
Toward Dataset Distillation for Regression Problems

Jamie Mahowald * 1 Ravi Srinivasan 1 Atlas Wang 1

Abstract
Dataset distillation is a growing technique that compresses large datasets into smaller synthetic datasets while
preserving learning characteristics. However, it remains under-studied for regression problems. This paper
presents a theoretical framework for regression dataset distillation using bilevel optimization, where inner loops
optimize model parameters on distilled data, while the outer loops refine the dataset itself. For regularized linear
regression, we derive closed-form solutions and show approximation guarantees when the number of features is
greater than the size of the distilled dataset, using Polyak-Łojasiewicz properties to yield linear rates. Numerical
experiments support our predictions with high determination, validating our theory while reducing dataset size by
an order of magnitude.

1. Introduction
Dataset distillation is an algorithm in machine learning that uses a given model to compress a large dataset into a smaller,
more efficient dataset that retains the essential information of the original dataset. Traditional compression methods decide
what to compress based on properties of the data itself – spectral properties, linear transformations of arbitrary vectors, or
norm-preservation, to name a few. These methods and the properties they preserve are general, and they usually suffice for a
wide range of tasks. Distillation, however, leverages the model’s learning process to identify and preserve the features most
relevant to the task of training the model, producing a dataset tailored to that task.

This aim can be formalized as follows: Let x be an existing dataset, and let fθ(x) a model known to perform well when
trained on that dataset. The distillation process generates a synthetic dataset x̃, whose elements are not elements of x, but
rather objects synthesized from x through some iterative training process. The size of this dataset |x̃| = m is much smaller
than |x| = n. The process is successful if f performs similarly when trained on this smaller dataset x̃ as it does when
trained on x at the task of evaluating x-like testing data: symbolically, if fθ(x̃)(x) ≈ fθ(x)(x). What is extraordinary about
this process is that, through the distilled data, the model can also tell us what about the original data it is paying attention to.

There are several species of dataset distillation defined according to their objective (Ruonan Yu et al., 2023). The most
relevant to this paper is performance matching, which aims to synthesize a dataset x̃ such that a neural network fθ(x̃)
trained on x̃ achieves minimal loss when evaluated on the original dataset x, usually with the loss function ℓ defined in the
original model architecture. Here L depends on ℓ(x; θ(x̃)), the model’s loss when evaluating the original dataset on the
parameters trained by the synthesized dataset.

Distillation has chiefly been used to synthesize datasets that train models for classification problems, with validation on
datasets like CIFAR, MNIST, and more recently ImageNet. Furthermore, implementations of distillation create and save the
entire training trajectory, rather than simply a final dataset, undermining the practicality of easy storing and sharing. To the
extent that it has been used for regression problems, it is usually to recast a classification problem as a regression problem
to exploit certain properties, like the approximation of gradient descent training by kernel ridge regression. Regresison
problems, however, are useful in their own right: emerging fields such as scientific machine learning and time-series
forecasting rely explicitly on these settings. Distillation should be leveraged to relieve issues like interpretability and training
costs for these areas, just as it has in mainstream ML settings. Recognizing that a robust distillation theory for these practical

*Equal contribution 1The University of Texas at Austin, Austin, TX, USA. Correspondence to: Jamie Mahowald <ma-
howald.jamie@gmail.com>.

Proceedings of the 42nd International Conference on Machine Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025 by the
author(s).

1

Distillation for Regression

fields requires a strong foundation, we build out properties of dataset distillation for a basic regression task.

1.1. Analyzing the algorithm

Bilevel optimization. The structure of this algorithm (see Algorithm 1) follows a bilevel optimization problem. The “inner
loop” (lines 7-9) optimizes a weight matrix to the distilled data, and the “outer loop” (lines 3-14) optimizes the distilled data
to the original data via the weight matrix. Symbolically, given an original dataset x, the algorithm creates

x̃ = argmin
x̃

Lo(x, θ
∗(x̃)) s.t. θ∗(x̃) ∈ argmin

θ
Li(θ, x̃), (1)

where Lo and Li are outer and inner loss functions, respectively. The distilled dataset itself functions as a learnable parameter
matrix, similar to how neural network weights are learnable parameters. In line 2, we randomly initialize this distilled
dataset matrix, before optimizing it to become the most effective small dataset for training. This initialization approach
mirrors how we would randomly initialize weight matrices in a neural network before training them toward their optimal
values.

Rather than use the entire original dataset for each distillation step, we sample representative batches to guide the optimization
process. To begin an outer loop, we sample q model weights from some distribution p(θ0). We use several initializations per
distillation step to ensure that the distilled dataset is robust to the choice of initialization. Within the inner loop, the distilled
dataset is held fixed; it is only updated at the end of the distillation step (lines 12-13).

Loop structures. Both loops run optimization via gradient descent on their respective loss functions.* In the inner loop,
we run T gradient descent steps on the distilled dataset for each weight matrix, updating the weights according to the loss
function. This is intended to reflect a mini-training run on the distilled data. In the outer loop, this trained mini-network is
evaluated on the original dataset, with its loss accumulated. The distilled dataset is then updated according to the gradient of
the accumulated loss with respect to the distilled data. This is analogous to how a weight matrix is updated according to the
gradient of the loss with respect to the weights.

