

To verify the broad applicability of F2STRANS,
our experiments involve various types and sizes of
LLMs, including Qwen0.5−7B (Qwen et al., 2025) and
StarCoder3B (Lozhkov et al., 2024). The performance of
our model and baselines on CodeNet and our benchmark is
presented in Table 2, and additional benchmark results in
Appendix D.

Evaluation on CodeNet Benchmark. From Table 2(I),

we recognize the immense potential of LLMs in code trans-
lation tasks. For instance, F2STRANS enables Qwen0.5B

to surpass RAG-based Qwen32B in average performance
across the various translation scenarios examined. While
F2STRANS lags behind GPT-4 with self-debug prompt
learning in some specific cases, such as Go-to-C transla-
tion, it is important to consider the increased computational
cost associated with the additional reasoning steps required
by self-debug prompt learning for bug fixing. Therefore, the
advantages of F2STRANS remain significant.

Evaluation on F2STRANS Benchmark. As shown in
Table 2(II), all evaluated models score at least 10 points
lower on average in our benchmark compared to CodeNet,
highlighting the greater complexity of our proposed bench-
mark. An interesting observation is the significantly weaker
performance of all models on Python translation within
our benchmark. This may be attributed to Python’s inter-
preted nature, contrasting with the compiled nature of the
other languages. This disparity in language types intro-
duces potential challenges in code translation. Nonetheless,
the overall trend observed on our benchmark is consistent
with that of the CodeNet benchmark. F2STRANS enables

5

Function-to-Style Guidance of LLMs for Code Translation

4 . 5 7 . 4

7 1 . 3
7 9 . 5

7 3 . 9
8 3 . 5

7 8 . 9
8 6 . 7

2 . 1 5 . 3

4 9 . 6

6 3 . 3
5 4 . 4

6 7 . 2
6 2 . 1

7 2 . 9

0

1 0

7 0

8 0

9 0

(a) C o d e N e t B e n c h m a r k
Q w e n 0 . 5 B S t a r C o d e r 3 B Q w e n 0 . 5 B S t a r C o d e r 3 B

0
1 0
5 0
6 0
7 0
8 0

(b) F 2 S T r a n s B e n c h m a r k (O u r s)

B a s e B a s e + F u n . B a s e + S t y l e . B a s e + F u n . + S t y l e . (O u r s)

Figure 3: Model performance under different training strate-
gies: base LLMs, function guidance (Fun.), style guidance
(Style.), and our function-to-style guidance.

Qwen1.5B to surpass both Qwen32B and GPT-4 in average
performance, despite the latter utilizing self-debug prompt
learning. Furthermore, increasing the model size can further
enhance performance.

3.4. Ablation Analysis

Our ablation analysis quantifies the contribution of each part
of F2STRANS to the overall performance improvements.

Function-to-Style Guidance. Figure 3 shows the indi-
vidual contributions of function and style guidance based
on Qwen0.5B and StarCoder3B . As shown, both training
stages exhibit significant performance gains, validating their
importance to optimal final results. In particular, the in-
fluence of style guidance is highly remarkable. This is
unsurprising, as style guidance involves both positive and
negative translations, and the positive translations are de-
rived from Qwen32B rather than online data. Without these
two stages, both Qwen0.5B and StarCoder3B score below
10, underscoring the inherent limitations of naive LLMs in
code translation tasks.

Function-oriented Guidance. The first part of Table 3
examines the impact of three modules in this stage:

▶ Relevance-driven Code Pair Selection. To validate the
effectiveness of this module, we compared F2STRANS to a
variant that randomly selects code pairs, disregarding solu-
tion differences. The notable performance decline observed
with this variant confirms our hypothesis that the solution
gaps between code versions are crucial and cannot be ig-
nored. Bridging these gaps is essential for achieving optimal
model performance.

▶ LLM Judge. To assess the impact of LLM judgments,
we implemented a variant that directly uses the embedding
model Jina to select the top-ranked relevant code pair for
training. The observed performance decline in this model
variant indicates that, although Jina is specifically designed
for relevance assessment, LLM judgments can effectively
refine its retrieval results. This further corroborates the

Method Qwen0.5B StarCoder3B
CodeNet Ours CodeNet Ours

F2STRANS (Ours) 78.9 62.1 86.7 72.9
• Function-oriented Guidance

w/o RdSel 75.5 57.5 83.7 68.8
w/o LLM Judge 77.5 59.5 84.3 70.2
w/o Dif. Test 78.2 60.2 85.8 71.0

• Style-oriented Guidance
w/o StyPro 78.6 61.5 86.3 72.4
w/o SCS 77.7 58.6 84.2 69.4
w/o SpTS 78.4 60.3 86.3 71.4
w/o Llist 74.3 56.8 84.1 68.8
w/o Lift 75.9 59.0 85.4 70.8

Table 3: Ablation results of our F2STRANS, evaluating the
contribution of the following components: relevance-driven
code pair selection (RdSel), LLM judge and differential
test (Dif. Test) in function guidance, along with style-aware
prompt learning (StyPro.), style consensus selection in Eq. 3
(SCS), style-poor translation selection (SpTS) and the loss
function in style guidance.

strong task generalization capabilities of LLMs.

▶ Differential Testing. Although we have strived to maxi-
mize the solution relevance of the training data, overlooking
differential testing has undeniably adversely affected the
training process. This phenomenon indicates that assess-
ing the input–output behaviors of code pairs is the most
effective approach to verifying their functional consistency.

Style-oriented Guidance. As shown in Table 3 and Fig-
ure 4, we evaluate four key modules of style supervision:

▶ Style-aware Prompt Learning. We employ style-aware
prompts to guide LLMs in generating positive translations
that align with the source code style. To evaluate the ne-
cessity of this configuration, we remove all style-related
information from the prompt, thereby allowing the LLMs to
generate code without stylistic constraints. As shown in Ta-
ble 3 under “w/o StyPro”, both Qwen0.5B and StarCoder3B
exhibit decreased performance, indicating that well-defined
styles in the training data facilitate LLMs’ adaptation to
code translation tasks.

