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ABSTRACT

Privacy and Byzantine resilience (BR) are two crucial requirements of modern-day
distributed machine learning. The two concepts have been extensively studied
individually but the question of how to combine them effectively remains unan-
swered. This paper contributes to addressing this question by studying the extent
to which the distributed SGD algorithm, in the standard parameter-server archi-
tecture, can learn an accurate model despite (a) a fraction of the workers being
malicious (Byzantine), and (b) the other fraction, whilst being honest, providing
noisy information to the server to ensure differential privacy (DP). We first observe
that the integration of standard practices in DP and BR is not straightforward. In
fact, we show that many existing results on the convergence of distributed SGD
under Byzantine faults, especially those relying on (α, f)-Byzantine resilience, are
rendered invalid when honest workers enforce DP. To circumvent this shortcoming,
we revisit the theory of (α, f)-BR to obtain an approximate convergence guarantee.
Our analysis provides key insights on how to improve this guarantee through hy-
perparameter optimization. Essentially, our theoretical and empirical results show
that (1) an imprudent combination of standard approaches to DP and BR might
be fruitless, but (2) by carefully re-tuning the learning algorithm, we can obtain
reasonable learning accuracy while simultaneously guaranteeing DP and BR.

1 INTRODUCTION

Distributed machine learning (ML) has received significant attention in recent years due to the
growing complexity of ML models and the increasing computational resources required to train
them (Dean et al., 2012; Srivastava et al., 2015). One of the most popular distributed ML settings is
the parameter server architecture, wherein multiple machines (called workers) jointly learn a single
large model on their collective dataset with the help of a trusted server running the stochastic gradient
descent (SGD) algorithm (Bottou, 2010). In this scheme, the server maintains an estimate of the
model parameters, which is iteratively updated using stochastic gradients computed by the workers.

Compared to its centralized counterpart, distributed SGD is more susceptible to security threats. One
of them is related to the violation of data privacy by an honest-but-curious server (Zhu et al., 2019).
Another one is the malfunctioning due to (what is called) Byzantine behavior of workers (Lamport
et al., 1982; Blanchard et al., 2017). In the past, significant progress has been made in addressing
these issues separately. In the former case, (ε, δ)-differential privacy (DP) has become a dominant
standard for preserving privacy in ML, especially when considering neural networks (Dwork et al.,
2014; Abadi et al., 2016). In the latter case, (α, f)-Byzantine resilience has emerged as the principal
notion for demonstrating the Byzantine resilience (BR) of distributed SGD (Blanchard et al., 2017;
El Mhamdi et al., 2018). Since DP and BR are two crucial pillars of distributed machine learning,
practitioners will inevitably have to build systems satisfying both these requirements. It is thus natural
to ask the following question: Can we simultaneously ensure DP and BR in distributed ML?

In this paper, we take a first step towards a positive answer to this question by studying the resilience
of the renowned DP-SGD algorithm (Abadi et al., 2016) against Byzantine workers. More precisely,
we consider distributed SGD where, in each learning step, the honest workers inject Gaussian noise to
their gradients to ensure (ε, δ)-DP, while the server updates the parameters by applying an (α, f)-BR
aggregation rule on the received gradients (to protect against Byzantine workers). Upon analyzing
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the convergence of this algorithm, we show that DP and BR can indeed be combined, however, doing
so is non-trivial. Our key contributions are summarized below.

1. Inapplicability of existing results from the BR literature. We start by highlighting an inherent
incompatibility between the supporting theory of (α, f)-BR and the Gaussian mechanism used in
DP-SGD. Specifically, we show (in Section 3.2) that the variance-to-norm (VN) condition, critical to
guarantee (α, f)-BR, cannot be satisfied when honest workers enforce (ε, δ)-DP via Gaussian noise
injection. Hence, existing results on the resilience of distributed SGD to Byzantine workers are not
applicable when considering DP-SGD. More generally, this highlights limitations of many existing
Byzantine resilient techniques in settings where the stochasticity of the gradients is non-trivial.

2. Adapting the theory of BR to account for DP. To overcome the aforementioned shortcoming,
we introduce a relaxation of the VN condition (in Section 3.3), namely the η-approximated VN
condition. By doing so, we (1) generalize existing results from the BR literature and (2) demonstrate
approximate convergence of DP-SGD under Byzantine faults. Our convergence result can be roughly
put as follows.

Theorem (Informal). Let Q be the loss function of the learning model, and θt be the parameter
vector obtained after t steps of our algorithm. If the η-approximated VN condition holds true, then

min
t∈[T ]

E
[
‖∇Q(θt)‖

2
]
≤ max

{
η2, O

(
log T√
T

)}
where [T ] = {1, . . . , T}, and ‖·‖ denotes the Euclidean norm.

As the aforementioned result suggests, a smaller η ensures better convergence. To quantify this
convergence guarantee, we present (in Section 3.4) necessary and sufficient conditions for the η-
approximated VN condition to hold. Specifically, we show that the condition holds only if η2 ∈
Ω (d ln(1/δ)/bmε) where d, b, and m denote the model size, batch size, and dataset size respectively.
This showcases an important interplay between DP and BR, e.g., larger ε and δ leads to stronger
resilience to Byzantine workers at the expense of weaker privacy.

3. From theoretical insights to practical convergence.

Figure 1: Impact of the batch size and aggregation
rule on the cross-accuracy of DP-SGD against the
little (Baruch et al., 2019) attack on Fashion-MNIST.

Importantly, our result (in Section 3.4) pro-
vides key insights on how to better integrate
standard approaches to DP and BR using hy-
perparameter optimization (HPO), e.g., by in-
creasing the batch size b, or choosing an ap-
propriate aggregation rule. The improvement
is illustrated by a snippet of our experimental
results in Figure 1. This finding is particularly
interesting as these parameters have very little
impact in most settings when considering DP
or BR separately. We validate our theoretical
insights in Section 4 through an exhaustive
set of experiments on MNIST and Fashion-
MNIST using neural networks.

CLOSELY RELATED PRIOR WORKS

There has been a long line of research on the interplay between DP and other notions of robustness
in ML (Dwork & Lei, 2009; Ma et al., 2019; Song et al., 2019b;a; Sun et al., 2019; Lécuyer et al.,
2019; Pinot et al., 2019). However, previous approaches do not apply to our setting for two main
reasons; (1) they do not address the privacy of the dataset against an honest-but-curious server, and
(2) their underlying notion of robustness are either weaker than or orthogonal to BR. Furthermore,
recent works on the combination of privacy and BR in distributed learning either study a weaker
privacy model than DP or provide only elementary analyses (Chen et al., 2018; He et al., 2020; So
et al., 2020; Guerraoui et al., 2021). We refer the interested reader to Appendix A for an in depth
discussion of prior works. In short, we believe the present paper to be the first to provide an in-depth
analysis with practical relevance on the integration of DP and BR in distributed learning.
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2 PROBLEM SETTING AND BACKGROUND

Let X be the space of data points. We consider the parameter server architecture with n workers
{w1, . . . , wn} owning a common dataset D ∈ Xm of m points. The workers seek to collaboratively
compute a parameter vector θ ∈ Rd that minimizes the empirical loss function Q defined as follows:

Q(θ) =
1

m

∑
x∈D

q(θ, x) ∀θ ∈ Rd, (1)

where q is a point-wise loss function. We assume that function Q is differentiable and admits a
non-trivial local minimum. In other words, ∇Q admits a critical point, but it is not null everywhere.
We also make the following standard assumptions.
Assumption 1 (Bounded norm). There exists a finite realC <∞ such that for all θ ∈ Rd and x ∈ D,

‖∇q(θ, x)‖ ≤ C.
Assumption 2 (Bounded variance). There exists a real value υ <∞ such that for all θ ∈ Rd,

1

m

∑
x∈D
‖∇q (θ, x)−∇Q (θ)‖2 ≤ υ2.

Assumption 3 (Smoothness). There exists a real value L <∞ such that for all θ, θ ′ ∈ Rd,∥∥∇Q(θ)−∇Q(θ ′)
∥∥ ≤ L∥∥θ − θ ′∥∥ .

Assumptions 2 and 3 are classical to most optimization problems in machine learning (Bottou et al.,
2018). Assumption 1 is merely used to avoid unnecessary technicalities, especially when studying
differential privacy. In practice, it can be easily enforced by gradient clipping (Abadi et al., 2016).

In an ideal setting, when all the workers are honest (i.e., non-Byzantine) and data privacy is not an
issue, a standard approach to solving the above learning problem is the distributed implementation of
the stochastic gradient descent (SGD) method. In this algorithm, the server maintains an estimate of
the parameter vector which is updated iteratively by using the average of the gradient estimates sent
by the workers. However, this algorithm is vulnerable to both privacy and security threats.

Threat model. We consider the server to be honest-but-curious, and that some of the workers are
Byzantine. An honest-but-curious server follows the prescribed algorithm correctly, but may infer
sensitive information about workers’ data using their gradients and any other additional information
that can be gathered during the learning as demonstrated by Zhu et al. (2019). On the other hand,
Byzantine workers need not follow the prescribed algorithm correctly and can send arbitrary gradients.
For instance, they may either crash or even send adversarial gradients to prevent convergence of the
algorithm (Blanchard et al., 2017).

