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Abstract
Ensuring accurate pronunciation is critical for high-quality text-
to-speech (TTS). This typically requires a phoneme-based pro-
nunciation dictionary, which is labour-intensive and costly to
create. Previous work has suggested using graphemes instead
of phonemes, but the inevitable pronunciation errors that occur
cannot be fixed, since there is no longer a pronunciation dictio-
nary. As an alternative, speech-based self-supervised learning
(SSL) models have been proposed for pronunciation control, but
these models are computationally expensive to train, produce
representations that are not easily interpretable, and capture un-
wanted non-phonemic information. To address these limita-
tions, we propose Spell4TTS, a novel method that generates
acoustically-informed word spellings. Spellings are both inter-
pretable and easily edited. The method could be applied to any
existing pre-built TTS system. Our experiments show that the
method creates word spellings that lead to fewer TTS pronunci-
ation errors than the original spellings, or an Automatic Speech
Recognition baseline. Additionally, we observe that pronuncia-
tion can be further enhanced by ranking candidates in the space
of SSL speech representations, and by incorporating Human-
in-the-Loop screening over the top-ranked spellings devised by
our method. By working with spellings of words (composed of
characters), the method lowers the entry barrier for TTS sys-
tem development for languages with limited pronunciation re-
sources. It should reduce the time and cost involved in creating
and maintaining pronunciation dictionaries.
Index Terms: speech synthesis, grapheme-input, pronunciation
control

1. Introduction
Text-to-speech (TTS) has an ever-expanding, diverse range of
applications – virtual assistants, audiobooks, navigation sys-
tems, and many more – but they all need accurate pronuncia-
tions. The majority of TTS systems therefore use phonemes as
an intermediate representation between the text and the acous-
tic model. Predicting phonemes from the input text requires a
pronunciation lexicon and/or a grapheme-to-phoneme method
(whether rules or a trained model), both of which are costly and
time-consuming to create. In contrast, using graphemes as input
to the acoustic model eliminates the need for these resources
[1, 2] and thus offers a promising solution for scaling TTS to
many more of the world’s languages.

However, accurate pronunciation remains a challenge due
to the complexity and ambiguity in mapping graphemes to
speech sounds [3]. Consequently, the implicit pronunciation
prediction performed within the front-end of neural grapheme-
based TTS models will be error-prone [4, 5, 6], especially for
words not seen in the training data. Worse, since it is performed

implicitly, there is no obvious way to correct these errors within
the model.

1.1. Prior work and alternative solutions

Although it is theoretically possible to obtain accurate pronun-
ciations by training grapheme-based TTS on a dataset that cov-
ers all possible word types, this approach is impractical. Fur-
thermore, because new words are constantly being created, it
would be very difficult to keep such a dataset up-to-date.

To address the challenge of mispronunciations in
grapheme-based TTS, one potential solution involves re-
questing annotators to transcribe grapheme sequences that
the TTS model then accurately pronounces. However, this
trial-and-error approach is time-consuming and annotators
must become familiar with how the TTS model pronounces
its inputs. Furthermore, since the TTS model’s pronunciation
of graphemes may change with each retraining, this approach
necessitates re-transcription, making it even more costly.

Another alternative solution is to use a speech-based lexi-
con to control TTS pronunciations [7]. Speech-based lexicons
have demonstrated promising results in correcting pronuncia-
tions, and are more affordable to commission than phoneme-
based ones. However, this solution relies on large pretrained
self-supervised speech representation models such as wav2vec
2.0 [8] or HuBERT [9], which are computationally expensive
to train and require large amounts of speech data. This limi-
tation reduces its usefulness for low-resource languages. Ad-
ditionally, self-supervised speech representations are less inter-
pretable compared to graphemes and still retain prosodic and
speaker-specific information [10], which may reduce their ef-
fectiveness as reliable stand-ins for pronunciation [11, 7].

1.2. Proposed method

Our proposed method circumvents these limitations by finding
a sequence of graphemes for a word that – when input to a
grapheme-based TTS model – results in a pronunciation close to
a ground-truth spoken example. These sequences may be stored
in a simple dictionary, to be used during synthesis instead of
that word’s original spelling. Our method is a three-stage pro-
cess. First, given a time-aligned spoken example for a word, an
Automatic Speech Recognition (ASR) system generates multi-
ple candidate spellings (e.g., hundreds or thousands). Second, a
pre-existing grapheme-based TTS system synthesises all these
candidates. Third, the best spelling is chosen, based on acoustic
distance between synthetic and ground-truth speech. We pro-
vide experimental results for a variety of acoustic distances, in-
cluding a novel one using self-supervised (SSL) speech repre-
sentations.