▶ Style-oriented Data Selection of Positive and Negative
Candidate Translations. As illustrated in Figure 2, we em-
ploy a style consensus strategy to select the optimal positive
translation from those generated by Qwen32B and utilize
negative translations that significantly differ in style from
the positive data. In the ablation studies presented under the
“w/o SCS” and “w/o SpTS” entries in Table 3, we omit these
two data selection methods and instead randomly select
one positive candidate translation and n negative candidate
translations for the style learning in Eq. 5.

The results demonstrate that random data is of inferior qual-

6

Function-to-Style Guidance of LLMs for Code Translation

1 2 4 6 8 1 0
5 8
6 0
6 2

(a) T h e S c a l e o f P o s i t i v e - s t y l e T r a n s l a t i o n s ()

(b) T h e S c a l e o f S t y l e - p o o r T r a n s l a t i o n s ()

Q w e n 0 . 5 B S t a r C o d e r 3 B

Q w e n 0 . 5 B S t a r C o d e r 3 B

1 2 4 6 8 1 0
6 8
7 0
7 2

1 2 4 6 8 1 0
5 8
6 0
6 2

1 2 4 6 8 1 0
6 8
7 0
7 2

Figure 4: Impact of the number of positive translations gen-
erated by Qwen32B and the number of negative translations
used in style learning, based on our benchmark.

ity compared to our carefully curated dataset. This yields
two key insights: (I) Even functionally correct translations
generated by powerful LLMs may contain subtle stylistic
inconsistencies. (II) Ensuring a clear stylistic distinction
between positive and negative translations facilitates more
effective style learning.

▶ The Number of Positive and Negative Candidate Transla-
tions. Figure 4 illustrates the influence of these two numbers,
m and n, based on our benchmark. We observe that increas-
ing both m and n significantly enhances model performance,
with results stabilizing around m = 8 and n = 10. This is
expected, as a larger number of positive candidates increases
the likelihood of identifying the optimal translation, while
more negative translations expose potential deficiencies of
Mfun. Furthermore, the steeper curves demonstrate that
scaling these data yields greater benefits for StarCoder3B ,
indicating that larger model sizes achieve higher perfor-
mance ceilings.

▶ Loss Function. Our loss function comprises Llist and Lift.
Ablation studies in Table 3 indicate that Llist significantly
enhances model performance, and the addition of Lift further
increases these benefits. Moreover, Llist outperforms Lift
because it not only encourages the generation of positive
translations like Lift does, but also suppresses the generation
of negative translations.

3.5. Discussion

In this subsection, we conduct detailed experimental analy-
ses to comprehensively evaluate F2STRANS.

A Comparison Between Our List-wise Loss Function
Llist and Preference Learning Loss Functions. Our style
learning can be realized using traditional preference learn-

7 3 . 9

8 2 . 2
7 8 . 2

8 5 . 5

7 4 . 3

8 4 . 1

7 8 . 9

8 6 . 7

5 5 . 7

6 6 . 7
6 1 . 1

7 1 . 4

5 6 . 8

6 8 . 8
6 2 . 1

7 2 . 9

7 0

7 5

8 0

8 5

9 0

(a) C o d e N e t B e n c h m a r k
Q w e n 0 . 5 B S t a r C o d e r 3 B Q w e n 0 . 5 B S t a r C o d e r 3 B

5 0
5 5
6 0
6 5
7 0
7 5
8 0

(b) F 2 S T r a n s B e n c h m a r k (O u r s)

 (O u r s)

Figure 5: Results of style learning based on various loss
functions.

ing strategies, such as RLHF (Lambert et al., 2022) and
PPO (Schulman et al., 2017). Here, we compare our list-
wise loss function Llist in Eq. 4 with Direct Preference Opti-
mization (DPO) (Rafailov et al., 2024), a leading preference
learning method known for its simple and effective training
process. Since DPO uses only one positive and one negative
data, in our experiment, we align the positive sample of
DPO with F2STRANS, while the negative data is randomly
selected from the negative data of F2STRANS. Additionally,
following our Eq 5, we also compare the model’s perfor-
mance with the instruction-tuning loss function Lift as an
auxiliary. The results shown in Figure 5 demonstrate that,
under both experimental setups, our list-wise loss function
Llist significantly outperforms DPO. Furthermore, including
Lift as an auxiliary also improves DPO performance.

LLM Judge of Function-oriented Guidance. In Figure 6,
we provide an in-depth analysis of LLM judge from two
perspectives: the number of fine-grained labels K and the
comparison with explicit scoring.

▶ The Number of Fine-grained Labels K. First, compared
to binary labels, the advantage of using more fine-grained
labels is evident. Performance initially improves with in-
creasing label details, peaking around K = 5, and then
declines. This suggests that while finer labels enable LLMs
to make more accurate judgments about data quality, exces-
sive refinement may cause confusion in the model.

▶ The Comparison with Explicit Scoring. Unlike the log-
likelihood score that integrates all labels as shown in Eq. 1,
here we directly use the labels generated by LLMs, with
the number of labels K set to 5. It is observed that explicit
scoring performs worse than our method, indicating that
the log-likelihood score contains more valuable information
than a simple LLM-generated response. Moreover, even
with explicit scoring, the results outperform those achieved
with binary labels. This further highlights the importance of
fine-grained labeling.

Evaluation from a Style Perspective. Using our manu-
ally annotated target code within our benchmark as refer-
ences, we assess the stylistic quality of translations gener-

7

Function-to-Style Guidance of LLMs for Code Translation

2 3 4 5 67 7 . 5
7 8 . 0
7 8 . 5
7 9 . 0
7 9 . 5

7 8 . 3

(a) C o d e N e t B e n c h m a r k
(Q w e n 0 . 5 B)

2 3 4 5 68 5 . 0
8 5 . 5
8 6 . 0
8 6 . 5
8 7 . 0

8 6 . 1

(b) C o d e N e t B e n c h m a r k
(S t a r C o d e r 3 B)

2 3 4 5 6
6 0 . 5
6 1 . 0
6 1 . 5
6 2 . 0

6 1 . 6

(c) F 2 S T r a n s B e n c h m a r k
 (Q w e n 0 . 5 B)

2 3 4 5 67 1 . 0
7 1 . 5
7 2 . 0
7 2 . 5
7 3 . 0

7 1 . 7

(d) F 2 S T r a n s B e n c h m a r k
(S t a r C o d e r 3 B)

Figure 6: The impact of the fine-grained label count K (blue curve) and the use of explicit scoring (red dashed line) on the
results in the LLM judge. In the explicit scoring setting, we set K to 5 and directly use the scores generated by Qwen7B as to
measure the relevance between source and target code. In cases of ties among the highest scores, one is selected randomly.

