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Abstract

Geoparsing or geo-entity linking is a fundamen-001
tal technique for analyzing geo-entity informa-002
tion in text, which is useful for geographic ap-003
plications, e.g., tourist spot recommendation.004
We focus on document-level geoparsing that005
considers geographic relatedness among geo-006
entity mentions and present a Japanese travel-007
ogue dataset designed for evaluating document-008
level geoparsing systems. Our dataset com-009
prises 200 travelogue documents with rich geo-010
entity information: 12,171 mentions, 6,339011
coreference clusters, and 2,551 geo-entities012
linked to geo-database entries.013

1 Introduction014

Natural language expressions of locations or ge-015

ographic entities (geo-entities) are often written016

in text to describe real-world events and human017

mobility. Thus, technologies for extracting and018

grounding geo-entity expressions are important for019

realizing various geographic applications, e.g., rec-020

ommendation of tourist spots and tour routes to021

travelers.022

Geoparsing (Leidner, 2006; Gritta et al., 2020)023

is a fundamental technique involving two subtasks:024

geotagging, which identifies geo-entity mentions,025

and geocoding, which identifies corresponding026

database (DB) entries for (or the coordinates of)027

geo-entities. Notably, geoparsing, geotagging, and028

geocoding can be regarded as special cases of entity029

linking (EL), named entity recognition (NER) or030

mention recognition (MR), and entity disambigua-031

tion (ED), respectively.032

This study focuses on geoparsing from the per-033

spective of document-level analysis. Geo-entity034

mentions that co-occur in a document tend to be035

geographically close or related to each other; thus,036

information about some geo-entity mentions can037

be useful in specifying information about other038

mentions. For example, by considering the context039

近鉄奈良駅 FAC-NAME
⟨1⟩ に到着。そこ DEICTIC

⟨1⟩ から

奈良公園 FAC-NAME
⟨2⟩ までは歩いてすぐです。

お寺 FAC-NOM
⟨GENERIC⟩が好きなので最初に興福寺

FAC-NAME
⟨3⟩

に行きました。境内 FAC-NOM
⟨3⟩ で鹿と遭遇し、

奈良 LOC-NAME
⟨4⟩ に来たことを実感しました。

I arrived at Kintetsu Nara Station FAC_NAME
⟨1⟩ .

From there DEICTIC⟨1⟩ it’s a short walk to

Nara Park FAC_NAME
⟨2⟩ . I like templesFAC_NOM⟨GENERIC⟩

so I first went to Kofukuji Temple FAC_NAME⟨3⟩ .

I encountered a deer in the precincts FAC_NOM⟨3⟩ and

felt that I had come to Nara LOC_NAME⟨4⟩ .

⟨1⟩ https://www.openstreetmap.org/relation/11532920
⟨2⟩ https://www.openstreetmap.org/way/456314269
⟨3⟩ https://www.openstreetmap.org/way/1134439456
⟨4⟩ https://www.openstreetmap.org/relation/3227707

Figure 1: Example illustration of an annotated docu-
ment with English translation. Expressions underlined
in blue indicate geo-entity mentions, superscript strings
(e.g., FAC-NAME) indicate entity types of mentions, and
subscript numbers (e.g., ⟨1⟩) indicate coreference clus-
ter IDs of mentions. URLs indicate OpenStreetMap
entries that correspond to coreference clusters.

that describes a trip to Nara Prefecture, Japan, the 040

mention of興福寺 kofukuji ‘Kofukuji Temple’ in 041

Figure 1 ⟨3⟩ can be disambiguated to refer to the 042

temple in Nara rather than temples with the same 043

name at different locations. 044

This paper presents a dataset suitable for 045

document-level geoparsing: the Arukikata Trav- 046

elogue Dataset with geographic entity Mention, 047

Coreference, and Link annotation (ATD-MCL). 048

Our dataset includes the three types of geo-entity 049

information illustrated in Figure 1: (1) spans and 050

entity types of geo-entity mentions, (2) corefer- 051

ence relations among mentions, and (3) links from 052

coreference clusters to corresponding entries in a 053

geographic DB (geo-DB). 054

Our dataset has two desirable characteristics for 055
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document-level geoparsing. The first characteristic056

is that travelogues in our dataset have a sufficient057

amount of geography-related content, that is, a058

series of geo-entity mentions that are geographi-059

cally related to each other, e.g., coreference rela-060

tions. This is in contrast to short documents, e.g.,061

tweets (Matsuda et al., 2017; Wallgrün et al., 2018).062

The second characteristic is their geographic conti-063

nuity among co-occurring mentions; that is, men-064

tions that refer to nearby locations in the real world065

tend to appear near to one another within a doc-066

ument. Because travel records reflect the actual067

trajectories of travelers, this characteristic is more068

notable in travelogues than other text genres, e.g.,069

news articles (Lieberman et al., 2010; Kamalloo070

and Rafiei, 2018; Gritta et al., 2018a, 2020).071

As a result of manual annotation, our dataset072

comprises 12,273 sentences from the full text of073

200 travelogue documents with 12,171 geo-entity074

mentions, 6,339 coreference clusters (geo-entities),075

and 2,551 linked geo-entities. Furthermore, we076

have conducted two types of evaluation using our077

dataset. First, we have measured inter-annotator078

agreement (IAA) for three types of information; the079

results indicate the practical quality of our dataset080

in terms of consistency. Second, we have evaluated081

current entity analysis systems on our dataset for082

benchmarking baseline performance; the results083

demonstrate that reasonable performance can be084

achieved for MR and coreference resolution (CR),085

but performance has room for improvement in ED.1086

2 Dataset Annotation087

Design Strategy For building geoparsing088

datasets, it has been challenging to achieve a089

high coverage for facility entity mentions mainly090

because of the limited coverage of public geo-DBs,091

e.g., GeoNames. To address this DB coverage092

problem, we adopt OpenStreetMap (OSM),2 a093

free, editable, and large-scale geo-DB of the world.094

The usefulness of OSM has been continually095

increasing, as evidenced by the increase in node096

entries from over 1.5B in 2013 to over 80B097

in 2023.3 Furthermore, we define entity types098

to cover broad types of location and facility099

mentions, including districts, buildings, landmarks,100

roads, and public transport lines and vehicles, as101

described in §2.2.102

1We will release our annotated data and experimental
codes at ANONYMIZED_URL.

2https://www.openstreetmap.org/
3https://wiki.openstreetmap.org/wiki/Stats

Annotation Flow Following the data preparation 103

by the authors, annotation work was performed by 104

native Japanese annotators at a professional data 105

annotation company according to the three-step 106

annotation flow: (1) mention annotation, (2) coref- 107

erence annotation, and (3) link annotation. 108

2.1 Data Preparation 109

As raw text data, we adopted the ATD4 (Arukikata. 110

Co., Ltd., 2022; Ouchi et al., 2023), which was 111

constructed from user-posted travelogues written 112

in Japanese. We first sampled documents about 113

Japanese domestic travel with a reasonable docu- 114

ment length (500–3000 characters, that is, approxi- 115

mately 300–1800 words) from the ATD. We then 116

applied the GiNZA NLP Library5 (Matsuda et al., 117

2019) to the raw text for sentence segmentation and 118

automatic annotation of named entity (NE) mention 119

candidates. 120

2.2 Mention Annotation 121

In the mention annotation step, we required the 122

annotators to identify spans of geo-entity mentions 123

in the documents, which may or may not refer to 124

real-world locations, and assign entity type tags 125

to the identified mentions by modifying the auto- 126

annotated NE mentions. We adopted the brat anno- 127

tation tool6 (Stenetorp et al., 2012) for mention an- 128

notation (and succeeding coreference annotation). 129

The criteria for mention annotation define the 130

entity types of geo-entity mentions, along with men- 131

tion spans explained in Appendix B. Specifically, 132

we define the following eight main entity types, 133

which roughly correspond to Location, Facility, 134

and Vehicle in Sekine’s Extended Named En- 135

tity (ENE) taxonomy (version 9.0)7 (Sekine et al., 136

2002). (1) LOC, (2) FAC, and (3) TRANS respec- 137

tively represent locations, facilities, and public 138

transport vehicles; (4) LINE represents roads, wa- 139

terways/rivers, or public transport lines. The above 140

four types are further divided into NAME and NOM 141

subtypes, corresponding to whether a mention 142

is named or nominal, as described in Table 1. 143

(5) LOC_ORG and (6) FAC_ORG indicate location and 144

facility mentions, respectively, that metonymically 145

refer to organizations, e.g.,ホテル hoteru in a sen- 146

tence such as “The hotel serves its lunch menu.” 147

(7) LOC_OR_FAC indicates nominal mentions that 148

4https://www.nii.ac.jp/dsc/idr/arukikata/
5https://github.com/megagonlabs/ginza
6https://github.com/nlplab/brat
7http://ene-project.info/ene9/
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Type and subtype Example mentions