2.1 DISTRIBUTED SGD WITH DIFFERENTIALLY PRIVACY

Over the last decade, differential privacy (DP) has become a gold standard in privacy-preserving
data analysis (Dwork et al., 2014). Intuitively, a randomized algorithm is said to preserve DP if its
executions on two adjacent datasets are indistinguishable. More formally, two datasets D and D′ are
said to be adjacent if they differ by at most one sample. Then, (ε, δ)-DP is defined as follows.
Definition 1 ((ε, δ)-DP). Let ε > 0, δ ∈ [0, 1] and O an arbitrary output space. A randomized
algorithmM : Xm → O is (ε, δ)-differentially private if for any two adjacent datasets D,D′, and
any possible set of outputs O ⊂ O,

P[M(D) ∈ O] ≤ eεP [M(D′) ∈ O] + δ.

By far, the most widely used approach to ensure DP in machine learning is to use the differentially
private version of SGD, called DP-SGD (Song et al., 2013; Bassily et al., 2014; Abadi et al., 2016).
The distributed implementation of this scheme against an honest-but-curious server consists, at every
step, in making the honest workers add Gaussian noise with variance s2 to their stochastic gradients
before sending them to the server. When s is chosen appropriately (e.g., see Theorem 1), each
learning step satisfies (ε, δ)-DP at the worker level. Finally, the privacy guarantee of the overall
learning procedure is obtained by using the composition property of DP (Kairouz et al., 2015; Abadi
et al., 2016; Wang et al., 2019). However, we are mainly interested in studying the impact of per-step
and per-worker privacy budget (ε, δ) on the resilience of the algorithm to Byzantine workers.
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2.2 BYZANTINE RESILIENCE OF DISTRIBUTED SGD

In the presence of Byzantine workers, the server can no longer rely on the average of workers’
gradients to update the model parameters. Instead, it uses a gradient aggregation rule (GAR)
F : Rd×n → Rd that is resilient to incorrect gradients that may be sent by at most f Byzantine
workers. A standard notion for defining this resilience is (α, f)-Byzantine resilience stated below,
which was originally proposed by Blanchard et al. (2017).
Definition 2 ((α, f)-Byzantine resilience). Let 0 ≤ α < π/2, and 0 ≤ f < n. Consider n random
vectors g(1), . . . , g(n) among which at least n − f are i.i.d. from a common distribution G. Let
G ∼ G be a random vector characterizing this distribution. A GAR F is said to be (α, f)-Byzantine
resilient for G if its output R = F (g(1), . . . , g(n)) satisfies the following two properties:

1. 〈E [R] ,E [G]〉 ≥ (1− sinα) ‖E [G]‖2 > 0, and

2. for any r ∈ {2, 3, 4}, E [‖R‖r] is upper bounded by a linear combination of
E [‖G‖r1 ] , . . . , E [‖G‖rk ] where

∑
1≤i≤k ri = r.

This condition has been shown critical to ensure convergence of the distributed SGD algorithm in
the presence of up to f Byzantine workers (Blanchard et al., 2017; El Mhamdi et al., 2018). Thus,
it serves as an excellent starting point for studying the Byzantine resilience of distributed DP-SGD.
Consequently, we consider the algorithm where the server implements a Byzantine robust GAR while
the honest workers follow instructions prescribed in DP-SGD.

3 COMBINING DIFFERENTIAL PRIVACY AND BYZANTINE RESILIENCE

Algorithm 1, described below, combines the standard techniques to DP and BR in distributed SGD.
Given a GAR F and a noise injection parameter s, Algorithm 1 computes T steps of distributed
DP-SGD with F as an aggregation rule at the server to guarantee BR.

Algorithm 1: Distributed DP-SGD with Byzantine resilience
Setup: The server chooses an arbitrary initial parameter vector θ1 ∈ Rd, learning rates {γ1, . . . , γT }, and
a deterministic GAR F . Honest workers have a fixed batch size b and noise injection parameter s.
for t = 1, . . . , T do

The server broadcasts θt to all workers.
foreach honest worker wi do

1. wi builds a set Bt by sampling b points at random without replacement from D and computes a
noisy gradient estimate with noise injection parameter s, i.e., it computes

g
(i)
t =

1

|Bt|
∑

x(i)∈Bt

∇q
(
θt, x

(i)
)
+ y

(i)
t ; y

(i)
t ∼ N (0, s2Id). (2)

2. wi sends the resulting noisy gradient to the server.
end
foreach Byzantine worker wi do

wi sends to the server a (possibly arbitrary) vector g(i)t as its "gradient".
end
The server computes the aggregate Rt of the received gradients using F , i.e., it computes

Rt = F
(
g
(1)
t , . . . , g

(n)
t

)
. (3)

The server updates the parameter vector using the learning rate γt as follows

θt+1 = θt − γtRt. (4)

end

Note that when s = 0, i.e., when no noise is injected, Algorithm 1 reduces to a classical Byzantine
resilient distributed SGD algorithm as presented in prior works such as Blanchard et al. (2017) and
El Mhamdi et al. (2018). Furthermore, when f = 0 and F is the average function, it reduces to a
distributed implementation of the well-known DP-SGD scheme, e.g., from Abadi et al. (2016).
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3.1 DIFFERENTIAL PRIVACY GUARANTEE

Intuitively, Algorithm 1 should inherit the privacy guarantees of DP-SGD. Indeed, the privacy
preserving scheme applied at the worker level is the same and will not by altered by the GAR thanks
to the post-processing property of DP (Dwork et al., 2014). Then, owing to previous works, we
can easily show that Algorithm 1 satisfies (ε, δ)-DP at each step and for each honest worker when
s ≈ 2C/bε

√
2 ln (1.25/δ). Furthermore, as shown in Theorem 1, we can obtain a much tighter analysis

using advanced analytical tools such as privacy amplification via sub-sampling (Balle et al., 2018).

Theorem 1. Suppose that Assumption 1 holds true. Let b ∈ [m] and (ε, δ) ∈ (0, 1)2. Consider

Algorithm 1 with s = 2C

b ln((eε−1)mb +1)

√
2 ln

(
1.25b
mδ

)
. Then, each honest worker satisfies (ε, δ)-DP at

every step t ∈ [T ] of the procedure.

Henceforth, whenever we refer to Algorithm 1 with per-step and per-worker privacy budget (ε, δ), we
will consider s as defined in Theorem 1 above.

3.2 INAPPLICABILITY OF EXISTING RESULTS FROM THE BR LITERATURE

As discussed in Section 2, prior works on BR can demonstrate the convergence of Algorithm 1 if
the GAR F is (α, f)-Byzantine resilient during the entire learning process. However, verifying
the validity of (α, f)-BR is nearly impossible as the condition depends upon the gradients of the
Byzantine workers that can be arbitrary (Blanchard et al., 2017). The only verifiable condition known
in the literature to guarantee (α, f)-BR is the variance-to-norm (VN) condition, which is defined as
follows (El Mhamdi et al., 2018).

Definition 3 (VN Condition). For a parameter vector θ ∈ Rd, let G(θ) denote the random vector
characterizing the gradients sent by the honest workers to the server at θ. A GAR F satisfies the VN
condition if for any θ such that G(θ) has a non-zero mean,

κF (n, f)2 E
[
‖G(θ)− E [G(θ)]‖2

]
< ‖E [G(θ)]‖2

where κF (n, f) > 0 is the multiplicative constant of GAR F that depends on n and f .1

This condition means that for a GAR F to guarantee convergence for the procedure, the distribution
of the gradient estimates at parameter θ must be "well-behaved". For instance, if the norm of the
expected stochastic gradients converges to 0 then so should the variance. Note that in the case of
Algorithm 1, from (2) we obtain that for any θ ∈ Rd,

G(θ) :=
1

b

∑
x∈B
∇q (θ, x) + y (5)

whereB is a set of b data points sampled randomly without replacement fromD, and y ∼ N (0, s2Id).
Thus, the VN condition can no longer be satisfied whenever s > 0, i.e., workers follow instructions
prescribed in DP-SGD. We show this formally in Proposition 1 below.

Proposition 1. Let b ∈ [m]. Consider Algorithm 1 with s > 0. If Assumption 3 holds true, then there
exists no GAR that satisfies the VN condition.

Note that when ε and δ are non-zero, we will have s > 0 as explained in Section 3.1. Accordingly,
Proposition 1 means that prior results on the convergence of existing Byzantine resilient GARs,
including the works by Blanchard et al. (2017) and El Mhamdi et al. (2018), are no longer valid when
enforcing any non-zero level of DP. Although the VN condition is only a sufficient one, due to the
lack of necessary conditions in the literature, it is the most widely used tools for proving BR, e.g.,
see Blanchard et al. (2017); El Mhamdi et al. (2018); Xie et al. (2018b); El-Mhamdi et al. (2020);
Boussetta et al. (2021). Hence, Proposition 1 highlights an inherent limitation of the theory of BR,
especially when simultaneously enforcing DP via noise injection.

1Precise values of κF (n, f) for most popular GARs can be found in Appendix B.
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3.3 ADAPTING THE THEORY OF BR TO ACCOUNT FOR DP

To circumvent the aforementioned limitation, we propose a relaxation of the theory of (α, f)-BR by
relaxing the original VN condition to the η-approximated VN condition defined below.
Definition 4 (η-approximated VN condition). Let G(θ) denote the random vector characterizing
the gradients sent by the honest workers to the server at parameter vector θ. For η ≥ 0, a GAR F
satisfies the η-approximated VN condition if for all θ ∈ Rd such that ‖E [G(θ)]‖ > η,

κF (n, f)2 E
[
‖G(θ)− E [G(θ)]‖2

]
< ‖E [G(θ)]‖2

where κF (n, f) > 0 is the multiplicative constant of GAR F that depends on n and f .