In the first few distillation steps, θT is expected to fit the randomly initialized distilled data and therefore perform poorly on
real data, and the initial updates to the distilled data should be large. However, as the algorithm “fills in” the distilled data
according to line 12, the distilled data should train weights that perform better and better on the original dataset. We also
allow the learning rate to update alongside the distilled data, but that analysis is not discussed in depth here.

2. Regression
The regression problem is a classic data-science task that aims to learn a mapping from input features to a continuous space
of target values. In this section, we discuss how dataset distillation can be applied to regression problems, focusing on the
theoretical basis of the distillation process and its convergence properties. The goal will be to establish that a model trained
on a distilled dataset can approximate a model trained on the original dataset. To begin analysis of regression problems, we
study linear regression, including regularized and kernel-ridge regression. We leave nonlinear analysis for future work.

2.1. Problem setup

We adopt the following setup from (Wang et al., 2020)’s motivation for dataset distillation: consider a linear regression
problem defined by a dataset x composed of n input-target pairs, x = {(xi, yi)}ni=1, where each input xi ∈ Rdin and target
yi ∈ Rdout for some positive integers din and dout (for now, we consider one-dimensional targets, or dout = 1, and denote
d = din). We assume n > d, i.e., there are more samples than features per sample. We represent x by the data matrices
X =

[
x1 · · · xn

]⊤ ∈ Rn×d, Y =
[
y1 · · · yn

]
∈ Rn,x = (X,Y). We want to regress a function f : Rd → R such

that f(xi) ≈ yi for all i.

Regression loss. Let Φ be a feature transformation on the inputs X . We use the regularized mean-squared error to measure
how well a linear prediction fθ(xi) = Φ(xi) θ parameterized by a d-dimensional weight matrix θ fits the dataset:

ℓ(x, θ) = ℓ((X,Y), θ) =
1

2n
||Φ(X) θ − Y ||2 + λ

2
||θ||2 (2)

*Some newer works are analyzing non-GD methods, particularly for outer-loop optimization. Here we stick with gradient descent.

2

Distillation for Regression

where || · || is the Euclidean norm for vectors and the Frobenius norm for matrices, and the regularization term penalizes
large model weights. The simplest variant assumes λ = 0 and Φ(x) = x, giving a traditional, unregularized regression
problem. This loss function will be used in both lines 8 and 10 of Algorithm 1.

Distillation. Based on Algorithm 1, the distillation process builds out a dataset x̃ = (X̃, Ỹ) of size m << n, so
that X̃ and Ỹ are m × d and m × 1 matrices, respectively. It’s helpful to see m as a “tunable” hyperparameter in the
positive integers < n that has different properties before and after d. Then, a function fθ(x̃) regressed on x̃ should
satisfy fθ(x̃)(X) ≈ fθ(x)(X) ≈ Y : that is, with fθ(x) and fθ(x̃) trained respectively by θ(x) and θ(x̃), we’d have
ℓ(x, θ(x̃)) ≈ ℓ(x, θ(x)) < some small error.

2.2. Inner-loop convergence

We begin by analyzing inner-loop performance before turning to the outer loop.
Definition 2.1 (Inner-loop loss function). Let x̃ be a distilled dataset of size m with inputs X̃ ∈ Rm×d and outputs Ỹ ∈ Rd.
We define the regularized, linear, mean-squared error inner-loop loss function as

ℓ(x̃, θ) =
1

2m
||X̃θ − Ỹ ||2 + λI

2
||θ||2.

Definition 2.2 (Inner-loop gradient descent step). Let η̃ be a distillation learning rate hyperparameter, and let x̃ be a distilled
dataset at any step. Let λI ≥ 0 be an inner-loop regularization parameter. The inner-loop gradient descent (I-GD) step is
defined as the update of the weights θt at step t given the distilled dataset x̃:

θt+1 ← θt − η̃∇θtℓ(x̃, θt) to minimize ℓ(x̃, θ). (3)

Following A.4, this gives an alternating, combinatorial, closed-form expression for θt in terms of the distilled data x̃ and
inner-loop hyperparameters β = 1− η̃λI and γ = η̃/m:

θt =

βI − γX̃⊤X̃︸ ︷︷ ︸
=:C

t

θ0 +

t−1∑
j=0

(−1)j
(
t

j

)
βt−j

(
γX̃⊤X̃

)j
X̃⊤Ỹ︸ ︷︷ ︸

=:Dt

. (4)

Exact performance matching. In preparation for our weaker convergence conditions, we define a necessary condition for
the distilled dataset to achieve the exact same performance as the original dataset.
Lemma 2.3 (Exact inner-loop equality). For any amount of I-GD steps, Xθt = Y exactly only if m ≥ d.