The output of the method is a spelling that results in a
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Figure 1: Overview of Spell4TTS, our proposed method for automatically finding word spellings from spoken examples, for improving
TTS pronunciation. Pictured are actual candidate spellings and acoustic distances from ACOUSTICRANK detailed in Section 3.4.

more accurate pronunciation. The method requires grapheme-
or WordPiece-based ASR and TTS models, plus natural spo-
ken examples of the words for which improved spellings are
required. These resources are all fairly straightforward to con-
struct, and none of them require a phonemic pronunciation dic-
tionary. Our method is distinct from spelling reform efforts
[12, 13], as it is not intended to generate simplified versions
of original spellings for human use, per se. In fact, our method
makes no use of the original spelling of a word, but generates
a new spelling based solely on a spoken example; this typi-
cally results in a different spelling (e.g., the word originally
spelled “Marseilles” is spelled “marssayy” by our method). Our
method is applicable to any existing TTS grapheme-based sys-
tem and does not require any changes or further training of that
system.

1.3. Optional Human-in-the-Loop (HitL)

Our approach can optionally incorporate human intervention in
the selection of the spelling that results in the best pronuncia-
tion. The human only needs to listen to a number of synthetic
candidates, and pick the best; any native speaker of the language
would be able to do this.

2. Spell4TTS
Spell4TTS is our proposed method for automatically deriving
word spellings from spoken examples. The three stages are can-
didate spelling generation, synthesis, and ranking, as illustrated
in Figure 1. In this paper, we provide concrete solutions to each
stage, and compare a few different ways of performing the rank-
ing. But the overall method does not depend on these details and
alternative approaches could easily be used in any of the stages.

2.1. Stage 1: Generate candidate spellings

This stage needs to propose a set of spellings, amongst which
there is at least one spelling that, when synthesised, will closely
match the spoken ground-truth example. One option might be
to propose all possible spellings, but that would be impractical,
and most of them would be useless. Another option would be
to perturb the original spelling by some means, creating many
variants, but the means of doing this are not obvious, and this
approach risks not finding a good spelling that is very different
from the original. We only want spellings that are acoustically-
related to the spoken example, so we use a simple ASR system.
We note while a simple ASR system cannot guarantee that we
generate an optimal spelling, it is sufficient to demonstrate the

efficacy of our method.

2.2. Stage 2: Synthesise candidates

All candidates from Stage 1 are synthesised using the particular
TTS system for which we wish to improve pronunciation.

2.3. Stage 3: Rank candidates acoustically

The acoustic distance between each candidate and the spoken
ground-truth example is measured, and candidates are selected.
In the fully-automated version of our method, the top-ranked
candidate is chosen. If there is an optional Human-in-the-Loop,
they will choose amongst the top few candidates.

3. Experiments
Given the many design choices possible for the three stages, we
limit the current work to testing three hypotheses:
H1– calculating acoustic distances using representations from
self-supervised learning (SSL) will identify better-pronounced
synthetic speech than when using MFCCs, because SSL rep-
resentations are able to separate phonemic information from
channel, speaker, and other unwanted properties. Testing this
hypothesis first allows us to employ the best acoustic distance
measure when testing subsequent hypotheses.
H2– the proposed method will find a spelling that results in a
more accurate pronunciation than either the original spellings or
the 1-best spelling from the ASR baseline (described shortly),
because the method uses acoustic information to choose the
spelling. This is the main claim of the current work.
H3– placing a Human-in-the-Loop in Stage 3 will find even
better-sounding spellings than the fully-automatic method. This
is a secondary claim.

3.1. Speech dataset & word-aligned spoken examples

We use the LJSpeech dataset to train our models. However, un-
like the conventional TTS use case of the dataset, we partitioned
it into two equally sized halves: Dtrain and Dtest. The former was
employed for training the ASR and TTS models, while the latter
was used to obtain a sizeable number of mispronounced out-of-
vocabulary wordtypes. Dtest was formed by taking utterances
that contain the lowest frequency wordtypes one-by-one until
it consisted of half of LJSpeech; the remainder were placed in
Dtrain. Consequently, Dtest contains 13811 word types, out of
which 8343 were absent from Dtrain. Dtrain contains 5657 word
types. Transcripts were normalised to contain only lowercase



alphabetic characters without punctuation. To acquire spoken
examples for each word type in Dtest, we used word alignments
from the Montreal Forced Aligner1. It is worth noting that al-
though we adopted this high-resource word alignment solution,
our method is adaptable to use a lower-resource approach or
simply a purpose-recorded isolated word speech corpus.

