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Abstract

Building models that unify diverse neural recordings is a crucial step toward scal-
able foundation models for neuroscience. However, most large-scale models remain
tied to a single modality, which limits our ability to integrate information across
different spatiotemporal scales. We introduce a POYO-based universal encoder that
learns a shared latent representation of electrophysiology (irregular spike times)
and optophysiology (regular calcium fluorescence timeseries) without requiring
simultaneous recordings. Across large datasets from the Allen Institute spanning
both calcium imaging and Neuropixels, we show that joint pretraining outperforms
uni-modal baselines and strengthens cross-region transfer. These results show
that our mixed-modality pretraining framework can integrate independently col-
lected recordings into a common representational space, advancing the path toward
foundation models for diverse multi-modal neural data.

1 Introduction

Neural decoding is entering a new era. Advances in large-scale recording technologies have made
it possible to measure brain activity across thousands of neurons, using diverse modalities such as
high-density electrophysiology (e.g., Neuropixels (1)) and optophysiology (e.g., calcium imaging
(2:13)). At the same time, machine learning has shown that large pretrained models can achieve strong
generalization across tasks, experimental conditions, and neural populations (45 |55 16; [7 185 95 [10; [11).
Together, these developments are opening the door to foundation models that can integrate knowledge
across datasets.

Multi-modal pretraining has proven highly effective in domains such as vision-language learning,
audio-visual representation, and video understanding (125 |13} |14), yet it remains largely unexplored
in neuroscience. The diversity of neural datasets arises from the need to obtain complementary views
into brain activity with each modality offering distinct strengths. Electrophysiology (EPhys) provides
high temporal resolution and precise spike timing, making it possible to study fast neural dynamics.
Optophysiology (OPhys), by contrast, offers single-cell resolution across large populations and can
leverage genetic tools to target specific neuronal types and classes. These complementary perspectives
are typically collected in separate experiments and rarely recorded simultaneously (15 [16). This
creates both a challenge and an opportunity: how can we design a universal encoder that learns
from independently acquired datasets and builds a common representation across modalities? An
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ideal solution would allow us to build joint models of neural activity that take advantage of the
complementary qualities that distinguish these modalities. In this work, we take a step in this
direction by pre-training models on different mixtures of EPhys and OPhys data and evaluating how
multi-modal training impacts decoding performance, cross-region transfer, and generalization to data-
scarce settings. We introduce a POYO-based (4) universal encoder that unifies EPhys and OPhys in a
shared latent space. Our results show that joint pretraining across modalities can provide substantial
improvements over modality-specific training. We demonstrate that multi-modal models not only
outperform single-modality baselines on held-out sessions, but also provide stronger generalization
in cross-region transfer tasks. The main contributions of this work are:

* Universal encoder for mixed-modality training: We design a model that ingests both spikes and
calcium activity into a unified latent representation without requiring simultaneous recordings.

* Systematic study of multi-modal pretraining: We evaluate how different mixtures of modalities
affect scaling trends, showing that multi-modal data improves decoding and generalization compared
to single-modality pretraining.

* Cross-region and region-by-region analyses: We demonstrate that exposure to regions through

EPhys boosts transfer to unseen OPhys regions, and we dissect where EPhys-derived improvements
arise across the visual cortex.

2 Methods

2.1 Tokenization

We develop a unified tokenization scheme for handling both electrophysiology data (irregular spikes)
and optophysiology data (calcium traces).

Spikes. Following POYO (4), each spike is treated as an individual event in our model. For a neuron
u that emits spikes at times ¢,, ;, we create a token (x,, t,, ;) for each event. Here, x,, € RP isa
learned embedding for the neuron .

Calcium Traces. Following POYO+ (6), for each neuron u at time-step i, we create a token
(%u, fu,i, tu.i ), Where x,, is the neuron’s learned embedding and f; is the fluorescence value at the time-
step. We embed this token into the latent space as the tuple (xy, ;, v, i), Where X, ; = [Xy, Wsf, 4].

Both irregular spike trains and regularly-sampled calcium timeseries are mapped to a common
sequence of tokens (x, ;,t,,;) that serve as inputs to our encoder.

