
Watermarks in the Sand: Impossibility of Strong
Watermarking for Language Models

Hanlin Zhang 1 Benjamin L. Edelman * 1 Danilo Francati * 2

Daniele Venturi 3 Giuseppe Ateniese 2 Boaz Barak 1

Abstract

Watermarking generative models consists of plant-
ing a statistical signal (watermark) in a model’s
output so that it can be later verified that the
output was generated by the given model. A
strong watermarking scheme satisfies the property
that a computationally bounded attacker cannot
erase the watermark without causing significant
quality degradation. In this paper, we study the
(im)possibility of strong watermarking schemes.
We prove that, under well-specified and natural as-
sumptions, strong watermarking is impossible to
achieve. This holds even in the private detection
algorithm setting, where the watermark insertion
and detection algorithms share a secret key, un-
known to the attacker. To prove this result, we
introduce a generic efficient watermark attack;
the attacker is not required to know the private
key of the scheme or even which scheme is used.

Our attack is based on two assumptions: (1) The
attacker has access to a “quality oracle” that can
evaluate whether a candidate output is a high-
quality response to a prompt, and (2) The attacker
has access to a “perturbation oracle” which can
modify an output with a nontrivial probability of
maintaining quality, and which induces an effi-
ciently mixing random walk on high-quality out-
puts. We argue that both assumptions can be satis-
fied in practice by an attacker with weaker compu-
tational capabilities than the watermarked model
itself, to which the attacker has only black-box
access. Furthermore, our assumptions will likely
only be easier to satisfy over time as models grow
in capabilities and modalities.

*Equal contribution 1Harvard University 2George Mason Uni-
versity 3Sapienza University of Rome. Correspondence to: Hanlin
Zhang <hanlinzhang@g.harvard.edu>, Ben Edelman <benedel-
man100@gmail.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

We demonstrate the feasibility of our attack by
instantiating it to attack three existing watermark-
ing schemes for large language models: Kirchen-
bauer et al. (2023a), Kuditipudi et al. (2023), and
Zhao et al. (2023a), and include preliminary re-
sults on vision-language models. The same at-
tack schema successfully removes the watermarks
planted by all schemes, with only minor quality
degradation.1

1. Introduction
“The term “watermarking” means the act of em-
bedding information, which is typically difficult
to remove, into outputs created by AI — including
into outputs such as photos, videos, audio clips, or
text — for the purposes of verifying the authentic-
ity of the output or the identity or characteristics
of its provenance, modifications, conveyance.” 2

The advent of powerful generative models such as large lan-
guage models (LMs) (Brown et al., 2020; Schulman et al.,
2022; OpenAI, 2023) and text-to-image vision-language
models (VLMs) (Radford et al., 2021; Betker et al., 2023)
has ushered in a new era where machines can be prompted
to answer questions, draft documents, generate images in
various styles, write executable code, and more. As these
models become increasingly widely deployed and capable,
there is growing concern that malicious actors could mis-
represent model outputs as human-generated content (Clark
et al., 2021). To prevent misuse at scale—e.g., misinforma-
tion (Hsu & Thompson, 2023), automated phishing (Hazell,
2023), and academic cheating (Kasneci et al., 2023)—there
has been a demand for algorithmic methods that can distin-
guish between content produced by models and by humans
(Westerlund, 2019). Some solutions (Mitchell et al., 2023;
Tian & Cui, 2023) aim to detect the output of a given model
or family of models without modifying the model’s gen-
eration process at all, but these tend to suffer from high
error rates (Kirchenbauer et al., 2023b). The idea of water-

1Latest manuscript at https://arxiv.org/abs/2311.
04378.

2Executive Order on the Safe, Secure, and Trustworthy Devel-
opment and Use of Artificial Intelligence (of the President, 2023)
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marking schemes for generative models is to alter the infer-
ence procedure to plant identifiable statistical signals (water-
marks) into the model outputs (Kirchenbauer et al., 2023a;
Kuditipudi et al., 2023; Zhao et al., 2023a; Kirchenbauer
et al., 2023b; Christ et al., 2023; Fernandez et al., 2023;
Aaronson, 2022). Because these schemes can intervene in
the generation process, they are potentially more powerful
than classical digital watermarking schemes (Boland et al.,
1995; O’Ruanaidh & Pun, 1997), which add imperceptible
watermarks to individual given pieces of content.

A watermarking scheme consists of a generation algorithm
that is a modified version of the model in which the signal
is planted and a detection algorithm that can detect whether
a piece of output came from the watermarked model. Wa-
termarking schemes can be partitioned onto at least two
different axes: Public versus private: A public watermark-
ing scheme is one where the detection algorithm is acces-
sible to all parties. A private (or secret-key) watermarking
scheme is one in which running the detection algorithm
requires some private information. Strong versus weak:
A strong watermarking scheme is one where a (computa-
tionally bounded) attacker cannot modify the output (e.g.,
rephrase the text, apply a filter to the image, etc.) to remove
the watermark without causing significant quality degrada-
tion. A weak watermarking scheme only resists removal
by a well-specified set of transformations. At a minimum,
the detection algorithm of a weak scheme must flag out-
puts that are simply “copied and pasted”. More generally,
it can ensure the detection of modified outputs as long as
the modification is close to the original according to some
metric such as edit distance for text, ℓ1 norm for images.
Weak watermarks can still be useful for applications like pre-
venting AI-generated content from being used for training
(Shumailov et al., 2023), making it more expensive or incon-
venient to generate misinformation or cheat on assignments,
and tracking the provenance of the precise text/image/etc,
which the watermark was applied to. But they will not foil
a determined attacker.

In this paper, we focus on strong watermarking and hence
drop the “strong” modifier from this point on. (See Sec-
tion 3 for the formal definition.) Our main result is negative:
Under mild assumptions (which we specify below), strong
watermarking of generative models is impossible. This holds
even in the more challenging (for the attacker) secret-key
watermarking setting, where the adversary cannot access
the watermarking algorithm. Our assumptions already hold
today in several settings, and we argue that they will be-
come only more likely as models grow in both capabilities
and modalities. The impossibility result is constructive: we
design a generic attack methodology that can remove any
watermark, given the assumptions. Our attack algorithm
does not need access to the non-watermarked model or to
any model with similar capabilities; the attack can be in-

stantiated with only black-box access to the watermarked
model, and white-box use of much weaker open-source
models. We instantiate an implementation of the attack
and use it to successfully remove LM watermarks planted
by the schemes of Kirchenbauer et al. (2023a), Kuditipudi
et al. (2023), and Zhao et al. (2023a), as well as VLM wa-
termarks implemented by Mountain (2021) and Fernandez
et al. (2023), while maintaining text or image quality as
judged by GPT4 (OpenAI, 2023).
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Figure 1: An outline of our quality-preserving random walk
attack schema (The differences with original watermarked text are
highlighted.). We consider the set of all possible outputs and within
it the set of all high-quality outputs (with respect to the original
prompt). For any quality-preserving watermarking scheme with
a low false-positive rate, the set of watermarked outputs (green)
will be a small subset of the high-quality output (orange). We then
take a random walk on the set of high-quality outputs to arrive at a
non-watermarked output (red) by generating candidate neighbors
through the perturbation oracle and using the quality oracle to
reject all low-quality candidates.

Our assumptions in a nutshell. Consider a generative
model M that takes as input a prompt x ∈ X to generate
an output y ∈ Y according to some probability distribution.
Suppose that y was watermarked in some way, and we
consider a watermark-removing adversary A. Our starting
point is the following simple but powerful observation: A’s
goal is not to find a non-watermarked y′ that is semantically
equivalent to y; rather, it is sufficient for A to find a non-
watermarked y′ that has equivalent quality to y as a response
to the prompt. For example, if x was a prompt to write an
essay on some topic, and y is a watermarked essay, then
A does not need to find a rephrasing of y: it is enough to
find another essay that would get the same grade. Given
the above, we believe that the watermarking task should be
phrased with respect to a prompt-dependent quality function
Q : X × Y → [0, 1] that on input a prompt x and response
y returns a grade that captures the quality of y as a response
to the prompt x. Our assumptions are the following (see
Section 4.1 for formal statements):

Quality oracle: the attacker has access to a “quality oracle”
that enables it to efficiently compute Q on input pairs (x, y)
of its choice. The quality oracle only needs to be able
to discern quality up to the quality level of the outputs
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produced by M.

Perturbation oracle: the attacker has access to a random-
ized “perturbation oracle“ P, such that on an input response
y ∈ Y and its corresponding prompt x ∈ X , P(x, y) is a
random perturbed response y′ (of x) which, roughly speak-
ing, approximately satisfies the following conditions: (1) the
probability that Q(x, y′) ≥ Q(x, y) is bounded away from
zero, (2) the random walk that the oracle P induces on the
space of high-quality outputs has good mixing properties.
(See Section 4 and Appendix H for formal conditions.)

We claim that the two assumptions typically hold in practice.
A proof of concept that a sufficiently discerning quality
oracle will exist is that the watermarked model itself can be
used as a quality oracle. We can simply prompt the model
to rate the quality of y as a response to x. By the heuristic
that “verification is easier than generation”, if a model is
powerful enough to generate high-quality outputs, then it
should also be powerful enough to check their quality. It is
likely that multi-modal generative models (Alayrac et al.,
2022; Reed et al., 2022; Betker et al., 2023) will allow this
argument to extend beyond text to other modalities such
as images and audio. There are already existing quality
metrics in some of these domains (Salimans et al., 2016;
Heusel et al., 2017; Hessel et al., 2021; Wu et al., 2023b). In
general, as models become more capable, the quality oracle
assumption can be made stronger.

Regarding the perturbation oracle, note that the perturbation
can be quite minor— for instance, replacing a masked span
of a few tokens. The new tokens can be sampled completely
at random (in which case the efficiency of the attack suffers
with large vocabulary size) or, more efficiently, by resam-
pling the tokens using an open-source (non-watermarked)
masked language model, which can be significantly weaker
than M. We use the latter approach in our experiments.
More sophisticated algorithms are possible: for instance,
a second ‘harmonization’ phase could be added in which
tokens outside the span are resampled using M. Regardless
of the implementation, the underlying principle behind any
perturbation oracle is that there is a cloud of high-quality
responses that are accessible starting from y through the ac-
cumulation of incremental quality-preserving modifications.
Watermarking schemes themselves typically rely on the
connectivity of large portions of high-quality output space.
At one extreme, if the prompt x uniquely defines a single
high-quality output (for example, if the prompt asks for the
canonically formatted answer to a mathematical problem
for which only one solution exists) then the response cannot
be watermarked in the first place.

1.1. Theoretical Result
Our main theoretical result is the following:
Theorem 1 (Main result, informal). For every (public or
secret-key) watermarking setting satisfying the above as-

sumptions, there is an efficient attacker that given a prompt
x and (watermarked) output y, with probability close to 1,
uses the quality and perturbation oracles to obtain an output
y′ such that (1) y′ is not watermarked with high probability
and (2) Q(x, y′) ≥ Q(x, y).

Table 1: Average results on three watermark schemes before
and after our attack, as applied to Llama2-7B model. The
GPT-4 judge score is obtained as the average of pairwise
comparisons between the perturbed text and the original wa-
termarked output. The score is +1 if GPT-4 strongly prefers
the perturbed text, −1 if it strongly prefers the original, and
zero otherwise. The reported value is the average score over
hundreds of successfully attacked examples and random
ordering of the comparands in the prompt.

