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ABSTRACT

Bayesian optimization (BO) has been widely used from algorithm hyperparameter
tuning to emerging scientific applications. However, its performance degradation
in high-dimensional settings remains a long-standing bottleneck. Recent studies
suggest that standard BO can remain competitive in high dimensions by carefully
tuning priors or initialization, which has shifted attention away from subspace-
based methods. We argue that the limitations of existing subspace methods stem
not from the subspace assumption itself, but from the lack of an effective bal-
ance between thoroughly exploiting the current subspace and expanding to larger
ones. To address this, we propose a high-dimensional Bayesian optimization al-
gorithm, which projects the input-space into a lower dimensional subspace and
consequently expands the subspace dimension based on cumulative regret mini-
mization. Our method allocates evaluation budgets linearly according to the sub-
space dimension, thereby fully exploiting structural information before expansion.
Our experimental evaluations show that our method significantly outperforms ex-
isting state-of-the-art baselines on several challenging high-dimensional synthetic
and real-world tasks, highlighting the continued potential of subspace methods in
high-dimensional Bayesian optimization.

1 INTRODUCTION

Bayesian Optimization (BO) has emerged as a key enabler of AI for Science due to its sample
efficiency in optimizing expensive black-box functions. In scientific domains such as materials
discovery (Lookman et al., 2019; Farache et al., 2022; Li et al., 2023), drug design (Yang et al., 2025;
Clarke et al., 2008), and polygenic risk prediction (Ge et al., 2019; Li et al., 2022; Privé et al., 2020),
practitioners often introduce a large number of potentially relevant variables to enhance predictive
and optimization performance. Similarly, complex machine learning systems—for example, jointly
tuning the kernel and regularization strength of a support vector machine (Snoek et al., 2012), or
co-optimizing the policy network architecture (Lizotte, 2008) and control parameters (Brochu et al.,
2010) in reinforcement learning—routinely involve high-dimensional parameter spaces. This has led
to the phenomenon of artificially constructed high dimensionality, where the number of variables can
reach thousands or even tens of thousands. The ubiquity of such settings poses serious challenges to
the efficiency and scalability of traditional BO methods, underscoring the urgent need for advanced
high-dimensional optimization techniques.

In these ultra-high-dimensional regimes, the number of evaluations required to adequately explore
the search space grows exponentially with dimensionality, making Gaussian process (GP) surrogates
ineffective at modeling the objective. This leads acquisition functions to lose guidance, a manifes-
tation of the curse of dimensionality. One class of approaches mitigates this issue by introducing
structural assumptions to reduce problem complexity. Among them, subspace methods posit that the
function depends primarily on a low-dimensional embedding of the input space (Wang et al., 2016;
Letham et al., 2020; Nayebi et al., 2019), while BAxUS (Papenmeier et al., 2022b) incrementally
expands the subspace dimensionality. Another line of work, additive methods, assumes the objective
decomposes into a sum of low-dimensional components, enabling localized optimization.

Recent work, however, has questioned the necessity of such assumptions. It suggests that poor
performance in high dimensions often arises from inappropriate lengthscale priors or initialization,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

which make the GP surrogate overly complex and bias the acquisition function toward local op-
tima. By modifying kernel lengthscale priors (Eriksson & Jankowiak, 2021; Hvarfner et al., 2024)
or improving initialization strategies (Xu et al., 2024), some standard BO variants have demon-
strated surprisingly strong performance on high-dimensional benchmarks—sometimes rivaling or
surpassing structure-exploiting methods. These findings have sparked debate over whether struc-
tural assumptions are truly essential. Nevertheless, the recent unstructured BO methods that re-
port strong performance in high dimensions (Eriksson & Jankowiak, 2021; Hvarfner et al., 2024)
still face fundamental scalability challenges. Both rely on Sobol initialization, which is subject to
a strict dimensionality cap and becomes unavailable in ultra-high-dimensional regimes, and both
adopt ARD kernels, which exacerbate scalability issues by introducing instability, excessive com-
putational costs, and degraded acquisition performance.

To address this, we propose GRABBO (Guided Regret-Aware Bayesian Subspace Optimization), a
framework that integrates theoretical guidance with efficient subspace-based exploration. The key
insight is that subspace expansion should be driven by exploration quality rather than fixed sched-
ules. We introduce a simple yet effective regret-based budget allocation rule, theoretically motivated
by the relationship between subspace dimensionality and cumulative regret, which encourages suf-
ficient exploration of each subspace before expansion and improves both stability and efficiency.

Our main contributions are:

1. We show that one of the state-of-the-art subspace methods, BAxUS, expands dimensionality pre-
maturely, failing to fully exploit lower-dimensional subspaces and thereby leading to inefficient
and unstable optimization.

2. To address this, we propose a budget-driven expansion strategy with a regret-based linear rule,
theoretically motivated to allocate the evaluation budget in proportion to the subspace dimen-
sionality and ensure thorough exploration.

3. We present GRABBO, a principled framework for nested subspace optimization that operational-
izes our budget-aware strategy.

