
Alternating Local Enumeration (TnALE):
Solving Tensor Network Structure Search with Fewer Evaluations

Chao Li 1 Junhua Zeng * 2 1 Chunmei Li * 3 4 Cesar Caiafa 5 1 Qibin Zhao 1

Abstract

Tensor network (TN) is a powerful framework
in machine learning, but selecting a good TN
model, known as TN structure search (TN-SS),
is a challenging and computationally intensive
task. The recent approach TNLS (Li et al., 2022)
showed promising results for this task. However,
its computational efficiency is still unaffordable,
requiring too many evaluations of the objective
function. We propose TnALE, a surprisingly sim-
ple algorithm that updates each structure-related
variable alternately by local enumeration, greatly
reducing the number of evaluations compared to
TNLS. We theoretically investigate the descent
steps for TNLS and TnALE, proving that both
the algorithms can achieve linear convergence up
to a constant if a sufficient reduction of the ob-
jective is reached in each neighborhood. We fur-
ther compare the evaluation efficiency of TNLS
and TnALE, revealing that Ω(2K) evaluations
are typically required in TNLS for reaching the
objective reduction, while ideally O(KR) eval-
uations are sufficient in TnALE, where K de-
notes the dimension of search space and R reflects
the “low-rankness” of the neighborhood. Experi-
mental results verify that TnALE can find practi-
cally good TN structures with vastly fewer eval-
uations than the state-of-the-art algorithms. Our
code is available at https://github.com/
ChaoLiAtRIKEN/TnALE.

*Equal contribution 1RIKEN-AIP, Tokyo, Japan 2School of
Automation, Guangdong University of Technology, Guangzhou,
China 3College of Information and Communication Engineering,
Harbin Engineering University, Harbin, China 4Department of
Computer Science and Communications Engineering, WASEDA
University, Tokyo, Japan 5Instituto Argentino de Radioastronomı́a,
CONICET CCT La Plata/CIC-PBA/UNLP, V. Elisa, ARGENTINA
. Correspondence to: Qibin Zhao <qibin.zhao@riken.jp>, Chao
Li <chao.li@riken.jp>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1. Introduction
Tensor network (TN) has been widely applied to solv-
ing high-dimensional problems in both machine learn-
ing (Anandkumar et al., 2014; Novikov et al., 2015; Zhe
et al., 2015; Glasser et al., 2019; Kossaifi et al., 2020; Miller
et al., 2021; Richter et al., 2021; Malik, 2022) and quantum
physics (Orús, 2019; Felser et al., 2021). The success of
AlphaTensor (Fawzi et al., 2022) once again confirmed the
usefulness of tensors in various fields. TN practitioners, on
the other hand, have to face in practice challenging prob-
lems associated with model selection, known as TN struc-
ture search (TN-SS), for example: (1) how to determine the
TN-ranks?; (2) should we prefer tensor-train (TT, Oseledets
2011), tensor-ring (TR, Zhao et al. 2016) or other TN topol-
ogy?; (3) how to relate the tensor modes to core tensors of
a TN (the permutation problem, Li et al. 2022), and so on.
Unfortunately, some of these problems have been proven to
be NP-hard (Hillar & Lim, 2013)1, and most of them suffer
from the “combinatorial explosion”2 so that the brute force
search is not a viable option in practice.

Several works have put effort into different aspects of TN-
SS (see Section 1.1), but many of the methods are restricted
to specific tasks or work poorly in practice, so a general and
efficient TN-SS method is needed. Recently, Li et al. (2022)
proposed an algorithm dubbed TNLS, which addressed the
rank and permutation selection problem for TNs. However,
its computational complexity is high since it requires evalu-
ating the objective function on a large number of structure
candidates.

To address this issue, we accelerate TNLS by equipping
the algorithm with Alternating Local Enumeration — a
surprisingly simple but efficient searching method in neigh-
borhoods. The new algorithm, named TnALE, can improve
the evaluation efficiency of TNLS greatly. To be specific,
TnALE follows the “local-searching” scheme as TNLS but
alternately updates each structure-related variable by enu-
merating its values within a neighborhood. The intuition

1For instance, it proves that determining the optimal ranks for
Tucker decomposition (Tucker, 1966) is NP-hard.

2It means the rapid growth of TN structure searching space due
to the combinatorics of ranks, topologies, permutations, etc.

1

https://github.com/ChaoLiAtRIKEN/TnALE
https://github.com/ChaoLiAtRIKEN/TnALE


TnALE: Solving Tensor Network Structure Search with Fewer Evaluations

is that the alternately updating avoids the combinatorial ex-
plosion and the enumeration in neighborhoods guarantees
the non-increasing of values of the objective in the search.
On the other hand, the original TNLS applies random sam-
pling, causing the majority of samples would not provide
helpful information for decreasing the value of the objective
function.

The theoretical advantage of TnALE is also clear. We prove
that, with new-defined discrete convexity-related assump-
tions of the objective function, both TNLS and TnALE
can achieve a linear convergence up to a constant if a suf-
ficient reduction of the objective function is reached in
each neighborhood (Theorem 4.5). We also prove that the
number of evaluations required in TNLS would grow ex-
ponentially with the dimension of search space (Prop. 4.8),
with respect to the dimension of TN-ranks and the TN or-
der, while TnALE shows a linear growth in the ideal case
(Prop. 4.10). Our analysis reveals that such an improvement
in the evaluation efficiency essentially comes from the low-
rankness of the optimization landscape in neighborhoods,
attributed to the close relationship between TnALE and
cross-approximation methods for matrices and tensors (Tyr-
tyshnikov, 2000; Oseledets & Tyrtyshnikov, 2010; Sozykin
et al., 2022). Numerically, extensive experiments on both
synthetic and real-world data are implemented to assess the
evaluation efficiency and the superior performance provided
by TnALE.

Our main contributions can be summarized as follows:

• We propose TnALE, a novel algorithm that greatly
reduces the computational cost for the task of TN struc-
ture search (TN-SS);

• We establish for the first time the convergence analy-
sis for both TNLS (Li et al., 2022) and TnALE, and
rigorously prove their evaluation efficiency.

1.1. Related Works

Tensor network structure search (TN-SS). TN-SS can be
specified into three sub-problems: (1) TN-rank selection
(TN-RS) (Rai et al., 2014; Zhao et al., 2015; Yokota et al.,
2016; Cheng et al., 2020; Mickelin & Karaman, 2020; Cai
& Li, 2021; Hawkins & Zhang, 2021; Long et al., 2021;
Sedighin et al., 2021; Yin et al., 2022; Ghadiri et al., 2023);
(2) TN-topology selection (TN-TS) (Hashemizadeh et al.,
2020; Haberstich et al., 2021; Nie et al., 2021; Falcó et al.,
2023; Hikihara et al., 2023; Kodryan et al., 2023; Liu et al.,
2023); and (3) TN-permutation selection (TN-PS) (Acharya
et al., 2022; Chen et al., 2022). Recently, some methods to
solve the TN-SS problem were developed via discrete opti-
mization (Hayashi et al., 2019; Hashemizadeh et al., 2020;
Li & Sun, 2020; Li et al., 2021; 2022; Solgi et al., 2022).
Although these methods typically achieve higher precision

than their counterparts in practice, they suffer from the ex-
pensive computational cost and the lack of theoretical anal-
ysis. Our work follows the TNLS algorithm (Li et al., 2022)
in this direction but develops a new approach to improve its
computational efficiency and fill in the missing theoretical
analysis for convergence and evaluation efficiency.

Finding the extreme entry value within a tensor. As
discussed later in Section 4.2, the alternating local enu-
meration method is technically equivalent to finding the
minimum entry within a multidimensional landscape. As
such, our work is strongly related to the recently published
method TTOpt (Sozykin et al., 2022), which finds the near-
maximum entry of a tensor by cross-sampling (Tyrtysh-
nikov, 2000; Zhang, 2019) in TT topology (Oseledets &
Tyrtyshnikov, 2010). Compared to TTOpt, the proposed
TnALE recursively finds the extreme entry within a ten-
sor associated with the neighborhood rather than the global
search space, so that TnALE can handle the situation of
infinite candidates (entries) in the optimization.

2. Preliminaries
In this section, we first summarize notations and review
several central concepts related to the tensor network struc-
ture search (TN-SS). Then, we provide a quick review of
TNLS (Li et al., 2022), a recently proposed algorithm for
solving TN-SS, and point out that TNLS suffers from the
curse of dimensionality in evaluation efficiency.

2.1. Notations

Throughout the paper, we typically use blackboard letters
to denote sets of objects, e.g., G,F. In particular, R, Z+

and Z≥0 denote real numbers, positive integers and non-
negative integers, respectively. We use boldface letters to
denote vectors and matrices, e.g., x ∈ ZK

+ and A ∈ RI×J .
For tensors of arbitrary order, we denote them using calli-
graphic letters, e.g., A,B ∈ RI1×I2×···×IN . Given a vector,
such as x ∈ ZK

+ , ∥x∥ and ∥x∥∞ denote the l2-norm and
l∞-norm of x, respectively. The norms are also directly ap-
plied to matrices and tensors by thinking of them as vectors.
Following the notational conventions, |x| denotes the abso-
lute value of x if x ∈ R is a scalar, while |A| denotes the
cardinality if A is a set. For the normed vector spaces armed
with ∥x∥∞, we use B∞(x, rx) to denote the neighborhoods
centered at x with the radius rx > 0. For any two functions
f : B → C and g : A → B, the operation f ◦ g : A → C
denotes the function composition.

2.2. Tensor Network Structure Search (TN-SS)

We consider the tensor network (TN, Ye & Lim, 2019) as
a set of real tensors of the dimension I1 × I2 × · · · × IN ,
denoted TNS(G, r), whose elements are in the form of

2



TnALE: Solving Tensor Network Structure Search with Fewer Evaluations

contractions of core tensors (Cichocki et al., 2017), associ-
ated to the TN structure modeled by the pair (G, r), where
G = (V,E) denotes a simple graph of N vertices modeling
the TN-topology (Li & Sun, 2020) and r ∈ Z|E|

+ is a vector,
whose entries are edge labels of G corresponding to the
TN-ranks (Ye & Lim, 2019).

Tensor network structure search (TN-SS) aims generally
to find the most compressed TN models for computa-
tional purposes while preserving the models’ expressiv-
ity. Furthermore, the most compressed TN models also
imply the potential advantage for the generalization ca-
pability in learning tasks (Khavari & Rabusseau, 2021).
Suppose a dataset D and the task-specific loss function
πD : RI1×I2×···×IN → R+ involving D. TN-SS is to solve
the following bi-level discrete optimization problem

min
(G,r)∈G×FG

(
ϕ(G, r) + λ · min

Z∈TNS(G,r)
πD(Z)

)
, (1)

where G ∈ G is a graph of N vertices and K edges,
r ∈ FG ⊆ ZK

+ , ϕ : G× ZK
+ → R+ represents the function

measuring the model complexity of a TN whose structure
is modeled by (G, r), and λ > 0 is a tuning parameter. The
intuition of (1) is that, the inner minimization is to evaluate
the task-specific expressivity for a TN structure, while the
outer minimization is to find the optimal structure for the
task by balancing the complexity and the expressivity of a
TN model.

We remark that the formulation (1) can be specified as
different TN-SS sub-problems by restricting the feasible
set G × FG into different forms: for TN-PS, we specify
FG = ZK

+ and G to be the set containing the isomorphic
graphs to a “template” graph (Li et al., 2022); for TN-RS, it
typically restricts G to be fixed, and only finds TN-ranks i.e.,
FG = ZK

+ ; last for TN-TS, it relaxes G to be the set con-
taining all possible simple graphs of N vertices and r is set
to be fixed (Li & Sun, 2020) or searchable (Hashemizadeh
et al., 2020). Note from Ye & Lim (2019); Li & Zhao (2021)
that TN-TS (with rank selection) essentially coincides with
TN-RS of a “fully-connected” TN (Zheng et al., 2021).

2.3. TNLS: a Discrete Optimization Approach to TN-PS

Recently, Li et al. (2022) proposed an algorithm called
TNLS for solving (1) effectively by stochastic search. The
core process of TNLS is reviewed in Alg. 1, from which we
see that the candidate of the optimal TN structure is updated
if the algorithm finds better structures within a neighborhood
using random sampling. Although Li et al. (2022) illustrates
the superiority of TNLS compared to its counterparts, the
algorithm is still time-consuming as acknowledged in their
work. To understand the reason, we theoretically observe
that TNLS suffers from the curse of dimensionality, due to
the random sampling. More specifically, we state that

Algorithm 1 The core process of TNLS (Li et al., 2022).
Initialize: Randomly choose a TN structure as the center
of the neighborhood.
while not convergence do

1. Sampling (G, r)’s randomly in the neighborhood;
2. Evaluating the samples with the objective of (1);
3. Updating the center if better samples are obtained;

end while
Output: The center of the neighborhood.

under reasonable conditions, Ω(2K/ϵ) samples are re-
quired by random sampling (wrt. step 1 in Alg. 1) for
achieving a constant probability Pr ≥ ϵ for decreasing
the objective of (1) in a neighborhood, where ϵ > 0 and K
denotes the dimension of the search space.

A formal statement is deferred to Prop. 4.8. It is known from
Alg. 1 that each sampled structure should be evaluated by
solving the inner minimization of (1), so the huge number of
samples implies the prohibitive cost in computation. To ad-
dress this problem, we introduce a more sampling-efficient
approach by reforming the random sampling in Alg. 1, to
accelerate the TN-SS procedure with fewer evaluations.

3. TnALE: Accelerating TNLS via Alternating
Local Enumeration

We present now the new searching algorithm dubbed TnALE
for solving the TN-SS problem. Figure 1 demonstrates the
key idea for TnALE. In the rest of this section, we mainly
focus on the technical details of alternating local enumera-
tion (ALE), which replaces the random sampling operation
in Alg. 1 as the key factor for algorithm acceleration. A
complete introduction of TnALE, including the pseudocode
and other details, is given in Appendix A.

In TnALE, we find better structures within a neighborhood
by updating each structure-related variable alternately. For
instance, Figure 2 illustrates how ALE solves the TN-PS
problem, searching for the optimal ranks and permutations
for tensor ring (TR) decomposition of order-4. As shown in
the initialization of panel (b), all structure-related variables,
including r{1,2,3,4} and G, are initialized with the center of
a given neighborhood. To start the search, TN structures are
sampled by enumerating all values of r1 within the neigh-
borhood while fixing other variables. Next, the sampled TN
structures with varying r1 are evaluated individually by cal-
culating the objective of (1), and r1 is subsequently updated
right off by choosing the one with the minimum objective
in the samples. Following r1, the same operation is applied
to variables from r2 to G sequentially (see panel (b)). After
updating G, we turn the updating direction backward from
r4 to r1, i.e., in a “round-trip” manner (see panel (c)). Over-
all, the ALE will be stopped if all variables are not changed

3



TnALE: Solving Tensor Network Structure Search with Fewer Evaluations

�����������������������������������

���
��������
�	
��
��������������

��������
�	����������
��

�������
������
��

�����
�����

�����
�����

�����
�����

�����
�����

Figure 1. Schematic demonstration of TnALE and its discrepancy
from TNLS (Li et al., 2022), where r, G denote two structure-
related variables for example, and the squares represent the neigh-
borhoods. The alternating (local) enumeration is further illustrated
in detail in Figure 2.

anymore. We empirically find that a one-time “round-trip” is
sufficient to reach a good TN structure for the next iteration.
Note that the operation of ALE for TN-RS and TN-TS is in
the same fashion, except that the graph G will be fixed in
TN-RS or enumerated in differently-defined neighborhoods
in TN-TS for considering all TN-topologies. In TnALE, we
follow Li et al. (2022) to construct the neighborhood of TN
structures.