Framework C4 Real News GPT-4 Judgez-score p-value

KGW (Kirchenbauer et al., 2023a) 6.236→ 1.628 0.002→ 0.187 -0.0877
Unigram (Zhao et al., 2023a) 8.210→ 1.456 4.563e-11→ 0.208 -0.0812
EXP (Kuditipudi et al., 2023) 3.540→ 0.745 < 1/5000→ 0.312 -0.0675

Our formal definition of watermarking schemes is given in
Section 3, and the formal statement of Theorem 1 is given
in Theorem 2 (in a simplified form), and fully in Theorem 6
of Appendix H. The main idea behind Theorem 1 is simple:
see Figure 1. The adversary uses rejection sampling to run a
random walk on the set of high-quality outputs of a prompt
x. That is, given the initial response y′ = y; for t = 0, 1, . . .,
the adversary repeatedly samples yt

r← P(x, y′) from the
perturbation oracle and accepts y′ (i.e., sets y′ := yt) if
Q(x, y′) ≥ Q(x, y). See Algorithm 1 for pseudocode. The
adversary does not need to know details of the watermarking
scheme or the space of outputs beyond an upper bound on
the mixing time of the random walk.

Our definitions of watermarking schemes assume that there
is a statistical signal inserted randomly into the generative
model output. This is different from so-called “AI detec-
tors” which can have deterministic detection algorithms.
Injecting randomness is necessary to provide bounds on the
false-positive probability of detecting non-model generated
outputs. Indeed, so-called AI detectors suffer from multiple
issues. Wu et al. (2023a) surveyed known systems and con-
cluded that existing detection methodologies do not reflect
realistic settings, and their deployment may well cause harm.
Liang et al. (2023) showed that several existing detectors are
biased against non-native English writers. OpenAI’s FAQ
for educators states that AI detectors do not work and suffer
from high rates of false positives (OpenAI, 2023-11-03).

Finally, we emphasize that, unlike typical cryptographic
cases, our adversary is weaker computationally than the wa-
termarked model it is attacking, and only has black-box ac-
cess to it, which only makes the impossibility result stronger.
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Figure 2: Detection and quality w.r.t. the number of perturbation steps using Llama2-7B with the KGW scheme (Kirchen-
bauer et al., 2023a). Left: z-score (standard deviation deviation from the null hypothesis of non-watermarked content).
Right: GPT-4 Judge score. Results are aggregated across 12 examples and the order of comparands.

Algorithm 1 Pseudocode for our attack
Input: prompt x, watermarked response y, quality oracle

Q, perturbation oracle P, random walk length T .
Output: response y′ without watermark.
y′ ← y ; // initialize with the
watermarked response

for t← 1 to T do
yt ← P(x, y′) ; // apply perturbation
if Q(x, yt) ≥ Q(x, y) then

y′ ← yt ; // update if quality does
not decrease

end
end
return y′ without watermark ; // return the
de-watermarked response

1.2. Experimental Results and Attack Implementation
As proof of concept, we implement instantiations of quality
and perturbation oracles for the text modality, resulting in
a practical attack against language model watermarking
schemes. The attack is successful in removing watermarks
from the three watermark schemes on which we tested it
(Kirchenbauer et al., 2023a; Kuditipudi et al., 2023; Zhao
et al., 2023a), see Table 1 and Figure 2.
Specifically, with enough quality-preserving perturbations,
we can degrade watermark average detection performance
on a C4 (Raffel et al., 2020) news completion task to a
z-score below 1.645 and a p-value greater than 0.05, a stan-
dard threshold that entails no more than 5% false positive
rates. In addition, though we use reward models and GPT-
3.5 as our quality oracles, to ensure that the attack is not
overfitting to these imperfect proxies, we also measure the
quality of the perturbed output using GPT-4. (We stress
that GPT-4 is only used to measure the quality of the attack,
and not in the attack itself.) We see that while the detection

probability steadily reduces, the quality score is generally
stable (Figure 2). While the attack might not be the most
efficient approach for these particular schemes, it has the
advantage of being generic and not varying based on the im-
plementation details of each scheme. See Section 5 for more
details on the implementation and experimental results.

2. Related Work
Limitations of generative model watermarks. There
have also been various recent works that attack watermark-
ing schemes. In the vision domain, there are attacks (Zhao
et al., 2023b; Lukas et al., 2023; Saberi et al., 2023) that
can erase watermarks for various watermarking schemes;
relevant attacks typically involve adding noise to either the
images themselves or latent representations, and/or perform-
ing some optimization procedure to remove the watermark.
Some of these works prove that their attacks will succeed
under strict assumptions about watermarks. For instance,
the impossibility result of Zhao et al. (2023b) is focused on
classical schemes that apply a bounded-perturbation water-
mark post-hoc to individual images. Meanwhile, Saberi et al.
(2023) propose a general attack— diffusion purification—
for image watermark schemes with a low “perturbation
budget”, which is the stringent requirement that even for a
single key, the distribution of watermarked outputs is close
to the original distribution of outputs. They also demon-
strate a “model substitution” attack against more general
image watermarking schemes. This attack finds adversarial
perturbations with respect to a proxy watermark detector.
However, obtaining the proxy detector requires either white-
box access to the detection algorithm or a large number of
watermarked and non-watermarked samples. Sadasivan et al.
(2023) (and further results in Saberi et al. (2023)) prove lim-
itations on post-hoc detectors (Zellers et al., 2019; Mitchell
et al., 2023; Tian & Cui, 2023; Wang et al., 2023; Verma
et al., 2023; Tian & Cui, 2023; Chakraborty et al., 2023;
Gehrmann et al., 2019; Wu et al., 2023a) when the distribu-
tions of human and AI-generated text are close. Post-hoc
detectors attempt to detect whether data is generated by a
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given model without the use of watermarks, so they are fun-
damentally more limited. In the LM domain, Kirchenbauer
et al. (2023a;b); Kuditipudi et al. (2023) empirically study
the viability of various attacks against the schemes they
propose. Notably, in paraphrasing attacks (which can be
implemented using language models, translation systems, or
manually by humans) the attacker rewords the watermarked
output while preserving its meaning. The above works find
that paraphrases often leave some substrings of the text in-
tact, or degrade text quality, and thus have mixed success on
schemes that are robust to bounded edit distance attacks. We
emphasize that our attack does not preserve the semantics
of the output, and is therefore less limited than paraphrasing
attacks. A watermarking impossibility result has also been
claimed in the LM domain by Sato et al. (2023); however,
their definition assumes security against an unbounded-time
adversary that can sample from the distribution of the origi-
nal unwatermarked generative model.

3. Secret-key Watermarking Schemes for
Generative Models

In this section, we formalize the notion of a (strong) water-
marking scheme for generative models. First, we begin with
the formalization of generative models. Then, we introduce
the concept of secret-key watermarking schemes. We refer
the reader to Appendix F.1 for the notation used.

3.1. Generative Models
Generative models are randomized algorithms that produce
a response y ∈ Y (e.g., an image or text) in response to a
given input prompt x ∈ X (e.g., a question or a description
of an image).
Definition 1 (Generative models). A conditional generative
model M : X → Y is a randomized efficient algorithm that,
given a prompt x ∈ X , produces an output y ∈ Y . We call
X the prompt space, Y the output space, and y

r← M(x) the
M’s response to a prompt x ∈ X .

To study watermarking formally, we associate a generative
model M with a quality function Q that assigns a score
0 ≤ Q(x, y) ≤ 1 to a response y (generated by M) for a
given prompt x. The quality function serves as a measure of
the “quality” of the generative model’s response. Moreover,
the quality Q must be “universal” in the sense that it can
assign a score even to a response y not generated by the
corresponding M. For instance, y might be a response from a
human. In essence, Q should be objective and not contingent
upon the specific generative model under consideration.

Definition 2 (Quality function). A quality function Q is a
deterministic function Q : X × Y → [0, 1] that assigns a
score Q(x, y) ∈ [0, 1] to the response y ∈ Y for a given
prompt x ∈ X . We say a quality function Q is associ-
ated with a conditional generative model M : X → Y if
the response quality of M is evaluated using Q. That is,
Q(x,M(x)) is the score assigned to M’s response M(x) for

a prompt x ∈ X .

3.2. Secret-Key Watermarking Schemes

In this section we formally define watermarking schemes.
Because our focus is a negative result, we focus on defining
secret-key watermarking schemes. These are easier to con-
struct, and hence ruling them out makes our impossibility
result stronger.

Definition 3 (Secret-key watermarking scheme). A secret-
key watermarking scheme for a class of generative models
M = {Mi : X → Y} with a key space K consists of the
following efficient algorithms:

Watermark(M): Given a generative model M ∈ M, this
randomized watermarking algorithm outputs a secret
key k ∈ K and a watermarked generative model Mk :
X → Y , dependent on k.

Detectk(x, y): Accepting a secret key k ∈ K, a prompt x ∈
X , and an output y ∈ Y , this deterministic detection
algorithm returns a decision bit b ∈ {0, 1}, where 1
indicates the presence of the watermark, and 0 indicates
its absence.

Definition 3 has several aspects that make it easier to real-
ize such schemes: (i) we focus on secret-key watermark-
ing schemes, where the detection algorithm Detect uses
the same secret key k that embeds the watermark; (ii) we
adopt prompt-conditional detection, meaning the Detect
algorithm also receives the prompt x; and (iii) we grant
the watermarking algorithm Watermark non-black-box ac-
cess to the model. In other words, the watermarked version
Mk of M could be derived by utilizing the internal opera-
tions of M. These choices simplify the development of the
watermarking scheme. Thus, our chosen relaxations only
reinforce our impossibility results presented in Section 4.

Properties of watermarking schemes. Definition 3 cap-
tures only the syntactic conditions for watermarking. Next,
we define the properties of a watermarking scheme, which
will be used later to prove our impossibility result. Primarily,
we aim to measure the “false negative” and “false positive”
rates. The former refers to the proportion of Mk’s responses
that are incorrectly identified as “un-watermarked”, i.e.,
Detectk(x,Mk(x)) = 0. The latter represents the prob-
ability of outputs y ∈ Y (not produced by Mk) that are
still labeled as “watermarked”. The formal definitions are
provided below.

Definition 4 (False negative and false positive ϵ-rates). Let
ϵpos, ϵneg > 0 and Π = (Watermark,Detect) be a secret-
key watermarking scheme for a class of generative models
M = {Mi : X → Y}.
False negative ϵneg-rate: Π has a false negative ϵneg-rate

if, for every model M ∈ {Mi : X → Y} and every
prompt x ∈ X , Pr[Detectk(x,Mk(x)) = 0] ≤ ϵneg.
The probability is over the random coins of Mk and the
pair (k,Mk) output by Watermark(M).
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False positive ϵpos-rate: Π has a false positive ϵpos-rate
if, for every model M ∈ {Mi : X → Y}, for ev-
ery prompt x ∈ X , and for every output y ∈ Y ,
Pr[Detectk(x, y) = 1] ≤ ϵpos. The probability is
over the pair (k,Mk) output by Watermark(M).

The rates above might be influenced by x ∈ X and y ∈ Y ,
for instance, they may diminish with the length of the output.

Broadly, a low false negative ϵneg-rate indicates that the
watermarking scheme is functioning as anticipated. This
means there is a significant probability that the detection
algorithm outputs 1 when y is derived from the watermarked
model. Conversely, small false positive ϵpos-rate implies
there is a small likelihood for Detectk(x, y) = 1 when k
is sampled independently of (x, y) ∈ X . Introducing a
random key k ensures that we can bound the false positive
rate without needing to make assumptions on the unknown
human-generated data distribution. Practical watermarking
schemes typically have a tunable hyperparameter (such as
a z-score threshold or p-value) that enables trading in the
false positive and false negative rate. We remark that for
many applications, watermarking schemes require a very
low false positive rate. For example, if professors routinely
use watermark detectors for testing for cheating in hundreds
or thousands of problem-set or essay submissions, then
unless ϵpos will need to be very small, there would be a high
chance of students being falsely blamed.