Definition 4 relaxes the initial VN condition by allowing a subset of (possible) parameter vectors
θ to violate the inequality in Definition 3. In particular, as E [G(θ)] = ∇Q(θ), when the gradients
are sufficiently close to a local minimum, or ‖∇Q(θ)‖ ≤ η, the inequality need not be satisfied.
While the η-approximated VN condition is a natural extension of Definition 3, it enables us to study
cases where the distribution of the gradients at θ is non-trivial, e.g., the variance of G(θ) need not
vanish when ∇Q(θ) approaches 0. Consequently, we can utilize this new criterion to analyze the
convergence of Algorithm 1 for different GARs and levels of privacy. Assuming η-approximated VN
condition, we show in Theorem 2 the approximate convergence of Algorithm 1.
Theorem 2. Let η ≥ 0 and b ∈ [m]. Consider Algorithm 1 with s > 0, a GAR F satisfying the
η-approximated VN condition, and γt = 1/

√
t for all t ∈ [T ]. If Assumptions 1, 2, and 3 hold true,

then there exists α ∈ [0, π/2) and µ ∈ [0, ∞) such that for any T ≥ 1,

min
t∈[T ]

E
[
‖∇Q(θt)‖

2
]
≤ max

{
η2,

Q(θ1)−Q∗

(1− sinα)

(
1√
T

)
+

µσ2L

2(1− sinα)

(
1 + lnT√

T

)}
where Q∗ is the minimum value of Q, i.e., Q∗ = min

θ∈Rd
Q(θ), and σ =

√
υ2 + ds2 + C2.

According to Theorem 2, Algorithm 1 can compute a parameter θ for which ‖∇Q(θ)‖ ≤ η in
expectation with a rate of O(lnT/

√
T ). In other words, when the loss function Q is regularized (see,

e.g., Bottou et al. (2018)), it finds an approximate local minimum with an error proportional to η2.
Note that, when η = 0 (i.e., when DP is not enforced), the above result encapsulates the existing
convergence results from the BR literature, e.g., Blanchard et al. (2017); El Mhamdi et al. (2018).
Remark 1. For generality, we do not provide the exact values for parameters α and µ in Theorem 2.
These two constants depend on the learning scheme that is applied, in particular the resilience
properties of the GAR used. However, since these parameters are constant throughout the learning
procedure, keeping them to be generic does not affect our conclusions on the asymptotic error.

3.4 STUDYING THE INTERPLAY BETWEEN DP AND BR

The value of η is intrinsically linked to the amount of noise that workers inject to the procedure. In a
way, it represents the impact of per-worker DP on the resilience of Algorithm 1 to Byzantine workers.
To quantify this impact, we present in Proposition 2 sufficient and necessary conditions for a GAR F
to satisfy the η-approximated VN condition in the context of Algorithm 1.
Proposition 2. Let b ∈ [m], (ε, δ) ∈ (0, 1)2. Consider Algorithm 1 with privacy budget (ε, δ) and
GAR F with multiplicative constant κF (n, f) > 0. Then, the following assertions hold true.

1. Under Assumptions 1 and 3, the η-approximated VN condition can hold true only if

η2 ≥ 4κF (n, f)2C2d ln

(
1.25b

mδ

)
1

bm(eε − 1)
.

2. Additionally under Assumption 2, if

η2 ≥ κF (n, f)2

(
8C2d ln

(
1.25b

mδ

)(
1

m(eε − 1)
+

1

b

)2

+ υ2

)
then F satisfies the η-approximated VN condition.
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The above result, in conjunction with Theorem 2, presents a convergence guarantee that can be
obtained by distributed DP-SGD under Byzantine faults. In particular, we have the following
corollary of Theorem 2 and Proposition 2.
Corollary 1. Let b ∈ [m], (ε, δ) ∈ (0, 1)2. Consider Algorithm 1 with privacy budget (ε, δ) and
GAR F , and γt = 1/

√
t for all t ∈ [T ]. If Assumptions 1, 2, and 3 are satisfied, then for any T ≥ 1,

min
t∈[T ]

E
[
‖∇Q(θt)‖2

]
≤ max

{
κF (n, f)

2

(
8C2d ln

(
1.25b

mδ

)(
1

m(eε − 1)
+

1

b

)2

+ υ2

)
, O

(
lnT√
T

)}
.

Corollary 1 quantifies the impact of different parameters on the convergence of the algorithm. For
instance, we observe that larger values of ε and δ, i.e., weaker DP guarantees, imply smaller worst-
case convergence error and therefore, better guarantee of learning. But importantly, it also shows
how the convergence guarantee of the algorithm depends upon other hyperparameters, namely the
batch size b, the number of parameters d, and the multiplicative constant κF (n, f) of the GAR. Let
us for example take the case of the batch size below.

Impact of batch size. We consider the specific GAR of Minimum-Diameter Averaging (MDA) for
which κMDA(n, f) =

√
8f/n−f (El Mhamdi et al., 2018). Then, from Corollary 1, we obtain that

min
t∈[T ]

E
[
‖∇Q(θt)‖2

]
≤ max

{
8f2

(n− f)2

(
8C2d ln

(
1.25b

mδ

)(
1

m(eε − 1)
+

1

b

)2

+ υ2

)
, O

(
lnT√
T

)}
.

From above, we note that when parameters ε and δ are in the interval (0, 1) and f > 0, i.e., both DP
and BR are enforced, then increasing the batch size b indeed reduces the asymptotic convergence
error of the algorithm. However, this is not the case when we consider DP and BR separately. When
all workers are honest, f = 0, which implies η = 0. The algorithm then asymptotically converges
to a local minimum regardless of the batch size used. On the other hand, when the workers do not
obfuscate their gradients (s = 0), the η-approximated VN condition holds true for η ≥

(√
8f/n−f

)
υ.

Then, the asymptotic convergence error of the algorithm is again independent of the batch size. To
conclude, the batch size plays a crucial role in improving the learning accuracy when enforcing DP
and BR simultaneously, but it should have little influence when considering them individually.
Remark 2. Although Corollary 1 provides some useful insights on improving the accuracy of the
learning algorithm combining DP and BR, it need not be tight as it only provides an upper bound
relying on a sufficient condition; the η-approximated VN condition. It turns out that providing a
non-trivial lower bound for distributed SGD in the presence of Byzantine faults remains an open
problem, even without DP. In spite of this, we show the practical relevance of the insights obtained
from Corollary 1 through an exhaustive set of experiments in the subsequent section.

4 NUMERICAL EXPERIMENTS

The goal of our experiments is to investigate whether our theoretical insights are actually applicable
in practice and whether hyperparameter optimization (HPO) can improve the integration of DP and
BR. Accordingly, we assess the impact of varying different hyperparameters on the training losses
and top-1 cross-accuracies of a neural network under (ε, δ)-DP and attacks from Byzantine workers
over a maximum of 300 learning steps.

Reproducibility. All our experiments (training + graphs) are reproducible in one command. Please
see code/README.md in the supplementary material. Additional graphs are available in plots/.

4.1 EXPERIMENTAL SETUP

Datasets. We use MNIST (LeCun & Cortes, 2010) and Fashion-MNIST (Xiao et al., 2017). The
datasets are pre-processed before training. MNIST receives an input image normalization with mean
0.1307 and standard deviation 0.3081. Fashion-MNIST is expanded with horizontally flipped images.
Due to space limitations, we only showcase here results on the Fashion-MNIST dataset.

Architecture and fixed hyperparmaters. We consider a feed-forward neural network composed
of two fully-connected linear layers of respectively 784 and 100 inputs (for a total of d = 79 510
parameters) and terminated by a softmax layer of 10 dimensions. ReLU is used between the two
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linear layers. We use the Cross Entropy loss, a total number of workers n = 15, Polyak’s momentum
of 0.99 at the workers, a constant learning rate of 0.5, and a clipping parameter C = 2. We also add
an `2-regularization factor of 10−4. Note that some of these constants are reused from the literature
on BR, especially from Baruch et al. (2019); Xie et al. (2019); El-Mhamdi et al. (2021).

Varying hyperparameters for HPO. For both datasets, we vary the batch size b within
{25, 50, 150, 300, 500, 750, 1000, 1250, 1500}, the per-step and per-worker privacy parame-
ter ε in {0.2, 0.1, 0.05} (δ is fixed to 10−5), the number of Byzantine workers f in {3, 6} as well
as the attack they implement (little from Baruch et al. (2019) and empire from Xie et al. (2019)).
We also vary the Byzantine resilient GAR F in {MDA,Krum,Median,Bulyan}. Note that due to its
large computational cost, we only use the Bulyan aggregation rule when f = 3.

Each of the 432 possible combinations of these hyperparameters is run 5 times using seeds from 1
to 5 (for reproducibility purposes), totalling in 2160 runs. Each run satisfies (ε, δ)-DP at every step
under attacks from Byzantine workers. To assess the impact of the privacy noise alone, we also run
the experiments specified above with the averaging GAR and without Byzantine workers (denoted
by “No attack”). These experiments account for another 27 combinations, totalling in 135 additional
runs. Overall, we performed a comprehensive set of 2295 runs for which we provide a brief summary
below. More details on the experimental setup and results can be found in Appendices D and E.