Sketch of proof. For X(Ctθ0 +Dt) = Y , we have two constraints:

• XCtθ0 = 0. This point is necessary for the equality to hold for any θ0. If instead we allowed XCθ0 +XDt = Y ,
for fixed C and Dt and variable θ0, we would still need XC = 0, which again forces C = 0 when X is full rank.

Substituting, X
(
βI − γX̃⊤X̃

)t
θ0 = 0.

Just as in the one-I-GD-step case, this equality is satisfied only when I = γ
β X̃

⊤X̃ (with a full-rank X). However, as
shown in Sec 2.2, the exponentiation tends to push Ct toward zero.

• XDt = Y . This term represents the target alignment achieved through the distillation process over several runs of the
outer loop.

The first constraint forces m ≥ d as a necessary condition for any distilled dataset of size m to achieve the exact same
performance as the original. Note that X̃⊤X̃ is positive semi-definite with k eigenvalues σ2

1 , σ
2
2 , . . . , σ

2
k, all ≥ 0. If m ≥ d,

then, assuming the number of data points n is greater than the dimensionality d, since X̃ is full rank,

k = rank(X̃⊤X̃) = rank(X̃) = d = rank(X),

regardless of the number of I-GD steps.

If m < d, these equalities no longer hold, and rank(X̃⊤X̃) is guaranteed only to be some positive integer k ≤ m.

3

Distillation for Regression

Approximate performance matching. If we relax the call for perfection, and we instead study the convergence in loss by
distilled data toward by using the original data, we start seeing benefits that don’t depend on rank when running multiple
I-GD steps on a distilled dataset.

Lemma 2.4 (Inner-loop convergence by I-GD). Let
{
σ2
i

}
be the set of eigenvalues of X̃⊤X̃ , and let η̃ < 2m/(σ2

max+mλI).
As t increases, the inner-loop prediction X̃θ approaches X̃Dt.

Proof. With X̃θ = X̃(Ctθ0+Dt), the eigenvalues of C = βI−γX̃⊤X̃ are {β−γσ2
i } for i = 1, . . . , k. For Ct to converge

to 0 as t increases, all eigenvalues must be less than 1 in absolute value, so that |β − γσ2
i | < 1, or 0 < γσ2

i + η̃λI < 2 for
all i. Thus, if we choose η̃ < 2m/(σ2

i +mλI) for all i –– or equivalently

η̃ < 2m/(σ2
max +mλI), (5)

where σmax = maxi {σi} –– then γ = η̃/m will “push” all eigenvalues of C below β.

With this condition satisfied, the relationship between matrix powers and their spectral norms guarantees ||Ct|| ≤ ρt, where
ρ = maxi |β−γσ2

i | < 1. This relation implies that Ct decreases exponentially with t to 0, so that X(Ct+Dt)→ XDt.

While a positive regularization term λI reduces the range of admissible learning rates η̃, it also contracts the spectral radius
of C: the regularized radius |β − γσ2

i | = |1− γσ2
i − η̃λI | is smaller than the unregularized radius |1− γσ2

i | for all i. The
hyperparameter λI should therefore be tuned to balance this tradeoff.

2.3. Outer-loop convergence

Structure of the outer loop. At this point, we consider the outer loop and note that x̃ is updated only once per distillation
step (in line 12 of Algorithm 1). While we had used an arbitrary distilled dataset x̃ for the inner loop, we now name the
distilled dataset at the sth distillation step x̃s = (X̃s, Ỹs).

Within the sth distillation step, for each network initialization q = 1, . . . , Q, a run of T I-GD steps gives us a set of fixed

parameters
{
θ
(q)
T,s

}Q

q=1
, each associated with a different initialization θ

(q)
0 but with the same distilled dataset x̃s−1. We then

compute the outer-loop loss L(q)
s of those parameters on the original data x to gauge how well the model trained on distilled

data fits the original data. In practice, we use a representative batch xB instead of the full x, where ∥XBθ−YB∥ ≈ ∥Xθ−Y ∥.
We then update the distilled dataset x̃s using the outer-loop gradient descent (O-GD) step, which minimizes the sum of the
outer-loop losses across all initializations.

Definition 2.5 (Outer-loop loss function). Let x̃ = (X,Y) be a real dataset, and let x̃ = (X̃, Ỹ) be a set of distilled data.
Let θT = θT (x̃) be a set of parameters trained on x̃ with a run of T inner-loop gradient descent steps. Let || · || denote the
Frobenius norm. Let λO be the outer-loop regularization term, a hyperparameter. The regularized, linear, mean-squared
error outer-loop loss function is defined as

L (x, θT) =
1

2n
∥XθT − Y ∥2 + λO

2
(∥X̃∥2F + ∥Ỹ ∥2F). (6)

Definition 2.6 (Outer-loop gradient descent step). Let L(q)
s be the outer-loop loss function for the qth network initialization

at distillation step s + 1, and let αx be the meta-gradient learning rate. The outer-loop gradient descent (O-GD) step is
defined as the update of the distilled dataset x̃s+1 = (X̃s+1, Ỹs+1) at step s+ 1:

X̃s+1 ← X̃s − αx∇X̃s

(
Q∑

q=1

L(q)
s

)
and Ỹs+1 ← Ỹs − αx∇Ỹs

(
Q∑

q=1

L(q)
s

)
. (7)

The outer-loop loss depends on X̃ through θ
(q)
T,s and through λO

2 ∥X̃∥
2
F , so its gradient with respect to X̃s is given by

∇X̃L =
∂L
∂θ

∂θ

∂X̃
+

∂L
∂X̃

∣∣∣∣
direct

,

where ∂L
∂θ = 1

nX
⊤(Xθ − Y), ∂θ

∂X̃
= ∂

∂X̃
[CT θ0 +DT], and ∂L

∂X̃
|direct = λOX̃ .