Security of watermarking schemes. Definition 4 is insuf-
ficient for ensuring security as it only characterizes the basic
properties that a watermarking scheme should possess. For
instance, these definitions might be met by watermarking
an output by appending the sentence “This text was gen-
erated by an AI model.” to the end of the LM’s response.
Regrettably, such an approach lacks robustness since any-
one can effortlessly remove the watermark by deleting the
appended sentence. This consideration leads us to the need
to define security. Specifically, the watermark should be
robust against adversarial attempts at removal. The adver-
sary’s objective is to strip the watermark from y (i.e., evade
detection) while maintaining the quality (as assessed by the
quality function Q) near the original response y level. This
requirement is crucial; otherwise, any arbitrary response
could constitute a valid erasure attack. Given our aim is to
establish an impossibility result, we will set forth a basic
condition that is necessary but not sufficient. The formal
definition follows.

Definition 5 (Erasure attack against watermarking schemes).
Let Π = (Watermark,Detect) be a watermarking scheme
for a class of generative modelsM = {Mi : X → Y} with
associated quality function Q : X ×Y → [0, 1]. We say that
an adversary A ϵ-breaks Π if for every M ∈ M, for every

prompt x ∈ X , we have

Pr

 Detectk(x, y
′) = 0 and Q(x, y′) ≥ Q(x, y) :

y
r← Mk(x), y

′ r← A(x, y)

 ≥ ϵ

where the probability is taken over (k,Mk) output by
Watermark(M) and the random coins of A.

Note that in a secret-key watermarking scheme (where an
attacker does not know k), the highest probability we can
anticipate for success in an erasure attack is 1− ϵpos, where
ϵpos is the false positive rate (see Definition 4).

Intuitively, a watermarking scheme Π =
(Watermark,Detect) is considered robust and secure
(for a meaningful choice of ϵ) if there does not exist a
computationally efficient adversary A that satisfies the
aforementioned Definition 5. The notion of “computation-
ally efficient” depends on the context, but at the very least
the adversary should be able to: (1) make black-box queries
to the watermarked model itself, (2) perform efficient
computations that do not require white-box access to the
model or the data that it was trained on. As we demonstrate
in Section 4, there is a practical and universal adversary that
meets Definition 5’s criteria in several settings. However,
if the adversary is restricted in other ways (for example
only allowed to modify the output up to ϵ distance in some
metric) then it may be possible to resist erasure attacks.
This is the setting of “weak watermarking” that we mention
in Section 1. We do not investigate weak watermarking
schemes in this paper.

On quality approximation/degradation. According
to Definition 5, an attack is considered successful when
the quality of the non-watermarked output y′ (computed by
the adversary) is at least that of the target watermarked out-
put y r← Mk(x), i.e., Q(x, y′) ≥ Q(x, y). We highlight that
we can relax Definition 5 to consider adversaries that can
remove the watermark at the price of some “small” degra-
dation in the quality. This can be accomplished by modify-
ing Definition 5 and requiring that Q(x, y′) ≥ Q(x, y)− γ
(instead of Q(x, y′) ≥ Q(x, y)) where γ is the parameter
defining the quality degradation tolerated by the definition.
For simplicity, in this work we focus on the simpler setting
in which there is no degradation, and the attacker has access
to an exact quality oracle. In practice, the quality oracle
may not be perfect, and hence some approximation and
degradation might be necessary.

4. Impossibility Result
We now show that a secret-key watermarking scheme can
be defeated (i.e., remove the watermark) when the outputs
of the underlying generative model can be perturbed. With
the term “perturbed” we mean that the output can be slightly
modified without affecting the quality. Examples of per-
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turbable outputs are texts in which a word/token/span can
be modified without changing the meaning of the text, or
images in which a single pixel/patch can be modified (e.g.,
slightly change the RGB value of the target region) without
affecting the picture. Thus, the impossibility result of this
theorem applies to LMs or image models.

4.1. Assumptions and Discussion

Our impossibility result relies on the following assumptions:

Adversaries can check their own work: The adversary has
access to the quality oracle Q : X × Y → [0, 1] (associated
to the target generative model M : X → Y).

Random walk on the output space Y: At a high level, we
assume that there is some graph G = (V, E) in the output
space V = Y of the target watermarked model Mk : X → Y .
In addition, the adversary has access to an oracle P (dubbed
perturbation oracle) that, on input y ∈ Y (e.g., the water-
marked output), returns a random neighbor y′ of y according
to the graph G. For example, in the case of language, this
can be obtained by taking some subset of the tokens and
replacing them with random choices (either uniform or in-
formed by large or smaller language models) or semantically
equivalent spans. The main assumption we make is that the
random walk has non-trivial mixing properties, and in par-
ticular that the graph is irreducible and aperiodic (these two
conditions guarantee that a long-enough random walk will
converge to its stationary distribution).

Pertubation oracle. We abstract the ability of the adver-
sary to perform a random walk over the output space of a
(possibly watermarked) generative model M : X → Y by
introducing the notion of perturbation oracles. In a nutshell,
a perturbation oracle P : X × Y → Y is a randomized ora-
cle that, on input x ∈ X and y ∈ Y , returns a high-quality
y′ ∈ Y (according to some distribution) with probability at
least ϵpert. The formal definition follows.

Definition 6 (Perturbation oracle). A perturbation oracle
P is a randomized oracle that, on input x ∈ X and y ∈ Y ,
returns an y′ ∈ Y . A perturbation oracle P : X × Y → Y
with quality function Q : X ×Y → [0, 1] is ϵpert-preserving
if for every prompt x ∈ X , for every y ∈ Y , we have

Pr[Q(x,P(x, y)) ≥ Q(x, y)] ≥ ϵpert.

4.2. Proof Overview of the Impossibility Result

The idea behind the impossibility result is to allow the adver-
sary to perform a random walk on the graph while walking
only over vertices with sufficiently high quality. Such a high-
quality random walk can be executed by leveraging the qual-
ity oracle Q and checking the quality of the next perturbed
vertex (at each step of the random walk). Somewhat more
formally, let x be a prompt and V≥q

x be a subset of vertices
(of the graph) of quality Q(x, y) ≥ q. Assuming the ver-
tices V≥q

x are connected (i.e., there is a non-zero probability

of reaching any vertex in V≥q
x ), then an adversary, starting

from a watermarked output y ∈ Y with quality Q(x, y) ≥ q,
can perform a random walk (using its corresponding oracle)
to reach a y′ ∈ V≥q

x that is not watermarked. As we will see
next, the existence of such a non-watermarked y′ ∈ V≥q

x is
guaranteed by the false positive rate of the watermarking
scheme (see Definition 4).

Impossibility result. Theorem 2 reports our impossibility
result that bounds A’s advantage ϵ in erasing the watermark
(for every M ∈ M in a particular classM = {Mi : X →
Y}) when A has oracle access to a perturbation oracle P.
As discussed in this section, such a result relies on the fact
that P’s graph representation is irreducible and aperiodic,
which are necessary conditions to converge to its unique
stationary distribution during the random walk. To make
explicit the independence between the adversary (including
its perturbation oracle P) and the secret key k of the target
watermarked model Mk, we define P’s irreducibility and
aperiodicity properties w.r.t. the median quality among
those of all possible responses (to a prompt x) that can
be obtained by watermarking M ∈ M. Observe that the
median quality does not depend on the secret key k used
during the watermarking process but instead depends on
all possible choices of secret keys (i.e., the key space of
Watermark). Formally, let QM,x = {q1, q2, . . .} and qmin

be defined as follows:

QM,x =
{
q : Pr

[
Q(x,Mk(x)) = q : (k,Mk)

r←Watermark(M)
]
> 0
}
,

qmin = min
M∈M,x∈X

{qM,x}, where qM,x is the median quality

of QM,x, where the probability in Section 4.2 is taken
over the random coins of Watermark and Mk. Then, the
following Theorem 2 defines P’s properties w.r.t. qmin, i.e.,
the minimum among all median qualities (see Section 4.2).

Theorem 2. Let Π = (Watermark,Detect) be a water-
marking scheme for a class of generative models M =
{Mi : X → Y} with an associated quality function
Q : X × Y → [0, 1]. Let P : X × Y → Y be a pertur-
bation oracle (defined over the same prompt space X and
output space Y as the classM) with the same associated
quality function Q : X × Y → [0, 1] as Π.

Under the following conditions: 1. The watermarking
scheme Π has a false positive ϵpos-rate; 2. The perturbation
oracle P is ϵpert-preserving; 3. For every non-watermarked
model M ∈ M, for every prompt x ∈ X , for every quality
q ∈ [qmin, 1], the q-quality x-prompt graph representation
G≥q
x of P is irreducible and aperiodic where qmin is the min-

imum median defined in Section 4.2. Also, let tM,x be the
ϵdist-mixing time of G≥q

x where ϵdist ≈ 0, and let tmax be
the largest mixing time among {tM,x}M∈M,x∈X ; there ex-
ists an oracle-aided universal adversary AP(·,·),Q(·,·) that ϵ-
breaks Π (Definition 5) by submitting at most O(tmax/ϵpert)
queries to P where ϵ ≈ (1− ϵpos)/2.
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Figure 3: (a) Detection performance before (Watermarked) and after (Attack) our attack using Llama2-7B with KGW
(Kirchenbauer et al., 2023a). (b) Comparison on watermarked texts against texts post-attack using GPT-4 judge. Scoring
criteria: 1=post-attack response is much better than watermarked one, 2=slightly better, 3=of similar quality, 4=slightly
worse, 5=much worse. Each example is included twice, one for each ordering of the two outputs in the GPT-4 query.

Figure 4: Un-watermarked example after our attack (left) and the corresponding original watermarked text (right) for an
SAT essay writing prompt. We do a word-by-word comparison and the differences between the two texts are highlighted.

5. Experiments
As an empirical test of our attack schema, we construct an
implementation of it and use it to attack several published
watermarking schemes (See Appendix J for many more
results, as well as Appendix K.1 and Appendix I for more
details on the experimental setup.)

5.1. Attack Implementation
To implement our attack, we need to choose (1) the gener-
ative model and (2) the watermarking scheme, as well as
implement (3) the perturbation oracle, and (4) the quality
oracle. All three of the watermarking schemes we attack
were originally tested on the Real News subset of the C4
dataset (Raffel et al., 2020), so we use this as our primary
task as well. Specifically, we give Llama-2-7B (Touvron
et al., 2023) the task of generating a completion given the
first 20 tokens of a news article. Except where otherwise
noted, we default to a generation length of 200 tokens.

We test the following three watermark frameworks:
KGW (Kirchenbauer et al., 2023a), EXP (Kuditipudi et al.,
2023) and Unigram (Zhao et al., 2023a), and refer readers
to Appendix K.2 for more details.

5.2. Experimental Results on Language Models

We include our results on C4 news completion tasks with
three watermark frameworks in Table 1. We show that

with enough iterations, we can degrade watermark average
detection performance to a z-score below 1.645 and a p-
value greater than 0.05, a standard threshold that entails no
more than 5% false positive rates. We also query GPT-4 to
evaluate the comparative quality of the original watermarked
output and the output after our attack. To do this, we prompt
GPT-4 to compare the two outputs on a scale from 1 to
5 (corresponding to whether GPT4 “strongly” prefers one
output, “slightly“ prefers it, or judges them to “have similar
quality”, see Figure 8). Because GPT-4 has a bias towards
preferring the first of the two outputs (Zheng et al., 2023),
we query it twice, with both orderings of the two outputs.

We take a closer look at the KGW results by plotting his-
tograms of the detection and GPT-4 judgment statistics for
around 200 examples (Figure 3). These demonstrate that
our attack can substantially degrade detection performance
while typically inducing only minor quality degradation.
Note that we choose the number of random walk steps for
our attack to be high enough to push the average p-value
above 0.05; we expect that running for longer would result
in even higher p-values.