Disvar ↓ Disapi ↓ Disstru ↓ CSSim ↑
• Qwen32B

Direct 17.7 24.6 28.6 76.4
CoT 18.9 24.3 28.1 76.2
RAG 16.5 23.6 27.2 77.6
Self-debug 16.3 23.4 27.0 77.8
• GPT-4
Direct 16.8 23.2 26.4 77.9
CoT 17.3 22.8 25.8 78.0
RAG 15.4 21.8 24.8 79.3
Self-debug 15.2 21.8 24.5 79.5
• F2STRANS (Ours)
Qwen0.5B 13.8 20.1 23.8 80.7
Qwen1.5B 12.7 19.1 22.1 82.0
Qwen3B 11.9 18.5 20.8 82.9
Qwen7B 11.1 17.9 19.6 83.8
StarCoder3B 12.0 18.3 21.1 82.8

Table 4: Style evaluation of generated translations against
the ground truth in our benchmark. The assessment mea-
sures code differences in variable naming Disvar, API in-
vocation Disapi, and code structure Disstru, with CSSim
integrating all three aspects. Details of these metrics are
shown in Appendix A.

ated by various models, employing the CCSim metric (Li
et al., 2024). The results presented in Table 4 demon-
strate that F2STRANS significantly improves LLMs’ stylis-
tic awareness and generalizes across different scales and
types of tested LLMs. A compelling piece of evidence is
that F2STRANS-improved Qwen0.5B exhibits superior code
style compared to self-debug-based GPT-4, despite GPT-4’s
better functional performance shown in Table 2. This indi-
cates that functionally correct code can still exhibit stylistic
deficiencies. Nonetheless, our F2STRANS effectively miti-
gates this problem.

Analysis of F2STRANS in Correcting Errors of Base
LLMs. Based on our benchmark and the previously es-
tablished code error classification (Pan et al., 2024), we
evaluate the effectiveness of function guidance and function-
to-style guidance in correcting erroneous translations pro-
duced by the naive StarCoder3B . As illustrated in Figure 7,

C o m p i l a t i o n
E r r o r s

R u n t i m e
E r r o r s

F u n c t i o n a l
E r r o r s

N o n - t e r m i n a t i n g
E x e c u t i o n

S u c c e s s f u l
E x e c u t i o n

F u n c t i o n - t o - S t y l e
G u i d a n c e

F u n c t i o n
G u i d a n c e

3 1 %

6 4 %

7 6 %

5 9 %

	 � � � � � � � � �

� � � � � �
 � �

�
 � � � � � � �

 � � � � � � � �

Figure 7: Comparison of error correction in base
StarCoder3B translations using function guidance and our
function-to-style guidance. For the former, 31% of the com-
pilation errors are successfully corrected, while the latter
increases the percentage to 52%.

function guidance successfully rectifies the majority of the
base LLMs’ translation errors, while only correcting 31%
of compilation errors. However, our function-to-style guid-
ance achieves comprehensive improvements across all error
types, increasing the correction rate for compilation errors
by 21%. This may be because when LLMs diligently adhere
to the source code’s style, they can avoid superficial code
errors such as undeclared identifiers, which often lead to
compilation errors. This further underscores the importance
of our style guidance.

Multilingual Modeling Strategies. We evaluate four mul-
tilingual modeling strategies (Yan et al., 2023b) for code
translation across the five programming languages used in
our work: one2one (training separate models for each lan-
guage pair), all2one (translating code from multiple source
languages into one target language using a single model),
one2all (translating code from one source language into
multiple target languages using a single model), and all2all
(a unified model for all language pairs).

As illustrated in Figure 8, the one2all, all2one, and all2all
approaches significantly outperform one2one, with all2all
achieving the highest improvements. These results indicate

8

Function-to-Style Guidance of LLMs for Code Translation

8 0 . 2
8 0 . 4 8 1 .

0
8 1 .

4

8 0 . 2
8 0 . 7

8 1 . 4
8 1 . 67 1 . 87 3 . 57 3 . 17 4 . 67 5 .

87 6 .
87 7 . 8

7 8 . 2

7 5 . 8
7 6 . 6
7 8 . 3

7 8 . 5

8 7 . 7
8 7 . 9 8 8 .

3
8 8 .

6

8 7 . 9
8 8 . 2
8 8 . 7
8 9 . 17 9 . 98 2 . 28 1 . 68 3 . 08 3 .

2
8 4 .

68 4 . 1
8 5 . 2

8 5 . 1
8 6 . 3
8 7 . 1

8 7 . 6

C + +P y
J a v a G o

C + +P y
J a v a G o

CC

(a) Q w e n 0 . 5 B (b) S t a r C o d e r 3 B

o n e 2 o n e a l l 2 o n e o n e 2 a l l a l l 2 a l l (O u r s)

Figure 8: Comparison of various multilingual modeling
strategies based on the CodeNet benchmark.

that mixed training across multiple programming languages
enhances performance in F2STRANS. Notably, translations
from Go exhibit the lowest success rates, which can be at-
tributed to Go’s relatively recent emergence in 2009 (Dono-
van & Kernighan, 2015), resulting in limited knowledge
within LLMs. However, the all2all strategy provides the
most substantial gains when translating from Go, suggesting
that it effectively bridges the knowledge gap by enabling
LLMs to better understand the relationships between Go
and other languages.