4

Distillation for Regression

Linear convergence of L. We aim to find conditions under which x̃ converges to a minimizing x̃∗ under gradient descent.
At a minimum, exploiting the properties of the PL condition, we can show that if the step size is small enough, then the
outer-loop loss function converges linearly to a local minimum. We first state two lemmas for general functions, whose
proofs are found in Appendix A.6:

Lemma 2.7 (Local strong convexity). Consider the function f = Q+ R, where Q is a polynomial and R(x) = λ
2 ||x||

2

with regularization parameter λ. Let λ(Q)
min be the smallest eigenvalue of∇2Q, the Hessian of Q, and let y be some point in

the same domain as x.

Suppose that for some M ∈ [0, λ) and r > 0, we have that λ(Q)
min ≥ −M for all x in the r-neighborhood of y. Then there

exists µ > 0, namely λ−M , such that f is locally µ-strongly convex in {x : ||x− y|| ≤ r}.
Lemma 2.8 (Outer-loop PL condition). Let x∗ be a local minimizer of f . Under the conditions of Lemma 2.7, for all x with
||x− x∗|| ≤ r, the outer-loop objective f(x) = Q(x) +R(x) satisfies the PL inequality,

1

2
∥∇f(x)∥2 ≥ µ(f(x)− f(x∗)), (8)

where µ = λ−M > 0.

Consider the outer-loop loss function

L(X̃) = Q(X̃) +R(X̃), where Q(x) =
1

2n
∥XθT − Y ∥2 and R(x) =

λO

2
(∥x∥2F + ∥Ỹ ∥2F).

Note that θT ≈ DT for large T , which is polynomial in x with degree 2T − 1 (see Lemma 2.4), so that Q(x) is polynomial
in x with degree 4T − 2.

Theorem 2.9 (Linear convergence of outer-loop). Consider the outer-loop gradient descent update given in Defintion 2.6.
Let L be the Lipschitz constant of the gradient of L with respect to X̃ . Let X̃∗ be a local minimizer of L.

Suppose L satisfies the conditions of Lemma 2.8, with M the minimum eigenvalue of the Hessian of L in a region of radius
r around X̃∗. If the step size satisfies αx ≤ 1/L, then for all X̃∗ with ||X̃s − X̃∗||F ≤ r,

L(X̃s)− L(x∗) ≤
(
1− λO −M

L

)s

(L(X̃0)− L(x∗)), (9)

Proof. This follows directly from the standard convergence result for gradient descent under the PL condition (Karimi et al.,
2020). Since L satisfies the PL inequality with constant µ and has L-Lipschitz gradient, gradient descent with step size
αx = 1/L achieves the stated linear convergence rate.

From Theorem 2.9, we get a testable prediction: during the main training run (i.e., excluding warmup and cooldown),
plotting Ls = ℓ(x, θT,s) on a log-scale against s should produce a straight line whose slope is log(1− αxµT). Below, we
show several parameterizations of the distillation process along with their empirical µT = (1− eslope)/αx values, visualized
in A.7. In this setting, αx = 0.0025, η̃0 = 0.05, b = 32, and {d,m, n} = {1000, 100, 99}.

Inner-loop steps T 100 125 150 175
Slope of log fit −0.0052± 0.0005 −0.0066± 0.0006 −0.0073± 0.0007 −0.0103± 0.0009
R2 of log fit 0.9974 0.9972 0.9973 0.9967

Empirical µT 2.087± 0.182 2.639± 0.252 2.914± 0.279 4.097± 0.359

As shown, larger inner-loop step counts T lead to faster outer-loop convergence as measured by the empirical PL constant
µT . A higher µT corresponds to a sharper landscape, suggesting faster reduction of suboptimality. This suggests using
higher T values as budget permits, especially for regimes demanding sharper generalization or fast convergence.

3. Conclusion
Using the bilevel optimization structure of dataset distillation, we show how distillation operates in the context of regularized
regression. Under reasonable assumptions, the outer objective satisfies a Polyak-Łojasiewicz condition inherited from the

5

Distillation for Regression

base loss, from which we obtain linear convergence rates for gradient-based distillation under mild smoothness. These
results position distilled datasets as a principled, hardware-agnostic alternative to data-subset selection for rapid training.
We can also begin to apply regression to compute-heavy areas of machine learning that are based on regression, like time
series forecasting and scientific machine learning.

