
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DIGI-Q: TRANSFORMING VLMS TO DEVICE-CONTROL
AGENTS VIA VALUE-BASED OFFLINE RL

Anonymous authors
Paper under double-blind review

ABSTRACT

Most paradigms for building foundation model agents rely on prompting or fine-
tuning on existing demonstrations, but this is not sufficient in dynamic environments
(e.g., mobile device control). In theory, while on-policy reinforcement learning
(RL) should address these limitations, this approach itself is not quite effective at
leveraging existing agentic data, especially when it is of low quality. An approach
to address this issue is to use offline value-based RL but realizing value-based
RL for device-control agents has been elusive due to of stability and efficiency
associated with running TD-learning at scale with vision-language models (VLMs).
In this paper, we develop a scalable value-based RL approach called Digi-Q that
makes it possible to train VLM agents with TD-learning. We situate our study in
building GUI agents for Android devices. The key idea in Digi-Q is to perform
TD-learning on a frozen, intermediate-layer representation of a VLM rather than
training the whole VLM itself. Doing so successfully requires an initial phase of
fine-tuning to prime VLM representations to feature actionable information that
is critical for TD-learning. When done correctly, our approach is able to attain
better performance per-unit compute FLOPS. To make maximal use of the learned
Q-function, we devise a novel best-of-N policy extraction operator that imitates the
best actions out of multiple candidate actions from the current policy as ranked by
the value function. With no REINFORCE-style policy gradients that need careful
tiuning and an efficient TD-learning approach, Digi-Q outperforms prior methods
on user-scale device control tasks in Android-in-the-Wild, attaining 9.9% of relative
improvement over prior best-performing offline RL method in this domain.

1 INTRODUCTION

Foundation models (OpenAI, 2024a; GeminiTeam, 2024) open up possibilities of building agents
that make intelligent decisions in the real world (Liu et al., 2023). While prompting off-the-shelf
language models with specific instructions is one way to get them to make decisions, this is not good
enough for attaining goals and maximizing rewards that are critical in downstream tasks (Zeng et al.,
2023; Chen et al., 2023). Part of the reason is the lack of sufficiently diverse decision-making data
for training large models (Gur et al., 2023), but the bigger reason is that simply imitating Internet
data is not good enough for training models how to act intelligently, reduce uncertainty, and achieve
goals in non-stationarity real-world decision making settings (Bai et al., 2024; Ma et al., 2024).

Reinforcement learning (RL) provides a general approach for fine-tuning agents that avoids the
shortcomings of imitation and prompting, by explicitly training the policy to maximize rewards (Zhou
et al., 2024b; Verma et al., 2022; Snell et al., 2023; Abdulhai et al., 2023). The best performing
RL methods for multi-step agentic tasks typically run basic policy gradients (Yao et al., 2023) and
Monte Carlo value estimations (Bai et al., 2024; Putta et al., 2024) on on-policy data. Relying almost
exclusively on (near) on-policy rollout data is not only expensive (Haarnoja et al., 2018) at real user-
scales (e.g., when acting on a phone) but also sub-optimal, since using previously collected offline
data can lead to substantial improvements if done correctly using value-based RL methods (Ball
et al., 2023). A natural approach to remove this dependence on on-policy data is to transition to
using efficient value-based offline RL methods. These methods use Q-functions, which can be trained
offline, to predict future rewards from a given state and action pair, and optimize the policy against
this value function. The value-based paradigm is appealing due to the substantial gains it offers in
terms of sample-complexity (Haarnoja et al., 2019; Mnih et al., 2013) and historical data reuse, in a
way that improves over simply mimicking successful data or relying on purely on-policy data.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Comparing Digi-Q with alternate policy-based methods. Typically, policy-based methods need
online data to improve. In contrast, Digi-Q learns a Q-function through TD-learning on offline data and queries
this Q-function at multiple actions to learn a policy via the Best-of-N policy extraction approach.

Can we train VLM device-control agents at scale with value-based RL? To answer this question,
we develop a value-based RL approach, Digi-Q, for reliably and efficiently training VLM agents at
scale, and show its efficacy in the domain of device-control (Rawles et al., 2023). We situate our
study in the offline RL problem setting, where we must train agents entirely from historical data
since it provides a challenging test-bed for building value-learning algorithms, while being fast to
iterate on (due to no requirement for running on-policy training against a simulator). Digi-Q trains a
state-action value function (i.e., a Q-function). To train Q-functions effectively, Digi-Q handles a
number of challenges posed by value-based offline RL at scale: (i) instability in training large models
associated with running temporal-difference (TD) learning with large models (Kumar et al., 2021) and
(ii) inefficiency of TD backups per unit amount of compute (Chebotar et al., 2023) (see Section 5.2).
Digi-Q does so by performing TD-learning on a frozen intermediate layer representation of the VLM
instead of training all parameters of the VLM. For attaining best performance though, representations
from off-the-shelf models are not good enough since they often do not pay feature information crucial
for predicting actions or their consequences. Therefore, Digi-Q prescribes running an initial phase of
representation fine-tuning to prime representations of a VLM to be more amenable to TD-learning.

Once the Q-function is trained, Digi-Q uses it to train a VLM policy that maximizes this Q-function
while staying close to the dataset since we operate in an offline RL setting. Using a learned Q-
function for policy extraction offers numerous benefits as shown in Figure 1: first, while state-only
Monte-Carlo value functions, typical in prior work (Bai et al., 2024; Zhai et al., 2024), can only
evaluate the efficacy of a single action that was actually executed at any given state, if the learned
Q-function is somewhat accurate, we can obtain reasonable estimates for future expected reward for
multiple actions at the same state, without needing to actually roll these candidates out. This allows
us to develop an “aggressive” and Best-of-N policy training objective that trains the policy to imitate
the best-rated action per the Q-function. In contrast, off-the-shelf agentic RL methods need to use
variants of imitation learning (Pan et al., 2024) or policy gradients that can be quite finicky, especially
in the offline setting (Ahmadian et al., 2024). Overall, Digi-Q leads to effective perofrmance.

The main contribution of this work is Digi-Q, an approach to train VLM device-control agents via
value-based offline RL. Digi-Q represents and trains Q-functions on top of intermediate representa-
tions from a VLM, fine-tuned to be aware of actionable information. Then Digi-Q utilizes a Best-of-N
policy extraction objective to make most effective use of the Q-function in obtaining a policy. The
agent produced by running Digi-Q on offline data outperforms prior approachrs that also extract
policies from offline data in the problem setting of Android device control (Rawles et al., 2023) with
9.9% of relative improvement over prior best-performing prior method, even though these domains
remain challenging for state-of-the-art proprietary models (Liu et al., 2024c; Bai et al., 2024). To
the best of our knowledge, this work is the first to successfully apply offline RL with TD-learning to
realistic agent tasks with foundation models and show significantly improved performance.

2 RELATED WORK

RL for training GUI and device-control agents. Due to their reasoning, perception, and genera-
tion capabilities, LLMs and VLMs have been applied extensively to build agents to navigate web
pages (Zhou et al., 2024a; Koh et al., 2024a; Deng et al., 2023; Zheng et al., 2024; He et al., 2024)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

and GUI interfaces (Bai et al., 2024; Yan et al., 2023; Hong et al., 2023; Rawles et al., 2023; 2024;
Zhang & Zhang, 2024). In contrast to using off-the-shelf proprietary models (Zheng et al., 2024;
Yan et al., 2023; Zhang et al., 2023; He et al., 2024) or fine-tuning them with a small amount of
human demonstrations (Hong et al., 2023; Zhang & Zhang, 2024; Zeng et al., 2023), RL provides
the advantage of optimizing task-specific reward and goal-oriented behavior, which is important
in dynamic and non-stationary environments especially when human demonstrations are stale (Bai
et al., 2024; Zhou et al., 2024b; Putta et al., 2024; Pan et al., 2024; Song et al., 2024). However,
most successful applications of RL for real-world GUI agent tasks use less efficient RL algorithms
such as (nearly) on-policy policy gradient or filtered imitation learning algorithms (Bai et al., 2024;
Putta et al., 2024; Song et al., 2024; Koh et al., 2024b). In traditional RL, off-policy and offline
RL algorithms that train a state-action value function (i.e., a Q-function) via temporal-difference
learning (TD-learning) are known to be substantially more sample efficient and effective (Mnih
et al., 2013; Haarnoja et al., 2018; Fujimoto et al., 2018; Kumar et al., 2020). To the best of our
knowledge, our work is the first to scale value-based Bellman bootstrapping to convert VLMs into
strong device-control agents, starting from the setting of training entirely on offline data.