4. Through comprehensive evaluations, we demonstrate that GRABBO substantially outperforms
state-of-the-art methods. We highlight two key advantages: superior efficiency in the low-budget
regime by rapidly finding high-quality solutions, and unique robustness in ultra-high dimensions
where competing methods stagnate.

2 RELATED WORK

Bayesian Optimization. Bayesian optimization (BO) is a sequential and sample-efficient frame-
work for optimizing expensive black-box functions, where a surrogate model is iteratively fit,
queried, and updated to guide the search (Mockus et al., 1978; Brochu et al., 2010). At each itera-
tion, it fits a probabilistic surrogate model (typically a Gaussian Process) to the previously collected
observations, then selects the next evaluation point by optimizing an acquisition function that trades
off between exploration and exploitation. The newly observed data is added to the dataset, and the
surrogate is updated, and this process repeats until the evaluation budget is exhausted. While BO is
highly effective in low dimensional settings, its performance deteriorates in high dimensions due to
challenges in kernel estimation, posterior inference, and acquisition maximization. This has spurred
a range of methods to improve the scalability of BO by introducing structural assumptions, adapting
the kernel, or localizing the search.

Structure-Assuming Methods. Structure-assuming approaches tackle high-dimensional BO by
reducing the problem’s intrinsic dimensionality through structural assumptions. Additive models
decompose the objective into a sum of low-dimensional components (Kandasamy et al., 2015),
typically by partitioning the input variables into fixed or adaptive groups. Some implementations
further allow overlapping groups via dependency graph structures (Rolland et al., 2018), enabling
more expressive modeling.

Another commonly explored direction assumes that the objective function varies meaningfully only
along a low-dimensional subspace embedded in the input space. REMBO (Wang et al., 2016) and
HeSBO (Nayebi et al., 2019) implement this idea using random projections to embed the original
space into a lower-dimensional one, where BO is performed. ALEBO (Letham et al., 2020) im-
proves projection quality by learning a Mahalanobis metric and enforcing linear constraints during
acquisition optimization, ensuring that proposed candidates remain within the feasible domain.
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Extending this idea further, dynamic subspace methods such as BAxUS (Papenmeier et al., 2022b),
Bounce (Papenmeier et al., 2023), and BOIDS (Ngo et al., 2025), adapt the embedding dimension
over time based on observed optimization progress. Starting from a small subspace, these methods
gradually expand the search space only when optimization progress stalls, maintaining efficiency
while preserving the ability to recover the global optimum.

Lengthscale-adaptive methods. Instead of committing to an assumed structure, these approaches
place informative priors or initializations on the GP lengthscales and update them over time based on
observed data. SAASBO (Eriksson & Jankowiak, 2021) infers sparsity in the GP prior, effectively
pruning irrelevant dimensions. VBO (Hvarfner et al., 2024) imposes LogNormal priors over length-
scales to improve stability, while SBO (Xu et al., 2024) initializes the lengthscales as a function of
the input dimension to prevent them from becoming too small during optimization; both outperform
methods that assume a fixed structure.

Trust-region-based methods. To improve the reliability of surrogate models in high-dimensional
spaces, several approaches introduce trust regions to localize the search and stabilize model behavior.
TuRBO (Eriksson et al., 2019) maintains multiple parallel trust regions that adaptively expand or
contract based on observed performance. This localized search paradigm reduces the reliance on
global surrogate accuracy and improves robustness. BAxUS and BOIDS also incorporate trust-
region mechanisms as part of their dynamic subspace frameworks.

BAxUS in focus. Among all the subspace-based methods, BAxUS (Papenmeier et al., 2022b)
serves as a representative baseline. It begins optimization in a low-dimensional embedding formed
by randomly partitioning the input features, and maintains a local trust region to ensure reliable sur-
rogate behavior. When no improvement is observed over consecutive iterations, BAxUS expands the
embedding dimension, eventually covering the full space if necessary. This combination of progres-
sive subspace expansion and localized search enables efficient exploration without sacrificing global
optimality. We analyze the design of BAxUS in Section 3 and revisit its behavior in Section 3.2,
which together motivate our proposed improvements.

3 ADDITIONAL BACKGROUND ON BAXUS

In this section, we provide additional background on the BAxUS method that is relevant to under-
standing our approach, as well as the key limitations of BAxUS that our method aims to address.

3.1 DETAILS OF BAXUS

In this section, we provide context for BAxUS by revisiting HeSBO and its sparse projection. We
then outline the two design choices in BAxUS: balanced partitioning of features and expansion of
the subspace triggered by trust region shrinkage. Both HeSBO and BAxUS employ a highly sparse
projection matrix S ∈ {0,±1}d×D that maps each original coordinate to exactly one subspace
coordinate, which is equivalent to each column of S having a single non-zero entry. A subspace
point y ∈ Rd is then mapped back to the original space via x = S⊤y. The choice of the {0,±1}
alphabet is deliberate, as it ensures that after standard box normalization, the back-projected point
x remains within the original domain componentwise. Furthermore, under the random ±1 signs
and uniform assignment, pairwise distances are preserved in expectation. The two methods differ
critically in how this assignment of original coordinates to subspace coordinates is determined.