2.2 Encoder

We employ a PerceiverlO-style encoder (17)  Ephys. Benavior
: . tokens ueries
adapted for multi-modal inputs. The encoder ggog 0oo
. . Attention ¥
starts with two separate cross-attention blocks,
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cross-attention block compresses the spike to- C;‘E'%SO
kens, while the OPhys-specific cross-attention

block compresses the calcium tokens. We use
modality-specific query tokens for each cross- Figure 1: Model Architecture. Tokens from each input
attention blocks, these query tokens share the modality are projected into a common latent space using
same number and shape to allow identical pro- cross-attention blocks. Latents are further processed us-
cessing by subsequent layers. In our ablation ing a transformer, and finally behavior is queried through
study, we find that a two cross-attention head @ decoder cross-attention block.

solution is better than using separate encoders

(see Appendix Table[I]in Section E).

Cross

Attention 000

Predictions

Formally, we initialize M x N latent token tuples for each modality, (zg,?;lEPhys),Tmn) and
(zS,?;?PhyS% Tmn ), Where zgghEPhyS)7 2\0OPhYS) o RD are learned vectors and 7, denote virtual

timesteps which are uniformly spaced across the context window. Each cross-attention maps the
input tokens into latents:

e

7

U
zgrllzl = zggzl + Z softmax<(R(Tmn)qmn)T(R(tu,i)ku,i)) Vs e

u=1 =1



where values v, ; = Wy x, ; and keys k,, ; = W X, ; are derived from the input tokens, queries

dmn = Wg z%% from latent tokens, and R(¢) are rotary position embedding matrices (18; 4)). Note
that 2O, W, Wg, Wy are different for the two modalities.

After the cross-attention based compression, we treat the latent tokens from both modalities identically.
This means, during training with mini-batches, we can simply stack the EPhys and OPhys. latent
sequences, z(!), into a batch and pass them through the subsequent layers. All latent tokens go
through the same set of self-attention transformer blocks for further refinement (Figure I} :

7D — gV 4 Z softmax((R(Tmn)Wng,?n)T(R(Tm/n/)WKzfQ,n,)) szgl),n,. )

m’ ,n’

2.3 Decoder

To train the model, we employ a single layer cross-attention decoder that maps the shared latent
representation to task-specific outputs. Given the final latent tokens zsﬂ, a learned query token o
is used to attend over the latent sequence. The query token also has an associated timestamp ¢; to

facilitate sequence-to-sequence tasks:

yi=0+ Z softmax((R(ti)WQo)T (R(Tmn)WKzg,f)LD Wz 3)

m,n

The resulting outputs y; are passed through a linear projection Wi, : RP — RPeasx where Dyaqx
is the dimensionality of the target variable. For regression tasks (e.g., continuous stimulus decoding),
we use mean-squared error loss, whereas for classification tasks we use cross-entropy loss.

2.4 Universal Multi-modal Training

A key property of our approach is that it does not require simultaneously recorded multi-modal data.
Instead, we treat EPhys and OPhys recordings as complementary but independently collected views
of neural activity. During training, datasets from different modalities, regions, and cre-lines are
combined into a single supervised learning framework. Each batch may contain trials from either
modality, and the shared encoder learns representations that generalize across them. This strategy
enables the model to function as a universal encoder: on shared tasks, it can integrate information
from independently acquired datasets and improve generalization in new experimental contexts where
only one modality is available.

3 Results

Setup. We train our models on two large-scale datasets from the Allen Institute: the Allen Brain
Observatory (OPhys) (2) and the Allen Neuropixels survey (EPhys) (L). These datasets share an
experimental protocol during which neural signals of mice are recorded in response to visual stimuli
(see Appendix [A]for more details). From these large datasets, we randomly select 100 OPhys sessions
containing the 5 most prevalent regions (VISp, VISpm, VISam, VISal, VISI) in equal proportion
and 100 EPhys sessions in the same fashion. Our model is trained to decode three of these stimuli:
static gratings orientation (6 classes), drifting gratings orientation (6 classes), and natural scenes
(119 classes). We holdout two sessions from each region in each modality for evaluation purposes;
the remaining sessions are used for pre-training. See Appendices[B|and [C]for more details on our
training and finetuning setup.

3.1 Scaling trends in multi-modal pre-training as a function of data mixtures

In this first set of experiments, we ask whether mixing in EPhys data during pre-training can help
improve downstream performance on OPhys data. In particular, we devise different mixtures of
OPhys and EPhys data with different modality ratios (see Appendix [E). We pre-train models on each
mixture and then finetune each on held-out OPhys session to evaluate their generalization. For each
of the tasks, we report model performance as a function of the pre-training set size in Figure
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Figure 2: Scaling trends in multi-modal pre-training as a function of data mixtures. Reported accuracy is the
average of 10 evaluation sessions across 3 seeds. Error bars denote standard error of mean.