4.2 EXPERIMENTAL RESULTS

Figure 2: Maximum top-1 cross-accuracy reached on Fashion-MNIST when only varying the batch
size b for different threat scenarios and different GARs. The first and second rows show the little and
empire attacks respectively. The first and second columns display f = 6, ε = 0.05 and f = 3, ε = 0.2
respectively. All reported metrics include a standard deviation obtained with the 5 consecutive runs.
As a reference, note that the maximal top-1 cross-accuracy achieved by the tested model in the vanilla
setting (i.e., with neither DP nor Byzantine faults) is around 84–85% for Fashion-MNIST.

In Figure 2, we give a snapshot of our results by showcasing 4 characteristic outcomes encountered.
Below, we present further characterization of them. Besides validating our theoretical insights on
the impact of the batch size and the GAR selection on the convergence of Algorithm 1, these plots
also showcase the threat scenarios in which hyperparameter optimization (HPO) has the most impact.
Note that the little attack was more damaging than empire in our experiments; hence in our discussion
below, we consider little to be a stronger threat than empire, ceteris paribus.

1. Strongest threat scenario (top left). We consider little with f = 6 and ε = 0.05, i.e., the strongest
level of attack and privacy we implemented. In this stringent scenario, the algorithm fails to
deliver good learning accuracy under Byzantine attacks. Although increasing the batch size helps
improve the convergence, the accuracy remains quite poor (well below 0.6, even when b = 1500).
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2. Relaxed threat scenario (bottom left). Here, we keep f = 6 and ε = 0.05, but we trade the attack
for a weaker one (empire). This scenario validates our intuition on the advantage of increasing
the batch size, but it mostly highlights the impact of GAR selection. Different GARs differ
significantly in their maximum cross accuracies, while MDA performs the best.

3. Mild threat scenario (top right): We now consider ε = 0.2 and f = 3, i.e., a weaker privacy
guarantee and a fewer number of Byzantine workers. However, we revert back to little attack.
We see that, for all GARs, increasing the batch size significantly improves the maximum cross-
accuracy. The choice of GAR also impacts the performance, with Bulyan being the best.

4. Weakest threat scenario (bottom right): We consider empire with f = 3 and ε = 0.2. The threat
is so weak that all GARs perform almost the same. Although HPO still helps to obtain a better
accuracy, it is not critical in this setting.

Main Takeaway. Our empirical results show that training a feed-forward neural network under both
DP and BR is possible but expensive in some settings. Indeed, in the non-trivial threat scenarios, to
achieve the same maximum cross-accuracy as DP-SGD with b ≈ 50, we need a per-worker batch
size ≥ 1000, i.e., 20 times larger than the Byzantine-free setting. Moreover, depending upon the
setting, the selection of the GAR might be more influential than the batch size. Finally, note that in
the Byzantine-free setting, the DP-SGD algorithm obtains reasonable cross-accuracies (close to 0.8)
for most batch sizes considered. This validates our theoretical findings (discussed in Section 3.4)
that the batch size has a more significant impact when combining DP and BR compared to when
enforcing DP alone. Similar observations on the negligible impact of the batch size in the privacy-free
setting (but under Byzantine attacks) can be found in Appendix E.

5 CONCLUSION & OPEN PROBLEMS

In this paper, we have studied the integration of standard approaches to DP and BR, namely the
distributed implementation of the popular DP-SGD protocol in conjunction with (α, f)-BR GARs.
Upon highlighting the limitations of the existing theory of BR when applied to this algorithm, we
have proposed a generalization of this theory. By doing so, we have (1) quantified the impact of DP
on BR, and (2) proposed an HPO scheme to effectively combine DP and BR. Our results have shown
that DP and BR can be combined but at the expense of computational cost in some settings.

Our generalization of the theory of (α, f)-BR is also of independent interest. Specifically, we have
proposed a relaxation of the VN condition as η-approximated VN condition. Although the VN
condition is quite stringent and only sufficient, it is consistently relied upon to design and study
different Byzantine resilient GARs (Blanchard et al., 2017; El Mhamdi et al., 2018; El-Mhamdi
et al., 2020; 2021; Boussetta et al., 2021). Hence, our convergence result, obtained using the relaxed
η-approximated VN condition, supersedes many existing results in the literature of BR.

Interestingly, we have observed through our experiments (see Appendix E.2) that even when the
relaxed η-approximated VN condition is violated, the algorithm obtains reasonable learning accuracy.
This observation opens two interesting problems expounded below.

1. A theoretical problem: The VN condition (either approximated or not) is not tight enough to fully
characterize BR. That is, in some cases, a GAR may be (α, f)-BR without satisfying the VN
condition. Furthermore, the theory of BR focuses on "worst-case" attacks that, for now, might
not be achievable in practice. Hence, the question on the tightness of the VN condition for any
specific attack, even without DP, remains open.

2. An empirical problem: The practice of BR focuses on state-of-the-art realizable attacks. These
attacks are arguably sub-optimal explaining why we can obtain reasonable learning accuracy
despite the violation of the VN condition. This also calls for designing better (or stronger) attacks.

Finally, while we have focused on adapting the theory of BR to make it more compatible with the
standard DP-SGD algorithm, an alternate future direction could be to investigate other DP mechanisms
that may comply better with classical approaches to BR, while preserving DP guarantees.
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A RELATED WORK

Privacy. In the past, significant attention has been given to protecting data privacy for both central-
ized (Song et al., 2013; Damaskinos et al., 2021; Abadi et al., 2016) and distributed SGD (Shokri &
Shmatikov, 2015; Naseri et al., 2020). Although several techniques for data protection exist such
as the encryption (Tang et al., 2019) or obfuscation (Gade & Vaidya, 2018) of gradients, the most
standard approach consists in adding DP noise to the gradients computed by the workers (Abadi et al.,
2016; Song et al., 2013; Shokri & Shmatikov, 2015; Naseri et al., 2020), which is what we consider.
However, these works only consider a fault-free setting where all workers are assumed to be honest.

Byzantine resilience. In a separate line of research, several other works have designed Byzantine
resilient schemes for distributed SGD in the parameter-server architecture (Blanchard et al., 2017;
El Mhamdi et al., 2018; Yin et al., 2018; Xie et al., 2018a;b; El-Mhamdi et al., 2020; Boussetta et al.,
2021). Nevertheless, in these papers, the training data is not protected, meaning that their methods do
not consider the privacy threat associated with sharing unencrypted gradients with the server.

Combining privacy and BR. Although scarce, there has been some work on tackling the problem
of combining privacy and BR. For instance, He et al. (2020) consider this problem for a different
framework that includes two honest-but-curious non-colluding servers, a strong assumption that does
not always hold in practice. Furthermore, their additive secret sharing scheme is rendered ineffective
in our setting where there is a single honest-but-curious server that obtains information from all the
workers. In the context of privacy, the single-server setting generalizes the multi-server setting with
colluding servers. Another related work, the BREA framework, proposes the use of verifiable secret
sharing amongst workers (So et al., 2020). However, the presented privacy scheme scales more
poorly than DP mechanisms, and is infeasible in most distributed ML settings with no inter-worker
communication. Chen et al. (2018) propose the LearningChain framework that is claimed to combine
DP and BR. However, LearningChain is an experimental method, and Chen et al. do not provide any
formal guarantees either on the resilience or on the convergence of the proposed algorithm.

Recently, Guerraoui et al. (2021) studied the problem of satisfying both DP and BR in a single-server
distributed SGD framework. While they demonstrate the computational hardness of this problem
in practice, we go beyond by showing an inherent incompatibility between the supporting theory of
(α, f)-BR and the Gaussian mechanism from DP. Moreover, our approximate convergence result
generalizes the prior works on BR. This generalization is critical to quantifying the interplay between
DP and BR. Importantly, while Guerraoui et al. (2021) only give elementary analysis explaining the
difficulty of the problem, we show that a careful analysis can help combine DP and BR.

Studying the interplay between DP and other notions of robustness. There has been a long line
of work studying the interplay and mutual benefits of DP and robustness to data corruption in the
centralized learning setting (Dwork & Lei, 2009; Ma et al., 2019). However, these works do not
consider the problem of a distributed scenario with an honest-but-curious server, and they are not
applicable to our setting. Furthermore, data corruption is actually a weaker threat than BR as the
adversary cannot select its gradients online to disrupt the learning process.

Recently, there have been some work on the interplay between DP and robustness to evasion attacks
(a.k.a. adversarial examples). Interestingly, some findings in that line of research are similar to ours.
DP and robustness to adversarial examples have been demonstrated to be very close from a high-level
theoretical point of view even if their semantics are very different (Lécuyer et al., 2019; Pinot et al.,
2019). However, some recent works have pointed out that these two notions might be conflicting in
some settings (Song et al., 2019a;b). It is however worth noting that BR and robustness to adversarial
examples are two orthogonal concepts. In particular, the robustness of a model (at testing time) to
evasion attacks does not provide any guarantee on the robustness (at training time) to Byzantine
behaviors. Similarly, as BR focuses on the training (optimization) procedure, we can always train
models using a Byzantine resilient aggregation rule but without obtaining robustness to evasion
attacks. The connection between these two notions of robustness remains an open problem.