3.2. Models

• Automatic Speech Recognition (ASR): We utilised a CTC
end-to-end ASR architecture [14] to generate candidate
spellings from spoken examples. The architecture comprised
2 CNN blocks with 128 and 256 channels, a 3 by 3 kernel
size, and no time pooling or subsampling factor. These were
followed by two Bidirectional LSTM layers with 512 hid-
den units and then two DNN layers, with 512 hidden units
and 28 output units (26 alphabet characters, whitespace, and
the blank token). We generated candidate spellings using
CTC beam search decoding with a 1000 n-best list, beam
size of 2000, and beam threshold of 50. To prevent genera-
tion of the whitespace token we manually set its probability
to zero for all frame timesteps. In this work, we refrained
from using an encoder-decoder ASR architecture with top-
k or nucleus sampling, or language model rescoring, since
these techniques might overpower the acoustic model, mak-
ing it less likely to generate novel spellings. We used the
SpeechBrain toolkit2 to implement the model, and trained it
on 90% of Dtrain, with 10% split between validation and test-
ing.

• Text-to-speech (TTS): We used a grapheme-based FastPitch
TTS model to synthesise candidate spellings, adopting the
same architecture as the original work [2]. We trained the
FastPitch model for 1000 epochs using a batch size of 16 on
Dtrain, with monotonic alignment search [15] to obviate the
need for external alignments. For waveform generation, we
employed HifiGAN [16].

• Self-supervised speech representations (SSL): We investi-
gated calculating acoustic distances between SSL speech
representations derived from a HuBERT model3 [8] imple-
mented by the authors of [11]. This implementation can
optionally extract ‘soft’ speech representations, which were
claimed to better capture the nuances of pronunciations for
voice conversion purposes.

3.3. Experiment 1 (H1)

Experiment 1 aimed to test H1 and determine the acoustic dis-
tance measure to use in Experiment 2. To design an effec-
tive measure it should compare two renditions of a word and
be invariant to non-pronunciation variations in speech. To ac-
count for differences in sequence length, dynamic programming
alignments, Dynamic Time Warping (DTW) or Levenshtein, are
used with a local distance measure (cosine or Euclidean). Five
types of speech features were extracted from synthesised candi-
dates obtained in Stage 2, including SSL speech representations
from layer 7 of the HuBERT model (which perform well on
phone discrimination tasks [8, 17, 18]).

• MFCC (Euclidean+DTW): MFCCs are a traditional feature
type commonly used in ASR systems and are engineered to

1https://montreal-forced-aligner.readthedocs.
io

2https://speechbrain.github.io
3https://huggingface.co/facebook/

hubert-base-ls960

remove speech information such as pitch. We extracted the
first 12 MFCCs using the Librosa package4.

• HUBERT-RAW (Cosine+DTW): Raw 768-dimensional Hu-
BERT representations are the simplest to extract and have
been shown to contain linguistic, prosodic, and semantic in-
formation in a form that is more easily linearly separable than
traditional features like MFCCs [9, 10].

• HUBERT-CENTROID (Cosine+DTW): We extracted the cen-
troids, i.e., the mean of vectors belonging to a cluster, using
a 100 cluster k-means model trained on raw HuBERT rep-
resentations extracted from LibriSpeech-960 [19]. Cluster
centroids tend to have less information from paralinguistic
aspects such as speaker ID, while still retaining information
related to more subtle aspects, such as place or manner of
articulation [20].

• HUBERT-CODE (Levenshtein): We also use the k-means
model’s discrete cluster IDs as features as they most ag-
gressively discard paralinguistic information [21, 22]. This
makes them more robust to differences unrelated to pronun-
ciation.

• HUBERT-SOFT (Cosine+DTW): We use soft HuBERT fea-
tures as a possible improvement over cluster IDs which can
sometimes discard linguistic content, causing mispronuncia-
tions in voice conversion [11] and TTS [7]. These soft 256-
dimensional representations were trained by predicting a dis-
tribution over the cluster IDs.

3.4. Experiment 2 (H2 & H3)

To investigate H2 and H3 we include three conditions which
compare our proposed method SPELL4TTS with an ASR base-
line and the original spellings, and we also incorporate Human-
in-the-Loop refinement with the proposed method and the ASR
baseline forming two additional conditions. Each of these five
conditions devises a single spelling for each spoken example.
These spellings are then synthesised and presented to the sub-
jects in the listening test.