4. Related Work
Code translation is essential in software development and
maintenance, and has been a subject of extensive research
for decades (Mossienko, 2003). Early rule-based and pro-
gram analysis-based methods, such as CxGo (c2g, 2023),
were costly and required developers to possess a deep un-
derstanding of both source and target languages. In the era
of deep learning, Chen et al. (2018) minimizes manual in-
tervention by leveraging a learnable attention mechanism
to transform the source language’s syntax tree into its coun-
terpart in the target language. To alleviate the reliance on
high-quality parallel code pairs, a series of unsupervised
training strategies have been proposed (Xue et al., 2024;
Rozière et al., 2022). For example, Lachaux et al. (2020) em-
ploys masked pre-training on large-scale monolingual code
data and back-translation strategies to learn the mapping
between source and target languages. Another approach is
to use code solutions to identical programming problems in
different languages from competitive platforms as weakly
supervised parallel data (Ahmad et al., 2021; Zhu et al.,
2022; Yan et al., 2023a; Xie et al., 2023).

Recent advancements in LLM-based code translation have
been substantial. Yan et al. (2023b) evaluated ChatGPT’s
performance on code translation tasks using standard infer-
ence techniques such as direct prompting, few-shot learning,
and CoT, demonstrating the effectiveness of LLMs. Re-
searchers have since sought to enhance LLMs’ code transla-
tion capabilities from multiple angles. Macedo et al. (2024)

explored the impact of output formatting on LLM perfor-
mance. Bhattarai et al. (2024a;b) improved translations of
low-resource programming languages using a RAG strategy.
Yang et al. (2024); Pan et al. (2024); Yin et al. (2024) intro-
duced the self-debugging strategy, where LLM-generated
target code is compiled, and any detected bugs are incorpo-
rated into subsequent prompts to guide precise fixes. Huang
et al. (2023); Szafraniec et al. (2022); Sun et al. (2024) used
a unified intermediate representation as a pivot for translat-
ing between programming languages, enabling models to
capture language-agnostic code semantics effectively. Addi-
tionally, multi-agent systems (Yuan et al., 2024) and human-
machine interactive systems (Liu et al., 2024b) leveraging
LLMs provide developers with more transparent reasoning
processes and facilitates the generation of higher-quality
translated code.

5. Conclusion
In this study, we introduced a novel feature-to-style training
paradigm to effectively adapt LLMs for code translation
tasks. Initially, we conducted functional learning using
high-quality source–target code pairs from online program-
ming platforms, generating functionally correct translations.
Subsequently, we applied style learning based on positive
and negative translation data, yielding more readable and
stylistically consistent translations. This two-stage train-
ing paradigm significantly improved the performance of
LLMs across various scales and types on our newly con-
structed benchmark as well as traditional code translation
benchmarks, even surpassing GPT-4. The substantial gains
achieved by our approach highlight its effectiveness in ad-
vancing code translation capabilities of LLMs.

Impact Statement
This work introduces a function-to-style guiding paradigm
to improve the correctness and readability of code generated
by translation models. We anticipate that our approach
will contribute to more efficient software development and
maintenance. However, it is crucial to acknowledge the
potential for misuse, such as the translation of malicious
code. Ultimately, adhering to ethical guidelines is essential
to ensure the responsible application of this technology.

Acknowledgement
This work was supported in part by National Science
Foundation of China (62336008, 62476070, 62125201,
U24B20174), Shenzhen Science and Technology Program
(JCYJ20241202123503005, GXWD20231128103232001,
ZDSYS20230626091203008, KQTD2024072910215406)
and Department of Science and Technology of Guangdong
(2024A1515011540).

9

Function-to-Style Guidance of LLMs for Code Translation

References
C to go translator. https://github.com/
gotranspile/cxgo, 2023.

Achiam, J., Adler, S., Agarwal, S., et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Ahmad, W. U., Tushar, M. G. R., Chakraborty, S., and
Chang, K.-W. Avatar: A parallel corpus for java-python
program translation. arXiv preprint arXiv:2108.11590,
2021.

Bhattarai, M., Santos, J. E., Jones, S., Biswas, A., Alexan-
drov, B., and O’Malley, D. Enhancing code translation
in language models with few-shot learning via retrieval-
augmented generation. arXiv preprint arXiv:2407.19619,
2024a.

Bhattarai, M., Vu, M., Santos, J. E., Boureima, I., and
Malley, D. O. Enhancing cross-language code transla-
tion via task-specific embedding alignment in retrieval-
augmented generation. arXiv preprint arXiv:2412.05159,
2024b.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual repre-
sentations. In Proceedings of the 37th International Con-
ference on Machine Learning (ICML), pp. 1597–1607,
2020.

Chen, X., Liu, C., and Song, D. Tree-to-tree neural networks
for program translation. arXiv preprint arXiv:1802.03691,
2018.

Donovan, A. A. and Kernighan, B. W. The Go programming
language. Addison-Wesley Professional, 2015.

Du, G., Li, J., Liu, H., Jiang, R., Yu, S., Guo, Y.,
Goh, S. K., and Tang, H.-K. Knowledge fusion
by evolving weights of language models. In Find-
ings of the Association for Computational Linguistics:
ACL 2024, 2024. doi: 10.18653/v1/2024.findings-acl.
698. URL https://aclanthology.org/2024.
findings-acl.698/.

Fan, Z., Gao, X., Mirchev, M., Roychoudhury, A., and
Tan, S. H. Automated repair of programs from large
language models. In Proceedings of the 2023 IEEE/ACM
45th International Conference on Software Engineering
(ICSE), pp. 1469–1481, 2023.

Günther, M., Ong, J., Mohr, I., Abdessalem, A., Abel, T.,
Akram, M. K., Guzman, S., Mastrapas, G., Sturua, S.,
Wang, B., Werk, M., Wang, N., and Xiao, H. Jina embed-
dings 2: 8192-token general-purpose text embeddings for
long documents. arXiv preprint arXiv:2310.19923, 2024.

Huang, Y., Qi, M., Yao, Y., Wang, M., Gu, B., Clement,
C., and Sundaresan, N. Program translation via code
distillation. arXiv preprint arXiv:2310.11476, 2023.