From an algorithmic standpoint, the closest work to ours that trains agents with Q-functions is
ArCHer (Zhou et al., 2024b), which builds a hierarchical framework for developing RL algorithms
for agents and largely presents results on simplified environments (Yao et al., 2023). While we do
use the hierarchical actor-critic abstraction in ArCHer to formalize our approach, the methodology
for running RL at scale is substantially different from Zhou et al. (2024b) along the use of frozen
VLM representations and a policy extraction approach based on best-of-N policy extraction. Our
experiments in Section 5 show that Digi-Q is much more effective (about a 20% improvement as
shown in Section 5.3) than the policy-gradient algorithm used by Zhou et al. (2024b). This justifies
the benefits of seemingly simple, yet an effective design of our approach. Other works (Zhai et al.,
2024) train VLMs with on-policy PPO (Schulman et al., 2017; Chen et al., 2024). Finally, Chen
et al. (2024) runs RL on top of frozen VLM representations as well, although unlike us they do not
fine-tune the VLM to make these representations more amenable for fitting value functions. We
find that this representation fine-tuning phase in Digi-Q is critical to obtaining a good Q-function.
Moreover, while this prior work largely instantiates existing deep RL algorithms instead of devising a
more scalable and effective value-based RL algorithm that we aim to do.

Challenges of value-based RL with foundation models. Despite the efficiency and data reuse
benefits of value-based RL algorithms, they can be unstable and computationally inefficient if not
treated carefully, particularly the case for large foundation models with billions of parameters. This
instability stems from two aspects: (1) prior work has often found it hard and unstable to train value
functions via Bellman backups and TD-learning (Kumar et al., 2021; 2022; Chebotar et al., 2023),
which is challenging at scale. To address this, Chebotar et al. (2023) had to employ a combination
of conservative regularization (Kumar et al., 2020) and regularization with n-step returns (Hessel
et al., 2018) resulting in a complex approach; (2) policy extraction from trained Q-functions often
utilizes policy gradient approaches with a “negative gradient” term (Tajwar et al., 2024) that can be
unstable with offline data. This has largely resulted in the community focusing on on-policy or filtered
imitation learning methods. However, Park et al. (2024) show that supervised regression methods
such as AWR (Peng et al., 2019) can lead to slow convergence and poor asymptotic performance. To
address challenge (1), Digi-Q runs TD-learning on top of frozen VLM representations, but after a
fine-tuning phase to make them more amenable to representing Q-functions and to address (2), we
introduce a novel Best-of-N based policy extraction loss.

3 PRELIMINARIES AND PROBLEM SETUP

We build value-based RL algorithms for transforming VLMs into agents, focusing on the offline RL
problem setting. We situate ourselves in the domain of building agents that can perform pixel-based
interactions on virtual devices, following similar protocols as past work (Bai et al., 2024). In this
section, we will discuss the setup for this problem, followed by reviewing terminology, notation, and
background information that would be useful in developing our approach in the next section.

3.1 PROBLEM SETUP: ANDROID DEVICE CONTROL

We scope our study in the domain of pixel-based Android Device Control (Bai et al., 2024; Zhang
et al., 2023; Rawles et al., 2023). Each episode in this domain starts with a fully-functioning Android
emulator reset to the home screen and a task is randomly drawn from a task pool. The agent needs

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

to complete the task through pixel-based interactions with the device as illustrated in Figure 1. The
actions that the agent can take are primitive pixel-level commands such as clicking at a coordinates
and typing text. Concretely, given a screenshot of a phone, we want the agent to output a string
command such as “click (0.8, 0.2)”to be executed in the environment at the current step, where 0.8
and 0.2 are 0-1 normalized x-y coordinates in the screen. This domain is known to be more general
and challenging than web navigation alone or link-based device control (Bai et al., 2024), and present
many real-world challenges of device stochasticity such as unpredictable distractors like pop-ups and
technical glitches like incomplete website loading. Following Pan et al. (2024); Bai et al. (2024),
the agents are evaluated via binary 0/1 rewards from a proprietary model (GeminiTeam, 2024) that
makes a verdict of whether the specific task has been completed at each step. More importantly, we
want to train device-conrtol agents, in an offline setting where we are given a static dataset D storing
historical past interaction data that this agent must learn from.

3.2 REINFORCEMENT LEARNING DEFINITIONS

To design a value-based RL approach for training device-control agents, we subscribe to the hierar-
chical MDP framework from Zhou et al. (2024b). This hierarchical MDP consists of two MDPs: (1)
a high-level MDP where each step is an interaction with the external environment, and (2) a low-level
MDP embedded inside each action in the high-level MDP, where each step is an independent natural
language token. Terminology wise, we define the state st in the high-level MDP as the log of the
interaction history of the agent with the environment thus far concatenated to the current observation.
Each action at in the high-level MDP is a sequence of tokens that are directly applied to interact
with the environment such as “type box [2]: wikipedia of chocolate”. Each action aht in the low-level
MDP is an individual token output while each state in the low-level MDP contains the high-level
state st and all the action tokens a1:h−1

t output before the current token.

The Q-function for a given policy π is the expected cumulative reward of a particular action at the
current step, and then following policy π thereafter: Qπ(sh, ah) = Eπ [

∑∞
t=0 γ

tr(sh+t, ah+t)]. The
value function of a policy π, V π(sh), is defined as the expected Q-value, Qπ(sh, ah), where actions
ah are sampled from the policy π. The advantage function Aπ(sh, ah) corresponds to the relative
benefit of taking action ah in state sh, and is computed as the difference between the Q-value and the
value of the state under the policy: Aπ(sh, ah) = Qπ(sh, ah)− V π(sh). The goal of RL is to train a
policy that can produce token sequences that maximize the cumulative rewards

∑∞
t=1 γ

t−1r(st, at),
over the course of a rollout. Our offline value-based approach will model an independent action-value
Q-function Q and a state-only value function V parameterized by parameters θ and ψ respectively
while the policy is parameterized by ϕ. Both Q- and V- functions are instantiated by a small MLP
layer on top of a VLM backbone. We use θVLM, ψVLM to represent the parameters of the VLM
backbone and similarly θMLP, ψMLP for parameters of the MLP head. We will denote the last layer
representations of these VLM backbones as fθVLM

(s, a) and fψVLM
(s).

3.3 BACKGROUND: ARCHER FRAMEWORK FOR DERIVING OFF-POLICY RL ALGORITHMS

The core idea behind the ArCHer framework (Zhou et al., 2024b) is to pose training of foundation
model agents as a hierarchical RL problem. While this can give rise to many RL algorithms, Zhou
et al. (2024b) show that a convenient way to instantiate this approach is to learn a value function in
the high-level MDP and a policy in the low-level token MDP. The high-level critic and low-level
actor are then optimized against each other similarly to standard actor-critic RL.

JQ(θ) = Es,a,r,s′∼D
[
(Qθ(s, a)− r − γVψ̄(s′))2

]
. (1)

JV (ψ) = Es∼D
[
Ea∼πϕ(·|s)

[
(Vψ(s)−Qθ̄(s, a))2

]]
. (2)

θ̄ and ϕ̄ are the delayed target networks (Mnih et al., 2013) for stability and they are updated as an
exponential moving average of θ and ϕ. The instantiated algorithm from Zhou et al. (2024b) supports
policy extractions through REINFORCE policy gradient:

Jϕ(π) = Esc∼D,a1:Lt ∼π(·|sc)

[
L∑
i=1

A(sc, a
1:L
t) log πϕ(a

i
t|sc, a1:i−1

t)

]
. (3)

While our approach will utilize a similar framework to conceptualize the method, the choice of actor
and critic updates employed are substantially different. The practical approach in Zhou et al. (2024b)
did not work very well in our experiments with VLMs.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4 DIGI-Q: TRAINING VLM POLICIES WITH OFFLINE VALUE-BASED RL

To obtain an effective offline RL method, Digi-Q addresses a number of challenges with value-based
RL at large scale. First, to avoid pathological behavior of TD-backups with large models (Zhou et al.,
2024b; Snell et al., 2023; Abdulhai et al., 2023; Chebotar et al., 2023) and to avoid the computational
costs associated with training an entire billion-parameter VLM with TD-learning, we train Q-functions
on top of frozen VLM representations. Since VLMs are not trained on substantial quantities of
decision-making data, off-the-shelf VLMs largely do not accurately represent actionable elements of
an input scene. To address this, Digi-Q fine-tunes VLM representations before TD-learning.