LOC-NAME 奈良 ‘Nara’;生駒山 ‘Mt. Ikoma’
LOC-NOM 町 ‘town’;島 ‘island’

FAC-NAME 大神神社 ‘Ōmiwa Shrine’
FAC-NOM 駅 ‘station’;公園 ‘park’

LINE-NAME 近鉄奈良線 ‘Kintetsu Nara Line’
LINE-NOM 国道 ‘national route’;川 ‘river’

TRANS-NAME 特急ひのとり ‘Ltd. Exp. Hinotori’
TRANS-NOM バス ‘bus’;フェリー ‘ferry’

Table 1: Examples of NAME and NOM entity mentions.

can refer to both location and facility, e.g.,観光地149

kankōchi ‘sightseeing spot.’ Finally, (8) DEICTIC150

indicates deictic expressions that refer to other geo-151

entity mentions or real-world locations, e.g.,そこ152

soko ‘there’ in Figure 1.153

2.3 Coreference Annotation154

In the coreference annotation step, we required155

the annotators to assign mention-level specificity156

tags or mention-pair-level relations to mentions157

identified in the previous step (except for those158

labeled with TRANS tags) using brat.159

The criteria for coreference annotation define160

two types of specificity tags and two types of rela-161

tions. As the representative cases, we introduce162

here the GENERIC specificity tag and the COREF163

coreference relation, and explain the remaining164

tags/relations in Appendix B. GENERIC is assigned165

to a generic mention, e.g.,お寺 otera ‘temples’ in166

Figure 1, to distinguish singleton mentions that re-167

fer to real-world location, but are not coreferenced168

with other mentions. COREF is assigned to two men-169

tions that both refer to the same real-world location,170

e.g.,近鉄奈良駅 kintetsu nara eki ‘Kintetsu Nara171

Station’ andそこ soko ‘there’ in Figure 1 ⟨1⟩. Af-172

ter relation annotation, a set of mentions that is173

sequentially connected through binary relations is174

regarded as one coreference cluster. A mention175

without any relations or specificity tags is regarded176

as a singleton, e.g., Figure 1 ⟨2⟩ and ⟨4⟩.8177

2.4 Link Annotation178

In the link annotation step, we required the anno-179

tators to link each coreference cluster to the URL180

of the corresponding OSM entry (e.g., ⟨1⟩–⟨4⟩ in181

Figure 1) on the basis of OSM and web search re-182

sults. For URL assignment, the annotators added183

8Although singleton mentions are marked with corefer-
ence cluster IDs in Figure 1 for clarity, singletons were not
annotated with any coreference information in the actual work.

URLs to the cells representing coreference clusters 184

in TSV files, which were converted from the brat 185

output files. 186

The criteria for link annotation define the an- 187

notation flow as follows. For each coreference 188

cluster, an annotator determines one or more nor- 189

malized names of the referent location, e.g., formal 190

or common name. The annotator then searches and 191

assigns a URL of an appropriate OSM entry to the 192

coreference cluster using search engines.9 193

The specific assignment process of entries is as 194

follows. (a) If one or more candidate entries for 195

a coreference cluster are found, assign the most 196

probable candidate as BEST_URL and (up to two) 197

other possible candidates as OTHER_URLS. (b) If the 198

only candidate entry geographically includes but 199

does not exactly match with the real-world referent, 200

assign the found entry with the PART_OF tag. (c) 201

If no candidate entries are found in OSM, search 202

and assign an appropriate entry from alternative 203

DBs: Wikidata, Wikipedia, and general web pages 204

describing the real-world referent.10 (d) If no can- 205

didate entries are found in any DBs, assign the 206

NOT_FOUND tag instead of an entry URL. The an- 207

notators can skip the search steps and assign the 208

NOT_FOUND tag when all member mentions and sur- 209

rounding context do not provide any specific infor- 210

mation that identifies the referent. 211

3 Dataset Statistics 212

The annotators first annotated 200 documents with 213

mention information, then annotated the same 200 214

documents with coreference information, and fi- 215

nally annotated 100 of those documents with link 216

information.11 We call the latter 100 documents 217

that contain link annotation Set-B and refer to the 218

remaining 100 documents without link annotation 219

as Set-A. The numbers of documents (#Doc), sen- 220

tences (#Sent), words (#Word), mentions (#Men), 221

and entities (coreference clusters) (#Ent) in the 222

ATD-MCL are listed in Table 2. We used Mode B 223

(the middle unit) of the SudachiPy tokenizer (ver- 224

9Because it was sometimes difficult to find the desired
entries using the Nominatim search engine available on the
official OSM site, we asked the annotators to use additional
search engines: web search engines and an original search
engine that we developed.

10These auxiliary DBs enable referent information to be
preserved in cases where the expected entries are not present
in OSM (at the time of annotation).

11Different annotators could be assigned for each step.
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#Doc #Sent #Word #Men #Ent

Set-A 100 5,949 85,741 6,052 3,131
Set-B 100 6,324 87,074 6,119 3,208

Total 200 12,273 172,815 12,171 6,339

Table 2: Statistics of the ATD-MCL.

sion 0.6.7)12 (Takaoka et al., 2018) for counting225

the number of words in the Japanese text.226

Detailed statistics of our dataset are described in227

Appendix C. The notable characteristics are sum-228

marized below. (1) Facility mentions account for229

50.3% (6,090/12,114) and nominal or demonstra-230

tive expressions account for 48.4% (5,867/12,114)231

of geo-entity mentions. (2) Multi-member clus-232

ters account for 35.6% (2,256/6,339) of corefer-233

ence clusters, and the average number of mem-234

ber mention text types (distinct strings) for the235

multi-member clusters is 1.85, suggesting that the236

same geo-entity is often repeatedly referred to by237

different expressions in a document. (3-i) Geo-238

entities assigned with some URLs account for239

97.1% (1,942/2,001) of entities with NAME men-240

tions (“HasName” entities) and 50.5% (609/1,207)241

of the remaining entities (in the PART_OF-inclusive242

setting), suggesting that identifying the referents243

that are not clearly written in text is difficult even244

for humans. (3-ii) Geo-entities assigned with OSM245

entry URLs account for 75.7% (1,514/2,001) of all246

“HasName” entities and 74.0% (811/1,096) of “Has-247

Name” facility entities (in the PART_OF-exclusive248

setting), indicating that OSM has reasonable cover-249

age of various types of locations in Japan.250

4 Inter-Annotator Agreement251

For mention, coreference, and link annotation, we252

requested two annotators to independently anno-253

tate the same 10, 10, and 5 documents out of the254

200, 200, and 100 documents, respectively.13 We255

measured the inter-annotator agreement (IAA) for256

the three annotation tasks.257

4.1 Mention Annotation258

As the IAA measure for mention annotation, we259

calculated the F1 scores between the results of two260

annotators (W1 and W2), based on exact match of261

both spans and tags. Table 3 shows the F1 score for262

12https://github.com/WorksApplications/
SudachiPy

13For coreference annotation, 10 documents annotated by
two annotators did not include any mentions with specificity
tags or mention pairs with attributive coreference relations.

Tag set Token Type
F1 #W1 #W2 #M #W1 #W2

NAME 0.835 229 243 197 162 174
NOM 0.867 195 197 170 97 106
L_O_F 0.552 19 10 8 8 5
DEICT 0.621 19 10 9 6 3
L_ORG – 0 0 0 0 0
F_ORG 0 1 0 0 1 0

All 0.832 463 460 384 274 283

Table 3: IAA for mention annotation. NAME, NOM, L_O_F,
DEICT, L_ORG, and F_ORG indicate all NAME mentions,
all NOM mentions, LOC_OR_FAC, DEICTIC, LOC_ORG, and
FAC_ORG, respectively. The token and type columns
indicate the scores and numbers based on token and
type frequencies of mention text, respectively.

each tag set and the numbers of annotated mentions 263

by W1, W2, and both (M). 264

The F1 score for all mentions was 0.832. Higher 265

F1 score for NOM mentions (0.867) than that for 266

NAME mentions (0.835) is probably because the less 267

variety of NOM mention text types eased the annota- 268

tion work for those mentions, as suggested by the 269

mention token/type frequencies in Table 3. 270

4.2 Coreference Annotation 271

To assess IAA for COREF relation annotation, we 272

used the metrics commonly used in coreference 273

resolution studies: MUC (Vilain et al., 1995), B3 274

(Bagga and Baldwin, 1998), CEAFe (Luo, 2005), 275

and the average of the three metrics (a.k.a the 276

CoNLL score) (Pradhan et al., 2012). 277

Table 4 shows the F1 scores between two anno- 278

tators’ (W1 and W2) results for each IAA measure 279

and the numbers of clusters constructed from two 280

annotators’ results for 2×2 settings: (a) original 281

coreference clusters with all mentions or (b) clus- 282

ters where only NAME mentions are retained, and (i) 283

clusters with size ≥ 1 or (ii) clusters with size ≥ 2. 284

In the basic setting (a)-(i), the average F1 score 285

was 0.858. In addition, we observed two intuitive 286

results. One is the lower scores for (a) than for 287

(b), indicating that it was difficult to identify which 288

mentions coreferred with non-NAME mentions. The 289

other is the higher scores for (i) than for (ii); this 290

is because leaving mentions as singletons is more 291

likely to agree, since each mention is a singleton 292

by default. 293

4.3 Link Annotation 294

As the IAA measure for link annotation, we cal- 295

culated the F1 score of OSM (or other DB) en- 296
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#W1/#W2 MUC B3 CEAFe Avg.