Remark 3.1 (tricks: knowledge transfer). An additional
merit of implementing enumeration is the “knowledge trans-
fer” capability (Hashemizadeh et al., 2020). We know that
increasing the TN-ranks would decrease monotonically the
value of the objective function in many learning tasks. In-
stead of evaluating each structure explicitly, it thus inspires
us to accelerate the structure evaluation by reusing in enu-
meration the knowledge of the well-optimized core tensors
and their corresponding objective. In particular, the accelera-
tion by the knowledge transfer trick is two-fold: one is to use
the well-optimized core tensors associated with the lower-
rank structures to be the initialization for the ones with
higher-rank structures, as in Hashemizadeh et al. (2020);
the other is to employ the objective estimation, in which
we apply linear interpolation to predicting the objective in
the evaluation phase in place of the explicit calculation (see
Appendix A.1). Although the objective estimation would
be of no precision, it helps in the first 1 ∼ 2 iterations of
TnALE (with a large radius) as initialization for quickly
finding a reasonable structure candidate.

Remark 3.2 (computational complexity). TnALE is a
meta-algorithm for TN-SS, in which the inner minimization
of (1) can be solved by any practitioner-appointed algo-
rithms. Therefore, the computational complexity of TnALE
is mainly affected by the number of evaluations. Suppose
the searching problem of order-N with the TN-ranks of
dimension K. Furthermore, suppose each entry ri, i ∈ [K]
of r is enumerated in I values in the neighborhood, e.g., the
interval [ri−I/2, ri+I/2], and D times of the “round-trip”

������

�����������������

������������


����

��
��

��
��
��
�
����

���
	������

���
	������ 
����

��
��

��
��
��
�


����
���
	������

��
��

��
��
��
�

�������������������	���	�������������


������

��������
����������� 	�­���������
­�������������������������­�

�
�

�
�

�
�

�
�

� � ��

� �� � ��

���������
	�������­�������������������������­�������������

�� � � �

­�������������������������­

Figure 2. Illustration of alternating local enumeration (ALE) for
TN-PS of TR decomposition. The search for TN-RS and TN-TS is
similar, except that the ranges of the TN-ranks r{1,2,3,4} and the
graph G need to be adjusted.

updates. In this setting, for the TN-RS problem, TnALE
requires O(DKI) evaluations in one neighborhood; for
TN-PS, it requires O(DKI + DN2/2) evaluations since
the neighborhood of G in TN-PS contains (N − 1)N/2 ele-
ments (Li et al., 2022) in general; last for TN-TS, O(DN2I)
evaluations are required. In practice, the value of I is typi-
cally set to 3 or 5 and D = 1.

In summary, the evaluation complexity of TnALE grows
polynomially with the TN-order and the dimension of the
TN-ranks. In the next section, we prove that such the num-
ber of evaluations is theoretically sufficient in TnALE for
achieving quick convergence for TN-SS.

4. Theoretical Results
In this section, we first analyze the descent steps for both
TNLS and TnALE, proving that using the “local search” (Li
et al., 2022) scheme the algorithms would achieve a linear
convergence rate up to a constant if the objective is suffi-
ciently “convex” in the discrete domain. Following this,
we analyze the evaluation efficiency for TNLS and TnALE,
showing that the required number of evaluations in TNLS
would grow exponentially with the dimension of the search
space, while it can be ideally reduced to be a linear growth
in TnALE if the neighborhood is low-rank. The proofs in
this section are given in Appendix B.

4.1. Analysis of Descent Steps

We start the analysis by rewriting (1) into a more general
form

min
x∈ZK

+ ,p∈P
fp(x) := f ◦ p(x), (2)

4



TnALE: Solving Tensor Network Structure Search with Fewer Evaluations

where f : ZL
≥0 → R+ is a general form of the objective

function of (1), x ∈ ZK
+ corresponds to the TN-ranks r

of (1), and the operator p : ZK
+ → ZL

≥0 and its feasible set
P correspond to the graph variable G and its feasible set G
of (1), respectively. The specific relationship of p and G is
discussed in Appendix B.2.

The framework used in the proof follows from Golovin et al.
(2019) for the zeroth-order convex optimization. However,
due to the discrete essence of (2), we re-establish discrete
analogues of the fundamental concepts such as the gradient,
strong convexity and smoothness for the analysis, and all the
proofs are re-derived non-trivially in the discrete domain.

In doing so, we begin with the definition of the finite gradi-
ent (Olver, 2014), as the alternative to the classic gradient
in the continuous domain.

Definition 4.1 (finite gradient). For any function f :
ZL
≥0 → R, its finite gradient ∆f : ZL

≥0 → RL with re-
spect to x ∈ ZL

≥0 is defined as follows:

∆f(x) =

[f(x+ e1)− f(x), . . . , f(x+ eL)− f(x)]
⊤
,

(3)

where ei, 1 ≤ i ≤ L denote the unit vectors with the i-th
entry being one and the others being zeros.

Next, we redefine the convexity and smoothness of the ob-
jective with finite gradients.

Definition 4.2 (α-strong convexity with finite gradient).
We say f is α-strongly convex for α ≥ 0 if f(y) ≥ f(x) +〈
∆f(x)− α

2 1,y − x
〉
+ α

2 ∥y − x∥2 for all x,y ∈ ZL
≥0,

where 1 ∈ RL denotes the vector with all entries being one.
We simply say f is convex if it is α-strongly convex and
α = 0.

Definition 4.3 ((β1, β2)-smoothness with finite gradient).
We say f is (β1, β2)-smooth for β1, β2 > 0 if

1. |f(x)− f(y)| ≤ β1∥x− y∥ for all x,y ∈ ZL
≥0;

2. The function l(x) := β2

2 ∥x∥2 − f(x) is convex.

We remark that Definition 4.2 and 4.3 are partially differ-
ent from the ones used in Golovin et al. (2019) or other
literature for convex analysis. Particularly in Definition 4.3,
the smoothness is defined by additionally taking the Lip-
schitz continuity (corresponding to Item 1) into account,
which controls the changing rate of f , while Item 2 in Defi-
nition 4.3 controls the changing rate of the finite gradient of
f . See Lemma B.5 in Appendix for the discussion. With the
new definitions, we next give the main assumptions used in
the results.

Assumption 4.4. Assume that f : ZL
≥0 → R+ of (2)

is α-strongly convex, (β1, β2)-smooth, and its mini-

mum, denoted (p∗,x∗) = argminp,x f ◦ p(x), satisfies
∥∆fp∗(x∗)− β2

2 1∥ ≤ γ where 0 ≤ γ < α ≤ β1 ≤ β2 ≤ 1.

In Assumption 4.4, the inequality ∥∆fp∗(x∗)− β2

2 1∥ ≤ γ

implies that, up to a (small) bias β2

2 1, the finite gradient at
(p∗,x∗) should be sufficiently small, which can be analo-
gous to the “gradient-equal-zero” (Boyd & Vandenberghe,
2004) property of the stationary points for convex functions
in the continuous domain. The upper bound “1” is arbitrarily
chosen just for simplifying the calculation.

Next, we reveal that the local-search scheme, used in both
TNLS and TnALE, can achieve the linear convergence rate
up to a constant. We first focus on TN-RS and TN-TS to
simplify the problem, where p∗ is assumed to be known
beforehand. After that, we discuss TN-PS, showing that the
searchable p would make the convergence more difficult.
Theorem 4.5 (convergence rate when p∗ is known). Sup-
pose Assumption 4.4 is satisfied, the operator p of (2) is
fixed to be p∗, and 0 ≤ θ ≤ 1. Then, for any x with
∥x− x∗∥∞ ≤ c, we can find a neighborhood B∞(x, rx)
where rx ≥ θc + 1

2 , such that there exists an element
y ∈ B∞(x, rx) satisfying

fp∗(y)− fp∗(x∗) ≤ (1− θ)(fp∗(x)− fp∗(x∗)) +
7

8
K.

(4)

Proving Theorem 4.5 requires the following lemma, which
can be understood as the discrete version of the convex-
combination inequality of convex functions.
Lemma 4.6 (convex combination in the discrete domain).
Suppose q = θx+ (1− θ)y, ∀x,y ∈ ZL

≥0, θ ∈ [0, 1], and
there is q̂ ∈ ZL

≥0 following Λ = q− q̂. If f is α-strongly
convex, then

θf(x)+(1−θ)f(y) ≥ f(q̂)+
〈
∆f(q̂)− α

2
1,Λ

〉
+
α

2
∥Λ∥2.

(5)

Note that the inequality (5) would be the same as the crucial
inequality θf(x) + (1 − θ)f(y) ≥ f(q) in convex analy-
sis if Λ = 0. However, due to q /∈ ZL

≥0 in general, the
non-zero Λ is inevitable in the proof, yielding the essential
difference from the convex analysis in the continuous do-
main. As a consequence, the inequality (4) shows that the
convergence rate is formally close to being linear, but the
constant (7/8)K appears on the right-hand side dampening
the search efficiency.

Suppose the search trajectory {fp∗(xn)}∞n=0, of which the
starting point x0 ∈ ZK

+ is randomly chosen and xn for
n > 0 are determined by the vector y in Theorem 4.5.
As an important corollary, it can be easily proved that
{fp∗(xn)}∞n=0 converges to fp∗(x∗) up to a constant if
Ω(1/K) ≤ θ ≤ 1. A rigorous proof for the convergence
guarantee can be found in Appendix B.12.

5



TnALE: Solving Tensor Network Structure Search with Fewer Evaluations

Remark 4.7 (Finding p∗ makes the convergence slower.).
As aforementioned, the non-zero ∥Λ∥∞ decreases the
search efficiency due to the additional constant shown in (4).
It is known from the proof of Theorem 4.5 that the con-
stant is derived from the tight bound ∥Λ∥∞ ≤ 1/2, fol-
lowing the rounding operation. However, once the p in (2)
is searchable as well, ∥Λ∥∞ would turn larger, dampen-
ing the convergence more seriously. To verify this, sup-
pose q = θp∗(x∗) + (1 − θ)px(x) to be the convex com-
bination between (p∗,x∗) and any point (px,x). It is
known from the proof that, for decreasing the objective,
q̂ should satisfy q̂ ∈ B∞(q, ∥Λ∥∞) ∩ B(px,x), where
B(px,x) := {z = p̄(x̄) : p̄ ∈ B(px), x̄ ∈ B∞(x, rx)}
for some rx > 0 and B(px) denotes the neighborhood
of px chosen in the algorithm. We thus see that, for the
existence of q̂, the intersection B∞(q, ∥Λ∥∞) ∩ B(px,x)
should be non-empty. Following this, it satisfies ∥Λ∥∞ ≥
minq̄∈B(px,x) ∥q − x̄∥∞ ≥ minq̂∈ZL

≥0
∥q − q̂∥∞ = 1/2

in the worst case. In this case, the larger value of ∥Λ∥∞
means a larger damping term appearing on the right-hand
side of (4).

4.2. Evaluation Efficiency

Note that a premise for achieving the closely linear con-
vergence rate by TNLS and TnALE is that the expected
y ∈ B∞(x, rx) in Theorem 4.5 is reachable, meaning that
the algorithms should find the y out in each neighborhood.
In the rest of the section, we show that TNLS is required to
cost Ω(2K) samples in each neighborhood for stably reach-
ing the y, while O(KIR) samples are ideally sufficient for
TnALE. Here K denotes the dimension of the search space,
I ∈ Z+ indicates an integer related to the radius of the
neighborhood and R ∈ Z+ reflects the low-rankness of the
optimization landscape in neighborhoods.

We first give the proposition for TNLS as follows.
Proposition 4.8 (curse of dimensionality for TNLS). Let
the assumptions in Theorem 4.5 be satisfied. Furthermore,
assume that x∗ is sufficiently smaller (or larger) than x
entry-wisely, except for a constant number of entries. Then
the probability of achieving a suitable y as mentioned in
Theorem 4.5 by uniformly randomly sampling in B∞(x, rx)
with rx ≥ θc+ 1

2 equals O(2−K).

Note that the additional assumption in Prop. 4.8 is com-
monly satisfied in practice when the searched TN-ranks are
initialized uniformly with large (or small) values. It is also
easily known from Prop. 4.8 that Ω(2K/ϵ) samples are re-
quired for achieving the probability Pr ≥ ϵ for reaching the
y in the neighborhood.
Remark 4.9. The intuition of Prop. 4.8 is as follows. Sup-
pose x∗ is entry-wisely smaller than x without loss of gener-
ality, then the objective would be decreased only if most of
the entries of x are updated to be smaller values, i.e., getting

� �

�

�

Figure 3. The relationship between alternating local enumeration
(ALE) and TT-cross approximation (Oseledets & Tyrtyshnikov,
2010; Sozykin et al., 2022). As shown in the figure, enumerating
structure-related variables alternately is equivalent to sampling
fibers of a tensor along each mode. The yellow arrows indicate the
alternation of variables from r1 to r2 and then to G, respectively.

closer to x∗. However, by random sampling, the probability
of decreasing most entries of x would turn smaller exponen-
tially with increasing the dimension K, yielding the curse
of dimensionality for TNLS.

In contrast to TNLS, TnALE essentially resolves the curse
of dimensionality by leveraging the landscape’s low-rank
structure. To verify this, given (p,x), we formulate first
the neighborhood B(p)×B∞(x, rx) as a (K +1)-th order
tensor B ∈ RI1×I2×···×IK+1 . Here Ik = 2 × ⌈rx⌉ + 1 for
1 ≤ k ≤ K and IK+1 = |B(p)|. The (i1, i2, . . . , iK+1)-
th entry of B, written B(i) with i = [i1, i2, . . . , iK+1]

⊤,
satisfies

B(i) = 1/fpiK+1
(x+ i(: K)− (⌈rx⌉+ 1)), (6)

where i(: K) denotes the K-dimensional vector consisting
of the first K entries of i, and piK+1

denotes the iK+1-th
element of B(p) in any ordering fashion. We remark that
the inverse 1/f(x) is always valid due to the assumption
fp(x) > 0 in (2) for all x and p. We also remark that
the equation (6) maps uniquely each element of B(p) ×
B∞(x, rx) onto the entries of B.

By the tensor B, we can find that the proposed alternating
local enumeration (ALE) is strongly related to TT-cross (Os-
eledets & Tyrtyshnikov, 2010) and TTOpt (Sozykin et al.,
2022). As demonstrated in Figure 3, the enumeration for
each variable is equivalent to drawing a fiber of B as in
TT-cross or TTOpt with the TT-ranks being ones. Such a
relationship helps us reveal the evaluation advantage of
TnALE. Specifically, let B := B(p) × B∞(x, rx) and
f∗
B := min(py,y)∈B fpy

(y) for notational simplicity, then
we have the following proposition.
Proposition 4.10 (evaluation efficiency for TnALE). Let
B ∈ RI1×I2×···×IK+1 be the tensor of order-(K + 1) con-
structed as Eq. (6) with I1 = I2 = · · · = IK+1 = I
for simplicity. Then, there exists its TT-cross approxima-
tion (Oseledets & Tyrtyshnikov, 2010) of rank-R3, denoted

3Here all elements of the TT-ranks equal R for simplicity.

6



TnALE: Solving Tensor Network Structure Search with Fewer Evaluations

B̂, such that f∗
B = fpjK+1

(x+ j(: K)− (⌈rx⌉+ 1)) with

j = argmaxi B̂(i) holds, provided that

f∗
B ≤ fpz (z)/

(
1 + 2

(4R)⌈ log2 K⌉ − 1

4R− 1
(R+ 1)2ξfpz (z)

)
(7)

for all (pz, z) ∈ B and fpz
(z) ̸= f∗

B . Here, ξ denotes the
error between B and its best approximation of TT-ranks R in
terms of ∥ · ∥∞. Note that the inequality (7) holds trivially
if B is exactly of the TT topology of rank-R, and Oseledets
& Tyrtyshnikov (2010) shows that the f∗

B can be recovered
from O(KIR) entries from B.

Prop. 4.10 is a natural corollary of Theorem 2 in Osinsky
(2019). It implies that the desired y (corresponding to f∗

B in
Prop. 4.10) in Theorem 4.5 is reachable by only O(KIR)
samples once B is of TT with rank-R. Even though B is not
low-rank, the y can still be located if the inequality (7) is
satisfied.