AWR (Peng et al., 2019)), which updates the policy with a single action per state, training a Q-function
enables simultaneous estimation of returns for multiple action candidates. These candidates can be
leveraged to improve the policy more efficiently, benefiting from variance reduction, especially with
a well-estimated critic. Digi-Q leverages this idea to propose a best-of-N reranking-based policy
extraction operator, which is more stable and effective than policy gradient or advantage-weighted
regression. This method is illustrated in Figure 2 and described below.

VLM

VLM

Q Function Actor Q Function

�� Representation Fine-tuning �� Value-based RL

different?

Prompt
{observation} {action}

Will this action lead to
a different state?

Prompt

“yes” “yes”

input

input input input

actor

resample

actions

TD Target Best-of-N Target

Figure 2: Method overview. Blue arrows represent forward data flows, while red arrows represent the flows of
learning targets used for back propagation. Our method first goes through a representation fine-tuning stage to
extract actionable features from the VLM. TD-learning is then performed on top of frozen VLM representations,
followed by best-of-N policy extraction approach.

4.1 TRAINING VLM Q-FUNCTIONS VIA TD-LEARNING AND REPRESENTATION FINE-TUNING

Fine-tuning large VLMs end-to-end via TD-learning can encounter challenges, making it practical to
train a separate value function on top of a frozen VLM. However, most VLMs are not designed to
model actionable information in scenes or predict outcomes of actions. If VLM representations fail
to capture actionable details, training a state-action Q-function Q(s, a) via TD-learning risks degen-
erating into a state-only value function V (s) (ignoring actions) or diverging due to amplified noise in
Q-value estimates for out-of-distribution actions during TD-backups. Preliminary experiments show
that while open-source VLMs like LLaVa-1.5 (Liu et al., 2024a) can answer scene-based questions,
they often fail to predict future impacts of actions, e.g., “does this click lead to a new page on eBay?”

Thus, Digi-Q first fine-tunes representations of a VLM with an binary classification objective to
enable it to pay attention to actionable features of an input scene in device control. Once fine-tuned,
the representations of this VLM are used to train a Q-function represented using a small MLP on top
of the frozen representation. Not only is this more stable but it cuts down computational costs since
only 1% of all the VLM parameters are now trained via TD-learning.

Approach. Our representation fine-tuning objective for device control is constructed as follows:
given a transition pair (st, at, st+1) drawn from a replay buffer, our objective aims to model if and
how the next state st+1 will change from the current state and action (st, at). Our observation is
that in device control problems, a useful action should lead to a substantial visual change in the
pixel values of a scene (e.g., successfully typing a search query and pressing enter on google.com
should cause the page to change substantially to now show a list of search results).1 Equipped with
this insight, we construct positive and negative tuples of transitions (st, at, st+1), where the positive
tuples consists of transitions change the state significantly (i.e., larger than a threshold ϵ on the ℓ2

1Note that while this heuristic does not filter out actions that appear useful erroneously due to glitches in the
environment (e.g., page failed to load) but this is acceptable as long as glitches do not dominate this set.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

image distance) and the negative tuples are the remaining transitions. This is equivalent to assigning
a binary {0, 1} label to each transition:

yt =

{
0, d(st, st+1) < ϵ

1, otherwise

Now, the VLM is trained to produce this 0-1 label yt given a state-action tuple (st, at) using a binary
cross-entropy loss on its paramters θVLM:

JP(θVLM) = −Est,at∼D [yi logPθVLM(′yes′|st, at) + (1− yi) logPθVLM(′no′|st, at)] , (4)

where PθVLM
is the next-token distribution from the VLM backbone.

After this phase of representation fine-tuning, we freeze the parameters of VLM, and extract the
embedding of the yes/no token output to serve as the input representation of (st, at) to the Q function.
We now run a TD-learning objective from Equation 1 in Section 3 to train the Q-function.

Note that Equation 1 also utilizes a parameterized value function. Since the value function does not
depend on the action, we are able to directly use internal representations of an off-the-shelf VLM,
without requiring any phase of initial fine-tuning. On top of the frozen representations from the
VLMs, our value functions θMLP, ψMLP is optimized with the TD loss as in Equation 5 and 6.

JQ(θMLP) = Es,a,r,s′∼D
[
(QθMLP(fθVLM(s, a))− r − γVψ̄MLP

(fψ̄VLM
(s′)))2

]
. (5)

JV (ψMLP) = Es∼D
[
Ea∼πϕ(·|s)

[
(VψMLP(fψVLM(s))−Qθ̄MLP

(fθ̄VLM
(s, a)))2

]]
. (6)

4.2 BEST-OF-N POLICY EXTRACTION AGAINST THE LEARNED Q-FUNCTION

Given a learned Q-function, we will now use it to extract a policy in an efficient and reliable
manner. Perhaps the most straightforward approach for doing so is to use REINFORCE policy
gradient to optimize the learned policy, however, this approach can be quite brittle with off-policy
data (Swaminathan & Joachims, 2015; Zhou et al., 2024b). Moreover, the presence of a “negative
gradient” term Tajwar et al. (2024) (i.e., a term where the policy gradient multiplies the log likelihood
by a negative-valued advantage) means that careful tuning of learning rates and interleaving policy
and critic updates must be done to attain good performance (see Zhou et al. (2024b) Section 5.7 for a
discussion of these challenges, and experiment results shown in Table 3). While advantage-weighted
supervised learning (i.e., AWR (Peng et al., 2019)) avoids this instability issue, it can be conservative
in its KL divergence with the behavior policy (Table 3)..

To build a stable yet aggressive policy training method, Digi-Q modifies AWR to make it more
aggressive, by leveraging the insight that access to the functional form of a learned Q-function allows
for estimating values for multiple N actions at any given state. After computing Q-values for multiple
action candidates, we can imitate the best action. This would produce substantially more aggressive
updates than single-action AWR, without needing a negative gradient. Theoretically, this is because
the implicit KL constraint against the data-generating policy that makes AWR conservative, is now
much less of a problem with our multiple-action approach, since this implicit constraint is enforced
against the Best-of-N policy (Cobbe et al., 2021). The best-of-N policy is already better than the data
collection policy for large values of N , meaning that we do not lose utility of off-policy data.

Concretely, given any state s, we sample N action token sequences (i.e., actions in the high-level
MDP) from the learned policy: a1, · · · , aN ∼ πβ(·|s), where πβ is a behavior-cloned policy from
the offline dataset. Now, we rank these actions according to the Q-values obtained from the critic
trained previously. The policy is then trained to imitate the best of these N actions as long as this
best action also attains a positive advantage. Formally, this means that the policy is optimized as.

Jπ(ϕ) = Est∼D,ai∼πβ(·|st)

[
N∑
i=1

δ(ai)

L∑
h=1

log(ahi |st, a
1:h−1)
i

]
, (7)

where δ(ai) = 1{ai = argmaxiQ(st, ai) & Q(st, ai)− V (st) > 0}. This approach allows us to
make fairly aggressive policy updates, while also being stable and efficient due to a log loss.