Finally, Sun et al. (2019) suggested that in the context of federated learning, differential privacy could
help defend against backdoor attacks. However, this hypothesis got challenged by Wang et al. (2020).
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B STANDARD GARS WITH ASSOCIATED MULTIPLICATIVE CONSTANTS

In this section, we present the different GARs used in our experiments, along with their associated
VN conditions (Definition 3) and multiplicative constants κF (n, f).

B.1 KRUM

Krum is an aggregation rule introduced under the assumption that n ≥ 2f + 3. It consists in selecting
the gradient which has the smallest mean squared distance, where the mean is computed over its
n− f − 2 closest gradients (Blanchard et al., 2017). Formally, let g(1), g(2), ..., g(n) be the gradients
received by the parameter server. For any i ∈ {1, 2, ..., n} and j 6= i, we denote by i → j the fact
that g(j) is amongst the n− f − 2 closest vectors (in distance) to g(i) within the submitted gradients.
Krum assigns to each g(i) a score

si =
∑
j:i→j

∥∥∥g(i) − g(j)
∥∥∥2

, (6)

and outputs the gradient with the lowest score. Blanchard et al. (2017) prove that Krum is (α, f)-
Byzantine resilient, assuming that the following VN condition is satisfied:

2

(
n− f +

f(n− f − 2) + f2(n− f − 1)

n− 2f − 2

)
E
[
‖G(θ)− E [G(θ)]‖2

]
< ‖E [G(θ)]‖2 . (7)

Therefore, the multiplicative constant for Krum is

κKrum(n, f) =

√
2

(
n− f +

f(n− f − 2) + f2(n− f − 1)

n− 2f − 2

)
. (8)

B.2 MINIMUM-DIAMETER AVERAGING (MDA)

MDA is an aggregation rule introduced under the assumption that n ≥ 2f + 1. It outputs the average
of the n− f most clumped gradients among the received ones (El Mhamdi et al., 2018; El-Mhamdi
et al., 2020). Formally, letQ = {g(1), g(2), ..., g(n)} be the set of gradients received by the parameter
server and let T = {V|V ⊂ Q, |V| = n− f} be the set of all subsets ofQ of cardinality n− f . MDA
chooses the set

S = arg min
V∈T

max
(g(i),g(j))∈V2

∥∥∥g(i) − g(j)
∥∥∥ , (9)

and outputs the average of the vectors in S. El Mhamdi et al. (2018) prove that MDA is (α, f)-
Byzantine resilient, assuming that the following VN condition holds true:( √

8f

n− f

)2

E
[
‖G(θ)− E [G(θ)]‖2

]
< ‖E [G(θ)]‖2 .

Therefore, the multiplicative constant for MDA is

κMDA(n, f) =

√
8f

n− f
. (10)

B.3 MEDIAN

Yin et al. (2018) introduce the Median aggregation rule under the assumption that n ≥ 2f + 1. When
using Median, the parameter server outputs the coordinate-wise median of the submitted gradients.
We recall that every submitted gradient g(i) ∈ Rd, where d is the number of parameters of the model.
Formally, Median is defined as follows

Median
(
g(1), g(2), ..., g(n)

)
=


median

(
g(1)[1], g(2)[1], ..., g(n)[1]

)
median

(
g(1)[2], g(2)[2], ..., g(n)[2]

)
...

median
(
g(1)[d], g(2)[d], ..., g(n)[d]

)
 (11)
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where g(i)[j] is the j′th coordinate of g(i), and median is the real-valued median. In other words,

median (x1, x2, ..., xn) = arg min
x∈R

n∑
i=1

|xi − x|

where x1, x2, ..., xn ∈ R. The VN condition for Median is the following:

(n− f)E
[
‖G(θ)− E [G(θ)]‖2

]
< ‖E [G(θ)]‖2

Therefore, the multiplicative constant for Median is

κMedian(n, f) =
√
n− f. (12)

B.4 BULYAN

Bulyan is an aggregation rule defined under the assumption that n ≥ 4f + 3. It is actually not an
aggregation rule in the conventional sense, but rather an iterative method that repetitively uses an
existing GAR (El Mhamdi et al., 2018). In this paper, we use Bulyan on top of Krum defined above.
Formally, Bulyan uses Krum n− 2f − 2 times iteratively, each time discarding the highest-scoring
gradient. After that, the parameter server is left with a set P of the n − 2f − 2 "lowest-scoring"
gradients selected by Krum, as mentioned in Appendix B.1. Bulyan then outputs the average of the
n−4f−2 closest gradients to the coordinate-wise median of the n−2f−2 (selected) gradients ∈ P .

The VN condition for Bulyan is the same as that of Krum (i.e., equation 7). Therefore, the multiplica-
tive constant for Bulyan is

κBulyan(n, f) =

√
2

(
n− f +

f(n− f − 2) + f2(n− f − 1)

n− 2f − 2

)
. (13)
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C PROOFS OMITTED FROM THE MAIN PAPER

C.1 TECHNICAL BACKGROUND ON PRIVACY

Before demonstrating Theorem 1, we recall some classical tools from the DP literature. Below, we
recall the definition of sensitivity, the privacy guarantee of the Gaussian noise injection, and the
notion notion of privacy amplification by sub-sampling.

Definition 5 (Sensitivity). Let f : X b → Rd. The sensitivity of f , denoted by ∆(f), is the maximum
norm of the difference between the outcomes of f when applied on any two adjacent datasets, i.e.,

∆(f) := sup
D∼D′

‖f(D)− f(D′)‖ ,

where D ∼ D′ denote the adjacency between the databases D and D′ from X b.

Using this notion of sensitivity, we can demonstrate that the Gaussian noise injection scheme (a.k.a.
the Gaussian mechanism) satisfies (ε, δ)-DP for a well chosen noise injection parameter s.

Lemma 1 (Dwork et al. (2014)). Let f : X b → Rd, (ε, δ) ∈ (0, 1)2, and s > 0. The scheme that
takes D ∈ X b as input, and outputs

M(D) = f(D) + y where y ∼ N (0, s2Id)

satisfies (ε, δ)-DP if s ≥ ∆(f)
ε

√
2 ln (1.25/δ).

Finally, let us introduce the concept of privacy amplification by sub-sampling. Here, we study
sub-sampling without replacement defined as follows.

Definition 6. (Sub-sampling) Given a dataset D ∈ Xm and a constant b ∈ [m], the procedure
SUB-SAMPLEm→b : Xm → X b selects b points at random and without replacement from D.

This sub-sampling procedure has been widely studied in the privacy preserving literature and is
known to provide privacy amplification. In particular, Balle et al. (2018) demonstrated that it satisfies
the following privacy amplification lemma.

Lemma 2 (Balle et al. (2018)). Let ε > 0, δ ∈ (0, 1), b ∈ [m], and O be an arbitrary output
space. Let M : X b → O be an (ε, δ)-DP algorithm and M′ : Xm → O defined as M′ :=
M◦ SUB-SAMPLEm→b. ThenM′ is (ε′, δ′)-DP, with ε′ = ln

(
1 + b

m (eε − 1)
)

and δ′ = bδ
m .

C.2 PROOF OF THEOREM 1

Theorem 1. Suppose that Assumption 1 holds true. Let b ∈ [m] and (ε, δ) ∈ (0, 1)2. Consider

Algorithm 1 with s = 2C

b ln((eε−1)mb +1)

√
2 ln

(
1.25b
mδ

)
. Then, each honest worker satisfies (ε, δ)-DP at

every step t ∈ [T ] of the procedure.

Proof. Let t ∈ [T ] be an arbitrary step of Algorithm 1 and θt the parameter at step t. Let us consider
an arbitrary honest worker wi. Note that the batch on which wi computes its gradient estimate
is constituted of b points randomly sampled without replacement from D. Hence we can write
Bt = SUB-SAMPLEm→b(D). We now denote by f : X b → Rd the function that evaluates the mean
gradient at θt using Bt. Specifically,

f (Bt) :=
1

b

∑
x∈Bt

∇q (θt, x) , for any batch Bt ∈ X b. (14)

We denote byM : X b → Rd the noise injection scheme, i.e., for any Bt ∈ X b,

M (Bt) := f (Bt) + yt; yt ∼ N (0, s2Id). (15)

Following the above notation, at step t, the honest worker wi computes the noisy gradient estimate
g

(i)
t =M◦ SUB-SAMPLEm→b(D). Hence, it suffices to show thatM◦ SUB-SAMPLEm→b satisfies

(ε, δ)-DP to conclude the proof.
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Since two adjacent datasets can only differ on one row, using Assumption 1, we have that ∆(f) ≤ 2C
b .

In particular, this implies that s ≥ ∆(f)

ln((eε−1)mb +1)

√
2 ln

(
1.25b
mδ

)
. Then, according to Lemma 1,M

is
(
ε′, mb δ

)
-DP with ε′ = ln

(
(eε − 1)mb + 1

)
. Finally, it suffices to use Lemma 2 to conclude that

M◦ SUB-SAMPLEm→b is (ε, δ)-differentially private.

C.3 PROOF OF PROPOSITION 1

Proposition 1. Let b ∈ [m]. Consider Algorithm 1 with s > 0. If Assumption 3 holds true, then there
exists no GAR that satisfies the VN condition.