Khan, M. A. M., Bari, M. S., Long, D., Wang, W., Parvez,
M. R., and Joty, S. Xcodeeval: An execution-based large
scale multilingual multitask benchmark for code under-
standing, generation, translation and retrieval. In Proceed-
ings of the 62nd Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 6766–6805, 2024.

Lachaux, M.-A., Roziere, B., Chanussot, L., and Lample,
G. Unsupervised translation of programming languages.
arXiv preprint arXiv:2006.03511, 2020.

Lambert, N., Castricato, L., von Werra, L., and Havrilla, A.
Illustrating reinforcement learning from human feedback
(rlhf). Hugging Face Blog, 2022.

Lee, J., Wang, Y., Li, J., and Zhang, M. Multimodal reason-
ing with multimodal knowledge graph. In Proceedings of
the Annual Meeting of the Association for Computational
Linguistics (ACL), 2024.

Li, H., Zhou, X., and Shen, Z. Rewriting the code: A simple
method for large language model augmented code search.
arXiv preprint arXiv:2401.04514, 2024.

Liu, F., Liu, Y., Shi, L., Huang, H., Wang, R., Yang, Z.,
Zhang, L., Li, Z., and Ma, Y. Exploring and evaluating
hallucinations in llm-powered code generation. arXiv
preprint arXiv:2404.00971, 2024a.

Liu, J., Zhang, F., Zhang, X., Yu, Z., Wang, L., Zhang,
Y., and Guo, B. hmcodetrans: Human-machine interac-
tive code translation. IEEE Transactions on Software
Engineering, 2024b.

Lozhkov, A., Li, R., Allal, L. B., Cassano, F., Lamy-Poirier,
J., Tazi, N., Tang, A., Pykhtar, D., Liu, J., Wei, Y., Liu, T.,
Tian, M., Kocetkov, D., Zucker, A., Belkada, Y., Wang,
Z., Liu, Q., Abulkhanov, D., Paul, I., Li, Z., Li, W.-D.,
Risdal, M., Li, J., Zhu, J., Zhuo, T. Y., Zheltonozhskii, E.,
Dade, N. O. O., Yu, W., Krauß, L., Jain, N., Su, Y., He, X.,
Dey, M., Abati, E., Chai, Y., Muennighoff, N., Tang, X.,
Oblokulov, M., Akiki, C., Marone, M., Mou, C., Mishra,
M., Gu, A., Hui, B., Dao, T., Zebaze, A., Dehaene, O.,
Patry, N., Xu, C., McAuley, J., Hu, H., Scholak, T., Pa-
quet, S., Robinson, J., Anderson, C. J., Chapados, N.,
Patwary, M., Tajbakhsh, N., Jernite, Y., Ferrandis, C. M.,
Zhang, L., Hughes, S., Wolf, T., Guha, A., von Werra, L.,
and de Vries, H. Starcoder 2 and the stack v2: The next
generation. arXiv preprint arXiv:2402.19173, 2024.

Macedo, M., Tian, Y., Cogo, F., and Adams, B. Exploring
the impact of the output format on the evaluation of large
language models for code translation. In Proceedings of

10

https://github.com/gotranspile/cxgo
https://github.com/gotranspile/cxgo
https://aclanthology.org/2024.findings-acl.698/
https://aclanthology.org/2024.findings-acl.698/

Function-to-Style Guidance of LLMs for Code Translation

the 2024 IEEE/ACM First International Conference on AI
Foundation Models and Software Engineering (FORGE),
pp. 57–68, 2024.

Martin, R. C. Clean code: a handbook of agile software
craftsmanship. Pearson Education, 2009.

McKeeman, W. M. Differential testing for software. Digital
Technical Journal, pp. 100–107, 1998.

Mossienko, M. Automated cobol to java recycling. In
Proceedings of Seventh European Conference on Soft-
ware Maintenance and Reengineering (CSMR), pp. 40–
50, 2003.

Nguyen, A. T., Nguyen, T. T., and Nguyen, T. N. Lexical
statistical machine translation for language migration. In
Proceedings of the 2013 9th Joint Meeting on Founda-
tions of Software Engineering (FSE), pp. 651–654, 2013.

Paaßen, B. Revisiting the tree edit distance and its back-
tracing: A tutorial. arXiv preprint arXiv:1805.06869,
2018.

Pan, R., Ibrahimzada, A. R., Krishna, R., Sankar, D., Wassi,
L. P., Merler, M., Sobolev, B., Pavuluri, R., Sinha, S.,
and Jabbarvand, R. Lost in translation: A study of bugs
introduced by large language models while translating
code. In Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering (ICSE), pp. 1–13,
2024.

Puri, R., Kung, D. S., Janssen, G., Zhang, W., Domeni-
coni, G., Zolotov, V., Dolby, J., Chen, J., Choudhury, M.,
Decker, L., et al. Codenet: A large-scale ai for code
dataset for learning a diversity of coding tasks. arXiv
preprint arXiv:2105.12655, 2021.

Qwen, :, Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B.,
Yu, B., Li, C., Liu, D., Huang, F., Wei, H., Lin, H., Yang,
J., Tu, J., Zhang, J., Yang, J., Yang, J., Zhou, J., Lin, J.,
Dang, K., Lu, K., Bao, K., Yang, K., Yu, L., Li, M., Xue,
M., Zhang, P., Zhu, Q., Men, R., Lin, R., Li, T., Tang,
T., Xia, T., Ren, X., Ren, X., Fan, Y., Su, Y., Zhang, Y.,
Wan, Y., Liu, Y., Cui, Z., Zhang, Z., and Qiu, Z. Qwen2.5
technical report. arXiv preprint arXiv:2412.15115, 2025.

Rafailov, R., Sharma, A., Mitchell, E., Ermon, S., Manning,
C. D., and Finn, C. Direct preference optimization: Your
language model is secretly a reward model. arXiv preprint
arXiv:2305.18290, 2024.

Ristad, E. S. and Yianilos, P. N. Learning string-edit dis-
tance. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 1998.