4.3 PUTTING IT TOGETHER: ALGORITHM AND IMPLEMENTATION DETAILS

A pseudocode of our overall algorithm is shown in Appendix A. After initially fine-tuning the VLM
through the unsupervised pre-training scheme in Section 4.1, Digi-Q first trains Q and V-functions

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

AitW General AitW Web Shopping
Train Test Train Test

Prompting
SET-OF-MARKS

GPT-4V 5.2 13.5 3.1 8.3

Gemini 1.5 Pro 32.3 16.7 6.3 11.5

APPAGENT
GPT-4V 13.5 17.7 12.5 8.3

Gemini 1.5 Pro 14.6 16.7 5.2 8.3

Learning

SUPERVISED

TRAINING

CogAgent 25.0 25.0 31.3 38.5

AutoUI 27.7 22.9 20.7 25.0

OFFLINE

Filtered BC 51.0 ± 0.9 54.5 ± 1.3 37.2 ± 4.7 43.8 ± 1.7

DigiRL 53.5 ± 2.7 59.0 ± 4.7 43.1 ± 3.6 47.6 ± 4.2

Digi-Q (Ours) 61.8 ± 1.0 68.1 ± 1.3 49.0 ± 0.9 49.7 ± 3.5

Table 1: Main comparisons of different agents across various settings. Each offline experiment is repeated
three times and the mean and standard deviation are reported. To be consistent with prior work (Bai et al., 2024),
results are evaluated with the autonomous evaluator with the first 96 instructions in the train and test set.

before performing gradient updates on the actor, where the VLM backbone for the V-function is kept
frozen from the pre-trained checkpoint. The usage of V-functions follows from Zhou et al. (2024b);
Snell et al. (2023) to improve training stability and make calculations of high-level advantages easier.
The actor is represented on top of a separate VLM and is trained end-to-end, unlike the use of frozen
features for the critic. For our experiments, we sample N = 16 actions for computing the Best-of-N
style policy learning objective in Equation 7: while the choice ofN can differ from domain to domain,
our runs find that N = 16 is a good choice for device control problems. We use LLaVa-1.5 (Liu
et al., 2024a) for the backbone VLM for our Q- and V- functions.

5 EXPERIMENTAL EVALUATION

The goal of our experiments is to evaluate Digi-Q in training effective device control agents. We
aim to answer: (1) How does Digi-Q compare to state-of-the-art algorithms for user-scale device
control tasks? (2) Can Digi-Q effectively learn from past interaction data? (3) Does Digi-Q offer a
favorable computation-performance trade-off compared to end-to-end TD-learning? Additionally,
we conduct ablations to assess the impact of components like representation fine-tuning and the
Best-of-N re-ranking approach for policy extraction.

5.1 MAIN PERFORMANCE RESULTS

Comparisons. We compare Digi-Q with prior methods for building device control agents. First, we
compare with several prompting-based methods that extend off-the-shelf proprietary VLMs such as
GPT-4V (OpenAI, 2024b) and Gemini 1.5 Pro (GeminiTeam, 2024) with the Set-of-Marks (Yang
et al., 2023) and a chain-of-thought mechanism for producing actions. We also compare with existing
VLMs trained via imitation learning for device control: CogAgent (Hong et al., 2023), a 18B model
and AutoUI-1B (Zhang & Zhang, 2023), that our policy is based on. Finally, we compare to the current
state-of-the-art approach, Digi-RL, which uses advantage-filtered behavioral cloning for training
the agent instead of off-policy value-based RL. We evaluate our results on Android-in-the-Wild
(AitW) dataset with offline dataset containing 1296 trajectories from pre-trained AutoUI checkpoint,
following Bai et al. (2024). More details on the offline dataset can be found in Appendix B.1.

Results. Our main results are presented in Table 1. We find that Digi-Q outperforms all prompting-
based methods substantially (45.9% absolute improvement on average compared to the best prompting-
based approach AppAgent with GPT-4V) and improves over the previous state-of-the-art, Digi-RL by
9.9% relatively averaged on General and Web Shopping subset, and 19.2% relatively over Filtered-BC,
a simple but strong baseline. By visualizing the agent’s rollouts on test examples, as we will show
in Section 5.4, we find that training with offline value-based RL enhances the capability of RL to
perform dynamic programming sub-optimal data to learn a better policy in the environment.

5.2 COMPUTE EFFICIENCY COMPARISON

A common concern with deploying TD-learning methods to train large-scale foundation models is
their compute inefficiency (Abdulhai et al., 2023; Chebotar et al., 2023). Therefore, we attempted
to understand the compute-performance tradeoffs associated with Digi-Q by comparing it against

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

end-to-end TD-learning on VLMs without using any representation fine-tuning or frozen pre-trained
representations. We plot the performance-compute tradeoff curve for Digi-Q on the web-shopping
subset of the AiTW dataset in Figure 6. We found it a bit hard to fine-tune an entire VLM with
TD-learning, which required iteration on hyperparameters such as learning rate and soft update rates
for target networks. Due to the compute-intensive nature, we use a 3B VLM (PaLiGemma (Beyer
et al., 2024)) for these runs instead of our 7B VLM (Liu et al., 2024b), and evaluate the performance
of the critic as measured by the correlation between advantage predictions and ground-truth notion
of human judgement on a held-out set of trajectories. In particular, we find that end-to-end TD-
learning exhibits a much worse performance-compute frontier, to the extent that beyond a point more
training FLOPS hurts performance. We conjecture that this behavior is likely a result of well-known
pathologies of training large models with TD learning (Kumar et al., 2022), though we leave it for
future work to fully understand these pathologies in our context. In contrast, while Digi-Q invests an
initial amount of computation for representation fine-tuning, its accuracy quickly rises up and results
in much better frontiers, with no instability. The calculation of the FLOPS is in Appendix B.2.

5.3 ABLATION STUDIES

Next, we will perform a series of controlled experiments to understand the reasons behind the efficacy
of Digi-Q. In particular, we will attempt to understand (1) the effect of representation fine-tuning
(Stage I) for seeding the VLM representations for subsequent Q-function training, (2) the behavior of
Best-of-N reranking style policy extraction operator compared to AWR (used by DigiRL (Bai et al.,
2024)) and standard REINFORCE-style policy gradients (Williams, 1992), and (3) the benefits of
TD-learning over the more conventional approach of supervised regression to Monte-Carlo return.
Experimental details of the ablation studies can be found in Appendix B.3.

Representation Performance
Behavior Policy 25.0

Digi-Q (w/ MC return) 32.3 ± 2.5

Digi-Q w/ CLIP + BERT 14.9 ± 6.0

Digi-Q Off-the-shelf VLM 22.2 ± 0.5

Digi-Q (Ours) 42.7 ± 2.5

Table 2: Efficacy of our representation fine-tuning
procedure on the Web-Shopping test set in AiTW.

(1) The effect of representation fine-tuning
in Digi-Q on VLM representations. We first
study the effect of fine-tuning the VLM repre-
sentations by training them to accurately detect
actions that led to a substantial change in the
scene. To do so, we compare Digi-Q with alter-
nate approaches that train Q-functions on top of
two other natural choices of representations: (a)
not using a generative VLM (i.e., Llava-1.5), but
instead using frozen CLIP (Radford et al., 2021)
and BERT (Devlin et al., 2019) representations,
following the protocol in Bai et al. (2024); (b)
using an off-the-shelf VLM (Chen et al., 2024). Observe that using an off-the-shelf VLM outperforms
the CLIP+BERT representations used in Bai et al. (2024): this is perhaps expected because an
off-the-shelf generative VLM is still prompted with an appropriate prompt asking it to pay attention
to the action, where CLIP does not offer such flexibility. That said, its performance is still below the
behavior policy. As we will also qualitatively show in Section 5.4, off-the-shelf VLMs also do not pay
enough attention to action information, resulting in a Q-function that degenerates to a similar solution
as the state-only value function. In contrast, the representation fine-tuning procedure employed by
Digi-Q leads to about 20% absolute performance improvement.

(2) The effect of best-of-N reranking based policy extraction operator. Next, we aim to understand
the impact of using best-of-N reranking for policy extraction. This operator differs from traditional
policy extraction methods in several ways: (i) the use of multiple actions (ii) not using a “negative
gradient” (Tajwar et al., 2024) as in REINFORCE (Williams, 1992). To understand the effect of the
number of actions in (i), we ablate Digi-Q over N ∈ {1, 4, 8, 16, 64} in Figure 3 (right). Observe
that Digi-Q improves monotonically as N increases, indicating a clear benefit of sampling more
actions and reranking them against the Q-function during training. More discussions on the ablations
of number of actions resampled can be found in Appendix B.4.

Next, we answer (ii) by comparing Digi-Q with REINFORCE and supervised regression (AWR).
Our results in Table 3 show that standard policy gradient attains the worst performance, attaining
final performance below the behavior policy (17.4% vs 25.0%). We hypothesize that this is a direct
consequence of the negative gradient effect, which is known to destabilize training. While AWR (used
by Bai et al. (2024)) does not suffer from this issue, it is also not able to improve substantially over

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
FLOPS (×1018)

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

C
ri

tic
 A

cc
ur

ac
y

Ours (3B)
End-to-end TD (3B)

1 2 4 8 16
of Actions

38

40

42

44

46

48

50

52

Su
cc

es
s

R
at

e

Figure 3: Left: Offline critic evaluation accuracy as a function of compute measured in terms of training
FLOPS, compared across Digi-Q, end-to-end TD-learning on a VLM, and MC return. Observe that the critic
accuracy is much better for our approach over end-to-end TD-learning as the amount of compute increases.
Right: Performance of Digi-Q when varying the number of actions N used for policy extraction. Observe
that the performance of Digi-Q improves when more actions are used for policy extraction, indicating the efficacy
of our approach and the benefits of learning a Q-function.

the dataset (27.8% vs 25.0%). On the other hand, Digi-Q is able to make substantial improvements
over the average success rates of rollouts in the dataset.