In future work, we aim to answer two open questions. First, we intend to relate the admissible range around the optimal
solution to hyperparameters like T , m, the choice of initialization. For instance, since T exponentiates in the inner-loop
weights, we expect that larger T will produce an ill-conditioned Hessian of L(θ), introducing a tradeoff between inner-loop
performance and outer-loop convergence that should be optimized.

Second, we aim to convert the regularized linear regression problem into a regularized kernel regression problem, otherwise
known as kernel ridge regression. This can be done by replacing X̃ in the inner loop with Φ(X̃) for some feature
transformation Φ, to induce the kernel k(X̃, X̃ ′) = ⟨Φ(X̃),Φ(X̃ ′)⟩. Recent work has shown that, as the width of a neural
network grows, training the network with gradient descent becomes equivalent to kernel ridge regression with the neural
tangent kernel (NTK) (Jacot et al., 2020). This work will allow us to extend the theory on regression-based distillation to any
gradient-descent problem that can be adequately approximated by a kernel ridge regression problem, such as classification
and generative modeling.

6

Distillation for Regression

References
Chen, Y., Huang, W., and Weng, T.-W. Provable and efficient dataset distillation for kernel ridge regression. In The

Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL https://openreview.
net/forum?id=WI2VpcBdnd.

Dong, T., Zhao, B., and Lyu, L. Privacy for free: How does dataset condensation help privacy?, 2022. URL https:
//arxiv.org/abs/2206.00240.

Goetz, J. and Tewari, A. Federated learning via synthetic data, 2020. URL https://arxiv.org/abs/2008.04489.

Hinton, G., Vinyals, O., and Dean, J. Distilling the knowledge in a neural network, 2015. URL https://arxiv.org/
abs/1503.02531.

Ivakhnenko, A. G., Lapa, V. G., and McDonough, R. N. Cybernetics and forecasting techniques, 1967. URL https:
//api.semanticscholar.org/CorpusID:60378835.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent kernel: Convergence and generalization in neural networks, 2020.
URL https://arxiv.org/abs/1806.07572.

Karimi, H., Nutini, J., and Schmidt, M. Linear convergence of gradient and proximal-gradient methods under the polyak-
łojasiewicz condition, 2020. URL https://arxiv.org/abs/1608.04636.

Lee, D. B., Lee, S., Ko, J., Kawaguchi, K., Lee, J., and Hwang, S. J. Self-supervised dataset distillation for transfer learning,
2024. URL https://arxiv.org/abs/2310.06511.

Li, G., Zhao, B., and Wang, T. Awesome dataset distillation. https://github.com/Guang000/
Awesome-Dataset-Distillation.

Light, J., Liu, Y., and Hu, Z. Dataset distillation for offline reinforcement learning, 2024. URL https://arxiv.org/
abs/2407.20299.

Loo, N., Hasani, R., Lechner, M., and Rus, D. Dataset distillation with convexified implicit gradients, 2023. URL
https://arxiv.org/abs/2302.06755.

Moser, B. B., Raue, F., Palacio, S., Frolov, S., and Dengel, A. Latent dataset distillation with diffusion models, 2024. URL
https://arxiv.org/abs/2403.03881.

Nguyen, T., Chen, Z., and Lee, J. Dataset meta-learning from kernel ridge-regression, 2021. URL https://arxiv.
org/abs/2011.00050.

Ruonan Yu, Songhua Liu, and Xinchao Wang. Dataset Distillation: A Comprehensive Review. IEEE Transactions on
Pattern Analysis and Machine Intelligence, October 2023. URL https://arxiv.org/pdf/2301.07014.

Schmidhuber, J. Learning complex, extended sequences using the principle of history compression. Neural Computation, 4
(2):234–242, 1992. doi: 10.1162/neco.1992.4.2.234.

Wang, T., Zhu, J.-Y., Torralba, A., and Efros, A. A. Dataset Distillation. 2020. URL https://arxiv.org/abs/
1811.10959. arXiv preprint: 1811.10959.

Yang, W., Zhu, Y., Deng, Z., and Russakovsky, O. What is dataset distillation learning?, 2024. URL https://arxiv.
org/abs/2406.04284.

Zhao, Y., Zhao, H., Wen, B., Ong, Y.-S., and Zhou, J. T. Video set distillation: Information diversification and temporal
densification, 2024. URL https://arxiv.org/abs/2412.00111.

Zheng, T. and Li, B. Differentially private dataset condensation, 2023. URL https://openreview.net/forum?
id=H8XpqEkbua_. OpenReview preprint.

Zhou, M., Yin, Z., Shao, S., and Shen, Z. Self-supervised dataset distillation: A good compression is all you need, 2024.
URL https://arxiv.org/abs/2404.07976.