Rozière, B., Zhang, J., Charton, F., Harman, M., Synnaeve,
G., and Lample, G. Leveraging automated unit tests for

unsupervised code translation. In Proceedings of the
International Conference on Learning Representations
(ICLR), 2022.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Shi, Z. and Zhou, Y. Topic-selective graph network for
topic-focused summarization. In Advances in Knowledge
Discovery and Data Mining - 27th Pacific-Asia Confer-
ence on Knowledge Discovery and Data Mining, PAKDD
2023, Osaka, Japan, May 25-28, 2023, Proceedings, Part
IV, pp. 247–259, 2023.

Sparck Jones, K. A statistical interpretation of term speci-
ficity and its application in retrieval. Journal of documen-
tation, 1972.

Sun, T., Chai, L., Yang, J., Yin, Y., Guo, H., Liu, J.,
Wang, B., Yang, L., and Li, Z. Unicoder: Scaling code
large language model via universal code. arXiv preprint
arXiv:2406.16441, 2024.

Szafraniec, M., Roziere, B., Leather, H., Charton, F., La-
batut, P., and Synnaeve, G. Code translation with com-
piler representations. arXiv preprint arXiv:2207.03578,
2022.

Tao, Q., Yu, T., Gu, X., and Shen, B. Unraveling the poten-
tial of large language models in code translation: How
far are we? arXiv preprint arXiv:2410.09812, 2024.

Wang, Y., Wang, W., Joty, S., and Hoi, S. C. Codet5:
Identifier-aware unified pre-trained encoder-decoder mod-
els for code understanding and generation. arXiv preprint
arXiv:2109.00859, 2021.

Weisz, J. D., Muller, M., Ross, S. I., Martinez, F., Houde, S.,
Agarwal, M., Talamadupula, K., and Richards, J. T. Better
together? an evaluation of ai-supported code translation.
In Proceedings of the 27th International Conference on
Intelligent User Interfaces, pp. 369–391, 2022.

Xie, Y., Naik, A., Fried, D., and Rose, C. Data augmentation
for code translation with comparable corpora and multiple
references. arXiv preprint arXiv:2311.00317, 2023.

Xu, R., Wang, Z., Fan, R.-Z., and Liu, P. Benchmark-
ing benchmark leakage in large language models. arXiv
preprint arXiv:2404.18824, 2024.

Xue, M., Andrzejak, A., and Leuther, M. An interpretable
error correction method for enhancing code-to-code trans-
lation. In Proceedings of the International Conference on
Learning Representations (ICLR), 2024.

11

Function-to-Style Guidance of LLMs for Code Translation

Yan, W., Liu, H., Wang, Y., Li, Y., Chen, Q., Wang, W., Lin,
T., Zhao, W., Zhu, L., Sundaram, H., et al. Codescope: An
execution-based multilingual multitask multidimensional
benchmark for evaluating llms on code understanding
and generation. arXiv preprint arXiv:2311.08588, 2023a.

Yan, W., Tian, Y., Li, Y., Chen, Q., and Wang, W. Code-
transocean: A comprehensive multilingual benchmark
for code translation. arXiv preprint arXiv:2310.04951,
2023b.

Yang, Z., Liu, F., Yu, Z., Keung, J. W., Li, J., Liu, S., Hong,
Y., Ma, X., Jin, Z., and Li, G. Exploring and unleash-
ing the power of large language models in automated
code translation. In Proceedings of the ACM on Software
Engineering, pp. 1585–1608, 2024.

Yin, X., Ni, C., Nguyen, T. N., Wang, S., and Yang, X.
Rectifier: Code translation with corrector via llms. arXiv
preprint arXiv:2407.07472, 2024.

Yuan, Z., Chen, W., Wang, H., Yu, K., Peng, X., and Lou, Y.
Transagent: An llm-based multi-agent system for code
translation. arXiv preprint arXiv:2409.19894, 2024.

Zhang, S., Dong, L., Li, X., Zhang, S., Sun, X., Wang, S.,
Li, J., Hu, R., Zhang, T., Wu, F., and Wang, G. Instruc-
tion tuning for large language models: A survey. arXiv
preprint arXiv:2308.10792, 2024.

Zhong, H., Thummalapenta, S., Xie, T., Zhang, L., and
Wang, Q. Mining api mapping for language migration. In
Proceedings of the 32nd ACM/IEEE International Con-
ference on Software Engineering (ICSE), pp. 195–204,
2010.

Zhu, M., Jain, A., Suresh, K., Ravindran, R., Tipirneni,
S., and Reddy, C. K. Xlcost: A benchmark dataset
for cross-lingual code intelligence. arXiv preprint
arXiv:2206.08474, 2022.

12

Function-to-Style Guidance of LLMs for Code Translation

A. Background
CCSim. CCSim, proposed by Li et al. (2024), measures stylistic similarity of code by considering the edit distances (Ristad
& Yianilos, 1998) of variable naming, API invocation, and code structure.

▶ Calculation of Variable Name Edit Distance — Disvar. First, extract all variable names, V1 and V2 from the two code
respectively. Then, compute the edit distance between these two sets of variables as follows:

DisV1 =
1

||λ||1

∑
vi∈V1

λi min
vj∈V2

ED(vi, vj)

DisV2
=

1

||λ||1

∑
vi∈V2

λi min
vj∈V1

ED(vi, vj)

Disvar =
DisV1 +DisV2

2
,

(6)

where ED is the Edit Distance (Ristad & Yianilos, 1998), and λi is the normalized inverse document frequency
(IDF) (Sparck Jones, 1972) of a variable naming vi, which is used to decrease the impact of common words.

▶ Calculation of API Invocation Edit Distance — Disapi. It is calculated similarly to Disvar, except that variable names are
replaced with API names.

▶ Calculation of Code Structure Edit Distance — Disstru. The measurement of code structure is based on the Tree Edit
Distance (TED) (Paaßen, 2018) of abstract syntax tree. Specifically, it measures the structural difference of two code
snippets by determining the fewest insertions, deletions, and replacements needed to transform one tree into the other.