Detection performance and text quality over the course
of the random walk. We also study how the watermark
z-score and GPT-4 judge quality score change over time
during the attack. For efficiency, we ran these tests for only
12 randomly selected prompts from the dataset. The re-
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(a) Invisible Watermark (Mountain, 2021) (b) Stable Signature (Fernandez et al., 2023)
Figure 5: Qualitative examples of the watermarked images after (left) and before (right) our attack for two watermarking
schemes. Images are generated by prompting VLMs with the prompt “A long and winding beach, tropical, bright, simple,
by Studio Ghibli and Greg Rutkowski, artstation\n”. Detection and quality evaluation results: Invisible Watermark (p-value
3.5e-15 → 0.2354, CLIPScore 34.82 → 33.60, GPT-4 Judge 0), Stable Signature (p-value 1.3e-5 → 0.468, CLIPSCore
32.27→ 31.58 , GPT-4 Judge 0).

sults are averaged over these 12 examples, and the GPT-4
judge results are averaged over the two output orderings
as well. In Figure 2, as the number of traversal steps in-
creases, the z-score steadily decreases while the average
GPT-4 judgment score fluctuates around its initial value of
0. In Appendix K.3, we showcase how the text, detection
statistics, and GPT-4 judge score change over the course of
the random walk attack for a single example.

5.3. Experimental Results on Vision-Language Models
As a proof of concept of the generality of our attack, we
show that a version of the attack can remove watermarks that
have been used for image diffusion models. Specifically, we
attack Invisible Watermark (Mountain, 2021) applied to the
diffusion model stable-diffusion-xl-base-1.0 (Podell et al.,
2023) and the Stable Signature (Fernandez et al., 2023) to
sdxl-turbo (Sauer et al., 2023).

Table 2: Average results on two image watermark schemes
before and after attack, as applied to the stable-diffusion-xl.
We adopt the same evaluation protocol as on LMs (Table 1).

Framework p-value CLIP score GPT-4 Judge

Stable Signature (Fernandez et al., 2023) 5.9404e-6→ 0.0589 33.91→ 33.40 -0.0875
Invisible Watermark (Kirchenbauer et al., 2023a) 1.793e-5→ 0.206 35.64→ 35.51 - 0.138

We first generate 200 images from randomly chosen prompts
that are verified to be effective in generating high-quality
images and then filter those examples with p-values greater
than 0.001. For the remaining 141 valid examples (for Sta-
ble Signature, all are valid), we implement our perturbation
oracle using stable-diffusion-2-base (Rombach et al., 2022),
which inpaints the image masked by a random square mask
of size 0.02 times the image size. Note that this is a weaker
model than the watermarked models, but it is not much
weaker, so we see these results as preliminary. Our quality
oracle is implemented as a reward model trained on Human
Preference Score v2 (Wu et al., 2023b). We perturb the im-

age for 100 valid random walk steps. Finally, the attacked
images are evaluated by calculating the CLIPScore (Hessel
et al., 2021) and querying the multimodal API of GPT-4
(OpenAI, 2023), gpt-4-turbo, to report the final quality com-
parison scores using the prompt “[Prompt], Response A:
[Image A], Response B: [Image B], Compare which of the
two above figures is a better response of higher-quality to
the given prompt. Explain your reasoning step by step.”

We show in the Table 2 that our attack can successfully re-
move the watermarks with only slight degradation in image
quality using the same evaluation protocol as on LMs.

5.4. Qualitative Examples

We display two concrete non-cherrypicked before-and-after
examples of the effects of our attack on model outputs to
know how quality is affected by the process (Figure 4). We
use an SAT essay prompt: “In any field of inquiry, the be-
ginner is more likely than the expert to make important
contributions. Write a response in which you discuss the
extent to which you agree or disagree with the statement
and explain your reasoning for the position you take. In
developing and supporting your position, you should con-
sider ways in which the statement might or might not hold
true and explain how these considerations shape your posi-
tion.”. The comparison shows that the text after our attack
can still be coherent, fluent, and on-topic. Such high-quality
non-watermarked examples are abundant in our results. A
detailed presentation of the text across various intermediate
stages throughout the attack is in Appendix J.3 with detec-
tion results and quality evaluations. Moreover, Figure 5
showcases two set of images before and after our attack.
Some image details such as the background, and shapes
of objects get perturbed but the overall image can still fit
the prompt provided. We again see the p-values dramat-
ically increase after our attack though with slight quality
degradation.
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Impact Statement
We believe that investigating the possibilities of watermark-
ing schemes at this stage can help to provide a better un-
derstanding of the inherent tradeoffs and give policymakers
realistic expectations of what watermarking can and can-
not provide. While our techniques can be used to remove
watermarks from existing schemes, they are not the most
efficient way to do so, with the benefit being generality
rather than efficiency. Moreover, our implementation is for
text generation models, while currently widely deployed
watermarks are for image generation models. While it is
possible to adapt our ideas to attack deployed image genera-
tive models, we do not provide a recipe for doing so in this
paper. Thus, our work isn’t likely to be used by malicious
actors. Rather, we see exposing fundamental weaknesses in
the watermarking paradigm as a contribution to the ongo-
ing discussion on how to mitigate the misuse of generative
models. We hope our findings will be taken into account by
organizations building generative models and policymakers
regulating them.
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A. Concluding Remarks
This work provides general impossibility results for strong watermarking schemes. Although our specific attack is not very
efficient, its primary advantage lies in its generality. Furthermore, while our implementation targets language generation
models, the concepts of quality and perturbation oracles apply to all generative contexts, including audio-visual data. We
posit, without formal proof, that verification is simpler than generation; thus, a general enhancement in capabilities and
flexibility is likely to benefit the attacker (i.e., through improved quality and perturbation oracles) more than the defender (i.e.,
through better planting and detection algorithms). Hence we are not optimistic about the feasibility of strong watermarking
schemes that would prevent a determined attacker from removing the watermark while preserving quality. Nonetheless, weak
watermarking schemes do exist and can be useful, especially for safeguarding against unintentional leaks of AI-generated
data (e.g., into training sets) or in scenarios with minimal risk that assume a low-effort attacker. Moreover, watermarking
is just one tool in the arsenal of safety efforts for generative AI modeling. Cryptography can also be used to establish
provenance of data. Ultimately, in many instances of disinformation, it is crucial to verify the data’s source rather than to
confirm whether AI generated it. Thus our goal is to set practical expectations regarding what watermarking schemes can
achieve, thereby contributing to the safer use of AI models.

B. Questions & Answering
Q: Perturbation oracle only checks the quality of the output but does not guarantee the content preservation.

We believe that our theoretical definition of attack as quality preserving is the correct one for both images and language
models. For example, in the context of disinformation, if an attacker generates an output with respect to a prompt X (e.g.,
“An image of a person doing X” or a “A New York Times story that X happened”) then they only care about the output’s
fitness to the prompt. So, if they are able to modify the output to erase the watermark while preserving quality (i.e. fitness to
prompt) this would be a successful attack, even if some semantic details are changed. Therefore, we think that our metric of
looking at quality (by a GPT4 judge, which crucially is not used in the attack itself) is the correct way to evaluate success.

A common question is to explain the difference between ours and prior attacks, which attempted to modify the output to be
semantically equivalent while erasing the watermark.

One of the contributions of this paper is the formulation of the security of watermarking with respect to a measure of quality
which is fitness to the prompt, as opposed to a measure of “similarity”. This formulation captures more closely what
the attacker cares about: if they request an output Y to a prompt X from a model, and want to perturb it to Y’ that is not
watermarked, then they don’t care whether Y’ is semantically identical to X but whether it has as good a fitness with the
prompt. This implies that we are supposed to evaluate text quality conditioned on the prompt as opposed to metrics like
perplexity that only evaluate the response.

Second, this formulation is necessary for the impossibility result to hold in generality. For example, if the prompt is to write
a story, then the model would has the freedom to choose semantic details (e.g., names of characters, physical descriptions)
that can be used to embed the watermarking signal. It may be impossible to remove the watermark without modifying these
semantic details. Note that if the prompt did specify these details such as names of character, then neither the model would
have the freedom to modify them to inject the watermark nor the attacker could change them to erase it. Hence we believe
fitness to the prompt (aka quality) is the right measure for watermark attack.

Since our attack has a different objective (quality preservation as opposed to semantic similarity), it is also qualitatively
different from prior works (Sadasivan et al., 2023; Saberi et al., 2023). We may consider a similar space of perturbations,
but our algorithm of whether to accept or reject a given perturbation is fundamentally different.

What are the tradeoffs between type-I and type-II errors as the output space entropy changes?

We formalized only the minimal properties required to demonstrate our impossibility result which does not include entropy,
type-I and type-II errors. Setting aside the graph’s properties, our impossibility result applies to watermarking schemes with
a small false positive rate ϵpos (please refer to Def. 4), which is fundamental for having a functional watermarking scheme.
Indeed, small ϵpos guarantees that, with (high) probability 1 − ϵpos, the scheme classifies as un-watermarked responses
computed independently from the secret key. This type of response corresponds to human-generated content. This is a
necessary property for having a functional watermarking scheme that permits distinguishing between machine-generated
and human-generated content (for more details see also page 5, right after Def. 4).
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To summarize, our impossibility result applies to any good enough watermarking scheme independently from the output
space entropy amount, type-I, and type-II errors in detecting the watermark. This only makes our impossibility stronger and
justifies the absence of entropy/type-I/type-II formalizations.

C. A Thought Experiment
We expect that with time, generative AI models would both be able to handle more complex prompts, as well as be able
to generate outputs with more modalities. As intuition for both our attack and our contention that increasing capabilities
favor the watermark attacker, consider the following “mental experiment”, inspired by Valiant & Vazirani (1985). We stress
that this mental experiment is not how our actual attack is implemented. Consider a powerful chat-like model that can
generate content based on highly complex prompts. Suppose that the prompt "Generate output y satisfying
the condition x" has N possible high-quality responses y1, . . . , yN and that some ϵ fraction of these prompts are
watermarked. Now consider the prompt "Generate output y satisfying the condition x and such
that h(y) < 2256/N" where h is some hash function (which can be simple and non-cryptographic) mapping the output
space into 256 bits (which we identify with the numbers {1, . . . , 2256}). Since the probability that h(y) < 2256/N is 1/N ,
in expectation there should be a unique i such that yi satisfies this condition. Thus, if the model is to provide a high-quality
response to the prompt, then it would have no freedom to watermark the output. An attacker could use binary search to find
the value of N , as well as use random “salt” values for the hash function, to ensure a high probability of success. Once again,
this is just a mental experiment. Current models are unable to evaluate even simple hash functions and their performance
deteriorates with additional conditions. But we believe it does provide intuition as to how the balance in watermarking shifts
from defender to attacker as model capabilities increase.

D. Discussions on Our Assumptions
The quality-oracle assumption is based on the intuition that it is easier, or at the very least not harder, to verify outputs than
to generate them. In practice, we have used both zero-shot prompting (see Section 5) and reward models to compute the
quality function. In the context of images, it is also possible to use measures such as Inception score (Salimans et al., 2016),
FID score (Heusel et al., 2017), CLIP score (Hessel et al., 2021) or text-to-image reward models (Wu et al., 2023b; Xu
et al., 2024) etc. While at the moment zero-shot prompting works only for language models and not for audio/visual data, as
models grow in power, both in capabilities and modalities, computing quality functions will only become easier.