Proof. Let us consider an arbitrary GAR F with multiplicative constant κF (n, f) > 0. We denote
the set of critical points of Q by Θ∗ := {θ ∈ Rd | ∇Q(θ) = 0}. While considering Algorithm 1,
the random variable that characterizes the gradients sent by the honest workers at a given parameter
vector is defined as follows, for all θ ∈ Rd,

G(θ) =
1

b

∑
x∈B
∇q (θ, x) + y

where B is a set of b points randomly sampled without replacement from D (denoted B ∼ Db
WR)

and y ∼ N (0, s2Id). To show that the VN condition (in Definition 3) does not hold true, we show
that there exists θ′ ∈ Rd\Θ∗ such that

κF (n, f)2 E
[
‖G(θ′)− E [G(θ′)]‖2

]
≥ ‖E [G(θ′)]‖2 .

For doing so, we first observe that for any θ ∈ Rd, G(θ) is an unbiased estimator of ∇Q(θ), i.e.,
E [G(θ)] = ∇Q(θ). Furthermore, note that the injected noise y is independent from the stochasticity

of gradient estimate
(

1
b

∑
x∈B
∇q (θ, x)

)
. Hence, for all θ ∈ Rd,

E
[
‖G(θ)− E [G(θ)]‖2

]
= EB∼DbWR

∥∥∥∥∥1

b

∑
x∈B
∇q (θ, x)−∇Q (θ)

∥∥∥∥∥
2
+ Ey∼N (0,s2Id)

[
‖y‖2

]
≥ Ey∼N (0,s2Id)

[
‖y‖2

]
= Tr(s2Id) = ds2. (16)

As Q admits non-trivial minima, we know that Θ∗ 6= Rd. Accordingly, there exists θ∗ ∈ Θ∗ and
θ′ ∈ Rd\Θ∗. Without loss of generality, we can always take θ∗ and θ′ such that

‖θ′ − θ∗‖ ≤ κF (n, f)
√
ds

L
,

where L is the constant defined in Assumption 3. Thus, using Assumption 3 we get

‖∇Q(θ′)‖ = ‖∇Q(θ′)−∇Q(θ∗)‖ ≤ L ‖θ′ − θ∗‖ ≤ κF (n, f)
√
ds. (17)

Furthermore, thanks to (16) we know that

κF (n, f)2 E
[
‖G(θ′)− E [G(θ′)]‖2

]
≥ κF (n, f)2ds2. (18)

Finally, using (17) and (18) we obtain that

κF (n, f)2 E
[
‖G(θ′)− E [G(θ′)]‖2

]
≥ κF (n, f)2ds2 ≥ ‖∇Q(θ′)‖2 = ‖E [G(θ′)]‖2 .

The above concludes the proof.
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C.4 PROOF OF THEOREM 2

Before we prove the theorem, we note the following implication of Assumption 2.
Lemma 3. Under Assumption 2, for a given parameter θ,

E

∥∥∥∥∥1

b

∑
x∈B
∇q (θ, x)−∇Q(θ)

∥∥∥∥∥
2
 ≤ υ2

where recall that B is a batch of b data points chosen randomly from dataset D.

Proof. Consider an arbitrary B. Then,∥∥∥∥∥1

b

∑
x∈B
∇q (θ, x)−∇Q(θ)

∥∥∥∥∥
2

=

∥∥∥∥∥1

b

∑
x∈B

(∇q (θ, x)−∇Q(θ))

∥∥∥∥∥
2

.

By triangle inequality, and the fact that (·)2 is a convex function, we obtain that∥∥∥∥∥1

b

∑
x∈B

(∇q (θ, x)−∇Q(θ))

∥∥∥∥∥
2

≤

(
1

b

∑
x∈B
‖∇q (θ, x)−∇Q(θ)‖

)2

≤ 1

b

∑
x∈B
‖∇q (θ, x)−∇Q(θ)‖2 .

Recall that B is a set of b points randomly sampled without replacement from D, which we denote
by B ∼ Db

WR. Thus, given θ ,

E

∥∥∥∥∥1

b

∑
x∈B

(∇q (θ, x)−∇Q(θ))

∥∥∥∥∥
2
 = EB∼DbWR

∥∥∥∥∥1

b

∑
x∈B

(∇q (θ, x)−∇Q(θ))

∥∥∥∥∥
2
 .

Therefore, from above we obtain that

E

∥∥∥∥∥1

b

∑
x∈B

(∇q (θ, x)−∇Q(θ))

∥∥∥∥∥
2
 ≤ 1

b
EB∼DbWR

[∑
x∈B
‖∇q (θ, x)−∇Q(θ)‖2

]
. (19)

Note that

EB∼DbWR

[∑
x∈B
‖∇q (θ, x)−∇Q(θ)‖2

]
=

(
m−1
b−1

)(
m
b

) ∑
x∈D
‖∇q (θ, x)−∇Q(θ)‖2

=
b

m

∑
x∈D
‖∇q (θ, x)−∇Q(θ)‖2 .

Finally, substituting above from Assumption 2 we obtain that

EB∼DbWR

[∑
x∈B
‖∇q (θ, x)−∇Q(θ)‖2

]
= bυ2.

Substitution from above in (19) concludes the proof.

We now present the proof of Theorem 2, which is re-stated below for convenience.
Theorem 2. Let η ≥ 0 and b ∈ [m]. Consider Algorithm 1 with s > 0, a GAR F satisfying the
η-approximated VN condition, and γt = 1/

√
t for all t ∈ [T ]. If Assumptions 1, 2, and 3 hold true,

then there exists α ∈ [0, π/2) and µ ∈ [0, ∞) such that for any T ≥ 1,

min
t∈[T ]

E
[
‖∇Q(θt)‖

2
]
≤ max

{
η2,

Q(θ1)−Q∗

(1− sinα)

(
1√
T

)
+

µσ2L

2(1− sinα)

(
1 + lnT√

T

)}
where Q∗ is the minimum value of Q, i.e., Q∗ = min

θ∈Rd
Q(θ), and σ =

√
υ2 + ds2 + C2.
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Proof. Recall from (4) in Algorithm 1 that, for all t,

θt+1 = θt − γtRt

where Rt = F
(
g̃

(1)
t , . . . , g̃

(n)
t

)
. Thus, under Assumption 3, we obtain that for all t,

Q(θt+1) ≤ Q(θt)− γt 〈∇Q(θt), Rt〉+
γ2
tL

2
‖Rt‖2 . (20)

We denote by Et [·] the conditional expectation given the history Pt = {θ1, . . . , θt;R1, . . . , Rt−1}.
By taking the conditional expectation Et [·] on both sides in (20) we obtain that

Et
[
Q(θt+1)

]
≤ Q(θt)− γt 〈∇Q(θt), Et [Rt]〉+

γ2
tL

2
Et
[
‖Rt‖2

]
. (21)

Recall from (5) that, for all t,

G(θt) :=
1

b

∑
x∈Bt

∇q (θt, x) + yt

where Bt is a set of b points randomly sampled without replacement from D and yt ∼ N (0, s2Id).
By Definition 4 of the η-approximated VN condition, when ‖Et [G(θt)]‖ > η,

κF (n, f)2Et
[
‖G(θt)− Et [G(θt)]‖

2
]
< ‖Et [G(θt)]‖

2
. (22)

Now, consider an arbitrary integer T ≥ 1. We can partition set [T ] = {1, . . . , T} into two sets ST
and ST such that

ST = {t ∈ T ‖Et [G(θt)]‖ ≤ η} , and ST = [T ] \ ST . (23)

First, we consider the case when ST 6= ∅. In this case, ∃t∗ ∈ [T ] such that ‖Et∗ [G(θt∗)]‖ ≤ η. As
E [G(θ)] = ∇Q(θ) for any given θ , this implies that ‖∇Q(θt∗)‖ ≤ η. Thus,

min
t∈[T ]

‖∇Q(θt)‖ ≤ η.

Thus, the theorem is trivially true in this case. Next, we consider the case when ST = ∅, i.e.,
ST = [T ]. Thus, in this case,

‖Et [G(θt)]‖ > η, ∀t ∈ [T ].

This implies that (22) holds true for all t ∈ [T ]. Thus, from prior results in Blanchard et al. (2017);
El Mhamdi et al. (2018), we obtain that GAR F is (α, f)-Byzantine resilient with respect to G(θt)
for each t ∈ [T ]. Therefore, by Definition 2, there exists α ∈ [0, π/2) and µ <∞ such that (recall
that E [G(θ)] = ∇Q(θ) for any given θ)

〈∇Q(θt), Et [Rt]〉 ≥ (1− sinα) ‖∇Q(θt)‖
2
, and Et

[
‖Rt‖2

]
≤ µEt

[
‖G(θt)‖

2
]
, ∀t ∈ [T ].

Substituting from above in (21) we obtain that, for all t ∈ [T ],

Et
[
Q(θt+1)

]
≤ Q(θt)− γt(1− sinα) ‖∇Q(θt)‖

2
+
γ2
tLµ

2
Et
[
‖G(θt)‖

2
]
. (24)

Under Assumptions 1 and 2, from Lemma 3 we obtain that, for all t ∈ [T ],

Et
[
‖G(θt)‖

2
]
≤ Et

[
‖G(θt)− Et [G(θt)]‖

2
]

+ ‖∇Q(θt)‖
2 ≤

(
υ2 + ds2

)
+ C2.

Recall that σ2 := υ2 + ds2 + C2. Substituting from above in (24) we obtain that

Et
[
Q(θt+1)

]
≤ Q(θt)− γt(1− sinα) ‖∇Q(θt)‖

2
+
σ2Lµ

2
γ2
t , ∀t ∈ [T ].