Based on the edit distances of variable names, API invocation, and code structure described above, CCSim measures the
stylistic similarity between two code snippets as follows:

CSSim = 1− Disvar +Disapi +Disstru
3

, (7)

where CSSim,Disvar,Disapi,Disstru ∈ [0, 1], and higher CCSim values indicate greater similarity.

Computational Accuracy. We utilize Computational Accuracy (CA) to assess the functional correctness of code translations
produced by various models. Given all source code, their corresponding target code generated by the models, and the input
data {(src1, tgt1, INPUT1), . . . , (srcN , tgtN , INPUTN)}, CA is calculated as follows:

CA =

∑N
k=1 ca

(
srck, ˆtgtk

)
N

ca
(
srck, ˆtgtk

)
=

{
1, if exec (srck, input) = exec (tgtk, input) ,∀input ∈ INPUTk

0, otherwise

(8)

where exec(.) denotes the result of executing the code with a given input.

B. More Implementation Details.
In the function-oriented training, we construct approximately 5,000 code pairs for each translation scenario, such as
translating from C++ to Python, with a corresponding scale of 10,000 in the style-oriented training. Throughout both
training stages, we maintain consistent hyperparameters, employing 2 epochs and a learning rate of 1 × 10−5. During
inference, we set the temperature of the LLMs to 0.7. All our experiments are carried out on a machine equipped with eight
NVIDIA A800-SXM4-80GB GPUs.

C. Baseline Details
We adopt Qwen32B and GPT-4 as our baselines, implementing four previously established prompt learning strategies. The
prompts are shown in Appendix F.2.

• Direct prompt learning (Direct). This straightforward strategy (Yang et al., 2024) provides the LLM with a prompt
that includes the source language, target language, source code, and a concise task description. Owing to the powerful

13

Function-to-Style Guidance of LLMs for Code Translation

Method LLM
Translation C → {} Translation C++ → {} Translation Go → {} Translation Java → {} Translation Py → {}

Avg.
C++ Go Java Py C Go Java Py C C++ Java Py C C++ Go Py C C++ Go Java

Direct

Qwen32B

90.3 57.1 81.6 62.5 73.6 54.6 77.0 56.8 79.2 83.1 80.4 61.7 78.1 75.3 49.9 68.6 70.0 71.0 61.5 78.5 70.5
CoT 85.9 61.9 76.6 63.1 74.5 51.9 76.3 62.2 74.7 83.4 81.2 66.3 75.7 77.0 45.0 70.7 68.4 75.6 65.3 82.6 70.9
RAG 87.3 69.5 78.7 67.9 77.7 65.1 74.3 58.2 83.5 82.2 78.5 68.1 78.0 77.1 60.8 74.5 74.5 76.1 69.0 83.0 74.2

Self-debug 91.2 64.9 83.2 67.4 82.5 58.6 78.1 64.4 82.2 85.1 82.6 68.2 79.4 82.5 55.8 77.3 73.6 79.7 69.8 84.3 75.5
Direct

GPT-4

95.5 64.5 90.2 65.6 87.9 63.5 85.5 66.6 87.5 91.4 88.1 77.4 84.1 82.2 57.4 71.9 71.5 76.0 58.9 76.6 77.1
CoT 92.6 70.7 86.5 65.3 83.7 62.8 85.7 71.0 85.3 92.6 88.6 80.6 84.2 85.4 54.5 72.9 70.6 77.7 64.8 83.8 78.0
RAG 93.5 72.1 91.3 70.1 84.4 67.9 83.9 74.1 85.6 91.5 85.9 84.3 85.1 84.9 64.2 76.2 77.1 82.9 66.8 84.7 80.3

Self-debug 96.9 70.2 90.3 75.0 89.2 68.1 87.1 75.1 88.9 93.4 89.1 84.7 85.6 90.2 64.6 82.3 78.3 81.3 65.1 85.0 82.0
Qwen0.5B 96.2 76.0 87.5 77.3 87.0 73.6 80.3 72.1 80.5 84.7 84.2 81.4 78.9 81.2 68.9 80.7 64.9 70.0 60.6 71.9 77.9
Qwen1.5B 97.3 83.8 91.6 82.7 90.2 82.8 87.1 78.9 87.2 90.3 90.1 87.6 85.6 86.0 79.0 90.3 76.3 80.0 73.7 85.4 85.3
Qwen3B 97.3 86.6 93.9 83.7 91.9 85.2 89.6 81.2 88.2 92.1 91.4 89.5 86.8 89.4 81.6 90.8 79.2 84.3 77.4 88.0 87.4
Qwen7B 97.7 88.4 94.6 84.9 93.0 86.8 89.9 85.4 89.5 93.6 93.2 91.0 89.8 90.4 83.7 93.5 81.2 85.8 80.1 89.3 89.1

F2STRANS
(Ours)

StarCoder3B 97.5 86.1 92.4 84.8 91.2 84.9 88.9 82.1 88.8 91.6 90.9 88.1 86.0 89.1 80.6 90.8 78.0 83.0 76.8 85.9 86.9

Table 5: Code translation results of various models on XcodeEval benchmarks.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
7 4
7 5
7 6
7 7
7 8
7 9

(a) C o d e N e t B e n c h m a r k
(Q w e n 0 . 5 B)

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
8 4
8 5
8 6
8 7

(b) C o d e N e t B e n c h m a r k
(S t a r C o d e r 3 B)

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
5 7
5 8
5 9
6 0
6 1
6 2

(c) F 2 S T r a n s B e n c h m a r k
 (Q w e n 0 . 5 B)

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
6 9
7 0
7 1
7 2
7 3

(d) F 2 S T r a n s B e n c h m a r k
(S t a r C o d e r 3 B)

Figure 9: The impact of trade-off hyper-parameters β in the loss function Eq. 5 on the results.

instruction-following abilities of LLMs, direct prompt learning has proven highly effective across a broad range of
tasks (Du et al., 2024; Shi & Zhou, 2023).

• Chain of thought (CoT). This strategy, proposed by Yan et al. (2023b), first encourages the model to thoughtfully
consider the translation process and identify potential challenges before undertaking code translation. This strategy
usually achieves better results than direct prompt learning (Lee et al., 2024).