In HeSBO, the assignment is performed randomly and independently for each of the D original
coordinates, mapping each one to a dimension selected uniformly at random from the d available
subspace dimensions. While simple, this approach can induce a finite-sample imbalance, where
some subspace coordinates aggregate a disproportionate number of original coordinates while others
aggregate very few, creating potential information bottlenecks. Moreover, the subspace dimension
d must be fixed a priori, creating a difficult trade-off where a dimension that is too small may cause
the subspace optimum to deviate from the true optimum, while one that is too large diminishes the
benefits of the subspace assumption.

BAxUS addresses these limitations through two primary innovations. First, to mitigate the imbal-
ance, it constructs the projection S using a structured partitioning scheme. The D original coordi-
nates are divided into di balanced groups, and all members of a group are aggregated with random
±1 signs to form the corresponding subspace coordinate. This ensures a more uniform distribution
of original coordinates across the embedding. Second, to resolve the static trade-off on d, BAxUS
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employs a nested-subspace framework governed by a trust region (TR). In this framework, the initial
subspace dimension d1 is determined by a hyperparameter, the expansion factor b > 1, in conjunc-
tion with the full dimension D. After τfail consecutive non-improving evaluations, the TR side length
L is shrunk. Once L falls below a minimum threshold Lmin, the algorithm expands the subspace
from di to a new dimension di+1 according to the rule di+1 = min(di · b,D). This process in-
volves redistributing the features that form the di coordinates into a larger set of di+1 coordinates.
Crucially, this expansion is lossless. For any previously evaluated point y ∈ Rdi , a correspond-
ing point y′ ∈ Rdi+1 can be constructed such that their projection to the original space is identical
(S′⊤y′ = S⊤y). This property allows BAxUS to increase dimensionality only when warranted by
the search process, without discarding valuable evaluation data.

3.2 LIMITATIONS OF BAXUS

BAxUS incorporates many intuitive design choices that may introduce practical performance issues.
Specifically, the mechanism that reduces the TR side length only after τfail consecutive failures is
problematic. This tolerance is defined as τfail = max{1,min(ft, ft,max)}, where the upper bound
is ft,max = max{4, di} for a subspace of dimension di. The primary term ft is calculated as

ft =
⌈

budget
2γ

⌉
, where budget is the evaluation quota proportionally allocated to the current subspace,

and γ is a constant representing the number of halvings the TR undergoes to shrink from its initial
to its minimum size. The underlying rationale is that the total number of evaluations required to
trigger k trust-region shrinkages—accounting for the fact that any successful step resets the failure
counter—will probabilistically align with the allocated budget. The factor of 2 in the denominator
likely serves as an empirical correction to compensate for this stochastic process.

However, this intuition-driven method is inherently brittle, with its behavior strongly affected by
the unknown complexity of the objective function. Under the setting of a 1000-dimensional prob-
lem with a 1000-evaluation budget, expansion block size b = 4, and initial subspace dimension
d1 = 1, the mechanism exhibits two failure modes. The computed τfail values are 1 for dimensions
between 1 and 16, 4 for 64 dimensions, 15 for 256 dimensions, and 57 for the full 1000 dimen-
sions. For complex objectives where improvements are difficult to obtain, τfail is very small in
the early, low-dimensional stages due to the small allocated budget. This makes it easy to trig-
ger expansion—often rapidly jumping to the full space—after only a fewfailures. Once the full
D-dimensional space is reached, however, τfail becomes very large, and achieving such a long
sequence of failures is improbable. Consequently, the TR rarely shrinks, forcing the algorithm to
search in a vast, high-dimensional, and complex region where local refinement is difficult, increasing
the risk of convergence to suboptimal solutions.

For simple objectives, improvements are relatively easy to find, so the small τfail values in low-
dimensional subspaces allow for more thorough exploration before expansion. Yet, once the full
space is reached, the same problem arises: the large τfail suppresses TR shrinkage, trapping the
search in an overly broad high-dimensional region and again undermining fine-grained optimization.
This recurring inefficiency indicates that driving subspace expansion with a τfail based TR shrinkage
trigger is likely suboptimal, and alternative mechanisms merit consideration.

4 THE GRABBO ALGORITHM

In this section, we introduce GRABBO and explain how it addresses two limitations of BAxUS iden-
tified in Section 3.2. BAxUS tends to expand subspace dimensionality too early during optimization,
which limits exploration in low dimensions; it also fails to adapt in high dimensions, effectively de-
generating into standard BO within a large search space and yielding weak local modeling. These
issues arise from the reliance of BAxUS on a failure-count-based mechanism to control trust-region
shrinkage and subspace expansion, where the threshold τfail is often too small in low dimensions
and too large in high dimensions. We therefore outline a budgeted nested-subspace schedule that
promotes thorough early exploration and more reliable scaling.