As E [·] = E1 [. . .Et [·] . . .], from above we obtain that

E
[
Q(θt+1)

]
≤ E [Q(θt)]− γt(1− sinα)E

[
‖∇Q(θt)‖

2
]

+
σ2Lµ

2
γ2
t , ∀t ∈ [T ].
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Thus, by taking summation on both sides over all t ∈ [T ], we obtain that

E
[
Q(θt+1)

]
≤ E [Q(θ1)]− (1− sinα)

T∑
t=1

γt E
[
‖∇Q(θt)‖

2
]

+
σ2Lµ

2

T∑
t=1

γ2
t .

As θ1 is a priori fixed, E [Q(θ1)] = Q(θ1). Upon subtracting Q∗ on both sides, and noting that
E [Q(θ)] ≥ Q∗ for all θ , we obtain that

0 ≤ E
[
Q(θt+1)

]
−Q∗ ≤ Q(θ1)−Q∗ − (1− sinα)

T∑
t=1

γt E
[
‖∇Q(θt)‖

2
]

+
σ2Lµ

2

T∑
t=1

γ2
t .

By re-arranging,

(1− sinα)

T∑
t=1

γt E
[
‖∇Q(θt)‖

2
]
≤ E [Q(θ1)]−Q∗ +

σ2Lµ

2

T∑
t=1

γ2
t .

Upon substituting γt := 1/
√
t, we obtain that

(1− sinα)

∑T
t=1 E

[
‖∇Q(θt)‖

2
]

√
T

≤ E [Q(θ1)]−Q∗ +
σ2Lµ

2

T∑
t=1

1

t
.

Note that
∑T
t=1

1
t ≤ lnT + 1. Thus, by multiplying both sides by 1/

√
T , we obtain that

(1− sinα)

∑T
t=1 E

[
‖∇Q(θt)‖

2
]

T
≤ Q(θ1)−Q∗√

T
+
σ2Lµ

2

(
lnT + 1√

T

)
.

Hence, as mint∈[T ] E
[
‖∇Q(θt)‖

2
]
≤
(

1
T

)∑T
t=1 E

[
‖∇Q(θt)‖

2
]
,

(1− sinα) min
t∈[T ]

E
[
‖∇Q(θt)‖

2
]
≤ Q(θ1)−Q∗√

T
+
σ2Lµ

2

(
lnT + 1√

T

)
.

Hence, the proof.

C.5 PROOF OF PROPOSITION 2

Proposition 2. Let b ∈ [m], (ε, δ) ∈ (0, 1)2. Consider Algorithm 1 with privacy budget (ε, δ) and
GAR F with multiplicative constant κF (n, f) > 0. Then the following assertions hold true.

1. Under Assumptions 1 and 3, the η-approximated VN condition holds true only if

η2 ≥ 4κF (n, f)2C2d ln

(
1.25b

mδ

)
1

bm(eε − 1)
.

2. Additionally under Assumption 2, if

η2 ≥ κF (n, f)2

(
8C2d ln

(
1.25b

mδ

)(
1

m(eε − 1)
+

1

b

)2

+ υ2

)
then F satisfies the η-approximated VN condition.

Proof. Let us consider an arbitrary GAR F with multiplicative constant κF (n, f) > 0. We denote the
set of points that do not satisfy the constraint on the gradient of Q by Θη := {θ ∈ Rd | ‖∇Q(θ)‖ ≤
η}. While considering Algorithm 1, the random variable that characterizes the gradients sent by the
honest workers is defined as follows:

G(θ) :=
1

b

∑
x∈B
∇q (θ, x) + y, ∀θ ∈ Rd
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whereB is a set of b points randomly sampled without replacement fromD (denotedB ∼ Db
WR) and

y ∼ N (0, s2Id). As in the proof of Proposition 1, we note that for all θ ∈ Rd, G(θ) is an unbiased
estimate of ∇Q(θ), hence we also have that Θη := {θ ∈ Rd | ‖E [G(θ)]‖ ≤ η}. Furthermore, the
injected noise is independent of the stochasticity of gradients. Hence for all θ ∈ Rd,

E
[
‖G(θ)− E [G(θ)]‖2

]
= EB∼DbWR

∥∥∥∥∥1

b

∑
x∈B
∇q (θ, x)−∇Q (θ)

∥∥∥∥∥
2
+ ds2 (25)

1. We now demonstrate a necessary condition for F to satisfy the η-approximated VN condition
under Assumptions 1 and 3. To do so, we first show reductio ad absurdum that the η-approximated
VN condition holds true only if

η2 ≥ κF (n, f)2d

(
8C2 ln

(
1.25b
mδ

)
b2 ln

(
(eε − 1)mb + 1

)2
)
.

Let us assume that there exists η > 0 such that

η2 < κF (n, f)2d

(
8C2 ln

(
1.25b
mδ

)
b2 ln

(
(eε − 1)mb + 1

)2
)
, (26)

and such that the η-approximated VN condition holds. That is, for all θ ∈ Rd\Θη ,

κF (n, f)2 E
[
‖G(θ)− E [G(θ)]‖2

]
< ‖E [G(θ)]‖2 . (27)

Let us first note that from (25), replacing s2 according to the privacy budget from Theorem 1, we
have for any θ ∈ Rd

d

(
8C2 ln

(
1.25b
mδ

)
b2 ln

(
(eε − 1)mb + 1

)2
)
≤ E

[
‖G(θ)− E [G(θ)]‖2

]
. (28)

Hence, combining (27) and (28), we get that for all θ ∈ Rd\Θη ,

κF (n, f)2d

(
8C2 ln

(
1.25b
mδ

)
b2 ln

(
(eε − 1)mb + 1

)2
)
< ‖E [G(θ)]‖2 . (29)

Recall that Q admits a local minima, hence there exists θ∗ such that ‖∇Q(θ∗)‖ = 0. Furthermore,
under Assumption 3, we know that ‖∇Q(.)‖2 is a continuous on Rd; hence its range on Rd includes

the interval
[
0, κF (n, f)2d

(
8C2 ln( 1.25b

mδ )
b2 ln((eε−1)mb +1)

2

)]
. In particular, there exist θ′ ∈ Rd such that

‖∇Q(θ′)‖2 = ‖E [G(θ′)]‖2 = κF (n, f)2d

(
8C2 ln

(
1.25b
mδ

)
b2 ln

(
(eε − 1)mb + 1

)2
)
. (30)

On the one hand, assuming that θ′ ∈ Θη, leads to a contradiction with (26). On the other hand,
assuming that θ′ ∈ Rd\Θη, leads to another contradiction with (29); hence also with (26). Finally,
we obtain reductio ad absurdum that the η-approximated VN condition holds only if

η2 ≥ κF (n, f)2d

(
8C2 ln

(
1.25b
mδ

)
b2 ln

(
(eε − 1)mb + 1

)2
)
. (31)

If we further note that for any x ∈ R≥0, ln(x+ 1) ≤ 2
√
x we have

κF (n, f)2d

(
8C2 ln

(
1.25b
mδ

)
b2 ln

(
(eε − 1)mb + 1

)2
)
≥ 4κF (n, f)2d

(
C2 ln

(
1.25b
mδ

)
b2(eε − 1)mb

)
. (32)

Finally, combining (31) and (32) proves the necessary condition.
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2. We now show the sufficient condition for F to satisfy the η-approximated VN condition by further
supposing that Assumption 2 holds true. Let us consider

η2 ≥ κF (n, f)2

(
8C2d ln

(
1.25b

mδ

)(
1

m(eε − 1)
+

1

b

)2

+ υ2

)
(33)

Note that for any x ∈ R>0, 1− 1
x ≤ ln(x). Accordingly, we have

1

m(eε − 1)
+

1

b
=

1

b

(
1− 1

m
b (eε − 1) + 1

)−1

≥ 1

b

(
ln
(m
b

(eε − 1) + 1
))−1

(34)

By combining (33) and (34), we get

η2 ≥ κF (n, f)2

(
d

(
8C2 ln

(
1.25b
mδ

)
b2
(
ln
(
(eε − 1)mb + 1

))2
)

+ υ2

)
. (35)

Furthermore, by Lemma 3, under Assumption 2, we have that

E
[
‖G(θ)− E [G(θ)]‖2

]
≤ υ2 + d

(
8C2 ln

(
1.25b
mδ

)
b2
(
ln
(
(eε − 1)mb + 1

))2
)
.

Thus,

κF (n, f)2 E
[
‖G(θ)− E [G(θ)]‖2

]
≤ κF (n, f)2

(
υ2 + d

(
8C2 ln

(
1.25b
mδ

)
b2
(
ln
(
(eε − 1)mb + 1

))2
))

.

Finally, by using (35), for any θ ∈ R\Θη we have

κF (n, f)2 E
[
‖G(θ)− E [G(θ)]‖2

]
≤ η2 < ‖E [G(θ)]‖2 .

The above concludes the proof.

C.6 PROOF OF COROLLARY 1

Corollary 1. Let b ∈ [m], (ε, δ) ∈ (0, 1)2. Consider Algorithm 1 with privacy budget (ε, δ) and
GAR F , and γt = 1/

√
t for all t ∈ [T ]. If Assumptions 1, 2, and 3 are satisfied, then for any T ≥ 1,

min
t∈[T ]

E
[
‖∇Q(θt)‖2

]
≤ max

{
κF (n, f)

2

(
8C2d ln

(
1.25b

mδ

)(
1

m(eε − 1)
+

1

b

)2

+ υ2

)
, O

(
lnT√
T

)}
.