(a) Original clusters with all mentions

(i) 237/297 0.913 0.878 0.782 0.858
(ii) 91/79 0.797 0.768 0.811 0.792

(b) Clusters only with NAME mentions

(i) 237/297 0.959 0.935 0.893 0.929
(ii) 91/79 0.912 0.868 0.844 0.874

Table 4: IAA between two annotators for coreference
clusters in coreference annotation. The top two rows
(a) and the bottom two rows (b) show the results in the
described settings. (i) and (ii) show the results in the set-
tings where singletons are included or not, respectively.

#W1/#W2 (a) Original (b) Grouped
#M F1 #M F1

URL 81/75 56 0.718 64 0.821
NF 16/22 14 0.737 14 0.737

All 97/97 70 0.722 78 0.804

Table 5: IAA between two annotators for link annota-
tion in (a) the original URL and (b) the grouped URL
settings. The “URL” and “NF” rows show the results
for the assigned URLs and NOT_FOUND tag, respectively.

try URL assignment for the same entities between297

two annotators (W1 and W2), which is similar to298

cluster-level hard F1 score (Zaporojets et al., 2022).299

Table 5 shows the F1 scores along with the num-300

bers of entities to which URLs or the NOT_FOUND301

tags were assigned by W1, W2, and both (M).14302

We used two settings about the equivalence for303

assigned URLs. (a) The original URL setting com-304

pares raw URL strings assigned by the annotators.305

(b) The grouped URL setting treats OSM entries or306

web pages representing practically the same loca-307

tions as the same and compares the grouped URL308

sets instead of original URLs.15309

The F1 scores for URLs and NOT_FOUND were310

over 0.7 in both settings, indicating that the annota-311

tor could assign the same URL (or the NOT_FOUND312

tag) to the majority of geo-entities in spite of the313

huge number of candidate URLs. The lower F1314

scores in (a) the original setting than those in (b) the315

grouped setting is because the annotators assigned316

different but practically equivalent entry URLs to317

eight entities.318

14We regarded an entity as a matched URL instance
when both annotators assigned the same URL and as a
matched NOT_FOUND instance when both annotators assigned
NOT_FOUND.

15The first author manually judged the practical equiva-
lence of different OSM entries and web pages for 34 entities
unmatched between two annotators.

5 Experiments 319

We conducted experiments on the ATD-MCL for 320

three tasks: MR, CR, and ED. The purpose of the 321

experiments is to clarify the performance level of 322

current entity analysis systems, including off-the- 323

shelf and finetuned models, on our dataset. 324

5.1 Data Split 325

We regarded all Set-A documents as train-a and 326

split the Set-B documents into train-b, develop- 327

ment, and test sets at a ratio of 1:1:8. The union of 328

train-a and train-b (110 documents) was used as the 329

training set for both MR and CR. The development 330

set (10 documents) and test set (80 documents) 331

were commonly used for the three tasks. 332

5.2 Database Reorganization 333

The original OSM data contains a huge number of 334

entries, and multiple entries can refer to almost the 335

same real-world locations; e.g., we found 72 entries 336

named 東京 ‘Tokyo,’ including multiple railway 337

station platforms and train stop positions, some of 338

which can be equated with each other. For practical 339

evaluation of ED systems, different entries that can 340

be treated as equivalent should be grouped together, 341

and such groups should be considered as linking 342

units rather than individual entries. 343

Therefore, we reorganized the raw OSM data as 344

follows. (1) We downloaded an OSM data file con- 345

sisting of Japanese domestic location entries.16 (2) 346

We extracted 2.8M entries with “name” attributes 347

from the total of 2.6B entries. (3) We added 14 348

out of 16 entries without name attributes that were 349

assigned to domestic geo-entities in the Set-B data, 350

but were not contained in the extracted entries (the 351

remaining two entries had been deleted from OSM). 352

This resulted in DB coverage of 99.86% for the Set- 353

B entities annotated with OSM URLs. (4) We then 354

generated an extended name from the original name 355

attribute for each entry by concatenating part of the 356

address and notable OSM tags, such as the branch 357

name and amenity type.17 (5) Finally, we grouped 358

entries with the same extended name into the same 359

entry group. This series of processes resulted in 360

1.8M entry groups. 361

16japan-230601.osm.bz2 (http://download.
geofabrik.de/asia/)

17An example extended name: “name=スターバックス
|branch=None|prefecture=奈良県|city=奈良市
|quarter=樽井町|road=猿沢遊歩道|amenity=
cafe” (Starbucks Coffee at Sarusawa pathway, Tarui-cho,
Nara City, Nara Prefecture).
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5.3 Mention Recognition362

Task Setting We treat MR as the task of identify-363

ing spans and entity types of geo-entity mentions364

in given documents. As the evaluation measure, we365

use the F1 score between the gold and predicted366

mentions based on exact match of both spans and367

entity types.368

Systems We evaluated two systems that we fine-369

tuned models on our training set (spaCy-MR and370

mLUKE-MR) and two off-the-shelf systems with-371

out model finetuning (KWJA and GiNZA). spaCy-372

MR indicates a transition-based parsing model on373

the spaCy NLP library18 that we built using a pre-374

trained Japanese ELECTRA (Clark et al., 2020)375

model.19 This corresponds to the finetuned ver-376

sion of the GiNZA model. mLUKE-MR is our377

implementation of a span-based MR system us-378

ing a pretrained multilingual LUKE (mLUKE) (Ri379

et al., 2022) model.20 As the off-the-shelf systems,380

we used KWJA “base” (version 2.1.1)21,22 (Ueda381

et al., 2023) and GiNZA “ja_ginza_electra” (ver-382

sion 5.1.2). GiNZA and KWJA follow the ENE383

and IREX (Sekine and Isahara, 2000) tag sets,384

which are different from ours. Thus, we applied385

tag conversion rules to their outputs. Because386

the LOCATION tag in IREX semantically includes387

LOC_NAME, FAC_NAME, and LINE_NAME tags, we388

converted each KWJA output mention with the389

LOCATION tag into three mention instances with the390

same span and with one of the three tags, which391

prioritizes recall over precision. More detailed set-392

tings are described in Appendix D.393

Results Table 6 shows the performance of the394

MR systems for the test set. GiNZA and KWJA395

achieved the recall of 0.55–0.70 for NAME mentions,396

indicating moderate coverage for named geo-entity397

mentions. However, the two systems failed to398

extract non-NAME mentions (the F1 scores were399

0), which is natural because these systems had400

been trained on only NE annotations (not nomi-401

nal phrases). Owing to our finetuning, spaCy-MR402

and mLUKE-MR improved the performance: the403

overall F1 scores of 0.74–0.82. Both finetuned404

18https://spacy.io/api/architectures#parser
19https://huggingface.co/megagonlabs/

transformers-ud-japanese-electra-base-discriminator
20https://huggingface.co/studio-ousia/

mluke-large-lite
21https://github.com/ku-nlp/kwja
22There was no KWJA documentation describing how to

train a custom model, and we attempted but failed to perform
training/finetuning.