Observation 1: For both static gratings and natural scenes, we observe a positive scaling trend in
the decoding of these stimuli as we increase the amount of pre-training data. This remains true for
various mixtures of EPhys and OPhys.

Observation 2: A model pre-trained only on multi-region OPhys data is never the top model for
any of the tasks. This is true even when compared to models that are pre-trained on similarly-sized
datasets. In particular, we find that for the drifting gratings task, the OPhys only model is out-
performed by models that were pretrained on primarily EPhys data. This result suggests that given
the same pre-training data budget, multi-modal pretraining brings diversity that boosts generalization.

Observation 3: In the common scenario where OPhys data is only collected in one region, we can
supplement the pre-training set using pre-existing multi-region EPhys data. This trend is highlighted
by the dotted lines in Figure 2] We find that this leads to significantly improved performance across
the board. This demonstrates the enormous potential of multi-modal training in regimes where access
to data is easier for one modality (EPhys) compared to the other (OPhys).
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Figure 3: Comparison of baseline transfer relationship for single-region OPhys models and the change in the
transfer relationship induced by adding multi-region EPhys. (*) indicates transfer relationships whose direction
of change was consistent across all three seeds (i.e., all increased or decreased in transfer quality).
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Figure 4: Change in performance induced by adding region-specific EPhys recording to a multi-region OPhys
pre-training dataset, compared to a uni-modal OPhys model. (*) indicates the change was consistent across all
three seeds (i.e., all increased or decreased in performance).

3.2 Cross-region transfer in the context of multi-modal pretraining.

Prior work has investigated the ability of models pretrained on a single region to transfer to an unseen
region. In a recent paper introducing the POYO+ model Azabou et al. (6)) pre-trained OPhys models
on one region, then finetuned them on recordings from other regions for evaluation. Here, we extend
those experiments by incorporating multi-region EPhys data into the pre-training. Specifically, we ask
whether exposure to a region through EPhys can improve transfer when the model has not seen that
region in OPhys. Figure[3|reports the improvements over a baseline where models are pre-trained and
evaluated on the same region. We compare (i) a uni-modal OPhys model trained on a single region
and (ii) a multi-modal model trained on one OPhys region plus all region in EPhys. When comparing
the transfer matrices, we observe an overall improvement in cross-region transfer. This confirms that
exposure to a region through EPhys is sufficient to generalize to that region in the OPhys modality.

Importantly, we note that regions that transfer poorly in the uni-modal setting e.g. VISpm-only or
VISam in all tasks, demonstrate improved transfer in the multi-modal setting. Other conclusions
can be drawn from these matrices. Notably, the multi-modal model trained on VISal generalizes
consistently well across all other regions. This suggests that pairing OPhys data from VISal with
EPhys data spanning the visual cortex may be an effective recipe for building generalizable pre-trained
models for OPhys data across visual areas.

3.3 Dissecting the source of EPhys gains based on regions

In the previous section we studied models that are pre-trained on OPhys data from a single-region
at a time. We now study models that are exposed to OPhys data from all regions and measure how
additional EPhys data from a given region influences downstream performance in each OPhys region.
Figure ] shows improvements in performance compared to a OPhys-only baseline. The effect of
adding EPhys from a given region depends strongly on the target OPhys region and task. This is
supported by the consistent trends along each column in the matrices in Figure ] OPhys recordings
in both VISp and VISpm generally benefit from additional EPhys data regardless of the task, whereas
in VISam we see a slight decrease in performance. Other regions exhibit task-specific trends, for
instance, VISal benefits from EPhys data collected during naturalistic stimulus presentations but
not during artificial ones. These results highlight that EPhys does not always provide uniform gains
across all regions and tasks, an effect also present in Figure 2] for drifting gratings. This underscores
the value of strategically selecting complementary EPhys datasets when aiming to boost OPhys
performance.