Proof. Under the stated assumptions, we note from Proposition 2 that GAR F satisfies the η-
approximated VN condition when

η ≥ κF (n, f)2

(
8C2d ln

(
1.25b

mδ

)(
1

m(eε − 1)
+

1

b

)2

+ υ2

)
.

Thus, Theorem 2 implies that there exist α ∈ [0, π/2) and µ ∈ [0, ∞) such that for any T ≥ 1,

min
t∈[T ]

E
[
‖∇Q(θt)‖2

]
≤

max

{
κF (n, f)

2

(
8C2d ln

(
1.25b

mδ

)(
1

m(eε − 1)
+

1

b

)2

+ υ2

)
,
Q(θ1)−Q∗

(1− sinα)

(
1√
T

)
+

µσ2L

2(1− sinα)

(
1 + lnT√

T

)}
.

Finally, note that

Q(θ1)−Q∗

(1− sinα)

(
1√
T

)
+

µσ2L

2(1− sinα)

(
1 + lnT√

T

)
∈ O

(
lnT√
T

)
.

Hence, the proof.
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D ADDITIONAL INFORMATION ON THE EXPERIMENTAL SETUP

D.1 MOMENTUM SGD

While the wish for simplicity of presentation has led us to focus on SGD in the paper, our use of
momentum in the experiments is motivated by the following two main observations.

1. El-Mhamdi et al. (2021) recently demonstrated empirically that momentum at the workers can
improve the resilience of the system to Byzantine workers.

2. Momentum has been demonstrated to improve the convergence rate of SGD by reducing the
variance of stochastic gradients. In the context of Algorithm 1, momentum can be shown to
reduce the variance of the noise injected by the workers, while preserving the privacy budget.

D.2 PRIVACY BUDGET AND NUMBER OF TRAINING STEPS

The values of per step and per worker privacy budget ε ∈ {0.2, 0.1, 0.05} and δ = 10−5 that we
consider in Section 4.1 yield, respectively, an overall privacy budget of ε ∈ {7.58, 4.77, 3.46} and
δ = 1.2× 10−4 for every batch size considered, after running the algorithm for T steps. Since (ε, δ)
directly depends on the batch size as well as the total number of learning steps T , we adapt the value
of T for every run in order to obtain the same (ε, δ) in all experiments (regardless of the batch size
used). The maximum value of T considered is 300 steps for the smallest batch size b = 25. Larger
batch sizes have T < 300 2. Finally, given a fixed batch size and number of steps, we evaluate the
overall privacy budgets using the PyTorch package Opacus that is based on the moments accountant
algorithm (Abadi et al., 2016), as well as the advanced composition theorem (Kairouz et al., 2015).

D.3 STUDIED ATTACKS

In the experiments of this paper, we use two state-of-the-art attacks that we refer to as little and
empire. Both attacks rely on the same core idea. Let ζ be fixed a non-negative real number and let at
be the attack vector at time step t. At every time step t, all Byzantine workers send gt + ζat to the
server, where gt is an approximation of the real gradient G(θt) at step t. The specific details of each
attack are mentioned below.

Little is Enough (Baruch et al., 2019). In this attack, at = −σt, where σt is the opposite vector of
the coordinate-wise standard deviation of G(θt). In our experiments, we set ζ = 1 for little.

Fall of Empires (Xie et al., 2019). In this attack, at = −gt. All Byzantine workers thus send
(1− ζ)gt at step t. In our experiments, we set ζ = 1.1 for empire, corresponding to ε = 0.1 in the
notation of the original paper.

E ADDITIONAL EXPERIMENTAL RESULTS

We remind the reader that all experiments are reproducible in one command (refer to
code/README.md). All plots can be found in plots/ in the supplementary folder. Due to
space limitations, plots/ only includes the plots for the Fashion-MNIST dataset. The plots
corresponding to MNIST can also be generated by running the code.

E.1 SANITY CHECKS

Impact of Batch Size in Non-Private Setting. Hereafter, we provide some additional results on the
impact of the batch size in the settings where DP is not enforced. These results validate our claim on
the mild impact of the batch size and the GAR selection when no noise is injected at the worker level.

In Figure 3, we study the impact of the batch size on the learning accuracy in a non-private setting
where the workers do not care about leaking private information and thus share their gradients in
the clear without adding noise to them. Unlike in Figure 2 from Section 4.2, all curves in all four

2Note that to avoid technical difficulties, we actually run 300 learning steps for all experiments. However, we
report the maximum cross-accuracies at the end of T ≤ 300 steps, where T is defined as above.
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Figure 3: Impact of the batch size on the cross-accuracy of the learning on Fashion-MNIST in the
non-private scenario. The first and second rows show the little and empire attacks respectively. The
first and second columns correspond to f = 6 and f = 3 Byzantine nodes respectively.

threat scenarios are mostly flat. This indicates that the batch size and the GAR indeed become crucial
factors in the HPO process whenever DP and BR are combined, and has a negligible impact when
only one of these notions is enforced (refer to Figure 3 and the No attack curves in Figure 2).

Impact of εwith and without Byzantine workers. We also provide below some results studying the
impact of varying the privacy parameter ε alone under different attack scenarios. As shown in Figure 4,
in the non-Byzantine setting (No attack), increasing ε (i.e., weakening the privacy guarantees) does
increase the maximum cross-accuracy encountered in the learning, but at a negligible rate. All
No attack curves only show mild improvement in the cross-accuracy compared to the GARs under
attacks. This means that the standard privacy-accuracy trade-off in DP is quite mild in our experiments.
However, when there are Byzantine workers in the system executing state-of-the-art attacks, the
impact of ε on the learning accuracy is more important, especially in the case of little (first row of
Figure 4). In some instances where the executed attack might not be strong (e.g., empire and f = 3),
the impact of ε is mild even in the Byzantine setting.

Figure 4: Impact of ε on the cross-accuracy of the learning on Fashion-MNIST for b = 1000. The
first and second rows show the little and empire attacks respectively. The first and second columns
correspond to f = 6 and f = 3 Byzantine nodes respectively.
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E.2 SATISFIABILITY OF THE VN CONDITION IN PRACTICE

Verifying whether the VN condition (or the η-approximated VN condition) holds is actually impossi-
ble in practice as we do not have access to the real gradient distribution of the honest workers G(.).
Instead we estimate statistics on G(.) by using the gradient estimates of the honest workers at every
step of the learning. Furthermore, to facilitate the visualization, we actually compute the VN ratio
defined below.

VN Ratio: We re-arrange the terms of the η-approximated VN condition as follows:

κF (n, f)2 E
[
‖G(θ)− E [G(θ)]‖2

]
< ‖E [G(θ)]‖2 (36)

⇔

√
E
[
‖G(θ)− E [G(θ)]‖2

]
‖E [G(θ)]‖︸ ︷︷ ︸

VN ratio

<
1

κF (n, f)
. (37)

In the following, we refer to the left hand side of (37) as the VN ratio. This is the ratio of the standard
deviation of the honest gradients to the norm of the expected honest gradient, which has already
been discussed by El Mhamdi et al. (2018). In simulations, the VN ratio can be measured during the
training along the parameter trajectory by estimating the variance and the expectation of the gradients
sent by the honest workers. For a GAR F for which the constant κF (n, f) is known (e.g., see
Appendix B), we can measure the VN ratio to get insights on the satisfiability of the η-approximated
VN condition.

VN Ratio in Our Experiments: Takeaways. In Figure 5, we show the measured VN ratios along
the parameter trajectory (θ1, . . . , θ300), for both the gradients sampled by each honest worker and
the gradients submitted to the GAR. The sampled honest gradients are the gradients computed by the
honest workers using the data batches sampled in each step of the training. The submitted honest
gradients are the gradients submitted by the honest workers to the parameter server, after having
corrupted them using additive Gaussian noise and having applied momentum.

Figure 5: VN ratios for MDA and b = 1000, under the same settings (and layout) as in Figure 2.
“Sample” corresponds to the VN ratio of the sampled gradients, i.e., g(i)

t for the honest worker i.
“Submit” corresponds to the VN ratio observed by the GAR. The latter significantly differs from the
former mostly due to the added Gaussian noise for DP.

Figure 5 summarizes the value of the VN ratio we encountered during the learning under the same
settings (and layout) as in Figure 2. We observe that the VN ratio of a sampled gradient can be
extremely small compared to the VN ratio of its corresponding submitted gradient. Our first takeaway
regarding the submitted gradient is that its VN ratio is “nearly" constant. As the VN ratio of the privacy
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noise is constant3, the aforementioned observation suggests that the privacy noise is substantially
larger than the sampled gradients; hence dominating the VN ratio of the submitted gradients.

Recalling that κMDA (n, f) =
√

8f/(n−f), Figure 5 shows that if (in our experiments) κMDA where to
be smaller than 0.08, the η-approximated VN condition would have been satisfied during the entire
training. This is not the case in our setting where n = 15. This brings us to our second takeaway,
discussed as follows. For MDA, there exists extreme (but arguably reasonable) settings for which the
VN condition can actually be satisfied, for at least several hundred training steps. However, we did
not have to use such extreme settings in our experiments to observe convergence.

3The VN ratio can be treated as a property of a generic random vector, e.g., stochastic gradient or privacy
noise. As the distribution of the privacy noise does not change during training, its VN ratio is constant.
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