System Tag P R F

KWJA Overall .279 .352 .311
NAME .279 .695 .398

GiNZA Overall .574 .277 .374
NAME .574 .548 .560

spaCy-MR
Overall .752 .732 .742
NAME 733. .719 .726
NOM 798. .763 .780

mLUKE-MR
Overall .813 .817 .815
NAME .828 .813 .821
NOM .832 .826 .829

Table 6: System performance for mention recognition.
NAME and NOM indicate the micro-averaged scores for the
entity types with NAME and NOM subtypes, respectively.

models achieved better performance for NOM men- 405

tions than for NAME mentions, indicating the diffi- 406

culty of recognizing the NAME mentions with more 407

diverse surfaces. For the fine-grained results for 408

each tag, see Appendix E. 409

5.4 Coreference Resolution 410

Task Setting We define CR as the task of cluster- 411

ing the given gold mentions that corefer the same 412

real-world locations. We use the same evaluation 413

metrics as the IAA measures. 414

Systems We evaluated one finetuned system 415

(mLUKE-CR), one off-the-shelf system (KWJA), 416

and two rule-based systems (Rule-CR-1 and 2). 417

mLUKE-CR is our implementation of an end-to- 418

end CR model based on a pretrained mLUKE 419

model,23 which identifies the antecedent for a given 420

mention following Lee et al. (2017). We used the 421

KWJA ‘base’ model and applied a modification 422

rule to the KWJA’s output clusters so that the union 423

of all output clusters matched the set of all gold 424

mentions.24 Simple rule-based systems are as fol- 425

lows. Rule-CR-1 treats all given mentions as sin- 426

gletons. Rule-CR-2 groups together sets of men- 427

tions with the same surface form in a document 428

into clusters and treats the remaining mentions as 429

singletons. 430

Results Table 7 shows the performance of the CR 431

systems for the test set. The simplest rule-based 432

system, Rule-CR-1, appears to have achieved the 433

23https://huggingface.co/studio-ousia/
mluke-large

24The modification rule removes predicted mentions that
do not match any gold mentions from the output clusters and
adds gold mentions that do not match any predicted mentions
as singletons on the basis of mention span overlapping.
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System Size MUC B3 CEAFe Avg.

Rule-CR-1 ≥ 1 0 .755 .639 .465
≥ 2 0 0 0 0

Rule-CR-2 ≥ 1 .622 .840 .790 .750
≥ 2 .622 .613 .629 .621

KWJA ≥ 1 .694 .839 .793 .775
≥ 2 .694 .661 .658 .671

mLUKE-CR ≥ 1 .753 .875 .839 .822
≥ 2 .753 .733 .737 .741

Table 7: System performance for coreference resolution.

moderate B3 and CEAFe scores for clusters with434

size≥ 1 (although resulted in the zero score for435

the link-based MUC metric), due to the dataset436

distribution biased toward a high population of sin-437

gletons. Thus, it is necessary to pay attention to the438

improvement from these baseline scores as mean-439

ingful performance evaluation measures. Another440

rule-based system, Rule-CR-2, achieved the scores441

of 0.61–0.84 for the three metrics, indicating that442

the simple heuristic regarding surface forms was443

a strong clue for finding coreferent mentions. The444

superior performance of KWJA and mLUKE-CR445

over Rule-CR-2 indicates that these two systems446

identified (part of) coreferent mentions with differ-447

ent surface forms, although mLUKE-CR expect-448

edly performed better owing to finetuning.449

5.5 Entity Disambiguation450

Task Setting We define ED as the task of select-451

ing appropriate extended names, i.e., entry group452

IDs, from all entry groups for each given geo-entity.453

As the evaluation measure, we use recall@k (R@k)454

for the given entities; the prediction is regarded as455

correct if one of the predicted k entity groups con-456

tains the gold OSM entry URL for each geo-entity.457

Systems We evaluated an unsupervised system458

(BERT-ED) and a rule-based system (Rule-ED).459

For an input entity, both systems regard the longest460

mention surface among its member mentions with461

NAME entity subtype tags as the entity name and462

predict DB entry groups based on the entity name.463

The systems return no entry groups if the entity464

contains no NAME mentions. BERT-ED is our imple-465

mentation of an ED system based on a pretrained466

Japanese BERT (Devlin et al., 2019) model.25467

BERT-ED calculates the similarity between each468

entity’s name and “name” attribute value of each469

25https://huggingface.co/cl-tohoku/
bert-base-japanese-whole-word-masking

System R@1 R@5 R@10 R@100

Rule-ED .221 .323 .345 .362
BERT-ED .219 .366 .399 .482

Table 8: System performance for entity disambiguation.

candidate entry group, and then ranks the candi- 470

dates. For the similarity score, we used the co- 471

sine similarity score between vector representa- 472

tions, that is, the average of hidden states at the 473

last layer for input words within the name string.26 474

Rule-ED extracts entry groups whose “name” at- 475

tribute values exactly match the entity’s name for 476

each given entity, and then ranks them in lexico- 477

graphic order of full extended names. 478

Results Table 8 presents the performance of the 479

ED systems for the test set. Overall, BERT-ED 480

achieved better scores than Rule-ED owing to soft 481

matching and ranking using vector representations. 482

In particular, BERT-ED outperformed Rule-ED by 483

a larger margin on R@k with larger k. Although 484

this result suggests the effectiveness of vector rep- 485

resentations, the performance for R@1 can be im- 486

proved by introducing more sophisticated disam- 487

biguation strategies that consider the geography- 488

related content in a document, including location 489

and facility types identified from the surrounding 490

context, and geographic areas mentioned within 491

the document. 492

5.6 Discussion 493

For MR and CR, the finetuned systems achieved the 494

reasonable performance in our experiments. For 495

ED, in contrast, the simple unsupervised systems 496

did not achieve practical performance. A possi- 497

ble solution is training supervised ED systems on 498

in-domain training data. However, we suppose 499

that predicting appropriate DB entries for unknown 500

instances would remain a main challenge due to 501

limits to improving coverage by increasing training 502

instances. 503

Another challenge in geographic ED is that natu- 504

ral language descriptions of geo-DB entries are un- 505

available, different from general DBs represented 506

by Wikipedia. This also makes it difficult to di- 507

rectly apply state-of-the-art general ED systems 508

using entry description text (Wu et al., 2020; Ya- 509

mada et al., 2022) to geographic ED. Instead, OSM 510

26We also tried an entity representation calculated from
the full sentence where its representative mention occurred,
but confirmed its poor performance on the development set.
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Dataset Name Lang Text Genre Geo-database Facility Nominal

LGL Corpus (Lieberman et al., 2010) en News GeoNames ✗ ✗
TR-News (Kamalloo and Rafiei, 2018) en News GeoNames ✗ ✗
GeoVirus (Gritta et al., 2018a) en News Wikipedia ✗ ✗
WikToR (Gritta et al., 2018b) en Wikipedia Wikipedia ✗ ✗
GeoCorpora (Wallgrün et al., 2018) en Microblog GeoNames △ ✗
GeoWebNews (Gritta et al., 2020) en News GeoNames ✗ ✓
CLDW (Rayson et al., 2017) en Historical Unlock ✗ ✗
LRE Corpus (Matsuda et al., 2017) ja Microblog ISJ & Original △ ✓

ATD-MCL (Ours) ja Travelogue OpenStreetMap ✓ ✓

Table 9: Characteristics of representative geoparsing datasets and ours. The facility and nominal columns show the
availability of geoparsed facility mentions and nominal mentions, respectively: ✓ (available), ✗ (not available), and
△ (available to a limited extent).