7

https://openreview.net/forum?id=WI2VpcBdnd
https://openreview.net/forum?id=WI2VpcBdnd
https://arxiv.org/abs/2206.00240
https://arxiv.org/abs/2206.00240
https://arxiv.org/abs/2008.04489
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1503.02531
https://api.semanticscholar.org/CorpusID:60378835
https://api.semanticscholar.org/CorpusID:60378835
https://arxiv.org/abs/1806.07572
https://arxiv.org/abs/1608.04636
https://arxiv.org/abs/2310.06511
https://github.com/Guang000/Awesome-Dataset-Distillation
https://github.com/Guang000/Awesome-Dataset-Distillation
https://arxiv.org/abs/2407.20299
https://arxiv.org/abs/2407.20299
https://arxiv.org/abs/2302.06755
https://arxiv.org/abs/2403.03881
https://arxiv.org/abs/2011.00050
https://arxiv.org/abs/2011.00050
https://arxiv.org/pdf/2301.07014
https://arxiv.org/abs/1811.10959
https://arxiv.org/abs/1811.10959
https://arxiv.org/abs/2406.04284
https://arxiv.org/abs/2406.04284
https://arxiv.org/abs/2412.00111
https://openreview.net/forum?id=H8XpqEkbua_
https://openreview.net/forum?id=H8XpqEkbua_
https://arxiv.org/abs/2404.07976

Distillation for Regression

A. Appendix
A.1. Related work

Dataset distillation was first introduced in full by Wang et al. in 2018 (Wang et al., 2020). This paper proposed the original
algorithm, analyzed it briefly on a simple linear case, and proved its effectiveness on standard CIFAR10 and MNIST
classification problems, showing that the latter can be compressed into just one image per class. Their idea builds on
knowledge distillation – the transfer of “knowledge,” broadly defined, from larger to smaller models.

Ivakhnenko and Lapa originated this concept in 1965 (Ivakhnenko et al., 1967), Schmidhuber introduced it to neural
networks in 1992 (Schmidhuber, 1992), and Hinton et al. formalized it (Hinton et al., 2015) in 2015.

Since (Wang et al., 2020), hundreds of papers have been published on all stages of distillation. Particularly active areas
include kernel-based regression, including techniques in ridge regression (Chen et al., 2024; Nguyen et al., 2021) and
convexified implicit gradients (Loo et al., 2023). These exploit the ease of analyzing kernel methods against deep neural
networks to derive provable guarantees for gradient computation. Other areas include new frameworks – like self-supervised
distillation (Zhou et al., 2024; Lee et al., 2024) and reinforcement learning-based distillation (Light et al., 2024) – and
distillation based on generative models (Moser et al., 2024).

Areas of application that take advantage of shorter processing times for large amounts of data include video, super-
resolution, medicine, domain adaptation, and text (specifically natural language). For instance, Zhao et al. (Zhao et al.,
2024) exploit redundancies in video data, as informed by the model, to reduce the size of the data while retaining its action.
Other areas exploit interesting properties of dataset distillation, like security guarantees (Dong et al., 2022), mechanistic
interpretability (Yang et al., 2024), and federated learning (Goetz & Tewari, 2020). Privacy researchers in particular
have noted that the distillation process can obscure or abstract the individually identifiable features of input data while
allowing the model to remain performant (Zheng & Li, 2023). This concept is related differential privacy, a mathematically
rigorous approach that allows training on dataset distributions while concealing any one individual’s input. Differential
privacy ensures that removing any single data point does not significantly alter the overall training distribution, preventing
the revelation of individual features.

Lastly, we owe a huge debt to Awesome-Dataset-Distillation (Li et al.), a superbly maintained GitHub repository that
collects and classifies almost every paper written on distillation to date, including many that aren’t cited in this paper. We
also owe much of the background research to Yu et al.’s 2023 survey (Ruonan Yu et al., 2023).

A.2. Index of symbols

• Original data: x = (X ∈ Rn×d, Y ∈ Rn) given.

• Inner- and outer-loop regularization: λI , λO given.

• Learning rates: η̃, αx, αη given.

• Initial weights: θ0 ∈ Rd sampled.

• Distilled data: X̃0 ∈ Rm×d, Ỹ0 ∈ Rm sampled.

• Inner loss: ℓ(x̃, θ) = 1
2m ||X̃θ − Ỹ ||22 + λI

2 ||θ||
2.

• Inner hyperparameters: γ = η̃/m, β = 1− η̃λI .

• Inner components: Ct
s = βI − γX̃⊤

s X̃s, Dt,s =
∑t−1

j=0(−1)j
(
t
j

)
βt−j

(
γX̃⊤

s X̃s

)j
X̃⊤

s Ỹs.

• Inner gradient descent: θt,s = θt−1,s − η̃∇θt−1,s
ℓ(x̃, θt−1) = Ct

sθ0 +Dt,s.

• Outer loss: L(q)
s = ℓ(x, θ

(q)
T,s) =

1
2n ||Xθ

(q)
T,s − Y ||22 + λO

2 (||X̃||2F + ||Ỹ ||2).

• Outer gradient descent: X̃s+1 = X̃s − αx∇X̃s
(
∑Q

q=1 L
(q)
s), Ỹs+1 = Ỹs − αy∇Ỹs

(
∑Q

q=1 L
(q)
s).