• Retrieval-augmented generation (RAG). Consistent with previous RAG-based code translation approaches (Bhattarai
et al., 2024a;b), we retrieve the most similar source-target pair from our style-oriented positive translation dataset using
the code embedding model Jina. This retrieved pair provides auxiliary context for the model.

• Self-debug prompt learning (Self-debug). This method (Yang et al., 2024; Pan et al., 2024) employs LLMs to
generate initial translations and test cases, verifies the translated code’s correctness using these tests, and subsequently
corrects any errors based on the test results and compiler error messages.

D. Additional Results
We further evaluate F2STRANS on xCodeEval (Khan et al., 2024), as shown in Table 5. We can find that F2STRANS
continues to demonstrate a significant advantage. Notably, F2STRANS enables Qwen0.5B to outperform both Qwen32B and
GPT-4 on average across 20 code translation tasks. Qwen1.5B even surpasses the self-debugging GPT-4.

E. Additional Discussion
The β in the Loss Function Eq. 5 of Style Learning. Figure 9 illustrates the performance of the model with different
trade-off hyperparameters β. It is evident that, during the style learning, as the weight of the instruction fine-tuning loss Llist
increases, the model’s performance improves. The best performance is achieved when β ≈ 0.6, after which the performance
gradually declines. Furthermore, when β = 1.0 (i.e., using only Llist), the model consistently outperforms the case when
β = 0.0 (i.e., using only Lift). This is because Llist takes both positive and negative data into account, whereas Lift considers
only the positive data.

14

Function-to-Style Guidance of LLMs for Code Translation

F. Prompt Settings
F.1. Prompts Used by F2STRANS

LLM-judge Prompt.

You are given a source code in {SOURCE LANG} and a translated code in {TARGET LANG}. Please evaluate the translation
by scoring it on a scale from 1 to 5, where:
1: The translated code has significant differences in logic, structure, or implementation compared to the source code, and would
likely not work as intended.
2: The translated code works, but there are noticeable differences in logic, style, or structure that deviate from the original
solution.
3: The translated code is mostly similar to the source code but has minor differences or optimizations that do not impact overall
functionality.
4: The translated code is very close to the original code, with minor, non-critical deviations in style or structure.
5: The translated code is highly consistent with the source code, both in terms of logic and structure, and works as intended.
{SOURCE LANG} Code:
{SOURCE CODE}
{TARGET LANG} Code:
{TARGET CODE}
Score:

Style-aware Prompt.

Translate the following {SOURCE LANG} code to {TARGET LANG} while preserving the source code style, including
variable names, function names, and code structure. Adhere to the following guidelines:
1. Variable and Function Names:
- Maintain the same variable and function names as in the source code.
- If necessary due to language constraints, adjust names minimally while keeping them similar to the original.
2. Code Structure:
- Preserve the overall structure and logic flow of the source code.
- Maintain the same control structures (e.g., loops, conditionals) and their nesting levels.
3. Libraries and APIs:
- Replace source language libraries and functions with equivalent {TARGET LANG} libraries and functions.
- Keep the variable and parameter names the same as in the source code where possible.
4. Comments:
- Retain any comments present in the source code.
- Translate comments to {TARGET LANG} if applicable, maintaining their position and style.
5. Code Formatting:
- Maintain a similar code formatting style to the source code, including indentation, spacing, and line breaks, as much as possible
within the conventions of {TARGET LANG}.
Print only the translated {TARGET LANG} code and end with the comment “End of Code”.
Source code:
{SOURCE CODE}

Prompts P in Eq. 2 and 4 During the Training and Inference of F2STRANS.

Translate the {SOURCE LANG} code to {TARGET LANG} code.
{SOURCE LANG} Code:
{SOURCE CODE}
{TARGET LANG} Code:

15

Function-to-Style Guidance of LLMs for Code Translation

F.2. Prompts Used by Baselines

Direct Prompt Learning.

Translate the following {SOURCE LANG} code to {TARGET LANG}. Print only the {TARGET LANG} code and end with
the comment “End of Code”.
Source code:
{SOURCE CODE}

Chain-of-thought Prompt Learning.

First, understand the functionality of the following {SOURCE LANG} code and predict the execution output. Then, translate the
{SOURCE LANG} code into {TARGET LANG} while maintaining the same functionality, ensuring that the translated code
can be successfully executed.
Source code:
{SOURCE CODE}

Retrieval Augmented Generation Prompt Learning.

Translate the following {SOURCE LANG} code to {TARGET LANG}. Print only the {TARGET LANG} code and end with
the comment “End of Code”.
Source code:
{SOURCE CODE EXAMPLE}
Target code:
{TARGET CODE EXAMPLE}
Source code:
{SOURCE CODE}
Target code:

Self-debug Prompt Learning When Effect is COMPILE ERROR or RUNTIME ERROR.

You were asked to translate the following {SOURCE LANG} code to {TARGET LANG}:
{SOURCE CODE}
Your response was the following {TARGET LANG} code:
{TRANSLATED CODE}
Executing your generated code gives the following error because it is syntactically incorrect:
{STDERR}
Can you re-generate your response and translate the above {SOURCE LANG} code to {TARGET LANG}. Print only the
{TARGET LANG} code and do not add any other natural language description in your output. Make sure your generated code is
syntactically correct.

Self-debug Prompt Learning When Effect is INCORRECT OUTPUT.

You were asked to translate the following {SOURCE LANG} code to {TARGET LANG}:
{SOURCE CODE}
Your response was the following {TARGET LANG} code:
{TRANSLATED CODE}
Executing your generated code gives the following output:
{GENERATED OUTPUT}
instead of the following expected output:
{EXPECTED OUTPUT}
Can you re-generate your response and translate the above {SOURCE LANG} code to {TARGET LANG}. Print only the
{TARGET LANG} code and do not add any other natural language description in your output. Make sure your generated code is
syntactically correct. Your generated {TARGET LANG} code should take the following input and generate the expected output:
Input:
{TEST INPUT}
Expected Output:
{EXPECTED OUTPUT}

16