Prop. 4.10 shows the O(KIR) evaluation advantage com-
pared with TNLS that requires Ω(2K/ϵ) evaluations in
the neighborhoods, but it remains open to prove the low-
rankness of the optimization landscape in the TN-SS tasks.
We empirically verify this with five synthetic tensors of or-
der four. We calculate their complete optimization landscape
associated with the l2 loss, observing that the multidimen-
sional landscape is indeed low-rank under all possible un-
foldings (see Figure 6 in Appendix). We thus conjecture that
in practice the low-rank structure of the landscape should be
preserved, at least in neighborhoods. In the next section, the
evaluation advantage by TnALE will be empirically verified
with both synthetic and real-world data.

5. Experimental Results
In this section, we present numerical results to verify the
superiority of TnALE in terms of evaluation cost. Due to
the page limit, the experimental settings will be presented
at the minimum level of clarity. Additional details are given
in Appendix C.

5.1. Synthetic Data

First of all, we assess the superiority of TnALE by solving
the TN-PS problem, in which both the optimal TN-ranks
and permutations of synthetic tensors are searched for the
tensor decomposition task.

In the experiment, we re-use from Li et al. (2022) the syn-
thetic tensors, which are randomly generated in the topolo-
gies including TR (order-8), PEPS (order-6, Verstraete &
Cirac, 2004), hierarchical Tucker (HT of order-6, Hack-
busch & Kühn, 2009), and MERA (order-8, Cincio et al.,
2008). Additionally, we also consider the tensor wheel
model (TW of order-5, Wu et al., 2022). Since the mode di-

Table 1. Number of evaluations, denoted “#Eva.”, for the rank
and permutation identification, where the symbol “-” in the table
means the failure of the approach.

Topology Methods Data – #Eva. ↓
A B C D

TR
TNGA 2850 2250 3900 1950
TNLS 1020 960 1320 780
Ours 231 308 308 231

PEPS
TNGA 1560 - 840 1080
TNLS 781 781 421 661
Ours 407 465 233 175

HT
TNGA 960 1320 840 1080
TNLS 841 841 781 721
Ours 211 281 211 211

MERA
TNGA - 960 2800 3240
TNLS 1561 841 1441 721
Ours 1450 484 323 323

TW
TNGA+ 1920 1440 600 720
TNLS 661 601 601 481
Ours 285 143 285 214

mension is typically irrelevant to the difficulty of TN-SS, we
set them to equalling 3 in all tensors for simplicity. For each
topology, four tensors (A, B, C, D) are generated, where
the TN-ranks and permutations are randomly selected and
remained unknown. The goal of this experiment is to com-
pare different approaches to identifying the TN-ranks and
permutations for each tensor, meaning that the conditions
RSE≤ 10−4 and the Eff.≥ 1 are satisfied4. Otherwise, we
say the approach fails in the experiment.

We implement three algorithms, TNGA (Li & Sun, 2020),
TNLS and TnALE (ours). Note that in TNGA both the TN
ranks rank permutations are encoded as chromosomes, as
implemented in the work by Li et al. (2022). In the sub-
sequent experiments, the the encoding scheme of TNGA
would be also properly adjusted for handling different sub-
problems of TN-SS. For a fair comparison, the three ap-
proaches use the same objective and solver for the inner
minimization of (1). Furthermore, TNLS and TnALE are
initialized with the same TN structures. The rest of the
experimental settings remain as Li et al. (2022).

The experimental results are shown in Table 1. We see
that both TNLS and TnALE (ours) successfully identify the
ranks and permutations for all tensors. Furthermore, TnALE
requires significantly fewer evaluations than both TNGA and
TNLS. Figure 4 further illustrates the change of the objective

4RSE means the relative squared error, and the Eff. index (Li
& Sun, 2020) denotes the ratio of the parameter number of TNs
between the searched structure and the one used in data generation.
Eff.≥ 1 implies that the algorithm finds a TN structure identical or
more compact than the one used in data generation.

7



TnALE: Solving Tensor Network Structure Search with Fewer Evaluations

0 500 1000

Evaluations

-4

-2

0

2

0 200 400 600 800

Evaluations

-2

0

2

0 200 400 600 800

Evaluations

-2

0

2

0 500 1000 1500

Evaluations

-2

0

2

0 200 400 600 800

Evaluations

-1

0

1

0 200 400

Evaluations

-0.5

0

0.5

1

0 200 400 600 800

Evaluations

-2

-1

0

1

TNLS

TnALE

lo
g

O
bj

ec
tiv

e
lo

g
O

bj
ec

tiv
e

TR (order-4) TR (order-6) TR (order-8)

PEPS HT MERA TW

Figure 4. Averaged objective (in the log form) with varying the
number of evaluations.

values (in log, averaged) versus the number of evaluations
in TNLS and TnALE. The result confirms the consistency of
the evaluation advantage of TnALE compared with TNLS5.

Next, we evaluate the performance of TnALE for solving
the classic rank selection problem, i.e., TN-RS, within the
TR decomposition task. To be specific, we randomly gen-
erate synthetic TR-tensors of order 8, and consider two
configurations: “lower-ranks” and “higher-ranks”. In the
“lower-ranks” class, the TN-ranks are randomly chosen in
the interval [1, 4], while in the “higher-ranks” class the se-
lection interval is lifted to [5, 8], so that the ranks would be
larger than the tensors’ mode dimension (which equals 3
in this experiment). This situation commonly happens in
practice for high-order TNs. For comparison, we implement
various rank-adaptive TR decomposition methods, including
TR-SVD and TR-BALS (Zhao et al., 2016), TR-LM (Mick-
elin & Karaman, 2020), and TRAR (Sedighin et al., 2021).
In addition, the TTOpt algorithm (Sozykin et al., 2022) with
ranks 6, denoted R, equaling {1, 2} is also employed as a
baseline.

The experimental results are shown in Table 2. We see
that most of the methods can successfully identify the TN-
ranks (implied by Eff.≥ 1) in the “lower-ranks” class, but
in the “higher-ranks” class only the methods at the bottom
of the table manage to find the correct ranks. Furthermore,
TnALE costs the fewest evaluations on average compared
with TNGA, TNLS and TTOpt.

5.2. Real-World Data

We apply now the proposed method to real-world data to
compress the learnable parameters of the tensorial Gaussian
process (TGP, Izmailov et al. 2018) and to compress natural
images. In TGP compression, we consider the regression
task by TGPs for three datasets, including CCPP (Tüfekci,
2014), MG (Flake & Lawrence, 2002), and Protein (Dua

5Note that the curves for MERA exhibit the opposite pattern
compared to others due to the “local-convergence” issue. This
phenomenon is further discussed in Appendix C.

6Here the ranks are the tuning parameters in the TTOpt algo-
rithm, rather than the targeted TN structure.

Table 2. Experimental results of TN-RS (rank-selection) in 8th-
order TR topology. The columns of “lower-ranks” and “higher-
ranks” indicate two experimental settings by which the TN-ranks
are randomly selected. The Eff. and [#Eva.] values are averaged
in five tensors.

Methods lower-ranks higher-ranks

Eff.↑ Eff.↑
TR-SVD 0.65±0.46 0.13±0.20
TR-BALS 1.15±0.14 0.19±0.22
TR-LM 1.15±0.14 0.15±0.02
TRAR 0.55±0.10 0.63±0.06

Eff.↑ [#Eva.↓] Eff.↑ [#Eva.↓]
TNGA 1.08±0.06 [552] 1.00±0.00 [900]
TNLS 1.08±0.06 [492] 1.00±0.00 [588]
TTOpt (R = 1) 1.08±0.06 [104] 1.00±0.00 [178]
TTOpt (R = 2) 1.02±0.02 [314] 1.00±0.00 [752]
Ours 1.08±0.06 [80] 1.00±0.00 [119]

Table 3. Number of parameters (×1000, ↓) and MSE (in round
brackets) for TGP model compression, where the values in [square
brackets] show the number of evaluations required in each method.

CCPP MG Protein

TGP 2.64 (0.06) [N/A] 3.36 (0.33) [N/A] 2.88 (0.74) [N/A]
TNGA 2.24 (0.06) [1500] 3.01 (0.33) [4900] 2.03 (0.74) [3900]
TNLS 2.24 (0.06) [1051] 3.01 (0.33) [3901] 1.88 (0.74) [3601]
Ours 2.24 (0.06) [124] 3.01 (0.33) [276] 1.88 (0.74) [1053]

& Graff, 2017), and compress the variational mean of the
process with the TT/TR decomposition using the same set-
tings as in Li et al. (2022). The goal of the experiment is to
search for good TN-ranks and permutations, so that fewer
parameters can be used to achieve the same mean square
error (MSE) in regression. The experimental results are
shown in Table 3. We can see that TnALE achieves the
same compression ratio as TNGA and TNLS but costs sig-
nificantly fewer evaluations than the counterparts in factor
up to 14 (3901/276).

Last, we consider the TN-PS and TN-TS tasks for com-
pressing natural images. In TN-TS, we search for good
TN-ranks and topologies for image compression. In the ex-
periment, we randomly select four images (A, B, C, D, see
Figure 5) from the dataset BSD500 (Arbelaez et al., 2010).
Each image is resized by 256× 256 and then reshaped into
an order-8 tensor. For comparison, we also implement the
“Greedy” method (Hashemizadeh et al., 2020) in the TN-TS
task. Table 4 shows the results, including the compression
ratio, RSE, and the number of evaluations in both tasks.
We see that TnALE achieves the closest compression ratio
and RSE to TNGA and TNLS, but it requires much fewer
evaluations.

8



TnALE: Solving Tensor Network Structure Search with Fewer Evaluations

Figure 5. Four images in the compression experiment.

Table 4. Results for natural image compression. The underlined
values show the best compression ratio achieved in the same RSE.

Tasks Methods
Data - compression ratio (log, ↑) (RSE ↓) [#Eva. ↓]

A B C D

TN-PS
TNGA 1.10 (0.15)

[8400]
1.37 (0.17)
[6300]

1.77 (0.08)
[4800]

1.47 (0.10)
[5100]

TNLS 1.09 (0.16)
[1351]

1.41 (0.17)
[1501]

1.71 (0.08)
[2551]

1.47 (0.10)
[2101]

Ours 1.14 (0.16)
[647]

1.39 (0.17)
[666]

1.80 (0.08)
[394]

1.49 (0.10)
[444]

TN-TS

Greedy 0.81 (0.16) 0.97 (0.17) 1.44 (0.08) 0.68 (0.10)

TNGA 1.16 (0.16)
[2100]

1.48 (0.17)
[1800]

1.81 (0.08)
[1900]

1.48 (0.09)
[1000]

TNLS 1.15 (0.16)
[1300]

1.40 (0.17)
[1100]

1.80 (0.08)
[1700]

1.50 (0.10)
[1700]

Ours 1.10 (0.15)
[177]

1.46 (0.17)
[153]

1.81 (0.08)
[237]

1.51 (0.10)
[246]

6. Concluding Remarks
Extensive experimental results demonstrate that the pro-
posed TnALE approach can greatly reduce the evaluation
cost, up to 10× fewer evaluations, compared with TNLS (Li
et al., 2022) and other methods for the task of tensor network
structure search (TN-SS). The theoretical results in this pa-
per provide a rigorous analysis of the convergence rate and
the evaluation efficiency for both TNLS and TnALE.

Limitation. The main limitation of TnALE is the local
convergence issue. In particular, we empirically found in
the TN-TS experiment (see Table 4) multiple local minima,
which are poor in compression ratio, and TnALE can easily
drop in them. Conversely, the methods TNGA (Li & Sun,
2020) and TNLS (Li et al., 2022) seem to better avoid local
minima, owing to their stochastic essence. Solving this
issue will be the direction of our future work. Furthermore,
the identifiability of the proposed method for TN-SS in the
presence of noise would be also investigated in the future.

Acknowledgements
This work was partially supported by JSPS KAKENHI
(Grant No. 20H04249, 23H03419). Chunmei is supported
by China Scholarship Council (CSC). Part of the computa-
tion was carried out at the Riken AIp Deep learning ENvi-
ronment (RAIDEN).

References
Acharya, A., Rudolph, M., Chen, J., Miller, J., and

Perdomo-Ortiz, A. Qubit seriation: Improving data-
model alignment using spectral ordering. arXiv preprint
arXiv:2211.15978, 2022.

Anandkumar, A., Ge, R., Hsu, D., Kakade, S. M., and Tel-
garsky, M. Tensor decompositions for learning latent
variable models. The Journal of Machine Learning Re-
search, 15(1):2773–2832, 2014.

Arbelaez, P., Maire, M., Fowlkes, C., and Malik, J. Contour
detection and hierarchical image segmentation. IEEE
transactions on pattern analysis and machine intelligence,
33(5):898–916, 2010.

Boyd, S. and Vandenberghe, L. Convex optimization. Cam-
bridge university press, 2004.

Cai, Y. and Li, P. A blind block term decomposition of high
order tensors. In Proceedings of the AAAI Conference on
Artificial Intelligence, number 8, pp. 6868–6876, 2021.

Chen, Z., Lu, J., and Zhang, A. R. One-dimensional ten-
sor network recovery. arXiv preprint arXiv:2207.10665,
2022.

Cheng, Z., Li, B., Fan, Y., and Bao, Y. A novel rank selec-
tion scheme in tensor ring decomposition based on rein-
forcement learning for deep neural networks. In ICASSP
2020-2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 3292–3296.
IEEE, 2020.

Cichocki, A., Phan, A.-H., Zhao, Q., Lee, N., Oseledets,
I., Sugiyama, M., Mandic, D. P., et al. Tensor networks
for dimensionality reduction and large-scale optimization:
Part 2 applications and future perspectives. Foundations
and Trends® in Machine Learning, 9(6):431–673, 2017.

Cincio, L., Dziarmaga, J., and Rams, M. M. Multiscale
entanglement renormalization ansatz in two dimensions:
quantum Ising model. Physical Review Letters, 100(24):
240603, 2008.

Dua, D. and Graff, C. UCI machine learning repository,
2017. URL http://archive.ics.uci.edu/ml.

Falcó, A., Hackbusch, W., and Nouy, A. Geometry of tree-
based tensor formats in tensor banach spaces. Annali di
Matematica Pura ed Applicata (1923-), pp. 1–18, 2023.

Fawzi, A., Balog, M., Huang, A., Hubert, T., Romera-
Paredes, B., Barekatain, M., Novikov, A., Ruiz, F. J. R.,
Schrittwieser, J., Swirszcz, G., Silver, D., Hassabis, D.,
and Kohli, P. Discovering faster matrix multiplication al-
gorithms with reinforcement learning. Nature, 610(7930):
47–53, 2022.

9

http://archive.ics.uci.edu/ml


TnALE: Solving Tensor Network Structure Search with Fewer Evaluations

Felser, T., Trenti, M., Sestini, L., Gianelle, A., Zuliani, D.,
Lucchesi, D., and Montangero, S. Quantum-inspired ma-
chine learning on high-energy physics data. npj Quantum
Information, 7(1):111, 2021.

Flake, G. W. and Lawrence, S. Efficient SVM regression
training with SMO. Machine Learning, 46(1):271–290,
2002.

Ghadiri, M., Fahrbach, M., Fu, G., and Mirrokni, V. Approx-
imately optimal core shapes for tensor decompositions.
arXiv preprint arXiv:2302.03886, 2023.

Glasser, I., Sweke, R., Pancotti, N., Eisert, J., and Cirac,
I. Expressive power of tensor-network factorizations for
probabilistic modeling. Advances in neural information
processing systems, 32, 2019.

Golovin, D., Karro, J., Kochanski, G., Lee, C., Song, X.,
and Zhang, Q. Gradientless descent: High-dimensional
zeroth-order optimization. In International Conference
on Learning Representations, 2019.

Haberstich, C., Nouy, A., and Perrin, G. Active learning of
tree tensor networks using optimal least-squares. arXiv
preprint arXiv:2104.13436, 2021.

Hackbusch, W. and Kühn, S. A new scheme for the tensor
representation. Journal of Fourier analysis and applica-
tions, 15(5):706–722, 2009.