Sample-Efficient 1D Initialization. To mitigate early over-expansion, GRABBO starts the op-
timization process in a fixed 1-dimensional subspace (d1 = 1), rather than calculating an initial
dimension d1 such that the final dimension after exponential expansion would be as close as possi-
ble to the original problem dimension. This design is motivated by the observation that the difficulty
of optimization grows exponentially with problem dimensionality. By projecting the full space into
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a single dimension, we can obtain a coarse yet informative estimate of promising regions with only
a small number of evaluations. Since subspace-based BO tends to search around the current best
solution, a strong initialization significantly improves downstream optimization performance.

Budgeted subspace expansion. Rather than relying on failure counts, GRABBO allocates a fixed
evaluation budget to each subspace and expands only once this budget is exhausted. The fixed eval-
uation budget for each subspace is determined by a principled strategy based on regret, which in
this context represents the gap between the best value found so far and the true global optimum.
The specifics of this allocation strategy are detailed in Section 4.1. This strategy prevents prema-
ture dimensional increases arising from stochastic failures and ensures that early-stage subspaces
are thoroughly explored before advancing to higher dimensions. It also decouples the subspace
expansion logic from noisy local behavior, improving robustness and reproducibility.

Effective vs ambient dimension. The expansion strategy in GRABBO is guided by the assumed
complexity of the objective, which hinges on the relationship between its effective dimension, de,
and the ambient dimension, D. For simple objectives, de is presumed to be small, with the high
D resulting primarily from many irrelevant features. In this regime, expanding to the full space is
unnecessary, as the probability of multiple de being projected into the same subspace coordinate is
low. Conversely, for complex objectives where de may be large or unknown, allowing expansion
towards the full space can serve as a crucial safeguard, ensuring that all variables are eventually
considered and preventing the premature restriction of the search space.

Practical Safeguard of Maximum Expansion. Full expansion to the ambient dimension D can
become impractical for objectives with several thousand or more dimensions. Such scales exceed
the practical capacity of standard Bayesian Optimization (Frazier, 2018) and can render trust-region
mechanisms ineffective. To provide a practical safeguard against this, GRABBO imposes an upper
bound D∗ on the final subspace dimension. As we discuss in Section 3.2 and have observed em-
pirically, once the dimensionality approaches 1000, the trust region rarely shrinks. Based on this
finding, we set D∗ = 1024 as a default. We have found this value works well across a variety of
tasks, though practitioners may still specify a different D∗ based on domain knowledge.

4.1 HEURISTIC REGRET-BASED ALLOCATION UNDER NESTED SUBSPACE EXPANSION

We consider the BAxUS optimization process as a multi-stage Bayesian optimization procedure. At
each stage i, optimization is performed within a di-dimensional subspace using ni function evalua-
tions. The total budget is constrained by

∑k
i=1 ni = N . The dimensionality expands across stages,

with di = d1b
i−1 for some base b > 1, culminating in the full-dimensional space dk = D.

We derive a principled heuristic for allocating the evaluation budget {ni} across these stages by
modeling the cumulative regret. In the subspace setting, the true cumulative regret at stage i is the
sum of the cumulative subspace regret and the cumulative approximation regret. The cumulative
subspace regret Rni,di

measures how much the function values obtained over the ni evaluations
deviate from the optimal value within the di-dimensional subspace. The cumulative approximation
regret ∆di captures the gap between this subspace optimum and the true global optimum in the
full space. Allocating {ni} appropriately is crucial for balancing the trade-off between reducing
cumulative subspace regret and reducing cumulative approximation regret. Because our method
uses a trust-region mechanism and therefore tends to exploit points near the current best solution,
modeling cumulative regret better aligns budget selection {ni}with minimizing true regret and helps
guide the search toward better solutions.

4.1.1 MODELING SUBSPACE AND FULL-SPACE REGRET

We begin by modeling the subspace cumulative regret Rni,di
from optimizing a smooth objective

function using ni queries within a di-dimensional subspace. Under standard assumptions for Gaus-
sian Process Thompson Sampling with squared exponential (RBF) kernels (Chowdhury & Gopalan,
2017), the cumulative subspace regret satisfies:

Rni,di
= Õ

(
γni,di

√
nidi

)
, where γni,di

= O
(
(lnni)

di+1
)
. (1)

This captures the cost of searching within the subspace assuming the true optimum lies in it. How-
ever, this does not reflect the true regret when the global optimum lies outside the subspace. To
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model this, we consider the regret at a per-step level. The average per-step regret within the sub-
space is rni,di

= Rni,di
/ni. The true per-step regret must also account for the optimality gap,

∆di
:= f∗

di
− f∗

D ≥ 0, which is the penalty incurred at each step for operating in a subspace.
Thus, the true per-step regret is r∗ni,di

= rni,di
+∆di

, where f∗
di

denotes the optimal solution in the
subspace with dimension di, and f∗

D denotes the global optimal solution.