entries have rich information of semantic attributes511

and geographic relations, such as distance and hi-512

erarchy. A prospective direction is learning men-513

tion/entry representations that leverage or encode514

such geographic information, as well as entity type515

and population information (Zhang and Bethard,516

2023). For example, if some geographic relations517

between two mentions are indicated by calculation518

based on their representations, geo-entities referred519

to by them may also have similar relations, which520

would be useful for CR and ED.521

6 Related Work522

Entity Analysis Datasets For over two decades,523

efforts have been devoted to developing annotated524

corpora for English entity analysis tasks, includ-525

ing NER (Tjong Kim Sang, 2002; Ling and Weld,526

2012; Baldwin et al., 2015), anaphora/coreference527

resolution (Grishman and Sundheim, 1996; Dod-528

dington et al., 2004; Pradhan et al., 2011; Ghad-529

dar and Langlais, 2016), and ED/EL (McNamee530

et al., 2010; Hoffart et al., 2011; Ratinov et al.,531

2011; Rizzo et al., 2016). For Japanese text, an-532

notated corpora have been developed for general533

NER (Sekine et al., 2002; Hashimoto and Naka-534

mura, 2010; Iwakura et al., 2016), coreference res-535

olution (Kawahara et al., 2002; Hashimoto et al.,536

2011; Hangyo et al., 2014), and EL (Jargalsaikhan537

et al., 2016; Murawaki and Mori, 2016).538

Geoparsing Datasets Table 9 summarizes539

the characteristics of representative geoparsing540

datasets and the ATD-MCL. For English geopars-541

ing, annotated corpora have been developed and542

used as benchmarks for system evaluation. The543

Local Global Corpus (Lieberman et al., 2010), TR-544

News (Kamalloo and Rafiei, 2018), and GeoWeb-545

News (Gritta et al., 2020) contain approximately546

100–600 news articles from global and local news 547

sources. GeoVirus (Gritta et al., 2018a) comprises 548

229 WikiNews articles focusing on viral infections. 549

The SemEval-2019 Task 12 dataset (Weissenbacher 550

et al., 2019) comprises 150 biomedical journal ar- 551

ticles on the epidemiology of viruses. GeoCor- 552

pora (Wallgrün et al., 2018) comprises 1,639 tweets 553

with the very limited coverage of facility mentions. 554

The Corpus of Lake District Writing (CLDW) 555

(Rayson et al., 2017) consists of 80 historical texts, 556

including travelogues, with auto-annotated coor- 557

dinates of location mentions. For Japanese geop- 558

arsing, Matsuda et al. (2017) constructed the LRE 559

corpus, comprising 10,000 Japanese tweets, 793 560

of which have geo-entity-related tags. They used 561

Ichi Sansho Joho (ISJ) ‘City-block-level location 562

reference information’ and their original gazetteer 563

of facilities, but the latter gazetteer has not been 564

available due to licensing reasons. 565

7 Conclusion 566

This paper has described the ATD-MCL dataset, 567

which is designed for document-level geoparsing, 568

along with the annotation criteria, IAA assessment, 569

and performance evaluation of the baseline systems. 570

Our dataset enables other researchers to conduct re- 571

producible experiments through the public release 572

of our annotated data. We expect that our dataset 573

contributes to fostering future research and advanc- 574

ing geoparsing techniques. 575

In future work, we plan to (1) develop a 576

document-level geoparser that leverages both char- 577

acteristics of geo-entity mentions in text and geo- 578

DB entries, (2) enhance our dataset with additional 579

semantic information, such as the movement tra- 580

jectories of travelogue writers, for more advanced 581

analytics, and (3) construct annotated travelogue 582

datasets in other languages. 583
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Limitations584

Bias of Referent Locations of Mentions in585

the Dataset Since our dataset only comprises586

Japanese domestic travelogues, most of the men-587

tions refer to locations in Japan. This is because we588

prioritized increasing the coverage of locations in589

a specific region, i.e., Japan. However, a possible590

extension is annotating overseas travelogues in the591

ATD, which include many mentions referring to592

locations around the world. It would supplement593

our current dataset.594

Optimization of Database Reorganization As595

the reorganized DB for ED, we used 2.8M OSM596

entries of Japanese domestic locations with “name”597

attributes. While checking a portion of the gener-598

ated entry groups, we performed rule engineering599

to make the original DB more desirable for our ED600

task, which means entries that can be regarded as601

practically equivalent to each other belong to the602

same groups. Over- and under-aggregated groups603

in the final DB could produce the evaluation results604

with underestimated or overestimated system per-605

formance. This would have a greater influence on606

the recall@k scores with smaller k for evaluating607

disambiguation accuracy, but a lesser influence on608

the scores with larger k for evaluating extraction609

coverage.610

Optimization of System Performance We per-611

formed not systematic but minimum hyperparam-612

eter search for mLUKE-based models due to time613

and resource limitations. Similarly, we used the614

fixed hyperparameters for spaCy-MR, which corre-615

spond to those used for GiNZA. Thus, performing616

optimized experiments has potential for further per-617

formance improvement in these systems.618

Independent Experiments on Geoparsing Sub-619

tasks As a first step toward comprehensive evalu-620

ation of geoparsing techniques, we independently621

evaluated the baseline systems on each subtask in622

the gold input setting; that is, gold mention spans623

were given in the CR experiments and gold en-624

tities were given in the ED experiments. How-625

ever, it is also necessary to explore developing and626

evaluating more practical systems in the full geop-627

arsing setting, which requires systems to predict628

mentions, coreference clusters, and links from raw629

documents.630

Ethics Statement 631

As a potential risk associated with our dataset, a 632

model trained on the dataset has the ability, to some 633

extent, to identify locations mentioned in input 634

texts and could be applied to link the content of in- 635

dividual posts containing private information with 636

the mentioned locations. In addition, regardless of 637

the purpose of use, the predicted locations may be 638

inaccurate due to the limitations of the model’s per- 639

formance or the discrepancy of domains, writing 640

styles, and mentioned regions between our dataset 641

and input texts. 642

Consistently with their intended use, we used 643

existing language resources and tools to develop or 644

evaluate NLP datasets or models under the speci- 645

fied license or terms of use. As for the dataset that 646

we constructed, its intended use is for academic 647

research purposes related to information science, 648

similarly to that of the ATD. The text in our dataset 649

is a subset of the original ATD data, and the origi- 650

nal data does not contain any information about the 651

travelogue authors. Before commencing the anno- 652

tation work to construct our dataset, we explained 653

to the annotators that we or other researchers would 654

use the annotated data for future research related to 655

NLP. 656
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Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsujii. 890
2012. brat: a web-based tool for NLP-assisted text 891
annotation. In Proceedings of the Demonstrations at 892
the 13th Conference of the European Chapter of the 893
Association for Computational Linguistics, pages 894
102–107, Avignon, France. Association for Compu- 895
tational Linguistics. 896

Kazuma Takaoka, Sorami Hisamoto, Noriko Kawa- 897
hara, Miho Sakamoto, Yoshitaka Uchida, and Yuji 898
Matsumoto. 2018. Sudachi: a Japanese tokenizer 899
for business. In Proceedings of the Eleventh 900
International Conference on Language Resources 901
and Evaluation (LREC 2018), Miyazaki, Japan. Eu- 902
ropean Language Resources Association (ELRA). 903

Erik F. Tjong Kim Sang. 2002. Introduction to the 904
CoNLL-2002 shared task: Language-independent 905
named entity recognition. In COLING-02: The 906
6th Conference on Natural Language Learning 2002 907
(CoNLL-2002). 908

11

https://doi.org/10.1609/aaai.v26i1.8122
https://doi.org/10.1609/aaai.v26i1.8122
https://doi.org/10.1609/aaai.v26i1.8122
https://aclanthology.org/H05-1004
https://aclanthology.org/H05-1004
https://aclanthology.org/H05-1004
http://www.anlp.jp/proceedings/annual_meeting/2019/pdf_dir/F2-3.pdf
http://www.anlp.jp/proceedings/annual_meeting/2019/pdf_dir/F2-3.pdf
http://www.anlp.jp/proceedings/annual_meeting/2019/pdf_dir/F2-3.pdf
http://www.anlp.jp/proceedings/annual_meeting/2019/pdf_dir/F2-3.pdf
http://www.anlp.jp/proceedings/annual_meeting/2019/pdf_dir/F2-3.pdf
http://www.anlp.jp/proceedings/annual_meeting/2019/pdf_dir/F2-3.pdf
http://www.anlp.jp/proceedings/annual_meeting/2019/pdf_dir/F2-3.pdf
http://www.anlp.jp/proceedings/annual_meeting/2019/pdf_dir/F2-3.pdf
http://www.anlp.jp/proceedings/annual_meeting/2019/pdf_dir/F2-3.pdf
https://doi.org/10.2197/ipsjjip.25.121
https://doi.org/10.2197/ipsjjip.25.121
https://doi.org/10.2197/ipsjjip.25.121
http://www.lrec-conf.org/proceedings/lrec2010/pdf/634_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/634_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/634_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/634_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/634_Paper.pdf
https://aclanthology.org/L16-1214
https://aclanthology.org/L16-1214
https://aclanthology.org/L16-1214
https://arxiv.org/abs/2305.11444
https://arxiv.org/abs/2305.11444
https://arxiv.org/abs/2305.11444
https://aclanthology.org/W12-4501
https://aclanthology.org/W12-4501
https://aclanthology.org/W12-4501
https://aclanthology.org/W12-4501
https://aclanthology.org/W12-4501
https://aclanthology.org/W11-1901
https://aclanthology.org/W11-1901
https://aclanthology.org/W11-1901
https://aclanthology.org/P11-1138
https://aclanthology.org/P11-1138
https://aclanthology.org/P11-1138
https://doi.org/10.1145/3149858.3149865
https://doi.org/10.1145/3149858.3149865
https://doi.org/10.1145/3149858.3149865
https://doi.org/10.18653/v1/2022.acl-long.505
https://doi.org/10.18653/v1/2022.acl-long.505
https://doi.org/10.18653/v1/2022.acl-long.505
https://ceur-ws.org/Vol-1395/microposts2015_neel-challenge-report/
https://ceur-ws.org/Vol-1395/microposts2015_neel-challenge-report/
https://ceur-ws.org/Vol-1395/microposts2015_neel-challenge-report/
https://ceur-ws.org/Vol-1395/microposts2015_neel-challenge-report/
https://ceur-ws.org/Vol-1395/microposts2015_neel-challenge-report/
http://www.lrec-conf.org/proceedings/lrec2000/pdf/27.pdf
http://www.lrec-conf.org/proceedings/lrec2000/pdf/27.pdf
http://www.lrec-conf.org/proceedings/lrec2000/pdf/27.pdf
http://www.lrec-conf.org/proceedings/lrec2002/pdf/120.pdf
https://aclanthology.org/E12-2021
https://aclanthology.org/E12-2021
https://aclanthology.org/E12-2021
https://aclanthology.org/L18-1355
https://aclanthology.org/L18-1355
https://aclanthology.org/L18-1355
https://aclanthology.org/W02-2024
https://aclanthology.org/W02-2024
https://aclanthology.org/W02-2024
https://aclanthology.org/W02-2024
https://aclanthology.org/W02-2024