Actor Objective Performance KL v.s. Behavior Policy
Behavior Policy 25.0 0

REINFORCE 17.4 ± 1.8 8.69

AWR 27.8 ± 0.5 1.52

Digi-Q (Ours) 49.7 ± 3.5 2.46

Table 3: (1) Performance and (2) Token-level KL-divergence value
between the learned policy and the dataset when using different
policy extraction methods on Web Shopping test set. We utilize the
same critic for all the methods, and only train the policy differently.

Next we attempt to understand
how “aggressive” the updates made
by different approaches are since
one concern with AWR-style up-
dates in prior work is the extent to
which they are conservative. We
wish to understand if our best-of-N
reranking based policy extraction
approach also admits conservative
updates. To do so, we measured
the KL-divergence between actions
from the dataset and the fine-tuned policies produced by Digi-Q, AWR, and REINFORCE in Table 3.
Note that Digi-Q incurs a larger KL-divergence value unlike AWR that incurs the smallest deviation
and is most conservative. On the contrary, REINFORCE attains substantially larger divergence values
and behaves unstably (see Appendix C.4 for some example rollouts).

(3) The effect of TD-learning as opposed to MC. To understand the importance of TD-learning
for training the critic over Monte-Carlo (MC) regression that previous work is based on, we run an
ablation of Digi-Q, which uses MC regression. Observe in Table 2, that this version underperforms
Digi-Q by 10% (42.7% compared to 32.3%). As we show in Section 5.4, value functions from MC
regression exhibit high variance, which inhibits them from producing good policies.

5.4 QUALITATIVE VISUALIZATIONS

Qualitative comparisons between different value function learning approaches. To qualitatively
understand the quality of the Q-function learned, in Figure 4, we visualize advantage estimates
A(s, a) = Qθ(s, a) − Vϕ(s) computed from Q-functions produced by four methods: (1) Digi-Q
(with representation fine-tuning and TD-learning), (2) Monte-Carlo regression, (3) Digi-Q but using
CLIP+BERT representations from Bai et al. (2024); and (4) Digi-Q without representation fine-tuning.
We contrast advantages against human judgements of whether the actions mark progress towards the
desired task. Ideally, good actions should attain a positive advantage. We observe that advantage
estimates from MC regression suffer from a high variance in advantage estimation because of the use
of high-variance MC estimator. Moreover, we find that (3) and (4) converge to a degenerate Q(s, a)
that approximately matches a state-only value function, with no meaningful sensitivity to the action
input. Thus, all these ablation variants fail to attain a good correlation with human judgement while
only Digi-Q (1) is able to align well with human annotations.

Benefits of dynamic programming. A key advantage of value-based RL is its ability to perform
dynamic programming: deriving optimal behaviors from suboptimal rollouts. As shown in ??, Digi-Q
learns optimal behaviors from suboptimal data. For example, trajectory (A) in the offline dataset

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

TD

TD (No VLM)

TD (No Finetune)

MC

-0.03

-0.01

-0.04 -0.04 -0.05-0.06

0.07 0.18

0.360.05 0.15

-0.01 0.01 -0.05

-0.03

0.13

Human

Advantages

Task

✘

Go to

walmart.com

Go to

walmart.com

Go to

bestbuy.com

Go to walmart.com

search for logitech g933

Figure 4: Qualitative examples showing the advantage estimations of several transitions of TD (ours),
Monte-Carlo, and TD without VLM representation. Advantage estimations using TD-learnt value functions
top of VLM representation better align with human judgements compared to MC and TD without using VLM.

Task: Go to Walmart.com

A: successful but lengthy (offline dataset)

B: failed but short (offline dataset) C: successful and short (Digi-Q)

✘

Figure 5: Trajectory examples showing benefits of Q-functions. Our method can combine the best of
a successful but lengthy (A) trajectory and a failed but short trajectory (B), to produce successful and short
trajectories (C).

completes the task but includes redundant actions, while trajectory (B) is efficient but fails to complete
the task. Digi-Q combines (A) and (B) to produce trajectory (C), which efficiently completes the task.
This demonstrates Digi-Q’s capability to learn an optimal policy from suboptimal data—something
imitation alone cannot achieve.

6 CONCLUSION AND FUTURE WORK
We presented Digi-Q, an effective value-based offline RL method tailored specifically for training
real-world device-control agents at scale. At the core of our method is a representation fine-tuning
procedure that induces actionable features from VLM useful for later TD-learning and a best-of-N
policy extraction method that makes the best use of the learnt Q function from TD learning. Because
of practical constraints such as compute budgets, our experiments can only focus on one domain of
GUI agent tasks on Android tasks and three seeds of trials for each setting. While we have made our
best efforts to make comparisons fair, such as repeated experiments and re-running baselines from
prior works, the exact number may still be different from prior works because of the non-stationary
nature of real-world websites and Android softwares. While we primarily focus on GUI agent
tasks on Anroid devices, our methodology is general, compute efficient, and leads to substantial
improvement in performance. We believe that these ideas and approach should transfer to new tasks
as well and applying Digi-Q to new domains in an interesting avenue for future work. That said,
extending Digi-Q to online RL setting will require a more sophisticated system design to speed up
the experiment iterations. Nonetheless, ideas from Kalashnikov et al. (2018) could provide a good
starting point to build systems for TD-learning during real-world interaction.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

To facilitate reproducibility of our work, we will open-source the model checkpoints and training
infrastructure. We have included a discussion of our choices of hyperparameters in all experiments
in Appendix F and the prompts that we used for the autonomous evaluator in Appendix E. We will
also release the data that we use to train our model and the environment configuration (e.g. emulator
device specifications).

ETHICS STATEMENT

We develop methods that enable device control agent to operate on a fully-functioning Android device
in an open-ended way. It is possible that irresponsible deployment of such device control agents can
result in privacy leaks and vulnerability to malicious attacks (e.g. when the agent clicks on some
malicious website links). While the development of a device control agent can significantly benefit
productivity and increase accessibility, it is important that proper precautionary mechanisms should
be in place to prevent such risks.

REFERENCES

Marwa Abdulhai, Isadora White, Charlie Snell, Charles Sun, Joey Hong, Yuexiang Zhai, Kelvin Xu,
and Sergey Levine. Lmrl gym: Benchmarks for multi-turn reinforcement learning with language
models, 2023. URL https://arxiv.org/abs/2311.18232.

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Ahmet Üstün, and
Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning from human
feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

Hao Bai, Yifei Zhou, Mert Cemri, Jiayi Pan, Alane Suhr, Sergey Levine, and Aviral Kumar. Digirl:
Training in-the-wild device-control agents with autonomous reinforcement learning, 2024. URL
https://arxiv.org/abs/2406.11896.

Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learning
with offline data. arXiv preprint arXiv:2302.02948, 2023.

Lucas Beyer, Andreas Steiner, André Susano Pinto, Alexander Kolesnikov, Xiao Wang, Daniel Salz,
Maxim Neumann, Ibrahim Alabdulmohsin, Michael Tschannen, Emanuele Bugliarello, Thomas
Unterthiner, Daniel Keysers, Skanda Koppula, Fangyu Liu, Adam Grycner, Alexey Gritsenko,
Neil Houlsby, Manoj Kumar, Keran Rong, Julian Eisenschlos, Rishabh Kabra, Matthias Bauer,
Matko Bošnjak, Xi Chen, Matthias Minderer, Paul Voigtlaender, Ioana Bica, Ivana Balazevic, Joan
Puigcerver, Pinelopi Papalampidi, Olivier Henaff, Xi Xiong, Radu Soricut, Jeremiah Harmsen,
and Xiaohua Zhai. Paligemma: A versatile 3b vlm for transfer, 2024. URL https://arxiv.org/
abs/2407.07726.