Hashemizadeh, M., Liu, M., Miller, J., and Rabusseau, G.
Adaptive tensor learning with tensor networks. arXiv
preprint arXiv:2008.05437, 2020.

Hawkins, C. and Zhang, Z. Bayesian tensorized neural
networks with automatic rank selection. Neurocomputing,
453:172–180, 2021.

Hayashi, K., Yamaguchi, T., Sugawara, Y., and Maeda, S.-i.
Exploring unexplored tensor network decompositions for
convolutional neural networks. In Advances in Neural
Information Processing Systems, pp. 5553–5563, 2019.

Hikihara, T., Ueda, H., Okunishi, K., Harada, K., and
Nishino, T. Automatic structural optimization of tree
tensor networks. Physical Review Research, 5(1):013031,
2023.

Hillar, C. J. and Lim, L.-H. Most tensor problems are NP-
hard. Journal of the ACM (JACM), 60(6):45, 2013.

Izmailov, P., Novikov, A., and Kropotov, D. Scalable Gaus-
sian processes with billions of inducing inputs via tensor
train decomposition. In International Conference on Ar-
tificial Intelligence and Statistics, pp. 726–735. PMLR,
2018.

Khavari, B. and Rabusseau, G. Lower and upper bounds
on the pseudo-dimension of tensor network models. Ad-
vances in Neural Information Processing Systems, 34,
2021.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kodryan, M., Kropotov, D., and Vetrov, D. Mars: Masked
automatic ranks selection in tensor decompositions. In
International Conference on Artificial Intelligence and
Statistics, pp. 3718–3732. PMLR, 2023.

Kossaifi, J., Lipton, Z. C., Kolbeinsson, A., Khanna, A.,
Furlanello, T., and Anandkumar, A. Tensor regression
networks. Journal of Machine Learning Research, 21:
1–21, 2020.

Li, C. and Sun, Z. Evolutionary topology search for ten-
sor network decomposition. In Proceedings of the 37th
International Conference on Machine Learning (ICML),
2020.

Li, C. and Zhao, Q. Is rank minimization of the essence
to learn tensor network structure? In Second Workshop
on Quantum Tensor Networks in Machine Learning (QT-
NML), Neurips, 2021.

Li, C., Zeng, J., Tao, Z., and Zhao, Q. Permutation search
of tensor network structures via local sampling. In Inter-
national Conference on Machine Learning, pp. 13106–
13124. PMLR, 2022.

Li, N., Pan, Y., Chen, Y., Ding, Z., Zhao, D., and Xu, Z.
Heuristic rank selection with progressively searching ten-
sor ring network. Complex & Intelligent Systems, pp.
1–15, 2021.

Liu, Y., Lu, Y., Ou, W., Long, Z., and Zhu, C. Adaptively
topological tensor network for multi-view subspace clus-
tering. arXiv preprint arXiv:2305.00716, 2023.

Long, Z., Zhu, C., Liu, J., and Liu, Y. Bayesian low rank
tensor ring for image recovery. IEEE Transactions on
Image Processing, 30:3568–3580, 2021.

Malik, O. A. More efficient sampling for tensor decompo-
sition with worst-case guarantees. In International Con-
ference on Machine Learning, pp. 14887–14917. PMLR,
2022.

Mickelin, O. and Karaman, S. On algorithms for and com-
puting with the tensor ring decomposition. Numerical
Linear Algebra with Applications, 27(3):e2289, 2020.

Miller, J., Rabusseau, G., and Terilla, J. Tensor networks
for probabilistic sequence modeling. In International
Conference on Artificial Intelligence and Statistics, pp.
3079–3087. PMLR, 2021.

10



TnALE: Solving Tensor Network Structure Search with Fewer Evaluations

Nie, C., Wang, H., and Tian, L. Adaptive tensor networks
decomposition. In BMVC, 2021.

Novikov, A., Podoprikhin, D., Osokin, A., and Vetrov, D. P.
Tensorizing neural networks. In Advances in Neural
Information Processing Systems, pp. 442–450, 2015.

Olver, P. J. Introduction to partial differential equations.
Springer, 2014.

Orús, R. Tensor networks for complex quantum systems.
Nature Reviews Physics, 1(9):538–550, 2019.

Oseledets, I. and Tyrtyshnikov, E. TT-cross approxima-
tion for multidimensional arrays. Linear Algebra and its
Applications, 432(1):70–88, 2010.

Oseledets, I. V. Tensor-train decomposition. SIAM Journal
on Scientific Computing, 33(5):2295–2317, 2011.

Osinsky, A. Tensor trains approximation estimates in the
chebyshev norm. Computational Mathematics and Math-
ematical Physics, 59(2):201–206, 2019.

Rai, P., Wang, Y., Guo, S., Chen, G., Dunson, D., and Carin,
L. Scalable bayesian low-rank decomposition of incom-
plete multiway tensors. In International Conference on
Machine Learning, pp. 1800–1808. PMLR, 2014.

Richter, L., Sallandt, L., and Nüsken, N. Solving high-
dimensional parabolic PDEs using the tensor train format.
In Meila, M. and Zhang, T. (eds.), Proceedings of the
38th International Conference on Machine Learning, pp.
8998–9009. PMLR, 2021.

Sedighin, F., Cichocki, A., and Phan, A.-H. Adaptive rank
selection for tensor ring decomposition. IEEE Journal
of Selected Topics in Signal Processing, 15(3):454–463,
2021.

Snyder, L. V. and Daskin, M. S. A random-key genetic
algorithm for the generalized traveling salesman problem.
European journal of operational research, 174(1):38–53,
2006.

Solgi, R., Loaiciga, H. A., and Zhang, Z. Evolutionary ten-
sor train decomposition for hyper-spectral remote sensing
images. In IGARSS 2022-2022 IEEE International Geo-
science and Remote Sensing Symposium, pp. 1145–1148.
IEEE, 2022.

Sozykin, K., Chertkov, A., Schutski, R., Phan, A.-H., CI-
CHOCKI, A. S., and Oseledets, I. Ttopt: A maximum
volume quantized tensor train-based optimization and its
application to reinforcement learning. Advances in Neu-
ral Information Processing Systems, 35:26052–26065,
2022.

Tucker, L. R. Some mathematical notes on three-mode
factor analysis. Psychometrika, 31(3):279–311, 1966.

Tüfekci, P. Prediction of full load electrical power output
of a base load operated combined cycle power plant us-
ing machine learning methods. International Journal of
Electrical Power & Energy Systems, 60:126–140, 2014.

Tyrtyshnikov, E. Incomplete cross approximation in the
mosaic-skeleton method. Computing, 64(4):367–380,
2000.

Verstraete, F. and Cirac, J. I. Renormalization algorithms
for quantum-many body systems in two and higher di-
mensions. arXiv preprint cond-mat/0407066, 2004.

Wang, W., Aggarwal, V., and Aeron, S. Efficient low rank
tensor ring completion. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pp. 5697–5705,
2017.

Wu, Z.-C., Huang, T.-Z., Deng, L.-J., Dou, H.-X., and Meng,
D. Tensor wheel decomposition and its tensor completion
application. In Advances in Neural Information Process-
ing Systems, 2022.

Ye, K. and Lim, L.-H. Tensor network ranks. arXiv preprint
arXiv:1801.02662, 2019.

Yin, M., Phan, H., Zang, X., Liao, S., and Yuan, B. Batude:
Budget-aware neural network compression based on
Tucker decomposition. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 1, 2022.

Yokota, T., Zhao, Q., and Cichocki, A. Smooth PARAFAC
decomposition for tensor completion. IEEE Transactions
on Signal Processing, 64(20):5423–5436, 2016.

Zhang, A. Cross: Efficient low-rank tensor completion. The
Annals of Statistics, 47(2):936–964, 2019.

Zhao, Q., Zhang, L., and Cichocki, A. Bayesian CP fac-
torization of incomplete tensors with automatic rank de-
termination. IEEE transactions on pattern analysis and
machine intelligence, 37(9):1751–1763, 2015.

Zhao, Q., Zhou, G., Xie, S., Zhang, L., and Cichocki,
A. Tensor ring decomposition. arXiv preprint
arXiv:1606.05535, 2016.

Zhe, S., Xu, Z., Chu, X., Qi, Y., and Park, Y. Scalable
nonparametric multiway data analysis. In Artificial Intel-
ligence and Statistics, pp. 1125–1134. PMLR, 2015.

Zheng, Y.-B., Huang, T.-Z., Zhao, X.-L., Zhao, Q., and
Jiang, T.-X. Fully-connected tensor network decomposi-
tion and its application to higher-order tensor completion.
In Proc. AAAI, volume 35, pp. 11071–11078, 2021.

11



TnALE: Solving Tensor Network Structure Search with Fewer Evaluations

A. TnALE: Details for the algorithm
The pseudocode for ALE is given in Alg. 3. As discussed in the paper, each structure-related variable is updated alternately
by enumeration in the neighborhood. Based on it, the entire algorithm of TnALE is shown in Alg. 2. Apart from the major
iteration (lines 6-8), beforehand, there is an initial phase, where we apply a larger radius r1 and the objective prediction trick
to find the candidates in a broader range and a rough fashion.

A.1. The objective estimation trick.

As discussed in Remark 3.1, we employ the objective estimation by linear interpolation in place of the complete enumeration
when updating the TN-ranks. Particularly in Alg. 2, we apply this trick to the initial phase, where we consider a broader
range of the neighborhood for roughly finding the structure candidates.

Suppose a rank variable r is required to be enumerated in the range of r0 − b ≤ r ≤ r0 + b, where r0, b ∈ Z+ present the
center and radius of the searched neighborhood, respectively. The objective estimation trick aims to estimate the minimum
of the inner optimization of (1) associated with each enumerated TN-structures with limited evaluations. In the trick, we
first evaluate explicitly three TN structures, i.e., r = {r0 − b, r0, r0 + b}. Then, a simple linear regression model is applied
to predicting the evaluations of TN-structures in the interval (r0, r0 + b). The evaluations for the interval (r0 − b, r0) will
be predicted similarly using the data w.r.t. {r0 − b, r0}. We can see from the trick that the inner minimization of (1) can be
quickly estimated with only three explicit evaluations, no matter how wide the searching range is. Although the simple
linear regression can only give a rough estimation, it is sufficiently helpful for TnALE to find good TN-structures in the
initial phase.

A.2. The neighborhood in the graph space

In the problem of TN-PS, we follow the idea of Li et al. (2022) to specify the neighborhood for a given graph G in (1).
Similar to Alg. 1 in Li et al. (2022), we construct the neighborhood by swapping enumerately two vertices of G. Suppose
the graph G is of N vertices, we consequently achieve the neighborhood of G of the size N(N − 1)/2.

Algorithm 2 TnALE: the proposed solver of the optimization (1)
1: Input: A solver for the inner minimization of (1); the rank-related radius: r1 ≥ r2 > 0; the number of Iterations in the

initialization phase: L0; the number of Iterations in the searching phase: L; the number of the round-trips for ALE: D;
2: Initialize: Uniformly choose a TN structure (G, r) at random or choose (G, r) with the specified value;
3: for l = 1, . . . L0 do
4: Update recursively (G, r) using Alg. 3 with the center (G, r), radius r1, D round-trips and the objective estimation

trick;
5: end for
6: for l = 1, . . . L do
7: Update recursively (G, r) using Alg. 3 with the center (G, r), radius r2 and D round-trips ;
8: end for
9: Output: (G, r).

12



TnALE: Solving Tensor Network Structure Search with Fewer Evaluations

Algorithm 3 ALE: alternating local enumeration

1: Input: The center of the neighborhood: (G(0), r(0)), where r = [r
(0)
1 , r

(0)
2 , . . . , r

(0)
K ]⊤ ∈ ZK

+ ; the rank-related radius:
r ∈ Z+; the number of “round-trips”: D;

2: Initialize: (G, r) = (G0, r0), where r = [r1, r2, . . . , rK ]⊤

3: for d = 1, . . . , D do
4: for k = 1, . . . ,K do
5: for i = −r, . . . , 0, . . . , r do
6: Copy (G, r) into (Ḡ, r̄)
7: Update (Ḡ, r̄) by r̄k = rk + i;
8: Calculate the objective of (1) associated to (Ḡ, r̄); # Objective estimation is available.
9: Store the value of the objective as h(i);

10: end for
11: Update (G, r) by rk = argmini h(i);
12: end for
13: Take the neighborhood B(G) according to section A.2;
14: for all G′ ∈ B(G) do
15: Update (G, r) by G = G′;
16: Calculate the objective of (1) associated to (G, r);
17: Store the value of the objective as h(G′);
18: end for
19: Update (G, r) by G = argminG′ h(G′);
20: for k = K,K − 1, . . . , 2 do
21: for i = −r, . . . , 0, . . . , r do
22: Copy (G, r) into (Ḡ, r̄)
23: Update (Ḡ, r̄) by r̄k = rk + i;
24: Calculate the objective of (1) associated to (Ḡ, r̄); # Objective estimation is available.
25: Store the value of the objective as h(i);
26: end for
27: Update (G, r) by rk = argmini h(i);
28: end for
29: end for
30: Output: (G, r).

13



TnALE: Solving Tensor Network Structure Search with Fewer Evaluations

B. Theoretical analysis with proofs
In this section, we first give a rigorous convergence analysis for the algorithms using the local-sampling scheme. After that,
we compare the evaluation efficiency for TNLS (Li et al., 2022) and the new algorithm TnALE.

B.1. A quick review of tensor network (TN) structure search

Suppose we have the dataset D and a task-specific loss function πD : RI1×I2×···×IN → R+ associated to D. The tensor
network structure search (TN-SS) problem is to solve the following bi-level optimization problem (Li et al., 2022)

min
(G,r)∈G×FG

(
ϕ(G, r) + λ · min

Z∈TNS(G,r)
πD(Z)

)
, (8)

where G ∈ G is a graph, which owns N vertices and K edges and corresponds to the TN-topology, r ∈ FN ⊆ ZK
+ is a

positive integer vector of K dimension corresponding to the TN-ranks, ϕ : G×ZK
+ → R+ represents the function measuring

the model complexity of a TN whose structure is modeled by (G, r), and λ > 0 is a tuning parameter. As expected for
TN-SS, solving the problem (8) is intuitively to search for a TN structure modeled by (G, r), by which we can give the
optimal balance between the complexity and the expressibility of a TN in the task.

We remark that TN-SS can be specified as three sub-problems: permutation selection (TN-PS, Li et al. (2022)), rank selection
(TN-RS) and topology selection (TN-TS, Li & Sun (2020)), by specifying the feasible set G× FG of (8) into different forms.
Specifically, in TN-PS, we set FG = ZK

+ and G is defined as the isomorphic graphs to a “template” G0, so that only the
ranks and vertex permutations are searched while the TN-topology is preserved. In TN-RS, however, we typically restrict
the graph G in (8), i.e., G = {G0} but consider searching for all possible ranks i.e., FG = ZK

+ . In TN-TS, we relax G to be
a set containing all possible simple graphs of order N and the set FN can be fixed (Li & Sun, 2020) or not (Hashemizadeh
et al., 2020). It is known from (Ye & Lim, 2019; Hashemizadeh et al., 2020) that the TN-PS problem with the rank searching
can be simplified as a TN-RS problem associated to a “fully-connected” TN (Zheng et al., 2021).

B.2. Analysis of descent steps

We start the analysis by rewriting (8) into a more general form:

min
x∈ZK

+ ,p∈P
fp(x) := f ◦ p(x), (9)

where ◦ denotes the function composition, f : ZL
≥0 → R+ is a generalization of the objective function of (8), x ∈ ZK

+

corresponds to the rank-related variable r of (8), and the operator p : ZK
+ → ZL

≥0 and its feasible set P correspond to the
topology-related variable G and the set G of (8), respectively.