Nobuhiro Ueda, Kazumasa Omura, Takashi Kodama,909
Hirokazu Kiyomaru, Yugo Murawaki, Daisuke Kawa-910
hara, and Sadao Kurohashi. 2023. KWJA: A uni-911
fied japanese analyzer based on foundation models.912
In Proceedings of the 61st Annual Meeting of the913
Association for Computational Linguistics: System914
Demonstrations, Toronto, Canada. Association for915
Computational Linguistics.916

Marc Vilain, John Burger, John Aberdeen, Den-917
nis Connolly, and Lynette Hirschman. 1995. A918
model-theoretic coreference scoring scheme. In919
Sixth Message Understanding Conference (MUC-6):920
Proceedings of a Conference Held in Columbia,921
Maryland, November 6-8, 1995.922

Jan Oliver Wallgrün, Morteza Karimzadeh, Alan M923
MacEachren, and Scott Pezanowski. 2018. Geocor-924
pora: building a corpus to test and train microblog925
geoparsers. International Journal of Geographical926
Information Science, 32(1):1–29.927

Davy Weissenbacher, Arjun Magge, Karen O’Connor,928
Matthew Scotch, and Graciela Gonzalez-Hernandez.929
2019. SemEval-2019 task 12: Toponym resolu-930
tion in scientific papers. In Proceedings of the 13th931
International Workshop on Semantic Evaluation,932
pages 907–916, Minneapolis, Minnesota, USA. As-933
sociation for Computational Linguistics.934

Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian935
Riedel, and Luke Zettlemoyer. 2020. Scalable zero-936
shot entity linking with dense entity retrieval. In937
Proceedings of the 2020 Conference on Empirical938
Methods in Natural Language Processing (EMNLP),939
pages 6397–6407, Online. Association for Computa-940
tional Linguistics.941

Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki942
Takeda, and Yuji Matsumoto. 2020. LUKE:943
Deep contextualized entity representations with944
entity-aware self-attention. In Proceedings of the945
2020 Conference on Empirical Methods in Natural946
Language Processing (EMNLP), pages 6442–6454,947
Online. Association for Computational Linguistics.948

Ikuya Yamada, Koki Washio, Hiroyuki Shindo, and949
Yuji Matsumoto. 2022. Global entity disambiguation950
with BERT. In Proceedings of the 2022 Conference951
of the North American Chapter of the Association952
for Computational Linguistics: Human Language953
Technologies, pages 3264–3271, Seattle, United954
States. Association for Computational Linguistics.955

Klim Zaporojets, Johannes Deleu, Yiwei Jiang, Thomas956
Demeester, and Chris Develder. 2022. Towards con-957
sistent document-level entity linking: Joint mod-958
els for entity linking and coreference resolution.959
In Proceedings of the 60th Annual Meeting of the960
Association for Computational Linguistics (Volume961
2: Short Papers), pages 778–784, Dublin, Ireland.962
Association for Computational Linguistics.963

Zeyu Zhang and Steven Bethard. 2023. Improving to-964
ponym resolution with better candidate generation,965

transformer-based reranking, and two-stage resolu- 966
tion. In Proceedings of the 12th Joint Conference on 967
Lexical and Computational Semantics (*SEM 2023), 968
pages 48–60, Toronto, Canada. Association for Com- 969
putational Linguistics. 970

12

https://aclanthology.org/M95-1005
https://aclanthology.org/M95-1005
https://aclanthology.org/M95-1005
https://doi.org/10.1080/13658816.2017.1368523
https://doi.org/10.1080/13658816.2017.1368523
https://doi.org/10.1080/13658816.2017.1368523
https://doi.org/10.1080/13658816.2017.1368523
https://doi.org/10.1080/13658816.2017.1368523
https://doi.org/10.18653/v1/S19-2155
https://doi.org/10.18653/v1/S19-2155
https://doi.org/10.18653/v1/S19-2155
https://doi.org/10.18653/v1/2020.emnlp-main.519
https://doi.org/10.18653/v1/2020.emnlp-main.519
https://doi.org/10.18653/v1/2020.emnlp-main.519
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2022.naacl-main.238
https://doi.org/10.18653/v1/2022.naacl-main.238
https://doi.org/10.18653/v1/2022.naacl-main.238
https://doi.org/10.18653/v1/2022.acl-short.88
https://doi.org/10.18653/v1/2022.acl-short.88
https://doi.org/10.18653/v1/2022.acl-short.88
https://doi.org/10.18653/v1/2022.acl-short.88
https://doi.org/10.18653/v1/2022.acl-short.88
https://doi.org/10.18653/v1/2023.starsem-1.6
https://doi.org/10.18653/v1/2023.starsem-1.6
https://doi.org/10.18653/v1/2023.starsem-1.6
https://doi.org/10.18653/v1/2023.starsem-1.6
https://doi.org/10.18653/v1/2023.starsem-1.6
https://doi.org/10.18653/v1/2023.starsem-1.6
https://doi.org/10.18653/v1/2023.starsem-1.6


A Licenses of Used Resources971

We used some existing NLP software and lan-972

guage resources as described in the main sections.973

The licenses of the used resources are as follows.974

The Arukikata Travelogue Dataset is available via975

the Informatics Research Data Repository, Na-976

tional Institute of Informatics under specific terms977

of use.27 brat, spaCy, GiNZA, KWJA, the pre-978

trained Japanese ELECTRA model are available979

under the MIT License. SudachiPy and the pre-980

trained mLUKE models are available under the981

Apache License 2.0. The pretrained Japanese982

BERT model is available under CC BY-SA 4.0.983

Although the OpenStreetMap data files are avail-984

able via Geofabrik28 under the Open Database Li-985

cense 1.0, the data file that we used in our ex-986

periments japan-230601.osm.bz2 is currently no987

longer available. We will rerelease the same data988

file on our website under the same license.989

B Detailed Annotation Criteria990

B.1 Mention Span Annotation991

The spans of geo-entity mentions are determined992

as follows. Generally, a noun phrase (NP) in which993

a head h is modified by a nominal modifier m is994

treated as a single mention (Table 10-a). An appos-995

itive compound of two nouns n1 and n2 is treated996

as a single mention (Table 10-b) unless there is997

some expression (e.g., no-particle “の”) or separa-998

tor symbol (e.g., tōten “、”) inserted between them.999

A common name is treated as a single mention even1000

if it is not a simple NP (Table 10-c). For an NP1001

with an affix or affix-like noun a representing di-1002

rections or relative positions, a cardinal direction1003

prefix preceding a location name is included in1004

the span (Table 10-d-1), but other affixes are ex-1005

cluded from the span (Table 10-d-2). There may1006

be instances in which a modifier m represents a1007

geo-entity, but its NP head h does not. In such1008

cases, the modifier is treated as a single mention if1009

the head is a verbal noun that means move, stay, or1010

habitation (Table 10-e-1), but the NP is not treated1011

as a mention if not (Table 10-e-2). In the case1012

that a geo-entity name g is embedded in a non-1013

geo-entity mention n, the inner geo-entity name is1014

treated as a geo-entity mention if the external en-1015

tity corresponds to an event held in the real world1016

(Table 10-f). If the external entity corresponds to1017

27https://www.nii.ac.jp/dsc/idr/arukikata/
documents/arukikata-policy.html (in Japanese)

28http://www.geofabrik.de/data/download.html

(a)
[山頂]m [駐車場]h
[parking area]h [on top of the mountain]m

(b)
[駅ビル]n1 [「ビエラ奈良」]n2

[station building]n1 [Vierra Nara]n2

(c)
天国への階段

Stairway to Heaven

(d-1)
[東]a [東京]
[East]a [Tokyo]

(d-2)
[北海道] [全域]a
[the whole area of]a [Hokkaido]

(e-1)
[京都]m [旅行]h
[Kyoto]m [Travel]h

(e-2)
[三輪]m [そうめん]h
[Miwa]m [somen noodles]h

(f)
[[保津川]g 下り]n
[[Hozugawa river]g boat tour]n

Table 10: Examples of mention spans.

other types of entities, such as an organization or 1018

the title of a work, the inner geo-entity name is not 1019

treated as a geo-entity mention. 1020

B.2 Coreference Annotation 1021

Following (or concurrently with) specificity tag an- 1022

notation, relations are assigned to pairs of mentions 1023

that have not been labeled with either specificity 1024

tag. 1025

Specificity Tags Specificity tags can be either 1026

GENERIC or SPEC_AMB. GENERIC is assigned to a 1027

generic mention, as explained in §2.3. SPEC_AMB 1028

(which means “specific but ambiguous”) is as- 1029

signed to a mention that refers to a specific real- 1030

world location, but there is some ambiguity about 1031

the detailed area to which it refers, e.g.,海 umi in a 1032

sentence such as “You can see a beautiful sea from 1033

this spot.” 1034

Coreference Relations Coreference relations 1035

can be either the identical coreference rela- 1036

tion COREF or the attributive coreference relation 1037

COREF_ATTR. The coreference relation COREF is as- 1038

signed to two mentions that both refer to the same 1039

real-world location, as explained in §2.3. The di- 1040

rected relation COREF_ATTR is assigned to mention 1041

pairs in which one expresses the attribute of the 1042

other, either in appositive phrases or copular sen- 1043

tences. For example, a sentence in Figure 2 is anno- 1044

tated with COREF_ATTR relations from mention 2 to 1045

mention 1 and from mention 2 to mention 3. This 1046
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1世界遺産・2白川郷は素敵な3ところでした。

A 1world heritage site, 2Shirakawago was a nice 3place.