The perturbation-oracle assumption is more subtle. First, note that the notion of “perturbation” can be abstract and does
not need to correspond to changing a discrete subset of the output (e.g., a sequence of tokens or a patch of an image). The
assumption can potentially fail for some prompts. For example, if a prompt has the form “Solve for the following set of n
linear equations in n variables, and format the solution as ...” then there is zero entropy in the space of possible high-quality
solutions. In such a case there is no “perturbation oracle” that can be defined. However, in such a case no watermarking is
possible either. Indeed, watermarking schemes require some sort of “perturbation oracle” as well. To ensure successful
watermarking, there needs to be a large set of potential high-quality solutions, and the scheme needs to be able to select
a small subset of it (with a measure bounded by ϵpos— the false positive rate) based on the key. Hence we believe this
assumption will be justified in cases where watermarking is feasible as well. Note that our perturbation oracle is in one
crucial case much weaker than what is needed for watermarking: we do not require it to always preserve quality or even do
so with high probability. It is enough that the probability of preserving quality is bounded away from zero.

Another potential issue with the perturbation oracle is that there could be outputs that are high-quality but would be very
unlikely to be ever output from the model, whether watermarked or not. Hence the graph might be disconnected simply
because of these “unreachable outputs”. However, these can be addressed by introducing weights on the vertices as well that
correspond to the probability of the output under the model. Such weighing makes no difference to our argument, but we
omit this for clarity of notation.

E. Additional Related Works
Watermarks for generative models. Digital watermarking—embedding imperceptible but algorithmically detectable
signals in data for the purpose of attributing provenance–has a long history (see Cox et al. (2007) for a survey) across
modalities such as images (Boland et al., 1995; O’Ruanaidh & Pun, 1997; Cox et al., 2007; Hayes & Danezis, 2017; Zhu
et al., 2018), text (Atallah et al., 2001; 2002), and audio (Boney et al., 1996; Arnold, 2000). Watermarking of generative
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model outputs, involving changing the generation process itself instead of simply adding watermarks to generated images
post-hoc, is a more recent development which was first introduced in the context of image generators (Yu et al., 2021)
and then in the LM setting (Aaronson, 2022; Kirchenbauer et al., 2023a). Several proposed schemes in the vision setting
modify the models themselves through pre-training (Yu et al., 2021) or fine-tuning (Fei et al., 2022; Zeng et al., 2023; Zhao
et al., 2023c; Fernandez et al., 2023); the scheme of Wen et al. (2023) intervenes on a diffusion model’s sampling process.
Intervening on the sampling process (treating the neural network itself as a black box) is the standard approach for LM
schemes (Kirchenbauer et al., 2023a;b; Kuditipudi et al., 2023; Christ et al., 2023; Liu et al., 2023; Zhao et al., 2023a). The
scheme in Kirchenbauer et al. (2023b) boosts the probabilities of tokens from an adaptively chosen “green” subset of the
vocabulary at each inference step. Follow-up works (Kirchenbauer et al., 2023b; Liu et al., 2023; Zhao et al., 2023a) improve
the robustness of this scheme to bounded-edit distance attacks. The schemes of Christ et al. (2023) and Kuditipudi et al.
(2023) guarantee the desirable property that the marginal distribution of outputs over the random choice of the secret key is
the same as (or computationally indistinguishable from) the un-watermarked distribution, ensuring no quality degradation
on average. Fairoze et al. (2023) embed a publicly-verifiable cryptographic signature into texts using rejection sampling.

Related settings. Parallel to the line of work on watermarking generative models, there have been various proposed
schemes for post-hoc detection of generative model outputs (Zellers et al., 2019; Mitchell et al., 2023; Tian & Cui, 2023;
Wang et al., 2023; Verma et al., 2023; Tian & Cui, 2023; Chakraborty et al., 2023; Gehrmann et al., 2019; Wu et al.,
2023a). When there is no watermark in the data, detecting whether it is generated by a given model is a harder problem,
and there are fundamental limitations to these schemes. Post-hoc detection needs to rely on empirical differences between
the distributions of generative model outputs and natural/human outputs. As generative models become better at modeling
their training distributions, this detection problem can become increasingly difficult; and since adversaries can adapt their
outputs to thwart these detectors, there cannot be error rate guarantees in this setting. Empirically, paraphrasing attacks
work well against post-hoc detection algorithms for LMs (Krishna et al., 2023; Kirchenbauer et al., 2023b). Distinct from
watermarking schemes that aim to make every output of a generative model detectable, there are also schemes that aim
to watermark the weights of the network for the purpose of intellectual property protection, or enable a party to detect
a signature in a given network given adaptive black-box access to the network (Uchida et al., 2017; Zhang et al., 2018;
Rouhani et al., 2018; Bansal et al., 2022). Finally, we note that watermarking is a special case of steganography, which is
the more general practice of planting hidden information in data. This has also been studied in the context of generative
models (Fang et al., 2017; Yang et al., 2018; Ziegler et al., 2019; Tancik et al., 2020).

F. Mathematical Background and Random Walks
F.1. Notation

We use the notation [n] = {1, 2, . . . , n}. Capital bold-face letters (such as X) are used to denote random variables, small
letters (such as x) to denote concrete values, calligraphic letters (such as X ) to denote sets, and serif letters (such as A) to
denote algorithms. For a string x ∈ {0, 1}, we let |x| be its length; if X is a set, |X | represents the cardinality of X .

We denote with x⃗ ∈ Xn the column vector of length n with elements from X . Similarly, we denote with X⃗ ∈ Xn×m the
matrix with n rows, m columns, and elements from X . We write x⃗⊤ (resp. X⃗⊤) to denote the transpose vector of x⃗ (resp.
the transpose matrix of X⃗). Given a vector x⃗ ∈ Xn (resp. a matrix X⃗ ∈ Xn×m), we write x⃗(i) ∈ X (resp. X⃗(i, j)) to
denote the i-th element of x⃗ (resp. the element located in the i-th row and j-th column of X⃗). We say a vector x⃗ ∈ Rn is a
(probability) distribution if

∑
i x⃗(i) = 1; if x⃗ ∈ Rn is a distribution, we use the notation x⃗ and x interchangeably (where

x⃗(i) = x(i) for every i ∈ [n]). When x is chosen uniformly from a set X , we write x
r← X ; if x is a distribution, we write

x
r← x to denote the act of sampling x according to the distribution x. That is, Pr

[
x = i : i

r← x
]
= x(i).

F.2. Graphs, Random Walks, and Mixing Time

Next, we focus on weighted directed graphs G = (V, E) composed of n vertices V = [n]. We denote by weight(i, j) the
weight of the edge (i, j) ∈ E from i ∈ V to j ∈ V . We assume that weight(i, j) = 0 if and only if (i, j) ̸∈ E . Moreover, we
define weight(i, ⋆) =

∑
j weight(i, j), i.e., weight(i, ⋆) represents the sum of the edges’ weights with source vertex i.

Random Walks. A t-step random walk over G is a probabilistic process such that, at each step, a neighbor is selected
from the neighbors of the current vertex, according to the weight distribution. The transition matrix P⃗ ∈ Rn×n of a
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random walk over a weighted directed graph G = (V, E) is defined as P⃗ (i, j) = weight(i,j)
weight(i,⋆) , i.e., P⃗ (i, j) represents the

probability (based on the graph’s weights) of reaching vertex j from vertex i. Let p0 ∈ Rn be the starting distribution
(of a random walk), and let pt ∈ Rn represent the distribution after t steps of the random walk. By definition, we have
pt+1(i) =

∑
j:(j,i)∈E pt(j) · P⃗ (j, i), where p(i) is the probability associated with i ∈ V . Similarly, the (global) distribution

after a t-step random walk can be expressed as pt+1 = P⃗⊤ · pt.

Below, we recall the definition of the stationary distribution of a random walk.

Definition 7 (Stationary distribution of random walks). Let G = (V, E) be a weighted directed graph and P⃗ be the transition
matrix of G. We say that π⃗ ∈ Rn is a stationary distribution for P⃗ if P⃗⊤ · π⃗ = π⃗.

In other words, the above definition states that the probability distribution after a 1-step random walk is the stationary
distribution π⃗ if the starting distribution p0 is the stationary distribution itself. By induction, this also implies that the
distribution pt after a t-step random walk is equal to the stationary distribution π⃗ if p0 = π⃗, for every t ≥ 1.

The following theorem provides the stationary distribution for any weighted directed graph.

Theorem 3. Let G = (V, E) be a weighted directed graph and P⃗ be its transition matrix. The distribution π⃗ ∈ Rn such that

∀i ∈ V, π⃗(i) = weight(i, ⋆)∑
i∈V weight(i, ⋆)

=

∑
j∈V weight(i, j)∑

i∈V
∑

j∈V weight(i, j)
=

∑
j∈V weight(i, j)∑

(i,j)∈E weight(i, j)

is a stationary distribution for P⃗ .

Interestingly, the stationary distribution is unique when the underlying directed graph G is irreducible (i.e., the graph does
not have leaf nodes). Moreover, if G is also aperiodic then, independently of the initial starting distribution p0, a random
walk converges to its stationary distribution π⃗ as t→∞.

Theorem 4 (Convergence to the stationary distribution). If a weighted directed graph G = (V, E) is irreducible and
aperiodic, there exists a unique stationary distribution π⃗. Moreover, for every p0 ∈ Rn, pt = (P⃗⊤)t · p0 (i.e., the
probability distribution after a t-step random walk with starting distribution p0) converges to π⃗ as t→∞.

In this work, we are interested in setting a bound for t in the above theorem. In more detail, we want to bound the minimum
number of steps required by the random walk to get close enough to its stationary distribution. This is known as the
ϵdist-mixing time, and it can be bounded using the second largest eigenvalue (in absolute value) of the transition matrix of
the graph (note that the second largest eigenvalue also has connections with the conductance of the graph). Below, we report
the formal definition of mixing time and its corresponding bound.

Definition 8 (ϵdist-mixing time). Let G = (V, E) be a weighted directed graph that is irreducible and aperiodic (as
in Theorem 4) and let P⃗ be its corresponding transition matrix. For any 0 < ϵdist ≤ 1, the ϵdist-mixing time tmin(ϵdist) of P⃗
is the smallest number of steps t such that for every starting distribution p0 ∈ Rn, we have∣∣∣pt − π⃗

∣∣∣ = ∣∣∣(P⃗⊤)t · p0 − π⃗
∣∣∣ ≤ ϵdist,

where π⃗ is the unique stationary distribution of P⃗ .

Theorem 5 (Bound on ϵdist-mixing time). Let G = (V, E) be a weighted directed graph that is irreducible and aperiodic,
and let P⃗ be its corresponding transition matrix. Also, let α1 ≥ α2 ≥ . . . ≥ αn be the eigenvalues of P⃗ , and let π⃗ be
the unique stationary distribution of P⃗ (Theorem 4). For g = max{|α2|, . . . , |αn|} and πmin = min{π⃗(1), . . . , π⃗(n)}, the
ϵdist-mixing time of P⃗ is

tmin(ϵdist) ≤ O

(
1

1− g
· log

(
1

πmin · ϵdist

))
.

Mixing condition. To define the mixing condition, we need to define an associated random walk for the perturbation
oracle with respect to some particular prompt. We then consider the mixing time of this random walk (see Appendix F
for a formal definition of mixing time). Fix a prompt x ∈ X . The perturbation oracle P(x, ·) can be represented using
a weighted directed graph Gx = (Vx, Ex) where an edge (y0, y1) ∈ Ex if weighted with the probability of going from
output y0 to output y1 using P(x, ·). Below, we formally define two different graph (hierarchically ordered) representations
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corresponding to P. The first, named thex-prompt graph representation, is essentially the graph Gx = (Vx, Ex) described
above, i.e., the graph representing the perturbation oracle P(x, ·) for a fixed prompt x ∈ X . The second, named q-quality
x-prompt graph representation, is the subgraph G≥q

x = (V≥q
x , E≥q

x ) of Gx = (Vx, Ex) where we only consider vertices of
quality at least q, i.e., Q(x, y) ≥ q.