The relationship between p ∈ P of (9) and G ∈ G of (8) is demonstrated as follows. Since in (8) the entries of r can be
regarded as labels on the edges of G, the pair (G, r) can be described as a weighted adjacency matrix of N × N . For
example, a 4-th order tensor ring (TR, Zhao et al., 2016) of the ranks-{2, 3, 4, 5} can be described as

(G1, r) =



0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

 ,


2
3
4
5


 =⇒ A1 =


0 0 2 3
0 0 4 5
2 3 0 0
4 5 0 0

 , (10)

or

(G2, r) =



0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 ,


2
3
4
5


 =⇒ A2 =


0 2 0 5
2 0 3 0
0 3 0 4
5 0 4 0

 . (11)

Here G1 and G2 correspond to the TR topology with different permutations of vertices. In the settings of TN-PS (Li et al.,
2022), we can prove that such the relationship is bijective. The operator p is thus to map the TN-ranks, denoted x ∈ ZK

+

in (9), onto the vectorization of entries in the upper triangle part (except for the diagonal) of the adjacency matrix. For

14



TnALE: Solving Tensor Network Structure Search with Fewer Evaluations

example,

A1 =


0 0 2 3
0 0 4 5
2 3 0 0
4 5 0 0

 ⇐⇒ p1(x) =


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0



2
3
4
5

 =


0
2
3
4
5
0

, (12)

and

A2 =


0 2 0 5
2 0 3 0
0 3 0 4
5 0 4 0

 ⇐⇒ p2(x) =


1 0 0 0
0 0 0 0
0 0 0 1
0 1 0 0
0 0 0 0
0 0 1 0



2
3
4
5

 =


2
0
5
3
0
4

. (13)

It is shown that p is essentially an operator produced by the permutation padding with several rows of zeros according to G.

The convergence analysis of this work is mainly inspired by Golovin et al. (2019), which establishes a convex framework for
the gradient-less optimization algorithms in the real domain. The challenge is, the TN-SS problem is essentially discrete, so
that many well-developed tools, such as convexity and smoothness, for convergence analysis turn invalid in the discrete
scenario.

To bridge the graph from Golovin et al. (2019) to TN-SS, we first re-define several important concepts, by which the
necessary tools for the analysis are re-derived. In doing so, we begin by introducing the finite gradient as the alternative to
the classic one defined in the continuous domain.

Definition B.1 (finite gradient). For any function f : ZL
≥0 → R, its finite gradient ∆f : ZL

≥0 → RL at the point x is
defined as the vector

∆f(x) = [f(x+ e1)− f(x), . . . , f(x+ eL)− f(x)]
⊤
, (14)

where ei ∀i ∈ [L] denote the unit vectors with the i-th entry being one and other entries being zeros.

Applying the finite gradient defined in (14), we also re-define the strong convexity and smoothness for analysis in the
discrete domain.

Definition B.2 (α-strong convexity with finite gradient). We say f is α-strongly convex for α ≥ 0 if f(y) ≥ f(x) +〈
∆f(x)− α

2 1,y − x
〉
+ α

2 ∥y − x∥2 for all x,y ∈ ZL
≥0, where 1 ∈ RL denotes the vector with all entries being one. We

simply say f is convex if it is α-strongly convex and α = 0.

Compared to the definitions used in Golovin et al. (2019) and other literature for convex analysis, the additional term, α
2 1,

marked by the blue color, appears due to the discrepancy of the finite gradient and its counterpart in the continuous domain.
Below, we prove several basic results using the α-strong convexity with finite gradient.

Lemma B.3. If f is α-strongly convex in ZL
≥0, then the following inequalities are held:

1. g(x) = f(x)− α
2 ∥x∥

2 is convex in the discrete scenario for all x ∈ ZL
≥0, and vice versa;

2. ⟨∆f(x)−∆f(x),x− y⟩ ≥ α∥x− y∥2 for any x,y ∈ ZL
≥0;

3. ∥∆f(x)−∆f(y)∥ ≥ α∥x− y∥ for any x,y ∈ ZL
≥0;

Here ∥ · ∥ denotes the l2 norm for vectors.

Proof. (1, ⇒) According to Def. B.2, the first statement is equivalent to proving the inequality

g(y) ≥ g(x) + ⟨∆g(x),y − x⟩ (15)

15



TnALE: Solving Tensor Network Structure Search with Fewer Evaluations

holding for any x,y ∈ ZL
≥0. Applying the α-strong convexity assumption, it follows that

g(y)− g(x)− ⟨∆g(x),y − x⟩ = f(y)− α

2
∥y∥2 − f(x) +

α

2
∥x∥2 − ⟨∆g(x),y − x⟩

= f(y)− α

2
∥y∥2 − f(x) +

α

2
∥x∥2 −

〈
∆f(x)− α

2
(2x+ 1),y − x

〉
= f(y)− f(x)−

〈
∆f(x)− α

2
1,y − x

〉
− α

2
∥y∥2 + α

2
∥x∥2 + α

2
⟨2x,y − x⟩

≥ α

2

(
∥y − x∥2 − ∥y∥2 − ∥x∥2 + 2 ⟨x,y⟩

)
= 0.

(16)

Here the first equality follows from the definition of g(x), the second equality holds since the finite gradient ∆∥x∥2 = 2x+1,
and the inequality at the bottom line follows from the α-strong convexity assumption on f .

(1, ⇐) By (15),

f(y)− α

2
∥y∥2 ≥ f(x)− α

2
∥x∥2 +

〈
∆f(x)− α

2
(2x+ 1),y − x

〉
. (17)

The α-strong convexity of f is thus proved by algebraically simplifying (17).

(2) To prove the second statement, we first know that the following inequality

⟨∆g(x)−∆g(y),x− y⟩ ≥ 0, ∀x,y (18)

holds since the monotone gradient property of the convexity (it is true in both continuous and discrete scenarios). By the
form of ∆g(x), it follows that〈

∆f(x)− α

2
(2x+ 1)−∆f(y) +

α

2
(2y + 1),x− y

〉
≥ 0. (19)

With algebraic simplification, we obtain

⟨∆f(x)−∆f(y),x− y⟩ ≥ α∥x− y∥2 (20)

for all x,y ∈ ZL
≥0. The second statement is thus proved.

(3) The third statement holds since the following relationship

∥∆f(x)−∆f(y)∥∥x− y∥ ≥ ⟨∆f(x)−∆f(y),x− y⟩ ≥ α∥x− y∥2, (21)

where the first inequality follows from the Cauchy–Schwarz inequality, and the second inequality follows from (20). The
third statement is proved by dividing by ∥x− y∥ on both sides.

Apart from the convexity, the smoothness of the objective function is also required to be re-defined in the discrete scenario.

Definition B.4 ((β1, β2)-smoothness with finite gradient). We say f is (β1, β2)-smooth for β1, β2 > 0 if

1. |f(x)− f(y)| ≤ β1∥x− y∥ for all x,y ∈ ZL
≥0;

2. The function l(x) := β2

2 ∥x∥2 − f(x) is convex.

The first item of Def. B.4 restricts that f is β1-Lipschitz, implying the “continuity” of the function, while the second item
upper bounds the change of the finite gradient of f , implying a “continuity” over the finite gradient. In particular,

Lemma B.5. If l(x) = β
2 ∥x∥

2 − f(x) is convex, then for all x,y ∈ ZL
≥0

1. f(y) ≤ f(x) +
〈
∆f(x)− β

21,y − x
〉
+ β

2 ∥y − x∥2 and vise versa;

2. ⟨∆f(x)−∆f(y),x− y⟩ ≤ β∥x− y∥2.

16



TnALE: Solving Tensor Network Structure Search with Fewer Evaluations

Proof. (1, ⇒) By the form l(x) and its convex property, we have the inequality

β

2
∥y∥2 − f(y) ≥ β

2
∥x∥2 − f(x) +

〈
β

2
(2x+ 1)−∆f(x),y − x

〉
. (22)

The first statement is proved by algebraically simplifying (22). The (⇐) direction can be proved similarly.

To prove the second item, by the convexity of l(x),

l(y) ≥ l(x) + ⟨∆l(x),y − x⟩ . (23)

Similarly,
l(x) ≥ l(y) + ⟨∆l(y),x− y⟩ . (24)

Summing the two sides of (23) and (24) up, we have

⟨∆l(x)−∆l(y),x− y⟩ ≥ 0. (25)

Applying l(x) = β
2 ∥x∥

2 − f(x),

⟨β(2x+ 1)−∆f(x)− β(2y + 1) + ∆f(y),x− y⟩ ≥ 0. (26)

By simplifying the inequality, we finally have

⟨∆f(x)−∆f(y),x− y⟩ ≤ β∥x− y∥2. (27)

The first item of Def. B.4 gives the following crucial result, which is used in the main theorem of this paper.

Lemma B.6. If |f(x)− f(y)| ≤ β∥x− y∥ for all x,y ∈ ZL
≥0, then the norm of the finite gradient with respective to x is

bounded, i.e., ∥∆f(x)∥∞ ≤ β.

Proof. Denote ∆f(x)i the i-th entry of ∆f(x), then for all 1 ≤ i ≤ L the second item of the definition follows by

|∆f(x)i| = |f(x+ ei)− f(x)| ≤ β∥x+ ei − x∥ = β, (28)

where ei denotes the unit vector with i-th entry being one and others being zeros, and the first equality follows from the
definition of the finite gradient.

After the new definitions of convexity and smoothness with finite gradient, in the proof, we also use the concept of the
sub-level set, which is widely used in optimization theory. For the self-consistency purpose, the specific definition is
reviewed as follows:

Definition B.7 (sub-level set). The level set of f at point x ∈ ZL
≥0 is Lx(f) =

{
y ∈ ZL

≥0 : f(y) = f(x)
}

. The sub-level
set of f at point x ∈ ZL

≥0 is L↓
x(f) =

{
y ∈ ZL

≥0 : f(y) ≤ f(x)
}

.

The following lemma shows that, for any x, there exists a cube, i.e., a ball with infinity-norm, which is tangent at x and
inside the sub-level set L↓

x(f).

Lemma B.8 (the sub-level cube). Assume that f : ZL
≥0 → R is α-strongly convex, (β1, β2)-smooth, and its minimum,

denoted f(x∗), satisfies ∥β2

2 1 −∆f(x∗)∥ ≤ γ where γ is a constant and 0 ≤ γ < α. Then, for all x ∈ ZL
≥0, there is a

L-dimensional cube, which is of the edge length 2(α−γ)

β2

√
L
∥x− x∗∥, tangent at x, and inside the sub-level set L↓

x(f).

Proof. Applying the smoothness assumption and Lemma B.5,

f

(
x− 1

β2
∆f(x) +

1

2
1+ s

)
≤ f(x) +

〈
∆f(x)− β2

2
1, s+

1

2
1− 1

β2
∆f(x)

〉
+

β2

2

∥∥∥∥s+ 1

2
1− 1

β2
∆f(x)

∥∥∥∥2
= f(x) +

β2

2

(
∥s∥2 − ∥1

2
1− 1

β2
∆f(x)∥2

) (29)

17



TnALE: Solving Tensor Network Structure Search with Fewer Evaluations

for any s. The inequality (29) implies that for any y ∈ ZL
≥0 in the Euclidean ball

B
(
x− 1

β2
∆f(x) + 1

21, ∥
1
21− 1

β2
∆f(x)∥

)
it yields f(y) ≤ f(x), i.e., y ∈ L↓

x(f). We also see that x is at the
surface of this Euclidean ball, i.e., the ball is tangent at x. Furthermore, we also prove that the radius of the ball is lower
bounded as follows:

1

β2
∥β2

2
1−∆f(x)∥ =

1

β2
∥β2

2
1−∆f(x∗) + ∆f(x∗)−∆f(x)∥

≥ 1

β2

(
∥∆f(x)−∆f(x∗)∥ − ∥β

2
1−∆f(x∗)∥

)
≥ (α− γ)

β2
∥x− x∗∥,

(30)

where the inequality at the bottom line follows from the third statement of Lemma B.3 and the assumption ∥β2

2 1−∆f(x∗)∥ ≤
γ.

Next, we show that the ball B
(
x− 1

β2
∆f(x) + 1

21, ∥
1
21− 1

β2
∆f(x)∥

)
contains a cube of edge length 2(α−γ)

β2

√
L
∥x− x∗∥.

First, we easily know in the ball there exists a cube, of which the volume is sufficiently small, and one vertex is at x. Then,
the cube gradually extends all edges until the adjacent vertices of x touch the surface of the ball. At this moment, it can
be seen that the edges that touch the surface of the ball turn the chords of the ball. Furthermore, the line connecting the
ball center to x has an equal angle to all edges connecting x, due to the symmetry of the geometrical shapes. With basic
geometry knowledge, we can thus calculate the chord length, i.e., the edge length of the cube, with 2×R cos(θ), where
R denotes the radius of the ball and θ = arccos(1/

√
L) is the angle between the chord and the ”center-x” line. Finally,

using (30), we know the cube of the edge length 2(α−γ)

β2

√
L
∥x− x∗∥ is tangent at x, and inside sub-level set L↓

x(f).

Lemma B.9 (convex combination in the discrete domain). Suppose q = θx+(1−θ)y, ∀θ ∈ [0, 1], and there is q̂ ∈ ZL
≥0

where Λ = q− q̂. If f is α-strongly convex, then

θf(x) + (1− θ)f(y) ≥ f(q̂) +
〈
∆f(q̂)− α

2
1,Λ

〉
+

α

2
∥Λ∥2. (31)

Proof. By the definition of the α-strong convexity,

f(x) ≥ f(q̂) +
〈
∆f(q̂)− α

2
1,x− q̂

〉
+

α

2
∥x− q̂∥2;

f(y) ≥ f(q̂) +
〈
∆f(q̂)− α

2
1,y − q̂

〉
+

α

2
∥y − q̂∥2.

(32)

Thus, we have their convex combination as

θf(x) + (1− θ)f(y) ≥ f(q̂) +
〈
∆f(q̂)− α

2
1,Λ

〉
+

α

2

(
θ∥x∥2 + (1− θ)∥y∥2 + ∥q̂∥2 − 2 ⟨q, q̂⟩

)
≥ f(q̂) +

〈
∆f(q̂)− α

2
1,Λ

〉
+

α

2

(
∥q∥2 + ∥q̂∥2 − 2 ⟨q, q̂⟩

)
= f(q̂) +

〈
∆f(q̂)− α

2
1,Λ

〉
+

α

2
∥Λ∥2

, (33)

where the second inequality follows from the convexity of ∥ · ∥2. The proof is completed.

Assumption B.10. Assume that f : ZL
≥0 → R+ of (9) is α-strongly convex, (β1, β2)-smooth, and its minimum, denoted

(p∗,x∗) = argminp,x f ◦ p(x), satisfies ∥∆fp∗(x∗)− β2

2 1∥ ≤ γ where 0 ≤ γ < α ≤ β1 ≤ β2 ≤ 1.

Here the inequality ∥∆fp∗(x∗)− β2

2 1∥ ≤ γ implies that, up to a (small) constant vector β2

2 1, the finite gradient at (p∗,x∗)
should be sufficiently small, which can be understood as the discrete version of the zero-gradient for the stationary points
in the continuous domain. The upper bound “1” is arbitrarily chosen just for simplifying the calculation. Also note that
β2 must be larger than α due to the fact α∥x− y∥2 ≤ ⟨∆f(x)−∆f(y),x− y⟩ ≤ β2∥x− y∥2 (see Lemma B.3 and
Lemma B.5). With Assumption B.10, we next prove that the local-sampling-based searching algorithm achieves the linear
convergence rate up to a constant, if p∗ is known beforehand.