Figure 2: Examples of attributive mentions.

LOC FAC LINE TRANS GeoOther

NAME 2,289 3,239 462 257 –
NOM 861 2,851 582 666 –
Other – – – – 907

Total 3,150 6,090 1,044 923 907

Table 11: Tag distribution of geo-entity mentions in
the whole dataset. “GeoOther” mentions consist of 372
LOC_OR_FAC and 535 DEICTIC mentions.

schema is similar to that in WikiCoref (Ghaddar1047

and Langlais, 2016).1048

Notably, no coreference relations are assigned1049

to mentions whose referents geographically over-1050

lap but are not identical; e.g., 首都高速道路1051

shuto kōsoku dōro ‘Metropolitan Expressway’ and1052

湾岸線 wangansen ‘Bayshore Route,’ which have1053

a whole–part relation.1054

C Detailed Dataset Statistics1055

C.1 Mention Annotation1056

In the mention annotation step, 12,171 mentions1057

were identified; they consist of 12,114 geo-entity1058

and 57 non-geo-entity mentions (23 LOC_ORG and1059

34 FAC_ORG mentions). Table 11 shows the distri-1060

bution of geo-entity mentions for entity type tags.1061

The tag distribution represents some characteristics1062

of travelogue documents of our dataset. First, the1063

documents contain the largest number of facility1064

mentions, which is even more than the number of1065

location mentions. Second, the documents also1066

contain the similar number of non-NAME (5,867)291067

to NAME mentions (6,247).1068

C.2 Coreference Annotation1069

As a result of the coreference annotation step, 2891070

GENERIC mentions and 322 SPEC_AMB mentions1071

along with 923 TRANS mentions were excluded1072

from the coreference relation annotation. Out of1073

the remaining 10,580 mentions, 6,497 mentions1074

were annotated with one or more COREF and/or1075

COREF_ATTR relations among other mentions, of1076

which 350 mention pairs were annotated with1077

COREF_ATTR relations. These mentions comprise1078

29Non-NAME mentions include LOC_OR_FAC, and DEICTIC
mentions, in addition to all NOM mentions.

Size 1 2 3 4 5 6 ≥7

#Cls 4,083 1,278 507 240 103 58 70
#Typ 1.0 1.5 2.0 2.3 2.6 2.8 3.3

Table 12: Number of geo-entity coreference clusters
(#Cls) and the average number of member mention text
types (#Typ) for each size.

LOC FAC LINE MIX UNK

Set-A 819 1,823 327 29 133
Set-B 852 1,819 370 22 145

Total 1,671 3,642 697 51 278

Table 13: Tag distribution of geo-entities.

coreference clusters with size ≥2, and the remain- 1079

ing 4,083 mentions correspond to singletons. Ta- 1080

ble 12 shows the number of clusters and the aver- 1081

age number of mention text types (distinct strings) 1082

among members30 for each cluster size. This in- 1083

dicates that 35.6% (2,256/6,339) of coreference 1084

clusters have more than one member; that is, multi- 1085

ple mentions in a document often refer to the same 1086

referent. 1087

In addition, we automatically assign an entity 1088

type tag to each coreference cluster, i.e., entity, 1089

from the tags of its member mentions.31 Table 13 1090

shows the tag distribution of entities, which is sim- 1091

ilar to the tag distribution of mentions shown in 1092

Table 11. 1093

C.3 Link Annotation 1094

As shown in Table 14, in the link annotation step 1095

for Set-B, 79.5% (2,551) and 64.2% (2,059) of 1096

3,208 entities have been annotated with any URLs 1097

and OSM entry URLs, respectively, including enti- 1098

ties annotated with PART_OF tags. For “HasName” 1099

entities in which at least one member mention is 1100

labeled as NAME, any URLs and OSM entry URLs 1101

are assigned to 97.1% (1,942/2,001) and 78.7% 1102

(1,574/2,001) of them, respectively. This indicates 1103

that the real-world referents can be easily identified 1104

for most of the entities explicitly written with their 1105

names. For the remaining “HasNoName” entities, 1106

30For example, for clusters C1 = {“Nara Station”, “Nara
Sta.”, “Nara”} and C2 ={“Kyoto Pref.”, “Kyoto”, “Kyoto”},
the numbers of distinct member mention strings are three and
two, respectively, and their average is 2.5.

31(a) LOC, FAC, or LINE is assigned to an entity that the
members’ tags include only one of the three types and option-
ally include LOC_OR_FAC or DEICTIC. (b) UNK is assigned to
an entity that all members’ tags are LOC_OR_FAC or DEICTIC.
(c) MIX is assigned to an entity that the members’ tags include
two or three of LOC, FAC, and LINE.

14



All HasRef HasOSMRef

HasName 2,001 1,942 1,574
HasNoName 1,207 609 485

Total 3,208 2,551 2,059

Table 14: Numbers of Set-B entities that have names
and/or references in the PART_OF-inclusive setting
where entities assigned with PART_OF (along with
URLs) are counted as instances of “Has(OSM)Ref.”

All HasRef HasOSMRef

HasName 2,001 1,861 1,514
HasNoName 1,207 298 221

Total 3,208 2,159 1,735

Table 15: Numbers of Set-B entities that have names
and/or referents in the PART_OF-exclusive setting where
entities assigned with PART_OF (along with URLs) are
NOT counted as instances of “Has(OSM)Ref.”

any URLs and OSM entry URLs are assigned to1107

50.5% (609/1,207) and 40.2% (485/1,207) of them,1108

respectively. This suggests that identifying the ref-1109

erents from unclearly written mentions and context1110

is difficult even for humans.1111

As shown in Table 15, the percentages of1112

referent-identified entities decrease in the setting1113

where entities assigned with PART_OF are excluded.1114

The result indicates the reasonable coverage of1115

OSM for various types of locations in Japan. Over-1116

all, entities assigned with OSM entries account for1117

75.7% (1,514/2,001) of “HasName” entities. For1118

details on each entity type tag of LOC, FAC, LINE,1119

and the others, entities assigned with OSM entries1120

account for 79.3% (811/1,096), 74.0% (544/686),1121

72.7% (144/198), and 71.4% (15/21) of “HasName”1122

entities with the specified tag, respectively.1123

C.4 Geographical Distribution of Linked1124

Entities1125

Figure 3 shows the geographical distribution of1126

linked entities in our dataset, namely, the number1127

of entities located in each prefecture among enti-1128

ties annotated with OSM entry URLs. For example,1129

there are 45 linked entities to which the coordinates1130

of OSM entries are linked within the area of Tokyo1131

Prefecture in all annotated travelogue documents,1132

and thus the count of Tokyo Prefecture is 45. The1133

minimum, maximum, and average numbers of en-1134

tity counts in all 47 prefectures are 9 (Aichi), 881135

(Kyoto), and 42.8, respectively.1136

Figure 4 shows actual examples of mentions with1137
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Figure 3: Numbers of linked entities located in each
prefecture. Deeper red indicates the larger number. The
units of the numerical values on the vertical and hori-
zontal axes of the map are kilo-miles.

geographic continuity; that is, mentions that refer 1138

to nearby locations in the real world tend to appear 1139

near to one another within a document (§1). The 1140

example text in a travelogue document, whose ID 1141

is 00019, describes five geo-entities located nearby 1142

in the real world. 1143

D Details on Experimental Settings 1144

D.1 Evaluation Scripts 1145

We used our code that calculates general precision, 1146

recall, and F1 score in the mention recognition 1147

and entity disambiguation experiments. We used 1148

our code that calculates the MUC, B3, and CEAFe 1149

scores in the manner equivalent to an existing eval- 1150

uation tool32 in the coreference resolution experi- 1151

ments. 1152

D.2 Entity Type Conversion Rules 1153

IREX We used the following rules to convert 1154

the IREX tags to our entity type tags. (1) Each 1155

output mention with the LOCATION tag was con- 1156

verted into three mention instances with the same 1157

span and with one of LOC_NAME, FAC_NAME, and 1158

LINE_NAME tags. (2) ARTIFACT was converted into 1159

TRANS_NAME. 1160

ENE We used the following rules to convert the 1161

ENE tags (version 7.1.0),33 which GiNZA adopted, 1162

32https://github.com/ns-moosavi/coval/blob/
master/coval/eval/evaluator.py

33https://nlp.cs.nyu.edu/ene/version7_1_0Beng.
html
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からも⾒える の です。 と に⾏く場合は、...猿沢池 興福寺 五重塔 国宝館 東⾦堂
Sarusawa

Pond
Kohfukuji
Temple

Five-storied 
Pagoda

National 
Treasure Hall

Eastern 
Golden Hall

There is the five-storied pagoda of Kohfukuji Temple, which can be seen from Sarusawa Pond. If you are 
going to the National Treasure Hall and Eastern Golden Hall, ... 