Definition 9 (Graph representation of perturbation oracles). Let P : X × Y → Y be a perturbation oracle with associated
quality function Q : X × Y → [0, 1].

x-prompt graph representation: Fix a prompt x ∈ X , the x-prompt graph representation of P is a weighted directed
graph Gx = (Vx, Ex) such that Vx = Y and Ex ⊆ Y × Y defined as follows:

Ex = {(y0, y1) ∈ Y × Y : Pr[y1 = P(x, y0)] > 0} .

The weight function weight(y0, y1) of Gx = (Vx, Ex) is defined as follows:

weight(y0, y1) =
{

Pr[y1 = P(x, y0)] if (y0, y1) ∈ Ex,
0 otherwise.

q-quality x-prompt graph representation: Fix q ∈ [0, 1] and a prompt x ∈ X , the q-quality x-prompt graph representa-
tion of P is a graph G≥q

x = (V≥q
x , E≥q

x ) such that V≥q
x ⊆ Y and E≥q

x ⊆ Y × Y defined as follows:

E≥q
x = {(y0, y1) ∈ Y × Y : Q(x, y0) ≥ q,

Q(x, y1) ≥ q, and Pr[y1 = P(x, y0)] > 0}, and

V≥q
x = {y ∈ Y : Q(x, y) ≥ q} .

The weight function weight(y0, y1) of G≥q
x = (V≥q

x , E≥q
x ) is defined as follows:

weight(y0, y1) =
{

Pr[y1 = P(x, y0)] if (y0, y1) ∈ E≥q
x ,

0 otherwise.

G. Discussions on Impossibility Theorem
For simplicity, let us assume there exists a perturbation oracle P that is 1-preserving, i.e., for a fixed prompt x ∈ X , the
oracle always outputs a perturbed output y′ ∈ Y whose quality is at least that of the initial value y ∈ Y . Now, consider an
adversary A with oracle access to P. The adversary’s objective is to perturb the watermarked output y0 t times (for some
large enough t) to produce intermediate perturbations y1, . . . , yt, such that the final perturbed output yt will be independent
of the watermarking secret key k. In this way, yt will likely be verified as non-watermarked (i.e., Detectk(x, yt) = 0) with
probability at least 1 − ϵpos where ϵpos is the false positive rate of the watermarking scheme. This can be achieved by
requiring the adversary to compute yi

r← P(x, yi−1) for i ∈ [t], where y0 corresponds to the initial watermarked output.
This adversarial strategy is effective in removing the watermark for the following two reasons:

• The interaction with the perturbation oracle can be represented as a t-step random walk over the q0-quality x-prompt
graph representation G≥q0

x = (V≥q0
x , E≥q0

x ) of P where q0 is the quality of the starting (watermarked) output y0. Thus,
y0, . . . , yt exactly represents the path taken by the adversary during such a random walk (note that each y1, . . . , yt will
have the same quality q0 by definition of a 1-preserving perturbation oracle. See Definition 6).

• If G≥q0
x is irreducible and aperiodic, a random walk over G≥q0

x converges to its unique stationary distribution π⃗
(see Appendix F.2).3 In addition, if t corresponds to (or is slightly larger than) the ϵdist-mixing time of G≥q0

x , then
the distribution of the final perturbed output yt is ϵdist-close to the stationary distribution π⃗ of G≥q0

x . Furthermore,
this distribution π⃗ is completely independent of the secret key k of the watermarking scheme since the secret key k is
sampled (by the watermarking algorithm Watermark(M)) independently from P’s definition.

The above two facts, combined with the false positive ϵpos-rate of the watermarking scheme, directly imply that yt will
be classified as non-watermarked with probability at least (1− ϵpos)(1− ϵdist). Moreover, we can set ϵdist to be arbitrarily
small to achieve an adversarial advantage of (1− ϵpos)(1− ϵdist) ≈ (1− ϵpos).4

3Irreducibility and aperiodicity are the fundamental mixing properties that P (and its corresponding graph) must satisfy.
4Indeed, ϵdist approaches 0 exponentially as t increases (see Theorem 5).
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The aforementioned approach relies on the fact that the perturbation oracle is 1-preserving; thus, each oracle invocation will
certainly correspond to a new step of the random walk over the graph G≥q0

x = (V≥q0
x , E≥q0

x ). This is because, starting from
the watermarked output y0 with quality q0, each invocation will output (with probability 1) a perturbed output yi with at
least the same quality q0. To make the impossibility more generic, we extend the attack to deal with perturbation oracles
that may return low-quality perturbed values with non-zero probability, i.e., the perturbation oracle is ϵpert-preserving for
some ϵpert < 1. In such a setting, we are not guaranteed that each invocation of P will correspond to a step of the random
walk over G≥q0

x . Indeed, with probability 1 − ϵpert, the ϵpert-preserving perturbation oracle may return y′ ∈ Y such that
Q(x, y′) < q0, i.e., y′ ̸∈ V≥q0

x . To overcome this difficulty, we give the adversary oracle access to the quality function Q. In
such a way, at each iteration i ∈ [t], the adversary can check the quality of the perturbed value yi

r← P(x, yi−1) and proceed
as follows:

• If Q(x, yi) ≥ q0, the adversary knows that the obtained perturbed value yi corresponds to a new random walk step over
G≥q0
x . Hence, in the next iteration, it will perturb the recently obtained output yi (as described previously for the case

of a 1-preserving perturbation oracle).

• On the other hand, if Q(x, yi) < q0, the value yi does not correspond to a new random walk step. In this case, the
adversary needs to re-send yi−1 to P until it obtains a perturbed value yi such that Q(x, yi) ≥ q0.

Hence, by accessing the quality oracle Q, the adversary can continue walking over the high-quality graph G≥q0
x even if the

perturbation oracle is not errorless (i.e., ϵpert < 1). Naturally, when ϵpert < 1, the adversary needs to submit more queries to
the perturbation oracle to overcome the low-quality outputs of P. This is taken into account by our theorem which relates
the number of queries needed to the parameter ϵpert, i.e., the higher (resp. lower) ϵpert, the lower (resp. higher) the number
of queries.

The following corollary is obtained from Theorem 2 assuming (i) the perturbation oracle is 1
2 -preserving, and (ii) the

watermarking scheme has a false positive rate of 1
10 .

Corollary 1. Let Π = (Watermark,Detect) be a watermarking scheme and P be a perturbation oracle as defined
in Theorem 2. If Π has a false positive 1

10 -rate and P is 1
2 -preserving, then there exists an oracle-aided universal adversary

AP(·,·),Q(·,·) that breaks Π with a success probability of approximately 9
20 , by submitting at most O(tmax) queries to P,

where tmax is defined in Theorem 2.

On improving A’s advantage. In Theorem 2, A’s advantage is approximately 1−ϵpos
2 whereas 1− ϵpos is the maximum

advantage that an adversary can achieve. The multiplicative 1
2 loss is due to the definition of P w.r.t. to the minimum median

qmin. Without loss of generality, it is possible to get an adversarial advantage ϵ arbitrarily close to 1− ϵpos by enforcing
P’s properties over a larger range of q values (Theorem 2 of Theorem 2). This can be accomplished by decreasing qmin

(instead of using the median quality) such that convergence will be guaranteed for almost all watermarked outputs y (the
ones with quality at least qmin).5 For this reason, in Appendix H, we include Theorem 6 (and its corresponding proof) that is
the extended version of the above theorem. In particular, Theorem 6 defines P’s properties w.r.t. v-th quality percentile
(instead of the median) so that, by decreasing v, we can get arbitrarily close to the best possible adversarial advantage
1− ϵpos. Moreover, Theorem 6 explicates the concrete relation between the adversarial advantage ϵ, the number of queries,
and the ϵpert-preservation of P. We refer the reader to Appendix H for more details.

H. Extended Impossibility Theorem
In this section, we include an extended version of the impossibility result which explicates the concrete relation between the
adversarial advantage ϵ, the number of queries, and the ϵpert-preservation of P. In addition, to make the result as generic
as possible, we define P’s properties (i.e., irreducibility and aperiodicity) w.r.t. any arbitrary v-th quality percentile (for
v ∈ [0, 100]) of the quality values of all possible responses (of prompt x) that can be obtained by watermarking M ∈ M
(recall that in Theorem 2 we used the median instead of the v-th quality percentile).

5For example, by setting qmin = 0, we obtain that the attack succeeds independently from the quality of the received initial watermarked
output y r← Mk(x). This is because the quality of y is always non-negative and, for every quality q ∈ [0, 1], the q-quality x-prompt graph
representation of P will be irreducible and aperiodic.
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Formally, for v ∈ [0, 100], let QM,x = {q1, q2, . . .} and qmin be defined as follows:

QM,x is defined as in Section 4.2, (1)
qmin = min

M∈M,x∈X
{qM,x} where qM,x is the v-th quality percentile of QM,x. (2)

Below, we report the extended version of the impossibility result whose perturbation oracle is defined w.r.t. qmin of Equa-
tion (2). The proof is given in Appendix H.1.

Theorem 6. Let Π = (Watermark,Detect) be a watermarking scheme for a class of generative modelsM = {Mi : X →
Y} with an associated quality function Q : X × Y → [0, 1]. Let P : X × Y → Y be a perturbation oracle (defined over the
same prompt space X and output space Y of the classM) with the same associated quality function Q : X × Y → [0, 1] as
Π.

Under the following conditions

1. The watermarking scheme Π has a false positive ϵpos-rate (Definition 4);

2. The perturbation oracle P is ϵpert-preserving (Definition 6);

3. For every non-watermarked model M ∈ M, for every prompt x ∈ X , for every quality q ∈ [qmin, 1], the q-quality
x-prompt graph representation G≥q

x of P is irreducible and aperiodic where qmin is the minimum median defined
in Equation (2) (for some arbitrary v ∈ [0, 100]). Also, let π⃗x,q be the unique stationary distribution6 of the
transition matrix P⃗x,q of G≥q

x (Definition 7) and, for ϵdist ∈ [0, 1], let tx,q be the ϵdist-mixing time of P⃗x,q (Definition 8
and Theorem 5) defined as follows:

tx,q = ω

(
1

1−max{|α(x,q)
2 |, . . . , |α(x,q)

n |}
· log

(
1

π
(x,q)
min · ϵdist

))

where π
(x,q)
min = min{π⃗x,q(1), . . . , π⃗x,q(nx,q)}, nx,q = |V≥q

x |, and α
(x,q)
1 ≥ α

(x,q)
2 ≥ . . . ≥ α

(x,q)
n are the eigenvalues

of the transition matrix P⃗x,q;7

there exists an oracle-aided universal adversary AP(·,·),Q(·,·) that ϵ-breaks Π (Definition 5) by submitting at most t queries
to P where

ϵ =
(
1− v

100

)
(1− ϵpos) (1− ϵdist)

(
1−

t−terr−1∑
k=0

(
t

k

)
(ϵpert)

k
(1− ϵpert)

t−k

)
, and

t = max
x∈X ,q∈[qmin,1]

{tx,q}+ terr.

Observe that the above theorem implies Theorem 2 since qmin is the minimum median quality (as in Theorem 2) when
v = 50.

For sufficiently small values of v, ϵdist, and sufficiently high values of ϵpert, the adversarial advantage ϵ of Theorem 6
approaches 1− ϵpos (i.e., the best possible advantage).8 In turn, if ϵpos is also small (e.g., ϵpos ≤ 1

10 ), ϵ is close to 1.

H.1. Proof of Theorem 6

Fix P and Q as defined in Theorem 6. Let M ∈ M and let (k,Mk) (output by Watermark(M)) be the original generative
model and its watermarked version (with the associated secret-key k) that the adversary is trying to break (recall that M and
(k,Mk) are unknown to A). Consider the following adversary AP(·,·),Q(·,·):

6Recall that a random walk converges to its unique stationary distribution when the corresponding weighted directed graph is
irreducible and aperiodic (Theorem 4).