18



TnALE: Solving Tensor Network Structure Search with Fewer Evaluations

Theorem B.11 (convergence rate). Suppose Assumption B.10 is satisfied, the operator p in (9) is fixed to be p∗, and
0 ≤ θ ≤ 1. Then, for any x with ∥x− x∗∥∞ ≤ c, we can find a neighborhood B∞(x, rx) where rx ≥ θc+ 1

2 , such that
there exist a element y ∈ B∞(x, rx) satisfying

fp∗(y)− fp∗(x∗) ≤ (1− θ)(fp∗(x)− fp∗(x∗)) +
7

8
K. (34)

Proof. First of all, since the operator p is fixed to be p∗, the problem (9) can be equivalently simplified by removing the
formulation of p out of (9), which is written as

min
x∈ZK

+

f(x), (35)

where f : ZK
≥0 → R represents the objective function.7 By Lemma B.9, we have the following inequality:

f(q̂)− f(x∗) ≤ (1− θ)(f(x)− f(x∗)) +
〈α
2
1−∆f(q̂),Λ

〉
− α

2
∥Λ∥2. (36)

Next, we prove in the neighborhood B(x, rx) there exists an element y, which belongs to as well the sub-level cube tangent
at q̂ knowing by Lemma B.8, so that f(y) ≤ f(q̂) holds. To do so, we first know that the distance between q̂ and px(x)
satisfying

∥x− q̂∥∞ = ∥x− q+Λ∥∞ ≤ ∥x− q∥∞ + ∥Λ∥∞ = θ∥x− x∗∥∞ + ∥Λ∥∞ ≤ θc+
1

2
. (37)

Here the last inequality follows from ∥Λ∥∞ ≤ 1
2 , which holds because q̂ ∈ ZK

≥0 can be always found by rounding the
entries of q into the closest integers. We thus know from the inequality that the intersection between the sub-level cube
tangent at q̂ and B(x, rx) is not empty if rx ≥ θc+ 1

2 , proving the existence of the y. Last, we bound (36) as follows:

f(y)− f(x∗) ≤ f(q̂)− f(x∗) ≤ (1− θ)(f(x)− f(x∗)) +
〈α
2
1−∆f(q̂),Λ

〉
− α

2
∥Λ∥2

≤ (1− θ)(f(x)− f(x∗)) +
∣∣∣ 〈α

2
1,Λ

〉∣∣∣+ | ⟨∆f(q̂),Λ⟩|+ α

2
∥Λ∥2

≤ (1− θ)(f(x)− f(x∗)) +
α

4
K + ∥∆f(q̂)∥∞∥Λ∥1 +

α

2
∥Λ∥2

≤ (1− θ)(f(x)− f(x∗)) +
α

4
K +

β1

2
K +

α

8
K

≤ (1− θ)(f(x)− f(x∗)) +
3α+ 4β1

8
K

≤ (1− θ)(f(x)− f(x∗)) +
7

8
K.

(38)

Here the inequality in the fourth line follows from Lemma B.6 and ∥Λ∥∞ ≤ 1/2, and the inequality at the bottom line
follows from Assumption B.10 that α < β1 ≤ 1. The proof is thus completed.

It is known from the proof that the constant (7/8)K appearing in (34) is due to the fact ∥Λ∥1 ≤ K∥Λ∥∞ ≤ K/2 and
∥Λ∥2 ≤ K∥Λ∥∞ ≤

√
K/2. It means that with the rounding error ∥Λ∥∞ ≤ 1/2, the l1,2 norm of Λ would become

larger with increasing the dimension K, which is inevitable in the analysis. It only disappears if ∥Λ∥∞ = 0, implying the
conventional convex optimization in the continuous domain.

As an important corollary from Theorem B.11, we next prove the convergence guarantee for the local-sampling-based
methods.

Corollary B.12 (convergence guarantee). Suppose p∗ is known and a series {xn}∞n=0, where x0 is randomly chosen in ZK
+ ,

and for each n > 0, xn is equal to the y in Theorem B.11. Then we can achieve the following limit when Ω(1/K) ≤ θ ≤ 1,

lim
n→∞

(fp∗(xn)− fp∗(x∗)) = O(1) (39)
7Here for brevity, we re-use the notation of f without ambiguity since the main properties of f are preserved up to the domain

restricting from ZL
≥0 to ZK

≥0.

19



TnALE: Solving Tensor Network Structure Search with Fewer Evaluations

Proof. Let CK := (7/8)K. By the updating rule,

fp∗(xn)− fp∗(x∗) ≤ (1− θ)(fp∗(xn−1)− fp∗(x∗)) + CK

≤ (1− θ)2(fp∗(xn−2)− fp∗(x∗)) + CK + CK(1− θ)

≤ (1− θ)3(fp∗(xn−3)− fp∗(x∗)) + CK + CK(1− θ) + CK(1− θ)2

≤ · · ·

≤ (1− θ)n(fp∗(x0)− fp∗(x∗)) + CK

n∑
m=1

(1− θ)m−1.

(40)

Thus using the condition Ω(1/K) ≤ θ ≤ 1, we finally obtain that

lim
n→∞

(fp∗(xn)− fp∗(x∗)) ≤ 0 + CK
1

θ
= O(1). (41)

B.3. Sampling efficiency

Proposition B.13 (curse of dimensionality for TNLS). Let the assumptions in Theorem B.11 be satisfied. Furthermore,
assume that x∗ is sufficiently smaller (or larger) than x entry-wisely except for a constant number of entries. Then the
probability of achieving a suitable y as mentioned in Theorem B.11 by uniformly randomly sampling in B∞(x, rx) with
rx ≥ θc+ 1

2 equals O(2−K).

Proof. We only prove the case where x∗ is sufficiently smaller than x in the entry-wise manner, except a constant
number of entries. The “larger” case can be proved similarly. Recall Theorem B.11. By the construction of y, we have
q = θx + (1 − θ)x∗ with 0 ≤ θ ≤ 1 and the approximation q̂ ∈ ZK

+ with q̂ = q + Λ and ∥Λ∥∞ ≤ 1/2. According
to the assumptions, we know x − q̂ is entry-wisely larger than zero except C entries, where C ≥ 0 is a constant. Since
rx ≥ θc+ 1

2 , we further know from Theorem B.11 that the intersection between B∞(x, rx), denoted B in the rest of the
proof for brevity, and the sub-level cube, denoted A, tangent at q̂ is not empty. In this case, we can easily bound the volume
of the cube associated to the intersection of A and B as follows:

|A ∩B| ≤ (rx − δmin)
K−C

(rx + δmax)
C . (42)

Here | · | denotes the volume of the cube. δmin = min {pi : pi = x(i)− q̂(i) > 0, 1 ≤ i ≤ K} and δmax =
max {0, pi : pi = q̂(i)− x(i) ≤ 0, 1 ≤ i ≤ K}, where x(i), q̂(i) denote the i-th entry of x and q̂, respectively. Thus,
the probability of uniformly drawing a sample y belonging to A ∩B from B∞(x, rx) is as follows:

Pr(y ∈ A ∩B) ≤ (rx − δmin)
K−C

(rx + δmax)
C

(2rx)K
≤

(
rx + δmax

rx − δmin

)C

2−K

= O(2−K).

(43)

The proof is completed.

Recall that let B := B(p)×B∞(x, rx) and f∗
B := min(py,y)∈B fpy

(y) for notational simplicity, then

Proposition B.14 (evaluation efficiency for TnALE). Let B ∈ RI×I×···×I be the tensor of order-(K + 1) constructed as
Eq. (6) with I1 = I2 = · · · = IK+1 = I . Then, there exists its TT-cross approximation (Oseledets & Tyrtyshnikov, 2010) of
rank-R8, denoted B̂, for which it satisfies j = argmaxi B̂(i), such that the equality f∗

B = fpjK+1
(x+ j(: K)− (⌈rx⌉+ 1))

holds, provided that

f∗
B ≤ fpz

(z)/

(
1 + 2

(4R)⌈ log2 K⌉ − 1

4R− 1
(R+ 1)2ξfpz

(z)

)
(44)

for all (pz, z) ∈ B and fpz
(z) ̸= f∗

B . Here, ξ denotes the error between B and its best approximation of TT-ranks R in
terms of ∥ · ∥∞. Note that the inequality (44) holds trivially if B is exactly of the TT topology of rank-R, and Oseledets &
Tyrtyshnikov (2010) shows that the f∗

B can be recovered from O(KIR) entries from B.
8Here we assume that all elements of the TT-ranks are equal to R for brevity.

20



TnALE: Solving Tensor Network Structure Search with Fewer Evaluations

Proof. Since the “one-to-one” relation between the entries of the tensor B and all possible f(z) for all (pz, z) ∈ B(p)×
B∞(x, rx), it is easily to know the equality f∗

B = fpj,K+1
(x+ j(: K)− (⌈rx⌉+ 1)) holds if B̂(i∗) ≥ B̂(k) for i∗ =

argmaxi B(i) and any index k. To prove this condition true, we have the following inequalities for any k:

B̂(i∗)− B̂(k) ≥ B(i∗)− B(k)− 2
(4R)⌈ log2 K⌉ − 1

4R− 1
(R+ 1)2ξ

= 1/f∗
B − 1/fpjK+1

(x+ k(: K)− (⌈rx⌉+ 1))− 2
(4R)⌈ log2 K⌉ − 1

4R− 1
(R+ 1)2ξ

≥ 2
(4R)⌈ log2 K⌉ − 1

4R− 1
(R+ 1)2ξ − 2

(4R)⌈ log2 K⌉ − 1

4R− 1
(R+ 1)2ξ = 0

, (45)

where the first inequality follows from Theorem 2 in (Osinsky, 2019), and the last inequality follows from the inequality (44).
It can also be known if B is exactly of the TT topology of rank-R, B̂ is able to recover B exactly. In this case ξ = 0 and
f∗
B ≤ f(z) trivially for all z.

21



TnALE: Solving Tensor Network Structure Search with Fewer Evaluations

C. Experiment details
C.1. Low-rank structure of the optimization landscape

To verify the low-rank structure of the optimization landscape of (1), we empirically check the singular values of the
landscape tensor using the synthetic data. To be specific, we re-use the fourth-order tensor in the experiment for TN-PS, i.e.,
TR (order-4) in Table 5. Here we remove the influence of unknown permutations and calculate the objective for all possible
combinations of values of the TN-ranks. As a result, for each data, we have a landscape tensor (a tensor whose entries are
values of the objective function) of order-4, and the modes of the tensor corresponding to the four TN-ranks. Figure 6 (a)
shows the singular values of the landscape tensor unfolded along different modes on average. We see that the landscape
tensor provides a significant low-rank structure in the data. We also depict the complete landscape (contour line, unfolded
along the first two modes) with respect to Data A in Figure 6 (b). We can see that the obviously repeated pattern shown in
the figure is the main reason leading to the low-rank structure of the landscape.

Si
ng

ul
ar

 v
al

ue
Si

ng
ul

ar
 v

al
ue

(a) Averaged singular values for the 4th-order landscape tensor.

10 20 30 40

Indices

5

10

15

20

25

30

35

40

45

In
d
ic

e
s

2

4

6

8

10

12

14

16

(b) Optimization landscapes (the inverse 1/f (x)) wrt. the
tensor of order-4 and correct permutation.

Figure 6. Averaged singular values and Optimization landscapes for the tensor of order-4.

C.2. Details for the experiment of TN-PS (w.r.t., Table 1).

Goal. In this experiment, our goal is to verify the superiority of TnALE in addressing the TN-PS problem.

Data generation. For the synthetic data with TR topology (order-4, order-6, and order-8), as well as PEPS( order-6), HT
(order-6), and MERA (order-8), we re-use the data from Li et al. (2022). To generate data with TW (order-5) topology, we
set the dimension of each tensor mode to 3. Additionally, we randomly select TN-ranks from the set {1, 2, 3}. Then we i.i.d.
draw samples from Gaussian distribution N(0, 1) as the values of core tensors. After contracting these core tensors based
on the TW topology, we randomly and uniformly permute the tensor modes.

Settings. In the experiment, we implement TNGA and TNLS as comparison methods. We use the same objective function
as described in Li & Sun (2020) for all the methods. Specifically, the objective function of (1) used in the experiment is as
follows:

F (G, r) =
1

ϵ(G, r)︸ ︷︷ ︸
compression ratio (CR)

+λ · min
Z∈TNS(G,r)

∥X − Z∥2 / ∥X∥2︸ ︷︷ ︸
relative squared error (RSE)

, (46)

where X denotes the synthetic tensor, and ϵ(G, r) represents the compression ratio equalling to

ϵ(G, r) =
Dimension of X

Dimension sum of core tensors of the TN under (G, r)
.

The trade-off parameter λ in (46) is set to 200. For the solver of the inner minimization, we utilize the Adam optimizer
Kingma & Ba (2014) with a learning rate of 0.001. Additionally, the core tensors are initialized using Gaussian distribution

22



TnALE: Solving Tensor Network Structure Search with Fewer Evaluations

Table 5. Experimental results of the TN-PS task on TR topology. In the table, Eff. and the required evaluation numbers #Eva. are
demonstrated. Specifically, #Eva. is shown in the square brackets.

Methods

Order 4 order 6 order 8
A B C D E A B C D E A B C D E

Eff.↑ [#Eva.↓]

TNGA 1.00 [450] 1.00 [450] 1.17 [450] 1.00 [300] 1.00 [450] 1.00 [1500] 1.00 [1350] 1.00 [1650] 1.16 [1650] 1.00 [1050] 1.00 [2850] 1.02 [2250] 1.11 [3950] 1.06 [1950] 0.88 [1500]
TNLS 1.00 [240] 1.00 [300] 1.17 [60] 1.00 [300] 1.00 [360] 1.00 [660] 1.00 [600] 1.00 [660] 1.16 [600] 1.00 [540] 1.00 [1020] 1.02 [960] 1.11 [1320] 1.06 [780] 1.17 [900]

TnALE(ours) 1.00 [93] 1.00 [155] 1.17 [31] 1.00 [124] 1.00 [62] 1.00 [156] 1.00 [321] 1.00 [156] 1.16 [156] 1.00 [89] 1.00 [231] 1.02 [308] 1.11 [308] 1.06 [231] 1.17 [178]

Table 6. Experimental results of the TN-PS task on PEPS, HT, MERA and TW topology. In the table, Eff. and the required evaluation
numbers #Eva. are demonstrated. Specifically, #Eva. is shown in the square brackets. The symbol “-” in the table means the failure of the
approach.

Methods

PEPS HT MERA TW
A B C D A B C D A B C D A B C D

Eff.↑ [#Eva.↓]

TNGA 1.14 [1560] - 1.00 [840] 1.21 [1080] 1.45 [960] 1.21 [1320] 1.18 [840] 1.29 [1080] - 1.32 [960] 2.30 [2800] 1.00 [3240] 1.24 [1920] 2.61 [1440] 1.23 [600] 1.30 [720]
TNLS 1.14 [781] 1.00 [781] 1.00 [421] 1.21 [661] 1.45 [841] 1.21 [841] 1.18 [781] 1.29 [721] 1.09 [1561] 1.88 [841] 2.88 [1441] 1.03 [721] 1.24 [661] 2.61 [601] 1.23 [601] 1.30 [481]

TnALE(ours) 1.14 [407] 1.00 [465] 1.00 [233] 1.21 [175] 1.45 [211] 1.21 [281] 1.18 [211] 1.29 [211] 1.09 [1450] 1.88 [484] 2.88 [323] 1.03 [323] 1.24 [285] 2.61 [143] 1.23 [285] 1.30 [214]

N(0, 0.1). Furthermore, the search range for TN-ranks is set from 1 to 7, except for TW data, for which the search range is
limited to 1 to 4. For TNGA, the maximum number of generations is set to 30. The population size in each generation is 120
for all the TN topologies except for TR, which is set as 150. During each generation, the elimination rate is 36% and the
reproduction trick (Snyder & Daskin, 2006) is adopted and we set the reproduction number to be 2. Meanwhile, for the
selection probability of the recombination operation, we set the hyper-parameters α = 20 and β = 1. Moreover, there is a
24% chance for each gene to mutate after the recombination. For TNLS, we set the sample numbers in each local sampling
stage to 60. The tuning parameter c1 is fixed at 0.9 throughout the experiment. As for the tuning parameter c2, it is adjusted
based on the tensor order. Specifically, we set c2 = 0.9 for order-4 TR, c2 = 0.94 for order-6 TR, PEPS, TW and HT, and
for MERA and order-8 TR, we set c2 = 0.98. In our proposed method TnALE, we maintain consistent settings throughout
the experiment. The rank-related radius is set as r1 = 2 and r2 = 1. During the initialization phase, we perform 2 iterations,
and during the searching phase, we conduct 30 iterations. Additionally, we set the number of round-trips of ALE to 1. For
performance evaluation, we use the Eff. index, and Eff.≥ 1 indicates an identical or more compact structure has been found.
If the results do not satisfy the conditions of RSE ≤ 10−4 and Eff.≥ 1, we say the approach fails in the experiment.