Yevgen Chebotar, Quan Vuong, Alex Irpan, Karol Hausman, Fei Xia, Yao Lu, Aviral Kumar, Tianhe
Yu, Alexander Herzog, Karl Pertsch, Keerthana Gopalakrishnan, Julian Ibarz, Ofir Nachum,
Sumedh Sontakke, Grecia Salazar, Huong T Tran, Jodilyn Peralta, Clayton Tan, Deeksha Manju-
nath, Jaspiar Singht, Brianna Zitkovich, Tomas Jackson, Kanishka Rao, Chelsea Finn, and Sergey
Levine. Q-transformer: Scalable offline reinforcement learning via autoregressive q-functions,
2023. URL https://arxiv.org/abs/2309.10150.

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier, Karthik Narasimhan, and Shunyu Yao.
Fireact: Toward language agent fine-tuning, 2023. URL https://arxiv.org/abs/2310.05915.

William Chen, Oier Mees, Aviral Kumar, and Sergey Levine. Vision-language models provide
promptable representations for reinforcement learning, 2024. URL https://arxiv.org/abs/
2402.02651.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

11

https://arxiv.org/abs/2311.18232
https://arxiv.org/abs/2406.11896
https://arxiv.org/abs/2407.07726
https://arxiv.org/abs/2407.07726
https://arxiv.org/abs/2309.10150
https://arxiv.org/abs/2310.05915
https://arxiv.org/abs/2402.02651
https://arxiv.org/abs/2402.02651

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web, 2023. URL https://arxiv.org/
abs/2306.06070.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019. URL https://arxiv.org/abs/
1810.04805.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods, 2018. URL https://arxiv.org/abs/1802.09477.

GeminiTeam. Gemini: A family of highly capable multimodal models, 2024. URL https://arxiv.
org/abs/2312.11805.

Izzeddin Gur, Ofir Nachum, Yingjie Miao, Mustafa Safdari, Austin Huang, Aakanksha Chowdhery,
Sharan Narang, Noah Fiedel, and Aleksandra Faust. Understanding html with large language
models, 2023. URL https://arxiv.org/abs/2210.03945.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor, 2018. URL https://
arxiv.org/abs/1801.01290.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic algorithms
and applications, 2019. URL https://arxiv.org/abs/1812.05905.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models,
2024. URL https://arxiv.org/abs/2401.13919.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxuan Zhang, Juanzi Li, Bin Xu, Yuxiao Dong, Ming Ding, and Jie Tang. Cogagent: A
visual language model for gui agents, 2023. URL https://arxiv.org/abs/2312.08914.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey Levine. Qt-opt:
Scalable deep reinforcement learning for vision-based robotic manipulation, 2018. URL https:
//arxiv.org/abs/1806.10293.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
multimodal agents on realistic visual web tasks, 2024a. URL https://arxiv.org/abs/2401.
13649.

Jing Yu Koh, Stephen McAleer, Daniel Fried, and Ruslan Salakhutdinov. Tree search for language
model agents, 2024b. URL https://arxiv.org/abs/2407.01476.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning, 2020. URL https://arxiv.org/abs/2006.04779.

Aviral Kumar, Rishabh Agarwal, Tengyu Ma, Aaron Courville, George Tucker, and Sergey Levine.
Dr3: Value-based deep reinforcement learning requires explicit regularization. arXiv preprint
arXiv:2112.04716, 2021.

12

https://arxiv.org/abs/2306.06070
https://arxiv.org/abs/2306.06070
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1802.09477
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2210.03945
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1812.05905
https://arxiv.org/abs/2401.13919
https://arxiv.org/abs/2312.08914
https://arxiv.org/abs/1806.10293
https://arxiv.org/abs/1806.10293
https://arxiv.org/abs/2401.13649
https://arxiv.org/abs/2401.13649
https://arxiv.org/abs/2407.01476
https://arxiv.org/abs/2006.04779

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Aviral Kumar, Rishabh Agarwal, Xinyang Geng, George Tucker, and Sergey Levine. Offline q-
learning on diverse multi-task data both scales and generalizes. arXiv preprint arXiv:2211.15144,
2022.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning, 2024a. URL https://arxiv.org/abs/2310.03744.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge, January 2024b. URL https://
llava-vl.github.io/blog/2024-01-30-llava-next/.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
Agentbench: Evaluating llms as agents, 2023. URL https://arxiv.org/abs/2308.03688.

Xiao Liu, Tianjie Zhang, Yu Gu, Iat Long Iong, Yifan Xu, Xixuan Song, Shudan Zhang, Hanyu Lai,
Xinyi Liu, Hanlin Zhao, Jiadai Sun, Xinyue Yang, Yu Yang, Zehan Qi, Shuntian Yao, Xueqiao
Sun, Siyi Cheng, Qinkai Zheng, Hao Yu, Hanchen Zhang, Wenyi Hong, Ming Ding, Lihang Pan,
Xiaotao Gu, Aohan Zeng, Zhengxiao Du, Chan Hee Song, Yu Su, Yuxiao Dong, and Jie Tang.
Visualagentbench: Towards large multimodal models as visual foundation agents, 2024c. URL
https://arxiv.org/abs/2408.06327.

Xinbei Ma, Yiting Wang, Yao Yao, Tongxin Yuan, Aston Zhang, Zhuosheng Zhang, and Hai Zhao.
Caution for the environment: Multimodal agents are susceptible to environmental distractions,
2024. URL https://arxiv.org/abs/2408.02544.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning, 2013. URL
https://arxiv.org/abs/1312.5602.

OpenAI. Gpt-4 technical report, 2024a. URL https://arxiv.org/abs/2303.08774.

OpenAI. Gpt-4v(ision) technical work and authors, 2024b. URL https://openai.com/
contributions/gpt-4v/.

Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, Sergey Levine, and Alane Suhr. Autonomous
evaluation and refinement of digital agents, 2024. URL https://arxiv.org/abs/2404.06474.

Seohong Park, Kevin Frans, Sergey Levine, and Aviral Kumar. Is value learning really the main
bottleneck in offline rl?, 2024. URL https://arxiv.org/abs/2406.09329.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning, 2019. URL https://arxiv.org/abs/
1910.00177.

Pranav Putta, Edmund Mills, Naman Garg, Sumeet Motwani, Chelsea Finn, Divyansh Garg, and
Rafael Rafailov. Agent q: Advanced reasoning and learning for autonomous ai agents, 2024. URL
https://arxiv.org/abs/2408.07199.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision, 2021. URL https:
//arxiv.org/abs/2103.00020.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. Android in
the wild: A large-scale dataset for android device control, 2023. URL https://arxiv.org/abs/
2307.10088.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth
Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, Daniel Toyama, Robert Berry,
Divya Tyamagundlu, Timothy Lillicrap, and Oriana Riva. Androidworld: A dynamic benchmarking
environment for autonomous agents, 2024. URL https://arxiv.org/abs/2405.14573.

13

https://arxiv.org/abs/2310.03744
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://arxiv.org/abs/2308.03688
https://arxiv.org/abs/2408.06327
https://arxiv.org/abs/2408.02544
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/2303.08774
https://openai.com/contributions/gpt-4v/
https://openai.com/contributions/gpt-4v/
https://arxiv.org/abs/2404.06474
https://arxiv.org/abs/2406.09329
https://arxiv.org/abs/1910.00177
https://arxiv.org/abs/1910.00177
https://arxiv.org/abs/2408.07199
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2307.10088
https://arxiv.org/abs/2307.10088
https://arxiv.org/abs/2405.14573

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Charlie Snell, Ilya Kostrikov, Yi Su, Mengjiao Yang, and Sergey Levine. Offline rl for natural language
generation with implicit language q learning, 2023. URL https://arxiv.org/abs/2206.11871.

Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian Li, and Bill Yuchen Lin. Trial and error:
Exploration-based trajectory optimization for llm agents, 2024. URL https://arxiv.org/abs/
2403.02502.

Adith Swaminathan and Thorsten Joachims. Counterfactual risk minimization: Learning from logged
bandit feedback, 2015. URL https://arxiv.org/abs/1502.02362.

Fahim Tajwar, Anikait Singh, Archit Sharma, Rafael Rafailov, Jeff Schneider, Tengyang Xie, Stefano
Ermon, Chelsea Finn, and Aviral Kumar. Preference fine-tuning of llms should leverage suboptimal,
on-policy data, 2024. URL https://arxiv.org/abs/2404.14367.