4 Discussion

We introduced a Perceiver-based universal encoder that integrates electrophysiology (Ephys) and
optophysiology (Ophys) into a shared latent space without requiring simultaneously recorded multi-
modal data. Our approach demonstrates that independently collected datasets can be combined to
yield improved decoding, stronger transfer across brain regions. The analyses we presented: scaling
trends, cross-region transfer, and region-by-region breakdowns, help clarify how multi-modal pre-
training drives these improvements and can guide more effective strategies for combining modalities
in the future.
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Appendix

A Dataset

The Brain Observatory is the largest public collection of two-photon calcium imaging in mouse
visual cortex (2)). It contains recordings across six cortical areas (VISp, VISpm, VISam, VISrl,
VISal, VISI) in response to a wide range of visual stimuli, including drifting gratings, static gratings,
natural scenes, and natural movies. Each experiment consists of three one-hour imaging sessions
per animal, spanning depths from 150-600 ym and covering layers L.2/3 through L6. Recordings
are genetically targeted using Cre driver lines: two pan-excitatory (Emx1, Slc17a7), eight excitatory
sub-type-specific (Cux2, Rorb, Scnnla, Nr5al, Rbp4, Fezf2, Tlx3, Ntsrl), and three inhibitory (Vip,
SST, PV). This provides diverse populations with distinct response properties and heterogeneous cell
densities across regions. The Neuropixels survey dataset (1) provides complementary large-scale
extracellular electrophysiology, recorded with high temporal precision across overlapping visual
areas under similar stimulus conditions. This combination allows us to examine integration across
modalities with distinct spatial and temporal resolutions: OPhys offering broad coverage and genetic
specificity and EPhys providing precise spike timing.

B Training

During training, we applied neuron dropout, removing random subsets of neurons in each context
window to encourage robustness. This transformation was removed during evaluation. Models were
trained for 300 epochs with a batch size of 32, using a Lamb optimizer with a base learning rate
of 3.125 x 1075 (scaled linearly by batch size) and a weight decay of 1 x 1074, A OneCycleLR
learning rate scheduler was used with a cosine annealing strategy. The learning rate was set to the
initial value until halfway then decayed smoothly for the remaining steps. All models were set to
train for 300 epochs with early stopping enabled. Model checkpointing and early stopping is decided
by the best average metric between OPhys and EPhys. The majority of training parameters were
based on the POYO and POYO+ training parameters available at the torch_brain repository.

C Finetuning

In each experiment, we held-out a subset of sessions. To evaluate the quality of these models we
finetuned on the training split of these held-out sessions and reported accuracy on their test splits.
Fine-tuning followed a gradual unfreezing schedule: unit and session embeddings were unfrozen
first, followed by the decoder and encoder, although in practice convergence was often reached after
unfreezing only the unit embeddings. Models were trained for 50 epochs with unfreezing occurring
at 25 epochs.

D Ablation Study

We conducted an ablation study to confirm the effectiveness of our design choices for incorporating
the two input modalities in our model. Specifically, we compare against three alternate architectures:

* Common CA uses a shared cross-attention encoder block at the input, instead of having a
separate cross-attention block for each modality.

* One-layer unique SA uses separate cross-attention blocks for each modality and additionally
adds a single layer of unique self-attention blocks for each modality.

* Separate encoder model has completely independent encoders for the both modality. In
other words, each modality has its own cross-attention and self-attention transformers, and
only the decoder is shared between the two modalities.

In all cases, the number of layers in the model were adjusted to match the parameter count of the
main model. Results are presented in table[I]and show that our presented architecture performs the
best on OPhys datasets when the model is trained on both EPhys and OPhys data simultaneously.


https://github.com/neuro-galaxy/torch_brain

Static Gratings

Natural Scenes

Drifting Gratings

Main
Common CA

One-layer unique SA

0.3297 +0.0026
0.3289 +0.0014
0.3288 +0.0049
0.2741 +0.0570

0.0833 +0.0028
0.0744 +0.0037
0.0687 +0.0142
0.0809 + 0.0016

0.4212 +0.0011
0.4038 +0.0037
0.4130 + 0.0016
0.4109 + 0.0006

Separate encoder

Table 1: Ablation study. Test performance on the pretraining set for different architecture variations across
three different behavior tasks. Bold indicates best performing variation. SEM is reported along with the mean
performance across three seeds.

E Full Transfer Tables

The full transfer tables show the results of each model for each task averaged across three seeds. The
variance is reported as the standard error of mean. The complete count of sessions in each pre-training
set for each model is given in the leftmost column where 5x18 denotes 5 regions with 18 sessions
per region. When a set of sessions is referenced e.g. EPhys (5x18) any repeats of this phrase in a set
description e.g. EPhys (5x18) + OPhys VISI (18) refer to the same sessions with an additional 18
session of OPhys VISI added.