8

Distillation for Regression

A.3. Algorithm

Algorithm 1 Dataset Distillation
Require: Original dataset: x = (X ∈ Rn×din , Y ∈ Rn×dout); p(θ0): Distribution of initial weights; m: Number of

synthetic examples to create; b: Batch size for real data
Require: η̃0: Initial distillation learning rate; αx: Learning rate for distilled data; αη: Learning rate for the distillation

learning rate; ℓ(x, θ): Loss function;
Require: S: Number of distillation steps; Q: Number of network initializations per distillation step; T : Number of

inner-loop gradient descent steps per network.
1: Set η̃ ← η̃0
2: Initialize distilled set x̃0 = (X̃0 ∈ Rm×din , Ỹ0 ∈ Rm×dout) randomly.
3: for outer gradient-descent step s = 1, . . . , S do
4: Sample batch xB = (XB , YB) of b input-target pairs from original dataset.
5: Sample q initial network parameters {θ(q)0 }

Q
q=1 from p(θ0).

6: for q = 1, . . . , Q do
7: for inner gradient-descent step t = 1, . . . , T do
8: Update weights on inner loss: θ(q)t = θ

(q)
t−1 − η̃∇

θ
(q)
t−1

ℓ(x̃, θ
(q)
t−1).

9: end for
10: Compute outer loss: L(q)

s = ℓ(xB , θ
(q)
T).

11: end for
12: Update distilled data: x̃s ← x̃s−1 − αx∇x̃s−1

(∑
q L

(q)
s

)
.

13: Update learning rate: η̃s ← η̃s−1 − αη∇η̃s−1

(∑
q L

(q)
s

)
.

14: end for

15: return x̃, η̃

A.4. Inner-loop gradients

At this point, we’re looking for a closed-form expression of the weight matrix θt after t I-GD steps within a run of the inner
loop (remember that X̃ does not update until the end of the inner loop, after all these gradients have been calculated – thus
in the first run of the outer loop, these gradients are calculated using the randomly initialized X̃0 and Ỹ0). The updated
matrix after a single I-GD step becomes

θ1 = θ0 − η̃∇θ0ℓ(x̃, θ0) = θ0 −
η̃

m
X̃⊤(X̃θ0 − Ỹ) + λθ0 =

(
I(1− η̃λ)− η̃

m
X̃⊤X̃

)
θ0 +

η̃

m
X̃⊤Ỹ .

This relation generalizes to

θt =

(
I(1− η̃λ)− η̃

m
X̃⊤X̃

)
θt−1 +

η̃

m
X̃⊤Ỹ .

9

Distillation for Regression

To simplify notation, we define γ = η/m, α = 1− η̃λ, M = (αI − γA), A = X̃⊤X̃ , and B = X̃⊤Ỹ . Then,

θ1 = Mθ0 + γB,

θ2 = Mθ1 + γB

= M [Mθ0 + γB] + γB

= M2θ0 + (M + I)γB,

θ3 = Mθ2 + γB

= M3θ0 + (M2 +M + I)γB

...

θt = M tθ0 + γ

t−1∑
k=0

MkB

= (αI − γA)tθ0 +

t−1∑
k=0

(
t

j

)
αt−j(−γA)jB

A.5. Outer-loop gradients

By the chain rule,

∂||Xθ
(q)
T − Y ||2

∂X̃
=

∂||Xθ
(q)
T − Y ||2

∂θ
(q)
T︸ ︷︷ ︸

(I)

·
∂θ

(q)
T

∂X̃︸ ︷︷ ︸
(II)

+
λO

2

∂||X̃||2F
∂X̃

∂||Xθ
(q)
T − Y ||2

∂Ỹ
=

∂||Xθ
(q)
T − Y ||2

∂θ
(q)
T︸ ︷︷ ︸

(I)

·
∂θ

(q)
T

∂Ỹ︸ ︷︷ ︸
(III)

+
λO

2

∂||Ỹ ||2F
∂Ỹ

.

Notice that (I) = 2X⊤(Xθ
(q)
T − Y) ∈ Rd×1 is the same for either gradient. For (II) and (III), we first consider T = 1, so

that θT = θ1 = θ0 − γX̃⊤(X̃θ0 − Ỹ):

∂θ
(q)
1

∂X̃
= −γ

[
∂X̃⊤

∂X̃
(X̃θ0 − Ỹ) + X̃⊤ ∂(X̃θ0)

∂X̃

]
,

∂θ
(q)
1

∂Ỹ
= γX̃⊤.

Sorting out the tensor products and reintroducing step notation yields

∇X̃s−1

(
Q∑

q=1

L(q)
s

)
= − η̃

nm

Q∑
q=1

[
(X̃s−1θ

(q)
0 − Ỹs−1)(Xθ

(q)
1 − Y)⊤X + X̃s−1X

⊤(Xθ
(q)
1 − Y)θ

(q)⊤
0

]
, (10)

∇Ỹs−1

(
Q∑

q=1

L(q)
s

)
= 2γX̃sX

⊤(Xθ1 − Y). (11)

If T > 1, the first part of the chain rule, (I) = 2X⊤(Xθ
(q)
T − Y) remains the same, with θ

(q)
T as given in (A.2). The Ỹ

derivative is straightforward. Since C doesn’t depend on Ỹ in the relation θT = CT θ0 +DT,s, we can write

∂θ
(q)
T

∂Ỹ
=

∂DT,s

∂Ỹ
=

T∑
i=1

(
T

j

)
γj
s(−X̃⊤

s X̃s)
j−1X̃.