• ORIGINALSPELLING: The original unmodified spelling.
• ASR: The top-ranked (i.e. 1-best) spelling from the ASR

model’s hypotheses.
• ASR+HITL: We show the top m highest likelihood spellings

from the ASR hypotheses to a Human-in-the-Loop (HITL)
who then chooses the one they judge best matches the spo-
ken example in terms of pronunciation. For our experiments
we set m to 5. Although m could be increased given time
and budget, it is worthy to note that large values would be
difficult for a human to filter effectively.

• ACOUSTICRANK: This condition uses our proposed method
Spell4TTS to retrieve spellings in a fully automated fashion.
We calculate acoustic distances using raw HuBERT features
due to their superiority in Experiment 1 as discussed in Sec-
tion 4.1.

• ACOUSTICRANK+HITL: Same as ACOUSTICRANK but we
instead acoustically retrieve the top m candidates which are
then refined down to a single one by a Human-in-the-Loop
in a similar fashion to ASR+HITL.

3.5. Evaluation & statistical analysis

We evaluate the pairs of conditions in Experiment 1 and 2 using
subjective AB listening tests. We do not employ objective met-
rics as they may neglect more nuanced aspects of pronunciation,

4https://librosa.org
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HUBERT-CENTROID vs. HUBERT-SOFT (p-value = 0.2) are not sta-
tistically different from each other, and are highlighted with dotted
line edges. All other pairs are statistically different.
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is better). Score values are 0.4 for HUBERT-RAW, 0.28 for HUBERT-
CODE 0.02 for MFCC, -0.28 for HUBERT-SOFT, and -0.42 for
HUBERT-CENTROID.

Figure 2: Experiment 1 listening test results, comparing how different acoustic features perform within our proposed method.

such as syllable stress and coarticulation.

3.5.1. Listening test stimuli

We selected 100 orthographically opaque wordtypes for Exper-
iment 1 and another 100 for Experiment 2 in the following way:
First, to identify the wordtypes in Dtest that would most likely
be mispronounced by our TTS model we trained a weak G2P
model[23] on Dtrain to calculate the phone-error-rate (PER) of
each wordtype in Dtest (according to ground-truth pronuncia-
tions in CMUDict [24]), and then select the 200 highest PER
wordtypes over 7 characters long. Spoken audio for these word-
types is then retrieved from Dtest and is used by all the condi-
tions except ORIGINALSPELLING to find spellings which are
then synthesised by our TTS model. A selection of stimuli can
be found on our samples page5.

3.5.2. Listening test design

For each experiment we generated 100 stimuli from each of the
5 conditions. We then paired the conditions together making
10 pairs of conditions which altogether formed 1000 AB ques-
tions. Since 1000 questions were too many for any listener to
rate in a single session, we broke them down into 10 subtests.
Each subtest contained 100 AB questions and we used a Latin
square to ensure that each subtest contained 10 AB questions
from each pair of conditions. For each AB question partici-
pants listened to the spoken example of a wordtype, and two
synthesised spellings. Both the question order and order of A
and B were randomised on a per participant basis. They were
prompted to select the synthesised rendition that most closely
matches the spoken example in terms of pronunciation. They
were also allowed to select a third ‘no preference’ option. We
recruited 30 native English participants from North America us-
ing prolific6.

5https://spell4tts.github.io/samples
6https://www.prolific.co

3.5.3. Statistical testing

To determine significance of our listening test results we per-
formed pairwise proportion Z-tests to determine whether two
proportions are different according to their sample sizes. In our
case for each pair of conditions we obtained 10 observations
from each of the 30 participants, giving 300 in total.

We applied the Bradley-Terry model [25] to obtain scores
that reflect the relative strength of each condition based on pair-
wise comparison data. Scores si are estimated using the simul-
taneous equations induced by each pair of conditions i and j,
defined by Equation 1. Probabilities of pairwise comparisons
are estimated using a wins count matrix Wi,j . We adjusted for
the ‘no preference’ option by assigning half a ‘win’ to each con-
dition. We estimated the Bradley-Terry parameters from Wi,j

using the Iterative Luce Spectral Ranking algorithm7.