Table 2: Static Gratings Transfer Table

Pretraining set EPhys OPhys

VISal VISp VISpm ViSam VIST ViSal ViSp VISpm ViSam VIST
EPhys (5x18) 04299 £0.0060 0.6257 £ 0.0031 04657 = 00037 05472 £ 00125 0.3331 & 0.0030 = = - - =
EPhys (5x18) + OPhys VISal (18) | 0.4500 & 0.0052 0.6083 =0.0036 0.4743 £ 0.0039  0.5366 +0.0063 03336 & 0.0067 | 0.3514 £0.0003 0.3508 0.0023 03523+ 0.0061 02212 £0.0036 0.2800 % 0.0058
0.2102 = 0.0048

EPhys (5x18) + OPhys VISp (18)
EPhys (5x18) + OPhys VISpm (I8)
EPhys (5x18) + OPhys VISam (18)

0.6218 =+ 0.0020
0.6192 £ 0.0041
0.6162 + 0.0119

0.4606 £ 0.0103
0.4735 £ 0.0020
0.4821 +0.0017

0.5472 + 0.0069
0.5399 + 0.0069
0.5310 + 0.0020

0.3247 £ 0.0025
0.3437 + 0.0080
0.3426 + 0.0074

0.3431 £ 0.0051
0.3092 + 0.0072
0.3285 + 0.0168

0.3165 £ 0.0136
0.3180 + 0.0044
0.2935 + 0.0243

0.3419 + 0.0030
0.3383 + 0.0080
0.3207 + 0.0143

0.2826 = 0.0069
0.2596 + 0.0070
0.2581 + 0.0055

0.4385 + 0.0063
0.4360 + 0.0064
0.4372 + 0.0066

EPhys (5x18) + OPhys VISI (18) 0.4419 £ 0.0030  0.6067 = 0.0097  0.4696 + 0.0027  0.5382 4+ 0.0107  0.3213 4+ 0.0124 | 0.3603 + 0.0103  0.3397 + 0.0163  0.3613 + 0.0031 0.2780 + 0.0055
OPhys (5x18) 0.3674 + 0.0016  0.3424 4+ 0.0048  0.3455 + 0.0075 0.2860 + 0.0033
OPhys (5x18) + EPhys VISal (18) 0.4265 + 0.0067  0.6019 + 0.0063  0.4651 4+ 0.0034  0.5363 4+ 0.0029  0.3373 4+ 0.0081 | 0.3562 4+ 0.0033  0.3591 4+ 0.0066 0.3553 + 0.0071 2885 + 0.0034
OPhys (5x18) + EPhys VISp (18) 0.4352 £ 0.0063  0.6304 + 0.0068 0.4572 + 0.0053  0.5307 4+ 0.0051  0.3037 4 0.0189 | 0.3488 + 0.0060 0.3519 4+ 0.0024  0.3753 4+ 0.0051 '59 4+ 0.0010
OPhys (5x18) + EPhys VISpm (18) | 0.4372 £ 0.0008  0.6050 + 0.0089 0.4821 £ 0.0104 0.5274 £ 0.0037  0.3241 £ 0.0092 | 0.3565 £ 0.0062 0.3556 + 0.0091  0.3809 + 0.0101 0.2823 + 0.0035
OPhys (5x18) + EPhys VISam (18) | 0.4307 £ 0.0039  0.6064 £ 0.0044  0.4587 £ 0.0063 0.5374 £ 0.0047 0.3317 £ 0.0051 | 0.3754 £ 0.0095 0.3505 + 0.0048 0.3791 + 0.0021 0.2834 + 0.0027
OPhys (5x18) + EPhys VISI (18) 0.4260 + 0.0034  0.5994 + 0.0053  0.4631 + 0.0054  0.5296 £ 0.0049  0.3563 4 0.0052 | 0.3642 + 0.0077  0.3479 + 0.0141  0.3610 + 0.0060 0.2844 £ 0.0042
OPhys (5x18) + EPhys (5x18) 0.4461 0.6078 04779 0.5492 0.3286 0.3591 .3 3
OPhys VISal (18) - - - - - 0.3256 +0.0040  0.3038 + 0.0083  0.3210 + 0.0100 0.2581 £ 0.0030
OPhys VISp (18) - - - - - 0.3059 + 0.0139  0.2997 + 0.0114  0.3248 + 0.0105 0.2546 + 0.0016
OPhys VISpm (18) - - - - - 0.3256 + 0.0113  0.2905 + 0.0105  0.3252 + 0.0081 0.2590 + 0.0041
OPhys VISam (18) - - - - - 0.3202 + 0.0049  0.2898 4+ 0.0188  0.3050 + 0.0110 0.2569 + 0.0065
OPhys VISI (18) - - - - - 0.3342 4+ 0.0091  0.3042 4+ 0.0106  0.3410 + 0.0048 0.2702 + 0.0028
EPhys VISal (18) 0.4349 + 0.0049  0.6042 + 0.0093  0.4626 + 0.0024  0.5346 4+ 0.0095  0.3124 + 0.0070 - - - -
EPhys VISp (18) 0.4352 + 0.0055  0.6094 + 0.0065 0.4659 + 0.0014  0.5357 4 0.0051  0.3163 + 0.0063 - - - - -
EPhys VISpm (18) 0.4277 £ 0.0060  0.6044 £ 0.0110  0.4642 +0.0031  0.5307 4 0.0030  0.3264 + 0.0128 - - - - -
EPhys VISam (18) 0.4304 £0.0031  0.6028 = 0.0021  0.4559 + 0.0036  0.5299 + 0.0112 24 £ 0.0035 - - - - -
EPhys VISI (18) 0.4237 £ 0.0042  0.5977 £ 0.0037  0.4567 + 0.0060 0.5156 4 0.0040  0.3191 £ 0.0121 - - - - -
Table 3: Drifting Gratings Transfer Table