To account for the mismatch between the subspace dimension di and the full ambient dimension D,
we draw inspiration from the spectral truncation theory of smooth kernels. Belkin (Belkin, 2018)
showed that for functions in the RKHS of a smooth radial kernel, the approximation error (∆di )
from projecting onto a finite-dimensional subspace decays nearly exponentially with the number of
retained dimensions. This theoretical insight implies that smooth functions are highly compressible,
and discarding (D − di) dimensions induces an exponentially small loss in captured information.

Motivated by this property, we model the optimality gap with a heuristic exponential penalty, ap-
proximating per-step regret by replacing the additive gap with a multiplicative factor:

r∗ni,di
≈ C · rni,di

· exp(α(D − di)). (2)

The cumulative true regret R∗
ni,di

over ni steps is obtained by multiplying the average per-step regret
by ni. By substituting our heuristic for r∗ni,di

and the definition rni,di = Rni,di/ni, we derive the
approximation for R∗

ni,di
:

R∗
ni,di

= ni · r∗ni,di
≈ ni · (C · rni,di

· exp(α(D − di))) = C ·Rni,di
· exp(α(D − di)), (3)

where α > 0 and C are abstract constants, rather than tunable parameters. This multiplicative
form, derived from a per-step analysis, retains the essential trade-off implied by spectral truncation
theory while ensuring analytical tractability. This design ensures that the true cumulative regret
exhibits exponential decay with respect to di, and it also guarantees that when di expands to D, the
formulation recovers the full-space cumulative regret. Substituting the expression for Rni,di yields:

R∗
ni,di

= Õ
(
(lnni)

di+1 ·
√

nidi · exp(α(D − di))
)
. (4)

We now rewrite the polylogarithmic term in exponential form:

(lnni)
di+1 = exp ((di + 1) ln lnni) ,

and combine it with the penalty to obtain:

R∗
ni,di

= Õ
(√

nidi · exp ((di + 1) ln lnni + α(D − di))
)
. (5)

This expression reveals a fundamental trade-off: increasing di reduces the approximation error expo-
nentially but increases the cumulative subspace regret. Since the exact expression with exponential
terms is analytically intractable, we adopt the simplifying assumption that these opposing expo-
nential effects approximately balance out: exp ((di + 1) ln lnni + α(D − di)) ≈ O(1), yielding a
tractable surrogate regret expression:

R∗
ni,di

= Õ
(√

nidi

)
. (6)

This is not a formal bound, but a heuristic motivated by the exponential decay property in spectral
truncation theory, designed to capture the key trade-off budget allocation across nested subspaces.

4.1.2 OPTIMAL BUDGET ALLOCATION

A seemingly natural method is to directly minimize the total regret across stages, but this approach
has an inherent flaw originating from its mathematical form. Because the regret expression inherits
concavity from the square root function, the optimization process tends to produce a type of extreme
allocation known as a corner solution. In such a solution, the budget becomes highly concentrated
on a few stages while the remaining ones receive virtually no resources. A corner solution is unde-
sirable because it is not a sensible strategy, but merely an inevitable artifact of minimizing a concave
function, which favors values on the boundary of the feasible region. This fundamentally prevents a
balanced and smooth allocation of resources.

To address this issue, we reformulate the allocation task by balancing approximate marginal regrets
across stages. The marginal regret at stage i, derived from Eq. equation 6 as the decrease in regret
with respect to ni, is given by ∆i =

√
di

2
√
ni

.
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Instead of minimizing the total regret, we minimize the maximum marginal regret:

min
{ni}

max
i=1,...,k

√
di

2
√
ni

subject to
k∑

i=1

ni = N, ni ≥ 0. (7)

This min–max program directly acts on the marginal regrets. Since 1/
√
ni is convex and strictly

decreasing, the optimum is characterized by equalizing the marginal regrets across all stages, i.e.√
di

2
√
ni

= µ for some constant µ > 0. Solving for ni gives ni = di/(4µ
2), which implies that

the allocation is proportional to the subspace dimensionality, i.e. ni ∝ di. Enforcing the budget
constraint

∑k
i=1 ni = N then yields the closed-form solution

ni =
di∑k
j=1 dj

N. (8)

This reformulation provides a principled and interpretable allocation rule. By equalizing the active
∆i, it ensures balanced approximate marginal regrets across stages, directly controls the worst-case
stage, and prevents pathological budget concentration—leading to a robust distribution of resources.