0 500 1000

Evaluations

-2

0

2

4
MERA-Data D

TNLS

TnALE

0 500 1000 1500

Evaluations

-4

-2

0

2

MERA-Data C

TNLS

TnALE

0 500 1000

Evaluations

-2

0

2

4

MERA-Data B

TNLS

TnALE

0 1000 2000

Evaluations

-3

-2

-1

0

1

MERA-Data A

TNLS

TnALE

lo
g
O
bj
ec

tiv
e

Figure 7. Objective (in the log form) with varying the number of evaluations: an observation of the local convergence of TnALE in
MERA.

Results. The results for TR topology are presented in Table 5, and the results for PEPS, HT, MERA, and TW topology
are shown in Table 6. Based on the results, we observe that both TNLS and TnALE can successfully identify the ranks
and permutations of the data, as indicated by Eff.≥ 1. When comparing TNLS and TnALE, we find that TnALE achieves
the same results with significantly fewer evaluation requirements. This highlights the superiority of TnALE in solving the
TN-PS problem, demonstrating its efficiency and effectiveness. In Figure 4, the averaged log objective curves with varying
evaluation numbers of TNLS and TnALE are displayed. It is apparent from the figures that TnALE demonstrates a faster
descending trend and achieves lower objective values given the same number of evaluations compared to TNLS for most
cases (except for MERA). These results indicate the practical advantage of the proposed method, particularly in scenarios
where computational resources are limited, and only a certain number of evaluations can be performed. For the results of

23



TnALE: Solving Tensor Network Structure Search with Fewer Evaluations

MERA, we further draw the objective curves of each data in Figure 7. From the MERA-Data A curve, it is observed that
TnALE descends at a slow pace until approximately 1000 evaluations, whereas TNLS continues to descend. The main
reason for this behavior is that TnALE gets trapped in a local optimum and struggles to jump out by restarting the ALE
algorithm with a new random center, while TNLS is more likely to overcome such local optima due to its stochastic essence.
Moreover, in order to demonstrate the scalability of different TN-PS methods with respect to the tensor order, we draw
the average number of evaluations with TR order in Figure 8. From the results, it is evident that the proposed method
exhibits a slower increase in the number of evaluations with increasing tensor order compared to other methods. These
results highlight the scalability of the proposed method, indicating its ability to handle higher-order tensors effectively.

4 5 6 7 8

TR order

0

500

1000

1500

2000

2500

A
ve

ra
g

e
d

 n
u

m
b

e
r 

o
f 

e
va

lu
a

tio
n

s

TNGA
TNLS
TnALE

4 5 6 7 8

TR order

0

200

400

600

800

1000

A
ve

ra
g

e
d

 n
u

m
b

e
r 

o
f 

e
va

lu
a

tio
n

s

TNLS
TnALE

Figure 8. Number of evaluations with varying TR orders.

C.3. Details for the experiment of TN-RS (w.r.t. Table 2).

Goal. In this experiment, we consider the classic rank-selection problem, i.e., TN-RS, for TR decomposition.

Data Generation. We generate synthetic tensors in TR topology with two configurations: “lower-ranks” and “higher-ranks”.
In both configurations, we generate five tensors by randomly selecting ranks and values of the vertices (core tensors). Each
tensor has an order of 8, and the dimensions for each tensor mode are set to 3. We i.i.d. draw samples from Gaussian
distribution N (0, 1) as the values of the vertices. In the “lower-ranks” group, we uniformly select the TN-ranks from the
interval [1, 4] randomly, while in the “higher-ranks” group, we increase the rank interval to [5, 8]. This ensures that the
ranks would be larger than the dimensions of the tensor modes. This configuration aims to simulate the scenario of the
over-determined ranks, which commonly occurs in practice for high-order TNs but has received limited attention in existing
works.

Settings. In the experiment, we compare various rank-adaptive TR decomposition methods. These methods include
TR-SVD, TR-rSVD, TR-ALSAR, TR-BALS and TR-BALS2 (Zhao et al., 2016), TR-LM (Alg. 2 and Alg. 3) (Mickelin
& Karaman, 2020), TRAR (Sedighin et al., 2021). Additionally, the TTOpt algorithm (Sozykin et al., 2022) with ranks 9

equaling 1, 2 is also employed as a baseline. The purpose of including these methods is to assess the effectiveness of the
“local-searching” scheme utilized in TnALE (our proposed method) and determine its superiority in comparison to existing
approaches. In more detail, for TR-SVD, TR-rSVD, TR-ALSAR, TR-BALS, and TR-BALS2 (Zhao et al., 2016), the
available codes have been used.10 In order to achieve a larger Eff. value, we adjust the parameters tol and MaxIter to ensure
the value of RSE is less than but close to 10−4. For TR-LM (Alg. 2 and Alg. 3) (Mickelin & Karaman, 2020), we use the
available codes 11 with default parameter settings. However, we adjust the value of prec to obtain a larger Eff. value. For
TRAR (Sedighin et al., 2021), we replace the TR-ALS (Wang et al., 2017) in Algorithm 1 of Mickelin & Karaman (2020)
with the same decomposition method used in TTOpt. This modification is necessary because the initialization method of
TR-ALS is not suitable for the case of higher ranks. Regarding TTOpt (Sozykin et al., 2022), we employ the same objective
function as used in the TN-PS experiment, with the trade-off parameter λ = 200. For the lower ranks group, the rank
searching range is set to [1, 7], while for the higher ranks group, the range is extended to [1, 10]. During the initialization

9Here the ranks are tuning parameters in the TTOpt algorithm.
10https://qibinzhao.github.io/
11https://github.com/oscarmickelin/tensor-ring-decomposition

24



TnALE: Solving Tensor Network Structure Search with Fewer Evaluations

phase, we i.i.d. draw samples from Gaussian distribution N (0, 1) to generate the values of core tensors. For the proposed
method TnALE, we set the rank-related radius r1 = 3, r2 = 2 for the higher ranks group and r1 = 2, r2 = 1 for lower ranks
group. The number of iterations in the initialization phase is set to 1, the number of iterations in the searching phase is set to
30, and the number of round-trips of ALE is set to 1 throughout the experiments. Other parameters of TnALE are set the
same as TTOpt. For TNGA, we set the population in each generation to be 60. The searching ranges and the initialization
scheme of core tensors are similar to TTOpt. The other parameters of TNGA are set the same as the TN-PS experiment. For
TNLS, we set the sample numbers in each local sampling stage to be 60 and c1 = 0.9, and the other parameters are set the
same as in TTOpt. The success condition for all approaches in the experiment is set as RSE ≤ 10−4 and Eff. ≥ 1. If an
approach fails to meet these criteria, it is considered a failure in rank selection.

0 200 400 600 800

Evaluations

-5

-4

-3

-2

-1

lo
g
 O

b
je

ct
iv

e

Higher ranks

TNLS
TnALE

0 200 400 600

Evaluations

-7

-6

-5

-4

-3

-2

-1

lo
g
 O

b
je

ct
iv

e

Lower ranks

TNLS
TnALE

Figure 9. Objective (in the log form) with varying the number of evaluations.

Lower ranks Higher ranks
0

50

100

150

200

R
u

n
n

in
g

 t
im

e
 (

x
1

0
0

s
)

TNGA

TNLS

TnALE

Figure 10. Running time in TN-RS experiment

Results. Based on the results presented in Table 7 and Table 8, it can be observed that in the lower rank regime, TR-BALS,
TR-LM (Alg. 2), TTOpt, TNGA, TNLS, and TnALE (ours) are able to successfully select the optimal TR-ranks as indicated
by Eff.≥ 1 and RSE≤ 10−4. However, in the higher rank regime, only TTOpt, TNGA, TNLS, and TnALE (ours) are
able to find the optimal ranks. In terms of the number of evaluations, TnALE (ours) outperforms TNGA, TNLS, and
TTOpt, requiring the fewest evaluations while still achieving successful rank selection. This highlights the superiority of
TnALE in solving the TN-RS problem efficiently. Furthermore, the running time comparison in Figure 10 demonstrates
that TnALE saves a significant amount of time compared to TNGA and TNLS, primarily due to its lower number of
evaluations. This further emphasizes the advantage of TnALE in scenarios where computational resources are limited. In
Figure 9, the averaged log objective curves of TNLS and TnALE with varying evaluation numbers are illustrated. It can
be observed that TnALE exhibits a faster descending trend and achieves lower objective values given the same number
of evaluations compared to TNLS. This demonstrates the practical advantage of TnALE, particularly in scenarios with
restricted computational resources.

C.4. Details for the experiment of knowledge transfer.

Goal. In this experiment, the goal is to investigate the acceleration effect of TnALE when employing the knowledge transfer
trick.

25



TnALE: Solving Tensor Network Structure Search with Fewer Evaluations

Table 7. Experimental results of TN-RS (rank selection) in 8-th order TR topology under the ”lower ranks” group. In the first column of
the table, A, B, C, D, E (Data) and their corresponding vectors (Rank grt) represent the five generated synthetic tensors and the TN-ranks
of these five tensors. The item Rank est indicates the specific value of the TN-ranks learned by the corresponding method under the
constraint RSE ≤ 10−4, and Time (s) or [#Eva.] indicates the running time or the number of evaluations that the method required.

Methods TR-SVD TR-rSVD TR-ALSAR

Data[Rank grt] Eff. / RSE Rank est Time (s) Eff. / RSE Rank est Time (s) Eff. / RSE Rank est Time (s)
A [3 4 2 3 1 3 4 2] 0.45 / 8.55E-13 [3 8 4 6 2 6 3 1] 0.0029 0.51 / 0.0013 [3 6 4 6 2 6 3 1] 0.0038 0.08 / 2.43E-05 [11 7 7 7 10 14 8 10] 0.5959
B [3 4 4 2 2 1 1 4] 0.23 / 4.45E-05 [3 9 11 6 6 3 3 1] 0.0081 0.37 / 0.0146 [3 6 6 6 6 3 3 1] 0.0043 0.79 / 4.02E-12 [4 4 4 2 2 2 3 3] 0.0324
C [2 4 2 3 3 1 4 4] 0.29 / 3.55E-05 [3 9 8 4 8 4 3 1] 0.002812 0.46 / 0.0210 [3 6 6 4 6 3 3 1] 0.0039 0.94 / 3.55E-05 [4 4 2 1 2 2 3 4] 0.0333
D [1 4 1 3 4 2 1 1] 1.13 / 4.78E-05 [1 2 1 3 4 2 1] 0.0084 1.13 / 4.78E-05 [1 2 1 3 4 2 1 1] 0.0055 0.64 / 2.29E-11 [1 3 3 4 4 2 2 1] 0.0233
E [4 1 4 2 3 2 1 1] 1.17 / 2.04E-13 [3 1 3 2 3 2 1 1] 0.0043 1.17 / 3.13E-13 [3 1 3 2 3 2 1 1] 0.0059 0.78 / 1.45E-11 [3 3 3 2 3 2 2 1] 0.0205

Methods TR-BALS TR-BALS2 TRAR

Data Eff. / RSE Rank est Time (s) Eff. / RSE Rank est Time (s) Eff. / RSE Rank est [#Eva.]
A 1.00 / 5.00E-13 [3 4 2 3 1 3 4 2] 0.0146 0.45 / 6.90E-13 [3 8 4 6 2 6 3 1] 0.0188 0.48 / 3.79E-11 [4 4 3 4 5 4 4 3] 69
B 1.07 / 6.07E-13 [3 4 4 2 2 1 1 3] 0.0127 0.20 / 1.03E-05 [3 9 12 6 6 3 3 5] 0.0174 0.61 / 3.17E-08 [3 4 4 4 4 2 4 3] 37
C 1.38 / 3.55E-05 [2 4 2 1 2 1 3 4] 0.0189 0.26 / 3.57E-05 [3 9 8 4 8 4 3 6] 0.0151 0.65 / 3.55E-05 [3 4 3 5 3 3 3 4] 68
D 1.13 / 4.78E-05 [1 2 1 3 4 2 1 1] 0.021 1.13 / 4.78E-05 [1 2 1 3 4 2 1 1] 0.0487 0.41 / 5.55E-05 [4 5 3 3 3 3 3 2] 22
E 1.17 / 6.34E-13 [3 1 3 2 3 2 1 1] 0.0303 1.17 / 9.10E-13 [3 1 3 2 3 2 1 1] 0.0212 0.59 / 2.96E-11 [5 2 3 2 3 2 2 3] 36

Methods TR-LM (Alg. 3) TR-LM (Alg. 2) TTOpt (R = 1)

Data Eff. / RSE Rank est Time (s) Eff. / RSE Rank est Time (s) Eff. / RSE Rank est [#Eva.]
A 0.40 / 4.22E-13 [6 3 1 3 2 6 8 4] 0.0222 1.00 / 2.86E-14 [3 4 2 3 1 3 4 2] 0.2736 1.00 / 9.41E-07 [3 4 2 3 1 3 4 2] 98
B 0.46 / 2.05E-06 [6 7 3 1 3 2 2 6] 0.0204 1.07 / 1.08E-14 [3 4 4 2 2 1 1 3] 0.2402 1.07 / 2.30E-06 [3 4 4 2 2 1 1 3] 140
C 1.38 / 3.55E-05 [2 4 2 1 2 1 3 4] 0.0227 1.38 / 3.55E-05 [2 4 2 1 2 1 3 4] 0.2503 1.11 / 3.55E-05 [2 4 2 1 2 2 4 4] 56
D 1.13 / 4.78E-05 [1 2 1 3 4 3 1 1] 0.026 1.13 / 4.78E-05 [1 2 1 3 4 2 1 1] 0.2407 1.06 / 4.82E-05 [1 2 1 3 4 2 1 2] 91
E 1.17 / 5.62E-14 [3 1 3 2 3 2 1 1] 0.022 1.17 / 5.62E-14 [3 1 3 2 3 2 1 1] 0.2454 1.17 / 6.61E-11 [3 1 3 2 3 2 1 1] 133

Methods TTOpt (R = 2) TTOpt (R = 3) TNGA

Data Eff. / RSE Rank est [#Eva.] Eff. / RSE Rank est [#Eva.] Eff. / RSE Rank est [#Eva.]
A 1.00 / 5.00E-06 [3 4 2 3 1 3 4 2] 518 1.00 / 8.93E-05 [3 4 2 3 1 3 4 2] 1533 1.00 / 9.98E-05 [3 4 2 3 1 3 4 2] 480
B 1.02 / 4.86E-07 [3 4 4 2 2 2 1 3] 336 1.02 / 3.72E-06 [3 4 4 2 2 2 1 3] 735 1.07 / 9.95E-05 [3 4 4 2 2 1 1 3] 660
C 1.02 / 3.56E-05 [2 5 2 2 3 1 3 5] 154 1.00 / 9.45E-05 [2 5 2 2 3 2 3 4] 273 1.11 / 9.95E-05 [2 4 2 1 2 2 4 4] 600
D 1.06 / 1.10E-08 [1 3 1 3 4 2 1 1] 196 1.00 / 4.87E-05 [1 2 1 3 4 2 1 3] 483 1.06 / 9.98E-05 [1 2 1 3 4 2 1 2] 600
E 1.03 / 7.94E-06 [3 1 3 2 3 3 1 1] 364 1.17 / 3.14E-11 [3 1 3 2 3 2 1 1] 1071 1.17 / 9.92E-05 [3 1 3 2 3 2 1 1] 420

Methods TNLS TnALE (ours)

Data Eff. / RSE Rank est [#Eva.] Eff. / RSE Rank est [#Eva.]
A 1.00 / 9.99E-05 [3 4 2 3 1 3 4 2] 600 1.00 / 9.98E-05 [3 4 2 3 1 3 4 2] 66
B 1.07 / 9.97E-05 [3 4 4 2 2 1 1 3] 420 1.07 / 9.98E-05 [3 4 4 2 2 1 1 3] 99
C 1.11 / 9.99E-05 [2 4 2 1 2 2 4 4] 420 1.11 / 9.95E-05 [2 4 2 1 2 2 4 4] 99
D 1.06 / 9.97E-05 [1 2 1 3 4 2 1 2] 480 1.06 / 9.98E-05 [1 2 1 3 4 2 1 2] 69
E 1.17 / 9.92E-05 [3 1 3 2 3 2 1 1] 540 1.17 / 9.93E-05 [3 1 3 2 3 2 1 1] 63

Data generation. We re-use the data from the lower ranks group of the TN-RS experiment.