Pretraining set EPhys OPhys

VISal VISp VISpm| VISam VIST VISal VISp VISpm VISam VISI

EPhys (5x18)

EPhys (5x18) + OPhys VISal (18)
EPhys (5x18) + OPhys VISp (18)
EPhys (5x18) + OPhys VISpm (I8)

0.8456 + 0.0207
0.8281 +0.0123
0.8316 + 0.0061
0.8333 +0.0213

0.8745 = 0.0099
0.8940 = 0.0031
0.8870 £ 0.0047
0.8834 + 0.0170

0.7359 = 0.0062
0.7340  0.0071
0.7375 £ 0.0036
0.7358 + 0.0031

0.6842 £ 0.0169
0.6912 +0.0123
0.6559 + 0.0106
0.6594 + 0.0123

0.7359 £ 0.0265
0.7219 + 0.0099
0.7185 + 0.0047
0.7256 + 0.0185

0.2910 + 0.0198
0.3057 + 0.0180
0.3093 + 0.0089

0.4580 £ 0.0044
0.4488 + 0.0049
0.4217 + 0.0284

0.5442 4 0.0181
0.5359 + 0.0062
0.5267 + 0.0078

0.4427 £ 0.0117
0.4133 +0.0125
0.3844 + 0.0212

0.4016 +0.0199
0.4087 + 0.0091

EPhys (5x18) + OPhys VISam (18) | 0.8316 + 0.0061  0.8871 +0.0155 0.7251 £ 0.0081  0.6770 £ 0.0133  0.7220 & 0.0062 | 0.4549 +0.0183 0.5120 + 0.0211 0.3978 £ 0.0102 0.2775 + 0.0088
EPhys (5x18) + OPhys VISI (18) 0.8667 + 0.0262  0.8780 + 0.0153  0.7429 + 0.0064  0.6683 + 0.0127  0.7395 £ 0.0077 | 0.4643 +0.0167 0.5387 + 0.0076  0.3938 + 0.0101 0.3273 + 0.0085
OPhys (5x18) - - - - - 04223 £0.0053  0.5113 +0.0206 0.3931 + 0.0102 0.3090 + 0.0057
OPhys (5x18) + EPhys VISal (18) | 0.8649 + 0.0088  0.8693 + 0.0127  0.7340 + 0.0047  0.6858 £ 0.0063  0.6990 + 0.0052 | 0.4616 + 0.0071 0.5613 + 0.0158  0.4008 £ 0.0295 0.3931 + 3118 £0.0134
OPhys (5x18) + EPhys VISp (18) 0.8351 +0.0137  0.8605 +0.0093  0.7323 +0.0093  0.6613 £ 0.0152 0.7061 = 0.0071 | 0.4248 +0.0196 0.5505 + 0.0072  0.3838 + 0.0125  0.3925 + 0.0322 3116 £ 0.0018
OPhys (5x18) + EPhys VISpm (18) | 0.8386 & 0.0220  0.8709 £ 0.0047  0.7340 £ 0.0018 0.6753 £ 0.0127  0.6885 + 0.0106 | 0.4494 £ 0.0203  0.5209 +0.0113  0.3783 + 0.0062 0. 0.0119 37 +0.0154
OPhys (5x18) + EPhys VISam (18) | 0.8421 £ 0.0161  0.8834 £0.0092 0.7324 £ 0.0169  0.6770 £ 0.0082  0.6955 + 0.0283 | 0.4311 £0.0091 0.5541 +£0.0043  0.4017 £ 0.0185  0.4059 = 0.0134  0.3312 + 0.0184
OPhys (5x18) + EPhys VISI (18) 0.8018 £ 0.0063  0.8835 £ 0.0141  0.7412 £ 0.0061  0.6964 £ 0.0063  0.7008 £ 0.0077 | 0.4244 £ 0.0162  0.5106 £+ 0.0125 04101 £ 0.0168  0.3897 £ 0.0064  0.3086 + 0.0091
OPhys (5x18) + EPhys (5x18) 0.8474 0.8675 0.7782 0.7090 0.7045 0.4341 0.5584 0.3773 0.4197 5