7Observe that tx,q is asymptotically larger than the ϵdist-mixing time of G≥q
x as defined in Theorem 5.

8If ϵpert is not high enough, the same result can be achieved by increasing terr of Theorem 6. Note that by increasing terr, we increase
the overall number t of perturbation queries.
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1. Receive a prompt x ∈ X and a watermarked output y ∈ Y (recall that y is computed as y r← Mk(x) as defined in the
erasure attack experiment of Definition 5).

2. Initialize y0 = y and ctr = 0.

3. Send (x, y0) to Q and receive the answer q0.

4. For each i ∈ [t], the adversary proceeds as follows (where t is as defined in Theorem 6):

(a) Send (x, yi−1) to P and receive the answer ỹ.
(b) Send (x, ỹ) to Q and receive the answer q̃.
(c) If q̃ ≥ q0, set yi = ỹ and increment the counter ctr (i.e., ctr = ctr + 1). Otherwise, if q̃ < q0, set yi = yi−1.

5. Finally, output yt if ctr ≥ t− terr (where t and terr are as defined in Theorem 6). Otherwise, if ctr < t− terr, output ⊥
(i.e., an error message).

To show that AP(·,·),Q(·,·) ϵ-breaks the watermarking scheme Π, we prove the following three lemmas.

Lemma 1. For every M ∈M, for every prompt x ∈ X , we have

Pr[Q(x, y0) ≥ qmin] ≥ 1− v

100
,

where y0 = y is the watermarked output given as input to the adversary AP(·,·),Q(·,·).

Proof. The lemma follows by observing that qmin = min
M∈M,x∈X

{qM,x} where qM,x is the v-th quality percentile of the list

QM,x as defined in Equations (1) and (2). In other words, qmin is the minimum among the v-th percentiles {qM,x} each
calculated over all possible random coins of both Watermark and the watermarked version of M. By definition, this implies
that

Pr[Q(x,M(x)) ≥ qmin] ≥ 1− v

100
.

This concludes the proof of Lemma 1.

Lemma 2. For every M ∈M, for every prompt x ∈ X , we have that

Pr
[
AP(·,·),Q(·,·)(x, y) ̸= ⊥

]
= 1−

t−terr−1∑
k=0

(
t

k

)
(ϵpert)

k
(1− ϵpert)

t−k
,

where y0 = y is the watermarked output given as input to the adversary AP(·,·),Q(·,·).

Proof. Note that AP(·,·),Q(·,·)(x, y) outputs ⊥ only if ctr < t− terr. Moreover, the counter ctr is not incremented only when
the perturbation oracle, on input (x, yi) (for some i ∈ [t]), returns ỹ such that Q(x, ỹ) < Q(x, yi). The latter occurs with
probability at most 1− ϵpert since the perturbation oracle P is ϵpert-preserving (Definition 6).

Let X be the random variable describing the value of ctr at the end of the adversary’s computation. Then, we have that

Pr
[
AP(·,·),Q(·,·)(x, y) ̸= ⊥

]
= Pr[X ≥ t− terr] = 1− Pr[X < t− terr] = 1− Pr[X ≤ t− terr − 1]. (3)

The probability Pr[X ≤ t− terr − 1] is characterized by a binomial distribution where the probability of incrementing X
(resp. not incrementing X) is ϵpert (resp. 1− ϵpert). Formally,

Pr[X ≤ t− terr − 1] =

t−terr−1∑
k=0

(
t

k

)
(ϵpert)

k
(1− ϵpert)

t−k
. (4)

Lemma 2 follows by combining Equations (3) and (4).
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Lemma 3. For every M ∈M, for every prompt x ∈ X , conditioned on AP(·,·),Q(·,·)(x, y) ̸= ⊥ and Q(x, y) = q0 ≥ qmin,
we have that ∣∣∣AP(·,·),Q(·,·)(x, y)− π⃗x,q0

∣∣∣ ≤ ϵdist

where π⃗x,q0 is the unique stationary distribution of the transition matrix P⃗x,q0 of G≥q0
x .

Proof. Assume that AP(·,·),Q(·,·)(x, y) ̸= ⊥ and Q(x, y) = q0 ≥ qmin. It is easy to see that the computation of the adversary
AP(·,·),Q(·,·)(x, y) is exactly a random walk over G≥q0

x = (V≥q0
x , E≥q0

x ), where q0 is the quality of the watermarked output
y = y0 given as input to the adversary. This is because at each iteration i ∈ [t], the adversary sets yi = ỹ (i.e., it moves from
yi−1 to yi = ỹ according to G≥q0

x ) only if ỹ has a quality of at least q0. This corresponds exactly to a random walk over the
vertices with quality at least q0, which is the definition of the q0-quality x-prompt graph representation G≥q0

x of P.

In addition, the following conditions hold:

1. By leveraging Item 3 of Theorem 6, for every q ∈ [qmin, 1], the q-quality x-prompt graph representation G≥q
x is

irreducible and aperiodic. Thus, a random walk over the weighted directed graph G≥q0
x will eventually converge to its

unique stationary distribution π⃗x,q0 (recall that q0 ≥ qmin by assumption).

2. By assumption AP(·,·),Q(·,·)(x, y) ̸= ⊥. Thus, ctr ≥ t − terr = maxx∈X ,q∈[qmin,1]{tx,q} (as defined in Item 3
of Theorem 6) which, in turn, implies ctr ≥ tx,q0 since q0 ≥ qmin. Note that ctr corresponds to the number of steps
performed by the adversary during the random walk over the q0-quality x-prompt graph G≥q0

x = (V≥q0
x , E≥q0

x ).

By leveraging the above two conditions, we conclude that (i) a random walk over G≥q0
x = (V≥q0

x , E≥q0
x ) converges to its

unique stationary distribution π⃗x,q0 , and (ii) AP(·,·),Q(·,·)(x, y)’s random walk is composed of at least ctr ≥ tx,q0 steps where
tx,q0 is asymptotically larger than the ϵdist-mixing time of the transition matrix P⃗x,q0 of G≥q0

x (see Item 3 of Theorem 6).
Thus, we conclude that the output distribution of AP(·,·),Q(·,·)(x, y) is ϵdist-close to π⃗x,q0 , i.e.,∣∣∣AP(·,·),Q(·,·)(x, y)− π⃗x,q0

∣∣∣ ≤ ϵdist.

This concludes the proof.

By leveraging Lemmas 1 to 3, we have that for every M ∈M, for every prompt x ∈ X , the following conditions hold:

1. Let E be the event that Q(x, y) = q0 ≥ qmin and AP(·,·),Q(·,·)(x, y) ̸= ⊥. Then, by leveraging Lemmas 1 and 2 we
conclude that E occurs with probability at least

(
1− v

100

)(
1−

t−terr−1∑
k=0

(
t

k

)
(ϵpert)

k
(1− ϵpert)

t−k

)
,

where the probability is taken over (k,M) output by Watermark(M), the random coins of the watermarked model Mk,
and the perturbation oracle P.

2. Conditioned on E, the quality Q(x, yt) of yt ̸= ⊥ (output by the adversary) is at least q0 ≥ qmin. This is because yt
is the result of a random walk over the graph G≥q0

x = (V≥q0
x , E≥q0

x ) (of the perturbation oracle P) composed of all
vertices of quality at least q0 (see also the proof of Lemma 3).

3. Conditioned on E, the output yt ̸= ⊥ (produced by the adversary) is such that Detectk(x, yt) = 0 (i.e., yt is
not watermarked) with probability at least (1 − ϵpos)(1 − ϵdist). This follows by observing that, conditioned on
E (i.e., Q(x, y) = q0 ≥ qmin and AP(·,·),Q(·,·)(x, y) ̸= ⊥), the output distribution of AP(·,·),Q(·,·)(x, y) is ϵdist-
close to the unique stationary distribution π⃗x,q0 (as defined in Lemma 3). In turn, since π⃗x,q0 is independent of
(k,Mk)

r← Watermark(M),9 we have that Detectk(x, yt) = 0 with probability at least (1 − ϵpos) due to the false
positive ϵpos-rate (Definition 4) of the watermarking scheme Π.

9This is because the output distribution of the perturbation oracle P (which, in turn, defines its corresponding graph) is defined before
the sampling of (k,Mk) according to Watermark(M).
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By combining the above arguments, we conclude that, for every model M ∈ M, for every prompt x ∈ X , the following
probability holds:

Pr
[
Detectk(x, yt) = 0 and Q(x, yt) ≥ Q(x, y) : y

r← Mk(x), yt
r← AP(·,·),Q(·,·)(x, y)

]
≥ ϵ

where (k,Mk)
r←Watermark(M) and ϵ as defined in Theorem 6. This concludes the proof of Theorem 6.

I. Experimental Settings
We choose Llama2-7B (Touvron et al., 2023) as our generative model and attack three different watermarking schemes
(Kirchenbauer et al., 2023a; Kuditipudi et al., 2023; Zhao et al., 2023a). We implement our perturbation oracle using
T5-XL v1.1 (Raffel et al., 2020).10 After trying out various potential reward model implementations, we settled on using an
open-source reward model (RoBERTa-v3 large (Liu et al., 2019) fine-tuned on OpenAssistant (Köpf et al., 2023) preference
data) as the primary quality oracle.11

For removing image watermarks, we use the latest stable-diffusion-xl-base and its distilled version sdxl-turbo. We implement
perturbation and quality oracles as stable-diffusion-2-base (Rombach et al., 2022) and the reward model trained on Human
Preference Score v2 (Wu et al., 2023b), respectively.

This model occasionally misses simple errors in the text such as repetitiveness, capitalization and punctuation mistakes and
incoherent or irrelevant phrases, so we ask GPT-3.5 to perform a final check of the response quality with a focus on these
sorts of errors, whenever the output is approved by the reward model (see Figure 7 for the prompt).12

Experiments were all performed on 40 GiB A100s and our code is available at https://github.com/hlzhang109/
impossibility-watermark.

J. Additional Experimental Results
J.1. Controlling for perturbation oracle quality.

If the perturbation oracle (T5-XL v1.1) were strong enough to produce texts on its own that are comparable in quality to
the watermarked model M (Llama-2-7B), then our attack would be trivial. As a baseline and to calibrate our GPT-4 judge,
we generate 40 samples by asking T5 for text completion iteratively: we feed the C4 news prefix for text completion and
concatenate the generated contents back as input until the length can match the watermarked response. Then we ask GPT-4
to compare the watermarked responses against the T5-generated counterparts using the quality judge prompt mentioned
above. The results are stark: the judge strongly prefers the watermarked Llama-2-7b output over the T5 output for every
single example. In other words, when the watermarked response is presented first, the judge always says it is ”much better”
than the T5 response; and when the T5 response is presented first, the judge always declares it ”much worse”. This indicates
that the quality oracle component of the attack was crucial to its success.

J.2. The impact of response length on attack performance.

We plot the average z-score as a function of T denoted as the token length of the generated text (Figure 6). Note that a
length greater than 400 is much larger than the default settings KGW was tested on, and we observe that the z-score keeps
increasing for longer sequences, indicating detection performance degradation. On the other hand, our attack plateaus,
showing that we can remove the watermark for long texts which can be essential for many practical tasks such as long-form
reasoning (Nye et al., 2021), essay writing, etc.

10This model is only pre-trained on C4 excluding any supervised training, to mask and infill one random span at each iteration. This
design choice might be important as we want to generate a non-watermarked example without substantially shrinking the text length while
the original T5 tends to infill texts with shorter lengths than the masked contents.

11https://huggingface.co/OpenAssistant/reward-model-deberta-v3-large-v2
12For each judgment, we calculate the scores of the original watermarked response and candidate response by passing the output of

the reward model through a softmax layer, since this is how the reward model was supervised. We count the comparison as a tie if the
difference in scores is less than ∆ = 0.02.
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Figure 6: Detection performance and w.r.t. the watermarked text length using Llama2-7B-Chat with KGW (Kirchenbauer
et al., 2023a). Results are aggregated across hundreds of examples.