Siddharth Verma, Justin Fu, Mengjiao Yang, and Sergey Levine. Chai: A chatbot ai for task-oriented
dialogue with offline reinforcement learning, 2022. URL https://arxiv.org/abs/2204.08426.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin, Linjie Li, Jianfeng Wang, Jianwei Yang, Yiwu
Zhong, Julian McAuley, Jianfeng Gao, Zicheng Liu, and Lijuan Wang. Gpt-4v in wonderland:
Large multimodal models for zero-shot smartphone gui navigation, 2023. URL https://arxiv.
org/abs/2311.07562.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark
prompting unleashes extraordinary visual grounding in gpt-4v, 2023. URL https://arxiv.org/
abs/2310.11441.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents, 2023. URL https://arxiv.org/
abs/2207.01206.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. Agenttuning:
Enabling generalized agent abilities for llms, 2023. URL https://arxiv.org/abs/2310.12823.

Yuexiang Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Shengbang Tong, Yifei Zhou, Alane Suhr, Saining
Xie, Yann LeCun, Yi Ma, and Sergey Levine. Fine-tuning large vision-language models as decision-
making agents via reinforcement learning, 2024. URL https://arxiv.org/abs/2405.10292.

Chi Zhang, Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang Yu.
Appagent: Multimodal agents as smartphone users, 2023. URL https://arxiv.org/abs/2312.
13771.

Zhuosheng Zhang and Aston Zhang. You only look at screens: Multimodal chain-of-action agents.
arXiv preprint arXiv:2309.11436, 2023.

Zhuosheng Zhang and Aston Zhang. You only look at screens: Multimodal chain-of-action agents,
2024. URL https://arxiv.org/abs/2309.11436.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v(ision) is a generalist web
agent, if grounded, 2024. URL https://arxiv.org/abs/2401.01614.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic
web environment for building autonomous agents, 2024a. URL https://arxiv.org/abs/2307.
13854.

Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine, and Aviral Kumar. Archer: Training language
model agents via hierarchical multi-turn rl, 2024b. URL https://arxiv.org/abs/2402.19446.

14

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2206.11871
https://arxiv.org/abs/2403.02502
https://arxiv.org/abs/2403.02502
https://arxiv.org/abs/1502.02362
https://arxiv.org/abs/2404.14367
https://arxiv.org/abs/2204.08426
https://arxiv.org/abs/2311.07562
https://arxiv.org/abs/2311.07562
https://arxiv.org/abs/2310.11441
https://arxiv.org/abs/2310.11441
https://arxiv.org/abs/2207.01206
https://arxiv.org/abs/2207.01206
https://arxiv.org/abs/2310.12823
https://arxiv.org/abs/2405.10292
https://arxiv.org/abs/2312.13771
https://arxiv.org/abs/2312.13771
https://arxiv.org/abs/2309.11436
https://arxiv.org/abs/2401.01614
https://arxiv.org/abs/2307.13854
https://arxiv.org/abs/2307.13854
https://arxiv.org/abs/2402.19446

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Appendices
A DETAILS ON THE ALGORITHM

For completeness, we include a detailed pseudo-code of Digi-Q in Algorithm 1. After initializing the
parameters, we perform the representation fine-tuning procedure on top of VLM to obtain actionable
features for later TD-learning. Then the VLM parameters will be kept frozen and we train the Q- and
V- functions using TD-learning on top of frozen VLM representations. After both value functions are
trained, we perform gradient updates on the actor with best-of-N policy extraction.

Algorithm 1 Digi-Q: Practical Framework

1: Initialize parameters ϕ, ψMLP, ψ̄MLP, θMLP, θ̄MLP.
2: Initialize replay buffer D (from an offline dataset).
3: for each VLM iteration do
4: θVLM ← ∇JP(θVLM) ▷ Equation 4
5: end for
6: for each critic step do
7: ## Update high-level Q and V functions by target function bootstrapping.
8: θMLP ← θMLP −∇JθMLP(Q) ▷ Equation 5
9: ψMLP ← ψMLP −∇JψMLP(V) ▷ Equation 6

10: ## Update target Q and V functions.
11: θ̄MLP ← (1− τ)θ̄MLP + τθMLP

12: ψ̄MLP ← (1− τ)ψ̄MLP + τψMLP

13: end for
14: ## Update low-level actor with high-level critic.
15: for each actor step do
16: ϕ← ϕ−∇Jϕ(π) ▷ Equation 7
17: end for

B EXPERIMENTAL DETAILS

B.1 OFFLINE DATASET CONSTRUCTION

We use the pre-trained AutoUI checkpoint to collect offline trajectories. Specifically, to collect each
trajectory, starting from the home screen, the agent generates an action, and then the environment
takes the action and transitions to the next state. It iterates until a maximum number of steps have
been reached or the autonomous evaluator has decided to be a success. We collect 1296 trajectories
this way for both AitW Webshop and AitW General subsets. The horizon H of the Webshop subset
is set to 20, and the horizon of the General subset is set to 10, which aligns with (Bai et al., 2024).
Each trajectory is composed of state-action-reward-next-state pairs (s, a, r, s′), which is also referred
to as “transitions".

The actions in the offline dataset collected this way are sampled from the pre-trained AutoUI
checkpoint. When training the actor offline, as we use the Best-of-N loss, we want to sample more
than one action. To facilitate fast iterations, we pre-collect K − 1 actions for each state and add
them to the offline dataset. In practice, we find K = 64 sufficient for N ≤ 16, i.e. it suffices to give
enough variety compared to sampling the actions when training the actor model. Note that in this
case, the original action will always appear in the offline dataset.

B.2 FLOPS CALCULATION AND CRITIC ACCURACY

FLOPS Calculation. The 3B VLM takes 45.6 × 1012 FLOPS for each sample for forward plus
backward process. As the end-to-end TD learning contains one VLM as part of the Q function and
one VLM as the target Q function (which only do forward pass), one sample takes 68.4×1012 FLOPS
(according to Hoffmann et al. (2022), the FLOPS incurred by the forward prrcess is approximately
half of the backward process). Thus, as the longest run takes 15k samples, the last point of the

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

end-to-end run in Figure 3 (Left) takes around 1× 1018 FLOPS. Also, the first logged point takes
128 samples, so the starting point should have 8.3× 1015 FLOPS.

On the other hand, in Digi-Q, we first finetune the 3B VLM, which incurs only one forward and
backward process. Thus, finetuning the 3B VLM on 2000 samples takes 91.2× 1015 FLOPS. After
that, we infer the representations of these samples with the 3B VLM, which includes one forward
pass. This sums up to 136.8× 1015 FLOPs, which explains the starting point of the Digi-Q curve.

Then we only train the value head using the VLM representations. The size of the value head is
0.07B, incurring 1.1× 1012 FLOPS for each sample. The longest run of Digi-Q takes 0.46M samples,
thus incurring 506.9× 1015 FLOPS (10× 1017).

Thus, the end-to-end TD learning should range from 0.0083×1015 to 1×1018 FLOPS, while Digi-Q
should range from 0.137× 1018 FLOPS to 0.644× 1018 FLOPS, which is shown in Figure 3 (Left).

Critic Accuracy. We manually label 483 states with binary advantages, and normalize the advantages
produced by the agents to have a mean of zero before thresholding and calculating its accuracy with
human annotations.

B.3 ADDITIONAL METHOD DETAILS

Task set formulations. The two task sets (Webshop and General) in the AitW dataset have different
horizons H (maximum number of steps allowed) in a trajectory to improve computational efficiency.
Specifically, H = 20 for AitW Webshop and H = 10 for AitW General. Following tradition (Bai
et al., 2024), we keep A > 1/H (e.g. 0.05 for AitW Webshop) as a threshold for the actor model to
learn the state-action pair.

Ablation on representation fine-tuning and TD learning as opposed to MC. In the ablation study
on representation fine-tuning, for all configurations, we train the actor model with best-of-N loss
where N = 1 to keep computation efficient. This is also the case for the ablation on the TD learning
as opposed to MC ablations.

Ablation on actor loss. For the ablation study on the actor loss, we keep the same trained Q function,
while we ablate only on the loss used to train the actor model. We use 30 actor epochs for the
best-of-N loss and AWR loss, and 120 epochs for the REINFORCE loss as the magnitide of the raw
advantage is very small. We use N = 16 for the best-of-N loss, while REINFORCE and AWR both
uses the original action in the offlin dataset.