Algorithm 1: GRABBO Algorithm
Require: b,D,D⋆, N, ninit, η, γ,Expanded
Ensure: x⋆ ∈ argminx∈X f(x)

D ← min{D,D⋆}
k ← ⌈logb D⌉
for i = 1, . . . , k do
di ← min{bi−1, D}

end for
Construct embeddings S⊤

i : Rdi→ RD

Sample ninit initial points in Rd1

Evaluate, and fit GP surrogate
k′ ← k if Expanded else k − 1
for i = 1, . . . , k′ do

ni ←
⌊

η(N−ninit)
k′ + (1−η)di∑k′

j=1 dj
(N − ninit)

⌋
counteri ← max(1,

⌊
ni

2γ

⌋
)

end for
ncum
i ← ninit +

∑i
j=1 nj

L← Linit; stage← 1
Initialize success and failure counters
for t = ninit, . . . , N − 1 do

if t ≥ ncum
stage and stage < k′ then

stage← stage + 1
Update S⊤ to dimension dstage
Reset counters and L

end if
Adjust TR size L and counters ▷ See in 4.2
Find y in current subspace Rdstage within TR
and evaluate f(S⊤

stagey)
Add new data point to dataset and re-fit GP

end for
Return: argmin(S⊤y,f(S⊤y))∈D f(S⊤y)

However, in practical Bayesian optimization,
the evaluation budget N is often insufficient
to locate the global optimum. As a conse-
quence, directly applying the proportional al-
location ni ∝ di may cause under-exploration
in early low-dimensional subspaces. To ad-
dress this issue, we introduce a uniform base-
line across all stages. Specifically, we reserve
an η fraction of the total budget and distribute
it evenly across the k subspaces, while allocat-
ing the remaining (1 − η)N proportionally to
dimensionality:

ni =
ηN

k
+ (1− η) · di∑k

j=1 dj
·N. (9)

This hybrid allocation guarantees each sub-
space a minimum number of evaluations for
meaningful exploration, while respecting the
dimension-proportional principle from the sur-
rogate regret model.

4.2 PSEUDOCODE OF GRABBO

Algorithm 1 details the execution flow of
GRABBO. GRABBO takes as input the ex-
pansion base b, ambient dimensionality D,
maximum target dimension D⋆, total budget
N , number of initial samples ninit, budget-
allocation fraction η, number of full trust-
region contractions γ, and a boolean flag
Expanded. GRABBO first computes the num-
ber of stages, k, and constructs an embedding
matrix S⊤

i for each di-dimensional stage. Be-
fore the main optimization loop, GRABBO
pre-computes for each stage i ∈ 1, . . . , k: 1)
the budget ni, 2) the failure tolerance counteri,
and 3) the cumulative budget threshold (total
evaluation count triggering a transition), ncum

i .

The main optimization loop then commences, tracking its progress with an internal ‘stage‘ variable
that starts at one. The core novelty of the algorithm is its budget-driven expansion schedule, where it
transitions to the next higher-dimensional subspace by incrementing the ‘stage‘ variable as soon as
the total evaluation count t meets or exceeds the cumulative budget threshold for the current stage,
ncum

stage. Within any given stage, the algorithm dynamically adjusts the trust region (TR) side length L
in a manner consistent with BAxUS (see A for details).
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5 EXPERIMENTS

We evaluate our proposed GRABBO algorithm on eight benchmarks, consisting of three synthetic
functions and five real-world tasks.

Benchmarks. For the synthetic benchmarks, we select the commonly used Branin, Levy, and
Hartmann functions with effective dimensionalities 2, 4, and 6, respectively. Following Wang et al.
(2016), we construct high-dimensional variants of the synthetic functions by appending dummy
variables that do not influence the function values. Specifically, we expand Branin to 500 di-
mensions, and Levy and Hartmann to 1000 dimensions. For Levy, we follow the input domain
setting proposed by Hvarfner et al. (2024), which avoids search directions aligned with the diag-
onals of the space and prevents the optimizer from gaining an unreasonably large advantage. For
the real-world tasks, we considered three LASSO benchmarks (Šehić et al., 2022): Lasso-DNA
(180D), Lasso-Leukemia (7129D), and Lasso-RCV1 (47236D), and two MuJoCo control bench-
marks: HalfCheetah-v4 (102D) (Wawrzyński, 2009) and Humanoid-v4 (6392D) (Tassa et al., 2012).
The evaluation budgets follow prior work (Šehić et al., 2022; Hvarfner et al., 2024; Xu et al., 2024;
Ngo et al., 2025): 1000 evaluations for the synthetic functions, 300 for Lasso-DNA, and 1000 for
Lasso-Leukemia, Lasso-RCV1, HalfCheetah and Humanoid. To match the minimization setting of
GRABBO, we negate HalfCheetah and Humanoid.

Experimental Setup. We compare against six representative HDBO methods covering differ-
ent paradigms: subspace-based (BOIDS (Ngo et al., 2025), BAxUS (Papenmeier et al., 2022b),
HeSBO (Nayebi et al., 2019)), trust-region (TuRBO-1 (Eriksson et al., 2019)), and standard BO
variants (VBO (Hvarfner et al., 2024), SBO-Matérn (RI), abbreviated as SBO (Xu et al., 2024)).
The detailed implementations of all baselines as well as GRABBO are deferred to Appendix B.1.
All optimizers are initialized with 10 samples, except for the Humanoid task where we use 30 initial
samples. For the three synthetic tasks, where the true global optimum is known, we report the regret.
For the five real-world tasks where the true optimum is unknown, we report the best minimum value
found during the optimization process. We ran each experiment 10 times independently and re-
port the mean ± one standard error across runs. Additional ablation and hyperparameter sensitivity
experiments are provided in Appendix C and D, respectively.