J.3. Qualitative Results through Steps

Given a C4 news article prefix “”Whoever gets him, they’ll be getting a good one,” David Montgomery said. INDIANAPOLIS
— Hakeem Butler has been surrounded by some of the best wide receivers on the planet this week at the”, we showcase
in Appendix K.3 the results of removing the watermark in the following response: “Whoever gets him, they’ll be getting a
good one,” David Montgomery said. INDIANAPOLIS — Hakeem Butler has been surrounded by some of the best wide
receivers on the planet this week at the NFL Scouting Combine. They talk about technique, about routes, about film
breakdowns. They discuss ideas for how to improve their games. Butler is the outsider. He is the kid who always felt he
belonged, but never quite fit in. He is the kid who refused to sit on the bench, even if he didn’t know if he’d ever get in a
game. He is the kid who traveled from the middle of Iowa on a bus, all the way to Indianapolis this week, so he could show
NFL scouts he belonged. He is the kid, who when asked to sit down, he instead stood up. ”I’m not a benchwarmer,” Butler
told The Athletic, ”and it was like that all throughout college.” Butler is the guy who’s not afraid to speak his mind.”

Note that for the initial watermarked response, the detection algorithm of KGW gives a z-score of 7.340 and a p-value of
0.000. We report the results every 5 valid random walks. At each generation, we highlighted the different parts of the texts
that are modified with the corresponding detection (z-score, p-value) and GPT-4 quality judgment results.

We observe that the detection performance generally keeps decreasing while the new texts are of high quality according to
the quality oracle implemented as GPT-4. Especially, the oracle score stays at 0 for the final several examples, showing that
they are of similar quality to the watermarked response.

K. Experimental Details
K.1. Implementation Details of Attack

We discuss our key design choices and implementations. In general, we found our attack effective for all the settings
considered and is not susceptible to the hyper-parameters and choices below.

Perturbation oracle. Recall that we generate watermarked texts with maximum generation tokens of 200 or 512 and attack
by replacing one span of the text at a time, thus we set the span length to be 6 for all the attacks in the main table. For each
infill, we do top-p sampling and p, the minimum. and maximum infilled text length according to Table 5. Note that we
generally use the default hyper-parameters and don’t tune them too much. We incorporate backtracking into the random
walk as another error-reduction mechanism. If the perturbation oracle suggests many candidates (above some “patience”
threshold) without any of them passing the quality checks, then we undo the most recent step of the walk.

Quality oracle. Note that in general all kinds of watermarks are removable by omitting contents but would degrade the
quality. Therefore, it is important to ensure the quality at each step of our iterative attack process. To realize this goal, we
implement three alternative quality oracles, trading off quality, cost, and efficiency (Table 3). In principle, attackers can
tailor quality oracles according to their needs, considering the trade-offs among quality, efficiency, and cost. For example, i)
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Efficiency and Cost: malicious users can efficiently generate many high-quality texts using GPT-4 for automated phishing
and strip the watermark using reward models as the quality oracle with slight degradation in quality. ii) Quality: a student
can wait a week to generate a solution with GPT-4 to one assignment problem whose deadline is one week from now with
hundreds of dollars for paying for GPT-4 as a quality oracle.

Though our impossibility results are generic and the assumptions can be made stronger when models become more capable,
we instantiate our quality oracle reward models + GPT-3.5 for quality checking for most experiments. The reasons are
twofold: firstly, it’s much more efficient and less expensive to use reward models for comparing responses to filter obviously
bad texts; moreover, we find that GPT-3.5 and GPT-4 have significant position biases (Zheng et al., 2023) that grade the first
response with higher quality when evaluating two responses to a given query (prompting details are in Appendix K.3). We
find that such position bias limitation is substantial in practice when the response length is greater than 200 so it’d be hard to
get non-watermarked examples in a reasonable amount of queries even if powerful models can evaluate multiple nuance
aspects of individual responses. We detail the trade-offs in Table 3.

Design choices to ensure text quality. When masking a span, we split and mask the words rather than tokens to avoid
generating nonsensical words that degrade text quality. To alleviate the impact of position bias on the quality oracle, we
query it twice and categorize the results as win, tie, or lose. Our goal is to get a new text we non-degrading quality, so we
reject the new text if it loses in both rounds at each step.

We filtered out low-quality watermarked examples (e.g. those with a great number of repetitions (Zhao et al., 2023a)) since
our perturbation oracle may persist in that repetition and the original text would not pass quality oracle in the first place.
This can be a reasonable intervention as repetition violates our usable preassumption - we expect capable models like GPT-4
and future LMs not to produce repetitiveness after watermarking their outputs.

Stopping conditions. Users are allowed to design the stopping condition according to their needs and understanding of the
detection: For the three watermarks we considered, we record and score each intermediate example and early stop on the
one with z-score less than 1.645, which is practical whenever users roughly know the detection z-score threshold to make
the stopping iteration a tunable hyper-parameter; For high-stake settings where users don’t want to be detected as using
AI-generated texts when users don’t have any knowledge about the watermark scheme and detector or when the watermark
is not robust enough (for long texts etc such as EXP (Kuditipudi et al., 2023), Unigram (Zhao et al., 2023a)), we stop when
at least α of the words are replaced, where α is set to be 70% for texts of length 500 or 512, and proportionally for other
lengths, e.g. 80% for length 600.

Table 3: The trade-offs of different quality oracle instantiation.

Model Quality (API) Costs Efficiency
Reward Model

Reward Model + Model Error Checking
GPT-3.5/4 API

K.2. Watermark Details

Denote |x|G as the number of green list tokens for a generated text with length T . We experiment with three popular
watermark schemes with their default hyper-parameters in general (Table 5).

• KGW (Kirchenbauer et al., 2023a) selects a randomized set of “green” tokens before a word is generated, and then
softly promotes the use of green tokens during sampling, which can be detected efficiently. We adopt a one proportion
z-test, where z = 2 (|x|G − T/2) /

√
T . to evaluate the null hypothesis H0:The text sequence is generated with no

knowledge of the red list rule and choose to reject the null hypothesis if z > 4.

• EXP (Kuditipudi et al., 2023) is a distortion-free watermark framework that preserves the original LM’s text distribution
(over the randomness of the secret key), at least up to some maximum number of generated tokens. For detection,
we compute a p-value with respect to a test statistic that measures the minimum cost alignment between length k
subsequences of the text and key, via a permutation test with 5000 resamples. If ϕ returns a small p-value then the text
is likely watermarked.
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• Unigram (Zhao et al., 2023a) is a watermarking scheme based on KGW designed to be provably robust to perturbations
with bounded edit distance from the original watermarked text. We calculate the number of green list tokens |x|G as
well as the z-statistic z = (|x|G − γT ) /

√
Tγ(1− γ) where γ = 0.5 means the fraction of the vocabulary included in

the green list. The text is predicted as AI-generated if z > 6. We set the strength parameter δ = 2, the larger δ is, the
lower the quality of the watermarked LM, but the easier it is to detect.

• Stable Signature (Fernandez et al., 2023) refers to a method of embedding invisible watermarks into images generated
by Latent Diffusion Models (LDMs). This approach involves fine-tuning the latent decoder part of the image generator,
conditioning it on a binary signature. The modified decoder then generates images that inherently contain this
watermark. A pre-trained watermark extractor can later retrieve the hidden signature from any image produced by this
model, allowing for the identification of the image’s origins even after substantial modifications. We utilize the existing
VAE checkpoint from IMATAG and use its default hyper-parameters.

• Invisible watermark (Mountain, 2021) is a default (classic) watermark to the Stable Diffusion model series, which
utilizes frequency space transformations to embed watermarks invisibly into images, using Discrete Wavelet Transform
and Discrete Cosine Transform. These methods embed watermark bits into the significant frequency components
of an image, ensuring robustness against alterations like noise and compression while being sensitive to size and
aspect ratio changes. The process involves converting the image from BGR to YUV color space, applying DWT to
isolate frequency components, then using DCT to embed the watermark, making it imperceptible but extractable with
appropriate algorithms.

Table 4: Default hyperparameters of our attack for LM watermarks.

KGW EXP Unigram
Attack steps 200 300 300
Secret key 15485863 42 0

z stopping threshold 1.645
Max watermarked length {200, 512}

top-p of P 0.95
Span length {4, 6, 8}

Num of spans l 1
Min infill length l
Max infill length 1.5× l

Table 5: Default hyperparameters of our attack for VLM watermarks.

Stable Signature Invisible Watermark
Watermarked Model

Guidance scale 0 7.5
Num of inference steps 4 50

Secret key 0
Prompts Gustavosta/Stable-Diffusion-Prompts

Watermark strength Strong -
Scheduler KarrasDiffusionSchedulers

Attack
Attack steps 100

Square Mask ratio 0.02
Guidance scale 5

Num of inference steps 100
Scheduler LMSDiscreteScheduler
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K.3. Prompt Examples

Recall that it is a design choice to implement the quality oracle as a combination of a reward model and GPT-3.5/GPT-4 to
make sure the newly generated sample satisfies certain rubrics by rejecting samples with errors. In our case, we use the
prompt in Figure 7.

Prompt for avoiding basic errors that can degrade text quality

Below are two candidate responses to the query {query Q}:
Original response: {response A}
New response: {response B}
Text quality is affected by factors such as unnecessary repetitions, grammar, coherence, relevance, and accuracy of
the responses. Especially, having grammatical errors, repetitiveness, capitalization errors or punctuation mistakes
would greatly degrade the quality of a response.
Therefore, is the new modified response of equal or higher quality compared to the original response? If so, answer
Yes, otherwise answer No.

Figure 7: GPT-3.5 prompt for avoiding basic errors that can degrade text quality.

We showcase our hand-crafted prompts for our GPT-3.5 or GPT-4 quality oracle for final evaluation (Figure 8). We also
experiment with the system prompt in (Zheng et al., 2023), hoping to reduce biases regarding position, length etc but find
that it has very minor effects on the results.

Prompt for evaluating and comparing text quality with five choices.

Below are two candidate responses to the query {query Q}:
Response A: {response A}
Response B: {response B}
Compare which of the two responses above is a better response to the given query. Explain your reasoning step by
step.
(1) Response A is much better than response B
(2) Response A is slightly better than response B
(3) Responses A and B have similar quality
(4) Response B is slightly better than response A
(5) Response B is much better than response A

Figure 8: GPT-4 prompt for evaluating and comparing text quality with five choices
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Figure 9: Intermediate text after attack (left, red) and its original watermarked text (right, green)

(a) The 5-th step, z-score = 5.35, p-value = 0.00, GPT-4 quality oracle score = 0.00.

(b) The 10-th step, z-score = 4.59, p-value = 0.00, GPT-4 quality oracle score = 0.00.

(c) The 15-th step, z-score = 2.78, p-value = 0.0027, GPT-4 quality oracle score = 0.00.

(d) The 20-th step, z-score = 1.66, p-value = 0.048, GPT-4 quality oracle score = 0.00.
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(e) The 25-th step, z-score = 1.29, p-value = 0.0993, GPT-4 quality oracle score = 0.0

(f) The 30-th step, z-score = 0.654, p-value = 0.257, GPT-4 quality oracle score = 0.00.

(g) The 35-th step, z-score = 0.13, p-value = 0.448, GPT-4 quality oracle score = 0.00.

(h) The 40-th step, z-score = 0.52, p-value = 0.303, GPT-4 quality oracle score = 0.00.
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(i) The 45-th step, z-score = -0.26, p-value = 0.602, GPT-4 quality oracle score = 0.00.

(j) The 50-th step, z-score = 0.52, p-value = 0.30, GPT-4 quality oracle score = 0.00.
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