The X̃ derivative is significantly more involved:

∂θT

∂X̃
=

∂CT θ0

∂X̃
+

∂DT

∂X̃
→ ∂DT

∂X̃
as T increases, where

10

Distillation for Regression

∂DT

∂X̃
=

T∑
j=1

(
T

j

)
γj

[
j−2∑
k=0

(−X̃⊤X̃)k ⊗ (−X̃⊤X̃)j−2−k · 2X̃ · (X̃⊤Ỹ) + (−X̃⊤X̃)j−1Ỹ e⊤

]
.

These derivatives will yield a tensor of shape d× (m× d), whereby multiplying by (I) in transpose gives a gradient of shape
m× d.

A.6. Outer-loop convergence lemmas

We state general conditions in the appendix, then apply them to our case of the outer-loop loss function in the main paper.

Lemma A.1 (Local strong convexity). Consider the function f = Q+R, where Q is a polynomial and R(x) = λ
2 ||x||

2

with regularization parameter λ. Let λ(Q)
min be the smallest eigenvalue of∇2Q, the Hessian of Q, and let y be some point in

the same domain as x.

Suppose that for some finite M ∈ [0, λ) and r > 0, we have that λ(Q)
min ≥ −M for all x in the r-neighborhood of y. Then

there exists µ > 0, namely λ−M , such that f is locally µ-strongly convex in {x : ||x− y|| ≤ r}.

Proof. Consider x in this region. Set µ = λ−M > 0. Then, for all x in this region,

∇2
xf(x) = ∇2

xQ(x) + λI ≥ (−M + λ)I = µI.

Thus f is strongly convex in the r-neighborhood of y.

Lemma A.2 (Outer-loop PL condition). Let x∗ be a local minimizer of f . Under the conditions of Lemma A.1, for all x
with ||x− x∗|| ≤ r, the outer-loop objective f(x) = Q(x) +R(x) satisfies the PL inequality,

1

2
∥∇f(x)∥2 ≥ µ(f(x)− f(x∗)), (12)

where µ = λ−M > 0.

Proof. From Lemma A.1, we have that f is µ-strongly convex in a neighborhood of the optimum. For strongly convex
functions, the PL inequality holds with the same constant µ (see (Karimi et al., 2020)). Specifically, for any µ-strongly
convex function,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ

2
∥y − x∥2.

Taking y = x∗, a local minimizer of f , and using ∇f(x∗) = 0, we have

f(x∗) ≥ f(x) + ⟨∇f(x), x∗ − x⟩+ µ

2
∥x∗ − x∥2,

which rearranges to
f(x)− f(x∗) ≤ −⟨∇f(x), x∗ − x⟩ − µ

2
∥x∗ − x∥2.

By Cauchy-Schwarz, −⟨∇f(x), x∗ − x⟩ ≤ ∥∇f(x)∥∥x∗ − x∥.

And by Young’s inequality, ∥∇f(x)∥∥x∗ − x∥ ≤ 1
2µ∥∇f(x)∥

2 + µ
2 ∥x

∗ − x∥2. Therefore,

f(x)− f(x∗) ≤ 1

2µ
∥∇f(x)∥2, (13)

which gives us the PL inequality.

A.7. Convergence plots

For the following experiment, real data (X ∈ Rn×d, Y ∈ Rn) are generated by sampling X, θ ∼ N(0, Id) and Y = Xθ+η
for Gaussian noise η. We use the hyperparameters batch size b = 32, network samples per I-GD step q = 30, αx = 0.0025,
αη = 0.00025, η̃0 = 0.05, with an 80/20 train-test split. We also introduce the regularization parameter λO = λI = 0.001.

11

Distillation for Regression

Reporting loss over distillation steps is an appropriate metric because the goal of distillation – good performance on the
original dataset – is reported in the outer-loop testing loss.

For this run, we also introduce a few minor structural changes. Namely, we increasing the number of network initializations
slightly whenever real loss increases over a certain threshold (e.g., q ← min{q + 1,max q} if losst ≥ 1.02 · losst−1

for some hyperparameter max q). We also scheduling the number t of I-GD steps per network initialization by t ←
t+ int

(
1
2 t · (1− e−s/300)

)
to increase slightly as the number of O-GD steps increases.

Figure 1. Top: Inner-loop convergence for T = {100, 125, 150, 175} across select outer-loop (s) values. Convergence is consistently
quicker for later outer-loop steps. The uneven inner-loop steps reflect modest increases across the full training run, a slight architectural
boost to performance.
Bottom: Outer-loop convergence for the same T , where S = 2500. We include log fit for the main training run, excluding warmup and
cooldown. For consistency, we define the training run so that the R2 value is comparable across all trials; notice that the required warmup
and cooldown times decrease as T grows.

12