P (i > j) =
si

si + sj
(1)

4. Results
4.1. H1 is supported: HuBERT features outperform
MFCCs for finding pronunciations via acoustic ranking

Figures 2(a) and 2(b) demonstrate that HuBERT features out-
perform MFCCs overall. Specifically, HUBERT-RAW performs
the best, followed closely by HUBERT-CODE. This finding is
interesting as these two conditions are on opposite sides of the
spectrum in terms of discarding paralinguistic information. It
is worth noting that they are not significantly different from
each other according to a pairwise proportion Z-test (p-value
= 0.18). In contrast, MFCC features perform reasonably well,
outperforming HUBERT-SOFT and HUBERT-CENTROID. Over-
all our findings suggest that HuBERT features should be used to
maximize performance, but MFCCs can be adopted if a simpler
pipeline is desired.

7http://choix.lum.li
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Figure 3: Experiment 2 listening test results, comparing our proposed method with ASR baselines and original spellings.

4.2. H2 is supported: Acoustic ranking outperforms ASR
baselines and original spellings

Figures 3(a) and 3(b) both show that the proposed fully auto-
mated method, ACOUSTICRANK, is shown to be significantly
better than both ASR baselines, indicating that more optimal
pronunciations often lie outside the ASR 1-best or 5-best lists,
and that we can retrieve them automatically. Interestingly, the
ASR baselines were found to be no better than using original
spellings, even when incorporating Human-in-the-Loop assis-
tance. Notably, ASR performed particularly poorly in compar-
ison to original spellings.

4.3. H3 is supported: Incorporating a Human-in-the-Loop
finds better spellings

Furthermore from Figures 3(a) and 3(b) we observe that incor-
porating Human-in-the-Loop assistance consistently led to the
discovery of better pronunciations and further enhanced the per-
formance of our proposed method. Section 4.4.2 delves deeper
into this result.

4.4. Further analysis

4.4.1. Automated retrieval statistics

Figure 4 reveals a roughly even distribution of ASR n-best ranks
from 1 to 1000. This evidence, along with the findings pre-
sented in Section 4.3, suggests that optimal spellings are often
located far beyond the scope of small ASR n-best lists. As a re-
sult, a manual search for optimal spellings is infeasible, thereby
strengthening the rationale for using our proposed method.

4.4.2. Human-in-the-loop refinement statistics

Figures 5 and 6 demonstrate that the optimal spellings se-
lected by our Human-in-the-Loop approach are approximately
evenly distributed among the top-5 spellings generated for both
ASR+HITL and ACOUSTICRANK+HITL. Notably, the supe-
rior performance of ACOUSTICRANK+HITL over ACOUSTI-
CRANK and Figure 6 both suggest that our proposed acoustic
ranking method is effective at reducing a large ASR n-best list
to a shortlist of potentially optimal spellings. However, our
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Figure 4: Histogram of ASR n-best ranks of the top-5 spellings
retrieved using HUBERT-RAW/ ACOUSTICRANK for the 200
evaluated wordtypes from Experiments 1 and 2.
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Figure 5: Distribution of ASR n-best ranks of the human se-
lected spellings in ASR+HITL.

method did not consistently rank the human-selected spelling
at the very top. This could be due to a failure to detect small
differences in pronunciation. It could also be related to our ob-
servation that within the top-5 spellings retrieved for ACOUS-
TICRANK+HITL, sometimes all of the spellings have different
and slight mispronunciations, requiring the Human-in-the-Loop
to select one of these spellings somewhat arbitrarily. We believe
that further research to seek an improved acoustic distance mea-
sure might alleviate this issue.
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5. Conclusion
This paper introduces a novel cost-effective method for im-
proving the pronunciation of any existing text-to-speech (TTS)
system, without requiring additional model training. The pro-
posed method, Spell4TTS, automatically generates candidate
spellings and then filters them via acoustic ranking. The result-
ing spellings are both human-interpretable and editable, mak-
ing the method suitable for deployment in production environ-
ments. We believe that this method will be particularly bene-
ficial for low-resource TTS. Our experiments demonstrate that
the method devises pronunciations that outperform those ob-
tained using an automatic speech recognition (ASR) baseline
and the original spellings. Furthermore, the method can be aug-
mented with human judgements to further enhance the qual-
ity of the pronunciations. We also show that ranking candi-
date spellings in the acoustic space of self-supervised speech
representations, as opposed to traditional hand-engineered fea-
tures, can yield further improvements in pronunciation. In fu-
ture work, we plan to adapt Spell4TTS to mine pronunciations
from multi-speaker corpora, incorporate stress markers and syl-
lable boundaries, explore its utility in transcribing region-to-
region pronunciation variation, and apply it to a low-resource
language in a real-world scenario.
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