Value function. In practice, we find the V function significantly easier to train, and it suffices to
only use the representations of the state from the vision encoder of the VLM (CLIP) to train the V
functions. This simplification significantly saves time and space required, and aligns with previous
work (Bai et al., 2024).

B.4 ABLATION ON NUMBER OF ACTIONS SAMPLED

As mentioned in Appendix B.1, from an engineering aspect, collecting actions each time we sample
from the offline dataset D is not efficient. Thus, in practice, we pre-collect K = 64 actions for
each state, and store them in the offline dataset. As n ∈ {1, 2, 4, 8, 16} is much smaller than 64,
this strategy serves as a good approximation and results in good performance. We call this strategy
approximate random action sampling.

Determinisitc action sampling, on the other hand, always sample the first n actions from the pre-
collected action set. In this case, if a state is sampled multiple times in one iteration, the action set
will always be the same, and thus the critic will always produce the same action for the actor to
learn. We observe that the performance of determinisitc action sampling is significantly worse than
approximate random action sampling, as shown in Figure 6.

Note that the n = 1 case for both approximate random and determinisitc action sampling uses the
original action (that causes the transition) instead of sampling it from the action set. Also, for all
cases where n > 1, we always include the original action into the sampled actions.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

1 2 4 8 16
of Actions

38

40

42

44

46

48

50

52

Su
cc

es
s

R
at

e

Approx Rand
Deterministic

Figure 6: Ablation study results on performance w.r.t. number of actions sampled for each step.
Errors are displayed as translucent bars along the curve.

C MORE QUALITATIVE EXAMPLES

C.1 FAILURE CASE STUDY

We observe some failure cases of the agent trained using Digi-Q, as shown in Figure 7. We observe
that the agent successfully arrives at the shopping homepage, but fails to click the search bar after
several attempts. This is probably because there is a distribution shift from the pre-training data and
the non-stationary environment.

...

Task: Go to newegg.com, search for 'duracell triple a'

Go to costco.com, search for 'razer blade', and select the first entry

Figure 7: Example failed trajectories.

C.2 EXAMPLE IMAGE DIFFERENCES FOR SFT THRESHOLD

We illustrate two different transitions with their image difference. The first transition only has a minor
difference on the top left of the screen (clock time), and has a difference of 1.6. The second transition
has a major difference on the screen (search suggestions), and has a difference of 232.8.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

difference=1.6 difference=232.8

Figure 8: Example transitions and their image differences.

C.3 VALUE ESTIMATIONS ON SAMPLED ACTIONS

In this section, we show how the Q function in Digi-Q judges the values of the state-action pairs that
are sampled from the actor model. In Digi-Q, we first sample N actions, then use the Q functions to
estimate the action values of each of the actions sampled. Some real examples are shown in Figure 9.

-0.03 -0.050.06 0.12 0.05 0.01-0.04 -0.02Advantage

Human

Action

Go to Walmart.com Go to ebay.com and search for 'apple airpods'

✘ ✘ ✘ ✘

Figure 9: Qualitative transitions showing the estimated values from our method on the sampled actions.

We show two groups of state-action examples, each including N = 4 sampled actions from the
actor model, for each state. Their corresponding advantages are displayed. We clearly observe that
the advantages predicted by Digi-Q highly aligns with human prediction. For example, in the state
of having a box preventing the agent to go to walmart.com (Left), the action of clicking on “NO
THANKS" (action 1) should be a good action, and clicking outside the box (action 4) will also escape
this message. In contrast, clicking on the box (action 1) and typing something (action 3) does not
help. We find that the advantages estimated by Digi-Q highly aligns with the human annotations.

C.4 EXAMPLE TRAJECTORY OF REINFORCE

We show a typical trajectory produced by the agent trained with REINFORCE in Figure 10. We
observe that the agent frequently diverges from the target and is too “stubborn" to recover from errors.

In this task towards searching for an item on costco.com, the agent has successfully arrived at
costco.com, but (1) it takes some bad actions and (2) cannot recover. Specifically, after the agent
clicks the warehouse button, it keeps clicking on the same button for 10 times until it clicks on
somewhere else.

D COMPUTE REQUIREMENTS

We show practical statistics below on how much compute it takes to train AutoUI with Digi-Q on the
AitW task set, which are counted on experiments done on a machine with 8 A100 GPUs. The SFT
process is standard VLM fine-tuning, which takes 20 minutes for fine-tuning a LLaVA-1.5-7b model.
Getting the representations on the offline dataset takes 3 hours after vLLM acceleration. Then the

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

REINFORCE Agent Trajectory

Task: Go to costco.com, search for 'usb-c to usb-a'

Figure 10: Example trajectory of the agent trained with REINFORCE. The order is displayed from left to
right, from top to bottom.

critic learning takes 20 minutes and actor learning takes 30 minutes. The whole pipeline is very well
optimized (at least 4x faster than non-optimization) and will be made public after the release of the
paper.

E VLM PROMPTS

The prompt we use for fine-tuning and inferring the VLM is shown in Figure 11. The prompt template
is designed to be action-type-specific, in order to facilitate the VLM to better differentiate different
types of actions, which promotes fine-grained representations within the same action type. The input
to the VLM is constructed by the image and the text prompt. Note that the VLM only sees the current
image (overlayed with a cursor if the action is to click), and the next image is only used to calculate
whether the target should be “yes" or “no". The target is a single token to promote computational
efficiency. In practice, we find that a long target sequence introduces challenges for the VLM to learn
the representations.

F HYPERPARAMETERS

Hyperparameters for Digi-Q are carefully tuned through binary search on the training set of General
and Web Shopping subsets. The final choice of hyperparameters for both methods can be found in
Table 4. Results for all other methods (Filtered BC and DigiRL) are kept the same as discussed in the
original paper (Bai et al., 2024).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Input: <image> You're given a user interface. There is a cursor in the screen. {action-specific prompt} Respond only 'Yes' or 'No'
(without period / quotation marks) and don't respond anything else.

Is this cursor Clicking on any interactive elements?

VLM Prompt

Action-specific prompt

If a user now Types something, will this Type action effectively input the text

into somewhere on the Screenshot?

If a user now Presses the <HOME> button, will this action effectively navigate
the user to the Home screen?

If a user now Presses the <BACK> button, will this action effectively navigate
the user to the previous screen?

If a user now Presses the <ENTER> button, will this action effectively submit
the form?

Image
Next Image

(not shown to VLM)

Target: “No”

Figure 11: Prompt template we use to fine-tune and infer the VLM.

Table 4: Hyperparameters for All Experiments

Method Hyperparameter Value

Digi-Q

actor lr 1e-4
value function lr 1e-4

batch size 128
maximum gradient norm 0.01
actor updates per iteration 30

value function updates per iteration 20
number of iterations for offline actor updates 15, 20, 30, 45, 60

number of iterations for offline value function updates 30, 45, 60, 90, 120, 150, 180, 300

VLM

model checkpoint liuhaotian/llava-v1.5-7b
image aspect ratio pad, no

vision encoder openai/clip-vit-large-patch14-336
number of training epochs 3,5,8,10
per device train batch size 8, 16, 32
per device eval batch size 4

Table 5: Hyperparameters for Digi-Q on both General and Web Shopping subset of AitW. If multiple
values are displayed, the bolded value represents the selected value after hyperparamemter sweeping.

20

	Introduction
	Related Work
	Preliminaries and Problem Setup
	Problem Setup: Android Device Control
	Reinforcement Learning Definitions
	Background: ArCHer Framework for Deriving Off-Policy RL Algorithms

	Digi-Q: Training VLM Policies with Offline Value-Based RL
	Training VLM Q-Functions via TD-Learning and Representation Fine-Tuning
	Best-of-N Policy Extraction Against the Learned Q-Function
	Putting it Together: Algorithm and Implementation Details

	Experimental Evaluation
	Main Performance Results
	Compute Efficiency Comparison
	Ablation Studies
	Qualitative Visualizations

	Conclusion and Future Work
	Details on the Algorithm
	Experimental Details
	Offline Dataset Construction
	FLOPS Calculation and Critic Accuracy
	Additional Method Details
	Ablation on Number of Actions Sampled

	More Qualitative Examples
	Failure Case Study
	Example Image Differences for SFT Threshold
	Value Estimations on Sampled Actions
	Example Trajectory of REINFORCE

	Compute Requirements
	VLM Prompts
	Hyperparameters