Synthetic Benchmark Results. Figure 1 (a–c) summarizes the performance of our method com-
pared with baselines on three synthetic benchmarks. GRABBO achieves the best performance across
all three synthetic benchmarks. Notably, on the latter two functions, which involve higher intrinsic
dimensionality, GRABBO outperforms all baselines by more than an order of magnitude in final
regret. While BOIDS performs comparably to GRABBO on Branin, its optimization nearly stalled
on Hartmann and Levy, showing progress comparable to TuRBO, and failing to effectively exploit
the higher-dimensional structure.

BAxUS, SBO, and VBO exhibit similar behavior on these synthetic benchmarks, each showing a
tendency to converge prematurely to suboptimal regions in certain tasks. For example, on the Levy
function, BAxUS progresses slowly, whereas VBO plateaued during the middle stage of optimiza-
tion but occasionally discovered better values later, resulting in a sudden drop in regret and overall
better final performance. SBO, while initially strong on the Hartmann benchmark, is unable to make
further improvements after approximately 400 evaluations.

Real-World Benchmark Results. Results on real-world tasks are shown in Figure 1 (d–h). On
Lasso-DNA, GRABBO achieved strong initialization and stable optimization. Although its conver-
gence is slower, it ultimately found the best solution with significantly lower variance than VBO
and SBO. This may reflect the moderate ambient dimension of the task and its relatively high ef-
fective dimension, where subspace-based methods provide limited benefits. While VBO and SBO
barely improved (final regret around 0.37), both GRABBO and BAxUS start with good initializa-
tion. GRABBO quickly reached 0.2 within 200 evaluations and further converged to 0.15, out-
performing all baselines. BOIDS runs out of memory after 500 steps. On Lasso-RCV1, the most
difficult task, VBO and SBO stagnate after 300 steps around 0.26. TuRBO can not run due to out-of-
memory (Šehić et al., 2022). BAxUS expands to the full space after 170 steps, leading to prohibitive
runtime and an incomplete run, while BOIDS also fails due to memory limits, with detailed failure
modes for the baselines provided in Appendix B.4. In contrast, GRABBO maintains steady progress
despite the extreme dimensionality, avoided stagnation, and achieved the best final performance.
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Figure 1: Optimization performance on synthetic (a-c) and real-world (d-h) benchmarks.

Compared to the Lasso benchmarks, the MuJoCo tasks likely involve higher effective dimensional-
ity, which would intuitively pose a greater challenge for subspace-based methods. However, we ob-
serve that these methods perform even more effectively in the MuJoCo setting. On the HalfCheetah
benchmark, both GRABBO and BOIDS achieve similarly strong performance, successfully identi-
fying solutions with objective values below −2000. BAxUS and VBO follow with slightly weaker
results, and both of these methods still perform substantially better than SBO. A similar trend is ob-
served on the Humanoid benchmark. GRABBO and BAxUS are able to consistently discover better
solutions throughout the optimization process, while VBO and SBO demonstrated limited progress.
BOIDS, once again, fails to complete the run due to memory exhaustion. These results suggest that,
in certain high-dimensional environments such as those found in MuJoCo tasks, subspace methods
can remain effective. GRABBO, in particular, shows strong and stable performance across both
tasks, even in the presence of large-scale search spaces.

6 CONCLUSIONS

We propose GRABBO, a regret-aware subspace Bayesian optimization framework that effectively
balances exploration within each subspace and controlled expansion to higher dimensions. Our
analysis reveals that thorough exploration of nested low-dimensional subspaces is critical under
the subspace assumption, as it provides reliable guidance for subsequent expansions. Furthermore,
although projecting multiple effective dimensions onto the same subspace coordinate may impair
optimization, our experimental results show that the adverse effect is less pronounced than that
caused by expanding into higher-dimensional spaces, where the subspace assumption breaks down
and the method degenerates into standard BO prone to local optima. GRABBO avoids this failure
mode and achieves robust performance across synthetic and real-world benchmarks.
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ETHICS STATEMENT

We affirm that this work adheres to the ICLR Code of Ethics . The research does not involve human
subjects, personally identifiable information, or sensitive data. All datasets used are publicly avail-
able benchmark tasks (Branin, Hartmann, Levy, LassoBench, and MuJoCo environments), and we
follow the licenses and intended use of these datasets. Our proposed method, GRABBO, is designed
as a generic optimization algorithm and does not raise foreseeable risks of harmful applications or
ethical concerns beyond those already present in Bayesian optimization research. We report exper-
imental results faithfully, disclose all baselines and hyperparameters, and ensure compliance with
research integrity and reproducibility standards.