OPhys VISal (18) - - - - - 0.4298 + 0.0085  0.5287 + 0.0192  0.4272 + 0.0147  0.4047 £+ 0.0060  0.2804 + 0.0133
OPhys VISp (18) - - - - - 0.4356 £ 0.0407  0.5389 4+ 0.0280  0.4217 + 0.0082 0.3107 + 0.0106
OPhys VISpm (18) - - - - - 04320 £0.0079  0.4916 +0.0012  0.4061 + 0.0151 0.2946 + 0.0153
OPhys VISam (18) - - - - - 0.3994 £ 0.0029  0.5291 4+ 0.0054  0.4310 + 0.0226 0.3116 + 0.0041
OPhys VISI (18) - - - - - 04295 +0.0141  0.5252 +0.0039  0.4086 + 0.0103 0.2949 + 0.0119
EPhys VISal (18) 0.8456 + 0.0035  0.8551 +0.0035  0.7500 + 0.0107  0.6735 4+ 0.0179  0.7095 =+ 0.0000 - - - - -

EPhys VISp (18)
EPhys VISpm (18)
EPhys VISam (18)
EPhys VISI (18)

0.8508 + 0.0140
0.7895 + 0.0299
0.8439 + 0.0195
0.8333 + 0.0017

0.8816 + 0.0174
0.8552 = 0.0018
0.8604 = 0.0117
0.8994 + 0.0081

0.7287 + 0.0124
0.7483 + 0.0064
0.7270 + 0.0138
0.7325 + 0.0155

0.6508 + 0.0109
0.6701 £ 0.0124
0.6983 + 0.0185
0.6541 +0.0184

0.7149 + 0.0309 - - - - -
0.7186 + 0.0168 - - - - -
0.7218 + 0.0097 - - - _ _
0.7218 + 0.0046 - — - — _