Settings. In this experiment, we employ two variations of TnALE: one incorporates a knowledge transfer trick, while the
other does not. Both methods share the same parameter settings, which are listed as follows: the rank searching range is set
to [1, 7], the trade-off parameter λ is set to 200, the rank-related radius r2 = 2. Additionally, we set the number of iterations
in the initialization phase to 0 and the number of iterations in the searching phase to 30. For the number of round-trips of
ALE, we set it to 1. The Adam optimizer is utilized with a learning rate of 0.001, and the core tensors are initialized using
Gaussian distribution N(0, 1). Moreover, both methods are initialized with the same TN-ranks.

Results. Figure 11 displays the objective curves as a function of running time. From the figures, it is evident that both
methods start with identical log objectives but exhibit significant differences in their descent patterns. In comparison
to TnALE without the knowledge transfer trick, TnALE with the knowledge transfer trick showcases a rapid decline in
objectives, achieving approximately twice or even nearly five times faster progress than its counterpart.

C.5. Details for the experiment of TGP (w.r.t. Table 3).

Goal. In this experiment, our goal is to utilize the proposed method TnALE to compress the learnable parameters of the
TGP (Izmailov et al., 2018).

Data generation. In this task, we select three univariate regression datasets from the UCI and LIBSVM archives. The
datasets chosen are as follows: The Combined Cycle Power Plant (CCPP)12 dataset comprises 9569 data points collected
from a power plant. It consists of 4 features and a single response. The MG13 dataset contains 1385 data points with 6

12https://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant
13https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/regression.html#mg

26



TnALE: Solving Tensor Network Structure Search with Fewer Evaluations

Table 8. Experimental results of TN-RS (rank selection) in 8-th order TR topology under the ”higher ranks” group. In the first column of
the table, A, B, C, D, E (Data) and their corresponding vectors (Rank grt) represent the five generated synthetic tensors and the TN-ranks
of these five tensors. The item Rank est indicates the specific value of the TN-ranks learned by the corresponding method under the
constraint RSE ≤ 10−4, and Time (s) or [#Eva.] indicates the running time or the number of evaluations that the method required.

Methods TR-SVD TR-rSVD TR-ALSAR

Data[Rank grt] Eff. / RSE Rank est Time (s) Eff. / RSE Rank est Time (s) Eff. / RSE Rank est Time (s)
A [8 8 8 5 7 6 8 8] 0.16 / 9.40E-05 [3 9 27 38 27 9 3 1] 0.0174 0.16 / 9.40E-05 [3 9 27 38 27 9 3 1] 0.0238 1.11 / 0.0172 [7 7 7 6 6 6 8 8] 11.2686
B [6 5 7 7 6 5 6 5] 0.12 / 4.30E-05 [3 9 27 35 26 9 3 1] 0.0136 0.11 / 1.13E-28 [3 9 27 35 27 9 3 1] 0.0361 0.82 / 0.0133 [7 5 6 8 6 6 8 6] 10.536
C [8 7 7 8 7 5 8 7] 0.12 / 8.32E-05 [3 9 27 51 27 9 3 1] 0.0378 0.12 / 8.32E-05 [3 9 27 51 27 9 3 1] 0.0308 0.71 / 0.0094 [9 8 6 17 6 7 9 8] 16.2148
D [6 6 6 8 6 7 6 5] 0.13 / 9.64E-05 [3 9 26 38 26 9 3 1] 0.0092 0.12 / 5.32E-05 [3 9 27 38 27 9 3 1] 0.0308 0.63 / 9.62E-05 [9 8 8 8 7 9 7 7] 0.6589
E [6 6 6 6 5 6 6 6] 0.11 / 4.51E-05 [3 9 27 36 26 9 3 1] 0.0061 0.11 / 5.63E-05 [3 9 27 35 27 9 3 1] 0.0242 0.75 / 0.0298 [7 7 5 6 4 9 8 8] 11.5233

Methods TR-BALS TR-BALS2 TRAR

Data Eff. / RSE Rank est Time (s) Eff. / RSE Rank est Time (s) Eff. / RSE Rank est [#Eva.]
A 0.03 / 6.04E-29 [28 20 19 26 44 89 51 39] 0.8749 0.16 / 8.39E-05 [3 9 27 39 27 9 3 1] 0.142 0.67 / 5.59E-14 [10 8 8 8 8 10 8 11] 76
B 0.57 / 9.25E-05 [6 6 10 9 9 7 9 6] 0.0941 0.12 / 9.89E-05 [3 9 27 35 26 9 3 1] 0.1608 0.71 / 1.82E-13 [8 5 7 7 7 7 6 9] 74
C 0.12 / 9.71E-05 [15 20 18 15 17 19 23 25] 0.2763 0.12 / 6.35E-05 [3 9 27 54 27 9 3 1] 0.1643 0.58 / 8.89E-14 [12 7 10 8 9 10 9 10] 143
D 0.19 / 8.18E-05 [9 15 17 22 10 16 15 10] 0.1773 0.12 / 9.75E-06 [3 9 27 40 26 9 3 1] 0.1704 0.57 / 3.75E-14 [11 6 7 8 8 9 7 10] 76
E 0.03 / 3.97E-05 [38 55 59 20 18 15 19 27] 0.446 0.11 / 6.40E-30 [3 9 27 36 27 9 3 1] 0.1749 0.62 / 2.05E-14 [10 6 7 7 7 8 6 9] 75

Methods TR-LM (Alg. 3) TR-LM (Alg. 2) TTOpt (R = 1)

Data Eff. / RSE Rank est Time (s) Eff. / RSE Rank est Time (s) Eff. / RSE Rank est [#Eva.]
A 0.16 / 9.40E-05 [3 9 27 38 27 9 3 1] 0.0257 0.16 / 2.87E-05 [3 9 27 39 27 9 3 1] 0.3318 1.00 / 3.65E-07 [8 8 8 5 7 6 8 8] 220
B 0.12 / 4.30E-05 [3 9 27 35 26 9 3 1] 0.001 0.15 / 8.36E-05 [3 1 3 9 26 25 25 9] 0.3336 1.00 / 1.52E-07 [6 5 7 7 6 5 6 5] 220
C 0.12 / 8.32E-05 [3 9 27 51 27 9 3 1] 0.0303 0.17 / 7.07E-05 [3 1 3 9 27 34 27 9] 0.3285 1.00 / 1.01E-06 [8 7 7 8 7 5 8 7] 150
D 0.13 / 9.64E-05 [3 9 26 38 26 9 3 1] 0.023 0.13 / 9.31E-05 [35 27 9 3 1 3 9 25] 0.3173 1.00 / 1.83E-06 [6 6 6 8 6 7 6 5] 150
E 0.11 / 4.51E-05 [3 9 27 36 26 9 3 1] 0.0299 0.13 / 9.38E-05 [20 26 9 3 1 3 9 26] 0.3845 1.00 / 5.01E-07 [6 6 6 6 5 6 6 6] 150

Methods TTOpt (R = 2) TTOpt (R = 3) TNGA

Data Eff. / RSE Rank est [#Eva.] Eff. / RSE Rank est [#Eva.] Eff. / RSE Rank est [#Eva.]
A 1.00 / 6.49E-07 [8 8 8 5 7 6 8 8] 540 1.00 / 5.88E-07 [8 8 8 5 7 6 8 8] 1710 1.00 / 9.99E-05 [8 8 8 5 7 6 8 8] 1020
B 1.00 / 1.61E-07 [6 5 7 7 6 5 6 5] 1060 1.00 / 4.00E-07 [6 5 7 7 6 5 6 5] 2670 1.00 / 9.94E-05 [6 5 7 7 6 5 6 5] 660
C 1.00 / 1.32E-06 [8 7 7 8 7 5 8 7] 780 1.00 / 9.23E-07 [8 7 7 8 7 5 8 7] 1740 1.00 / 9.95E-05 [8 7 7 8 7 5 8 7] 1380
D 1.00 / 3.40E-07 [6 6 6 8 6 7 6 5] 540 1.00 / 1.67E-06 [6 6 6 8 6 7 6 5] 1710 1.00 / 9.93E-05 [6 6 6 8 6 7 6 5] 1020
E 1.00 / 8.02E-13 [6 6 6 6 5 6 6 6] 840 1.00 / 1.99E-07 [6 6 6 6 5 6 6 6] 1740 1.00 / 9.94E-05 [6 6 6 6 5 6 6 6] 420

Methods TNLS TnALE (ours)

Data Eff. / RSE Rank est [#Eva.] Eff. / RSE Rank est [#Eva.]
A 1.00 / 9.97E-05 [8 8 8 5 7 6 8 8] 540 1.00 / 9.96E-05 [8 8 8 5 7 6 8 8] 115
B 1.00 / 9.92E-05 [6 5 7 7 6 5 6 5] 720 1.00 / 9.91E-05 [6 5 7 7 6 5 6 5] 85
C 1.00 / 9.91E-05 [8 7 7 8 7 5 8 7] 480 1.00 / 1.00E-04 [8 7 7 8 7 5 8 7] 150
D 1.00 / 9.93E-05 [6 6 6 8 6 7 6 5] 600 1.00 / 9.92E-05 [6 6 6 8 6 7 6 5] 160
E 1.00 / 9.92E-05 [6 6 6 6 5 6 6 6] 600 1.00 / 9.93E-05 [6 6 6 6 5 6 6 6] 85

features and a single response. The Protein14 dataset consists of 45730 instances with 9 attributes and a single response.
For each of the datasets, we begin by randomly selecting 80% of the data for training purposes, while the remaining 20%
is reserved for testing. Subsequently, we standardize the training and testing sets respectively by removing the mean and
scaling them to have unit variance. In the case of the CCPP dataset, we opt to use 12 inducing points on each feature,
resulting in an order-4 tensor with dimensions of 12× 12× 12× 12. For the MG dataset, we choose 8 inducing points,
which leads to an order-6 tensor with dimensions of 8× 8× 8× 8× 8× 8. Lastly, for the Protein dataset, we choose 4
inducing points, generating an order-9 tensor with dimensions of 4× 4× 4× 4× 4× 4× 4× 4× 4. Across all datasets, we
set the TT-ranks for the TGP (Izmailov et al., 2018) algorithm to 10.

Settings. In the comparison of methods, we employ the same objective function as used in the TN-PS experiment.
Additionally, we set specific values for certain parameters, λ = 1 × 105, 1 × 107, 1 × 103 for CCPP, MG and Protein,
respectively. Moreover, the following settings are common for all the methods being compared: the rank searching range,
the learning rate of Adam, and the variance of the Gaussian distribution for core tensors initialization are set from 1 to 14,
0.001, and 0.01, respectively. For the TNGA method, we set the maximum number of generations to 30. The population
in each generation is set to be 150, 190, and 300 for the TT variational mean of CCPP, MG, and Protein regression tasks.
The elimination rate is set at 30% and the reproduction number is set to 1. Additionally, we assign α = 20 and β = 1.
The chance for each gene to mutate after the recombination is 30%. For TNLS, the maximum iteration is limited to 20,
and the tuning parameters c1 = 0.9, c2 = 0.9. For the TT variational mean of CCPP, MG, and Protein regression tasks, we
determined the number of samples in the local sampling stage to be 150, 300, and 300 respectively. For the proposed method
TnALE, we consistently use the rank-related radius r1 = 3 and r2 = 2. In addition, we specifically designate the number
of iterations in the initialization phase as 2 and the number of iterations in the searching phase as 30. Furthermore, we
configure the number of round-trips in ALE to be 1.

14https://archive.ics.uci.edu/ml/datasets/Physicochemical+Properties+of+Protein+Tertiary+Structure

27



TnALE: Solving Tensor Network Structure Search with Fewer Evaluations

0 500 1000

Running time (s)

-6

-4

-2

0
Data E

0 500 1000 1500

Running time (s)

-6

-4

-2

0
Data D

0 1000 2000

Running time (s)

-6

-4

-2

0
Data C

0 1000 2000

Running time (s)

-6

-4

-2

0
Data B

0 1000 2000

Running time (s)

-6

-4

-2

0
Data A

lo
g
O
bj
ec

tiv
e

Without-Knowledge Transfer With-Knowledge Transfer

Figure 11. Objective (in the log form) curves with running time

In order to achieve more compact representations, we apply the TN-PS algorithms, which consist of TNGA, TNLS, and
the proposed TnALE to TGP. The process involves training an initial TGP model with predefined TT-ranks and obtaining
the TT representation of the variational mean. Subsequently, the TN-PS algorithms are employed to search for alternative
structures that have a reduced number of parameters for the TT variational mean. Upon completion of the TN-PS algorithms,
we reintegrate the reparameterized variational mean back into the original TGP model for inference. The performance is
evaluated by measuring the mean squared error (MSE) of the regression tasks conducted on the test datasets.

C.6. Details for the experiment of natural images compression (w.r.t. Table 4).

Goal. In this experiment, we will investigate the effectiveness of the proposed TnALE method in tackling the TN-PS and
TN-TS tasks associated with compressing natural images. Specifically, in TN-TS, our aim is to search for good TN-ranks
and topologies for compressing images.

Data generation. For this experiment, we select 4 natural images from the BSD500 dataset (Arbelaez et al., 2010)15

at random, as shown in Figure 5. The selected images are first converted to grayscaled images of size 256 × 256 using
the ”rgb2gray” and “resize” functions in Matlab, then scaled to the range of [0, 1]. Finally, we apply the Matlab function
”reshape” directly to the preprocessed images to represent them as order-8 tensors of size 4× 4× 4× 4× 4× 4× 4× 4.

Settings. In the TN-PS task of the experiment, we use the same objective function as in the TN-PS experiment and set the
tuning parameter λ = 5. The rank searching range, the learning rate of Adam, and the variance of the Gaussian distribution
for core tensors initialization are set from 1 to 14, 0.01, and 0.1, respectively. For TNLS, we set the maximum number of
iterations to 20, and tuning parameters c1 = 0.95, c2 = 0.9, and the number of samples in the local sampling stage to 150. In
TNGA, the maximum number of generations is set to 30, with a population of 300 per generation. The elimination is set at
10% and the reproduction number is set to 1. We also set α = 25, β = 1, and establish a 30% chance for each gene to mutate
following the recombination process. Regarding the proposed method TnALE, we set the rank-related radius as r1 = 3 and
r2 = 2. We also set the number of iterations in the initialization phase to 1 and the number of iterations in the searching
phase to 30. Finally, we set the number of round-trips of ALE to 1.

In the TN-TS task of the experiment, we use the same objective function, the learning rate of Adam, and the variance of the
Gaussian distribution for core tensors initialization as in the TN-PS part, but set the rank searching range from 1 to 4. For
TNLS, we set the maximum number of iterations to 20, tuning parameters c1 = 0.99, and the number of samples in the local
sampling stage to 100. For the parameter settings of TNGA, we only change the population number to 100 compared to the
TN-PS part. For the proposed method TnALE, we set the rank-related radius r2 to 1 and the number of iterations in the
initialization phase to 0, while the number of iterations in the searching phase to 30. The number of round-trips of ALE is
also set to 1. For Greedy, we set the RSE threshold to the same value as the result RSE of the proposed method TnALE.

15https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/BSDS300/html/dataset/images.html

28