Figure 4: Example mentions with geographic continuity in a travelogue document. The map depicts part of the
Nara Park area, a popular sightseeing area in Nara City, Japan.

to our entity type tags. (1) The Location subtype1163

tags except for the Astral_Body subtype tags, the1164

Address subtype tags and River were converted1165

to LOC_NAME. (2) The Facility subtype tags ex-1166

cept for the Line subtype tags were converted1167

to FAC_NAME. (3) River and the Line subtype1168

tags were converted to LINE_NAME. (4) Service1169

and the Vehicle subtype tags were converted to1170

TRANS_NAME.1171

D.3 Settings of spaCy-MR1172

For building our custom MR model with spaCy,1173

namely, spaCy-MR, we used almost the same set-1174

tings as GiNZA,34 including model architecture1175

and hyperparameters, tokenizer, and training set-1176

tings except that we disabled unnecessary pipelines1177

other than “transformer” and “ner.” We reported1178

the result of a single run of spaCy-MR in §5.3 and1179

Appendix E.1180

D.4 Implementation and Settings of1181

mLUKE-MR/CR1182

We reported the results of single runs of mLUKE-1183

MR and mLUKE-CR in §5.3 and Appendix E.1184

Mention Recognition Following Yamada et al.1185

(2020), we tackle the task by enumerating and clas-1186

34https://github.com/megagonlabs/ginza/blob/
develop/config/ja_ginza_electra.cfg

sifying all possible spans in each sentence. The rep- 1187

resentation of each candidate span is a concatena- 1188

tion of the word representations of the first and last 1189

tokens of the span, and the entity representation cor- 1190

responding to the span, all of which are computed 1191

by the LUKE Transformer model. We employ a 1192

linear classifier to classify spans into the target 1193

entity types or non-entity type. We restrict candi- 1194

date spans to the positions where their first and last 1195

tokens correspond to word boundaries (obtained 1196

using Sudachi Mode B), and exclude spans longer 1197

than 16 tokens.35 Following Devlin et al. (2019) 1198

and Yamada et al. (2020), we prepend/append the 1199

surrounding tokens to a target sentence (up to 512 1200

tokens in total) to give sufficient contextual infor- 1201

mation to the model. 1202

Coreference Resolution Following Lee et al. 1203

(2017), we solve the task as antecedent identifica- 1204

tion for each mention. We follow the architecture 1205

proposed by Joshi et al. (2019) except that we do 1206

not use a unary score for each mention or coarse-to- 1207

fine inference because gold mentions are given in 1208

our setting.36 The representation of each mention 1209

35We also enforce word boundaries on the mLUKE tok-
enizer because (word-level) mention annotation in the ATD-
MCL does not align with unigram segmentation used in the
tokenizer.

36We also omit discrete features based on the metadata
available only in some datasets.
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Task Name Value

MR
Learning rate 1e-5
Batch size 8
Training epochs 10

CR
Learning rate 5e-5
Batch size 4
Training epochs 20

(Common)

Learning rate decay linear
Warmup ratio 0.06
Dropout 0.1
Weight decay 0.01
Gradient clipping none
Adam β1 0.9
Adam β2 0.98
Adam ϵ 1e-6

Table 16: Hyperparameter values used in the mLUKE-
MR/CR experiments.

is computed in the same way as the MR model.1210

The model is trained by optimizing the marginal1211

log-likelihood of the possibly correct antecedents1212

including a dummy antecedent, which indicates no1213

antecedents associated with a target mention. Be-1214

cause CR in the ATD-MCL is a document-level1215

task and documents in the dataset are too long to be1216

processed by a Transformer-based model for com-1217

putational reasons, we independently feed each1218

sentence in a document to the LUKE model, but1219

optimization/prediction is made in each document.1220

Hyperparameters The hyperparameter values1221

used in the experiments using mLUKE-MR/CR1222

are listed in Table 16. Because our computational1223

resources were limited, we did not conduct hyper-1224

parameter tuning except learning rate. We chose1225

the best setting of learning rate and the number of1226

training epochs from the search space of {1e-5, 2e-1227

5, 3e-5, 4e-5, 5e-5} and {5, 10, 20}, respectively.1228

We specifically selected batch size for each task,1229

but we followed Yamada et al. (2020) for the other1230

hyperparameters.1231

D.5 Size of Used Models1232

Table 17 shows the numbers of model parameters1233

in the systems that we used in the experiments. For1234

KWJA, we report the number of parameters (112M)1235

in the pretrained model37 used in the KWJA base1236

model (while the actual number of parameters in1237

the whole model would be larger).1238

37https://huggingface.co/ku-nlp/
deberta-v2-base-japanese

Tasks System #Params

MR mLUKE-MR 561M
MR spaCy-MR 109M
MR GiNZA (ja_ginza_electra) 110M
MR, CR KWJA (base) 112M+
CR mLUKE-CR 877M
ED BERT-ED 111M

Table 17: Numbers of model parameters in evaluated
systems.

D.6 Computational Budget for Finetuning 1239

In our experiments, mLUKE-MR was finetuned 1240

for 130 minutes (10 epochs) using four NVIDIA 1241

Tesla V100 GPUs with 16GB memory. mLUKE- 1242

CR was finetuned for 15 minutes (20 epochs) using 1243

four NVIDIA A100 Tensor Core GPUs with 40GB 1244

memory. spaCy-MR was finetuned for 17.4 hours 1245

(20000 steps) using a four-core Intel Xeon Gold 1246

6150 CPU (32 cores total). 1247

E Detailed Experimental Results on 1248

Mention Recognition 1249

Table 18 shows detailed performance of mention 1250

recognition systems. The finetuned systems spaCy- 1251

MR and mLUKE-MR achieved F1 scores higher 1252

than 0.6 and 0.7, respectively, for all tags except 1253

for TRANS_NAME and FAC_ORG. 1254
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Tag # KWJA GiNZA spaCy-MR◦ mLUKE-MR◦

P R F P R F P R F P R F

Overall 4,958 .279 .352 .311 .574 .277 .374 .752 .732 .742 .813 .817 .815
NAME 2,509 .279 .695 .398 .574 .548 .560 .733 .719 .726 .828 .813 .821
NOM 2,054 0 0 0 0 0 0 .798 .763 .780 .832 .826 .829

LOC_NAME 881 .378 .857 .525 .617 .717 .664 .727 .822 .771 .830 .863 .846
FAC_NAME 1,285 .409 .635 .497 .589 .504 .543 .770 .689 .727 .843 .807 .825
LINE_NAME 195 .061 .621 .110 .425 .405 .415 .673 .677 .675 .804 .800 .802
TRANS_NAME 148 .193 .358 .251 .176 .101 .129 .525 .432 .474 .707 .588 .642
LOC_NOM 349 0 0 0 0 0 0 .739 .691 .714 .748 .808 .777
FAC_NOM 1,135 0 0 0 0 0 0 .816 .757 .785 .855 .819 .837
LINE_NOM 236 0 0 0 0 0 0 .749 .822 .784 .865 .818 .841
TRANS_NOM 334 0 0 0 0 0 0 .840 .817 .829 .830 .877 .853
LOC_OR_FAC 149 0 0 0 0 0 0 .676 .617 .646 .731 .711 .721
DEICTIC 222 0 0 0 0 0 0 .645 .721 .681 .616 .896 .730
LOC_ORG 11 0 0 0 0 0 0 .750 .545 .632 .900 .818 .857
FAC_ORG 13 0 0 0 0 0 0 0 0 0 .500 .077 .133

Table 18: System performance for mention recognition. “◦” indicates the models finetuned on the ATD-MCL
training set. “#” indicates the number of mentions for each tag in the test set.
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