Table 4: Natural Scenes Transfer Table

Pretraining set EPhys OPhys

VISal E VISpm VISam VIST VISal VISp VISpm VISam VIST
TEPhys (5x18) 0.1935 £ 0.0076 0.3081 £ 0.0066 02592 = 0.0066 0.2949 £ 0.0178 _0.2386 £ 0.0018 - = - - -
EPhys (5x18) + OPhys VISal (18) | 0.1530 £ 0.0209 0.5315 % 0.0061 02734 +0.0303  0.2602 £ 0.0124 02076 4 0.0236 | 0.0754 £ 0.0050 0.0573 & 0.0065 0.0554 = 0.0048  0.0204 £ 0.0030 0.0513  0.0020
EPhys (5x18) + OPhys VISp (18) | 0.1776 £0.0169 05427 = 0.0123 02798 +0.0127  0.2594 £ 0.0250 0.2386 & 0.0081 | 0.0584 £ 0.0084 0.0607 & 0.0058 ~0.0577 £ 0.0028 ~ 0.0236 £ 0.0013  0.0439 = 0.0011
EPhys (5x18) + OPhys VISpm (I8) | 0.1784 £0.0126 05545 +0.0020 03038 +0.0102  0.3041 £0.0076 0.1970 4 0.0063 | 0.0529 £ 0.0024 0.0327 & 0.0008 ~0.0387  0.0034 0.0224 £ 0.0010 0.0340 + 0.0034
EPhys (5x18) + OPhys VISam (18) | 0.1927 £0.0095 05030 = 0.0284 02748 +0.0288  0.2245 £ 0.0543 02344 & 0.0135 | 0.0469 £ 0.0040 0.0298 £ 0.0036 0.0370 £ 0.0029  0.0190 £ 0.0013  0.0323 £ 0.0011
EPhys (5x18) + OPhys VISI (18) | 0.2083 £0.0119 05324 £0.0207 0318100148 03013 £0.0019 02305 4 0.0214 | 0.0728 £ 0.0040 0.0747 £ 0.0048 0.0684 = 0.0035 0.0210 £ 0.0016 0.0537 + 0.0034
OPhys (5x18) - - - - - 00814400024 0.0726 +£0.0085 0.0719 +0.0052  0.0250 +0.0030 ~0.0539  0.0010
OPhys (5x18) + EPhys VISal (18) | 0.1687 +0.0067 04668 = 0.0118 02318 +0.0106  0.2466 +0.0086 02001 4 0.0050 | 0.0757 £ 0.0091 0.0923 £ 0.0015 0.0757 + 0.0064 0.0244 £ 0.0015  0.0577 + 0.0008
OPhys (5x18) + EPhys VISp (18) | 0.1469 = 0.0039  0.5777 = 0.0015  0.2041 +0.0063  0.2399 £ 0.0143  0.1838 & 0.0123 | 0.0771 £0.0031 0.0909 = 0.0029 0.0768 + 0.0054 0.0242 £ 0.0010 0.0571 % 0.0017
OPhys (5x18) + EPhys VISpm (18) | 0.1427 £0.0109 04182 =0.0292 02952+ 0.0073  0.2106 £ 0.0162 0.1643 % 0.0116 | 0.0901 £0.0021 0.0801 = 0.0062 0.0728 + 0.0048  0.0216 +0.0026 0.0531 = 0.0006
OPhys (5x18) + EPhys VISam (18) | 0.1695 - 0.0048 04699 = 0.0128  0.2220 +0.0109 0.2474 £ 0.0017 0.1931 & 0.0066 | 0.0823 £ 0.0018 0.0923 = 0.0019 0.0762 + 0.0005 0.0262 + 0.0025 0.0580 + 0.0023
OPhys (5x18) + EPhys VISI (18) | 0.1368 £ 0.0025  0.4450 = 0.0169  0.1969  0.0049 ~ 0.2251 £ 0.0090 0.2400 & 0.0057 | 0.0809 £ 0.0032 0.0833 & 0.0022 0.0780 = 0.0015  0.0242 + 0.0000 0.0560 = 0.0054
OPhys (5x18) + EPhys (5x18) 0.1382 0.4684 0.1860 02572 0.1978 0.0812 0.0703 0.0841 0.0190 0.0571
OPhys VISal (18) - - - - - 006214 00043 0.0497 £0.0025 0.0574 = 0.0010  0.0195 = 0.0008  0.0430  0.0033
OPhys VISp (18) - - - - - 00593 400016  0.0419 £0.0024 0.0410 0.0056  0.0199 = 0.0048  0.0364 £ 0.0018
OPhys VISpm (18) - - - - - 00567 400032 0.0339 £ 0.0013  0.0422 £0.0019 0017300010 0.0332 £ 0.0013
OPhys VISam (18) - - - - - 0.0509 4 00043 0.0301 £0.0020 0.0367 +0.0028 0.0176 + 0.0017 ~ 0.0309  0.0025
OPhys VISI (18) - - - - - 0.0596 4 0.0048  0.0443 £ 0.0035  0.0618 = 0.0055 0.0204 = 00013 0.0476  0.0040
EPhys VISal (18) 0.1564 £ 0.0063  0.4084 +£0.0087 0.1857 = 0.0215 02223 +0.0047  0.1735 + 0.0075 - - - - -

EPhys VISp (18)
EPhys VISpm (18)
EPhys VISam (18)
EPhys VISI (18)

0.1424 + 0.0093
0.1382 + 0.0065
0.1391 + 0.0038
0.1343 + 0.0087

0.5559 + 0.0056
0.4182 + 0.0094
0.4084 + 0.0138
0.3916 + 0.0172

0.2145 + 0.0090
0.2285 + 0.0172
0.1910 + 0.0042
0.1918 + 0.0149

0.2156 + 0.0067
0.1851 + 0.0050
0.2374 £ 0.0106
0.1832 + 0.0041

0.1617 + 0.0085
0.1646 + 0.0100
0.1844 + 0.0014
0.1733 + 0.0133
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