REPRODUCIBILITY STATEMENT

We provide anonymized source code in the supplementary materials. The current version has not
been fully organized, but it is runnable and demonstrates our proposed method. All datasets used
in our study are standard and publicly available benchmarks (Branin, Hartmann, Levy, LassoBench,
and MuJoCo environments). To aid reproducibility, we include algorithmic descriptions and pseu-
docode in Section 4, benchmark specifications and hyperparameter settings in Section 5 and Ap-
pendix B, and additional ablation and sensitivity analyses in Appendices C and D. After publication,
we will release a fully organized and documented codebase that enables reproduction of all results.
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Florian Privé, Julyan Arbel, and Bjarni J Vilhjálmsson. Ldpred2: better, faster, stronger. Bioinfor-
matics, 36(22-23):5424–5431, 2020.

Paul Rolland, Jonathan Scarlett, Ilija Bogunovic, and Volkan Cevher. High-dimensional bayesian
optimization via additive models with overlapping groups. In International conference on artifi-
cial intelligence and statistics, pp. 298–307. PMLR, 2018.
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A GRABBO TRUST REGION DYNAMICS

As discussed in 4.2, GRABBO utilizes a trust region that is dynamically adjusted during optimiza-
tion. Following BAxUS (Papenmeier et al., 2022a), GRABBO updates the length L of the trust
region using internal success and a failure counters. If an evaluation finds a better solution, the
success counter is incremented and the failure counter is reset; otherwise, the failure counter is in-
cremented and the success counter is reset. The TR side length L is doubled if the success counter
reaches a small, predefined threshold, and it is halved if the failure counter reaches the stage-specific
tolerance counteri. Following any adjustment, the corresponding counter is reset to prepare for the
next sequence of evaluations.

B EXPERIMENTAL DETAILS

B.1 EXPERIMENTAL METHODS

For GRABBO, we set b = 4, using Expanded=False and η = 5% on synthetic benchmarks, and
Expanded=True with η = 5% on real-world tasks. We set the maximum dimensionality at 1024
for all the real-world benchmarks.

As for baselines, we compare our proposed method against a diverse set of state-of-the-art high-
dimensional Bayesian optimization algorithms:

• HeSBO. The implementation we adopt is from the official repository released by the au-
thors: https://github.com/aminmnayebi/HesBO.

• TuRBO. For TuRBO, we relied on the original open-source implementation published by
Uber AI Labs: https://github.com/uber-research/TuRBO.

• BAxUS. Our experiments use the public codebase maintained by the BAxUS authors:
https://github.com/LeoIV/BAxUS.

• VBO. The code for Vanilla Bayesian Optimization Performs Great in High Dimensions is
available at: https://github.com/XZT008/Vanilla_BO_in_High_D.

• SBO (SBO-Matérn (RI)). We employed the official implementation of Standard gaussian
process is all you need for high-dimensional bayesian optimization provided here: https:
//github.com/XZT008/Standard-GP-is-all-you-need-for-HDBO.

• BOIDS. The experiments for BOIDS were run using the repository published by the au-
thors: https://github.com/LamNgo1/boids.

B.2 BENCHMARKS

Our experiments cover both synthetic benchmark functions and real-world applications to compre-
hensively evaluate algorithm performance.

Synthetic functions. We adopt several well-known continuous optimization test functions widely
used in the BO literature:

• Branin (2D). The Branin function is defined on [−5, 10]× [0, 15] as

f(x) = a(x2 − bx2
1 + cx1 − r)2 + s(1− t) cos(x1) + s,

where a = 1, b = 5.1
4π2 , c = 5

π , r = 6, s = 10, and t = 1
8π . It has three global optima with

f(x†) ≈ 0.3979 located at (−π, 12.275), (π, 2.275), and (9.42478, 2.475).
• Hartmann (6D). The 6-dimensional Hartmann function is given by

f(x) = −
4∑

i=1

αi exp

− 6∑
j=1

Aij(xj − Pij)
2

 ,

where x ∈ [0, 1]6, and matrices A = [Aij ], P = [Pij ], and coefficients αi

are predefined constants. The global optimum is f(x†) ≈ −3.32227 at x† ≈
(0.2017, 0.1500, 0.4769, 0.2753, 0.3117, 0.6573).

13

https://github.com/aminmnayebi/HesBO
https://github.com/uber-research/TuRBO
https://github.com/LeoIV/BAxUS
https://github.com/XZT008/Vanilla_BO_in_High_D
https://github.com/XZT008/Standard-GP-is-all-you-need-for-HDBO
https://github.com/XZT008/Standard-GP-is-all-you-need-for-HDBO
https://github.com/LamNgo1/boids


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

• Levy (4D). We use a 4-dimensional variant of the Levy function with effective dimension-
ality d = 4. It is defined as

f(x) = sin2(πw1)+

d−1∑
i=1

(wi−1)2
[
1 + 10 sin2(πwi + 1)

]
+(wd−1)2

[
1 + sin2(2πwd)

]
,

where wi = 1 + 1
4 (xi − 1). The search space is

[−10, 5]× [−10, 10]× [−5, 10]× [−1, 10],

and the global minimum is f(x†) = 0 attained at x† = (1, 1, 1, 1).

Real-world tasks. We also evaluate on several high-dimensional real-world applications:

• LASSO-DNA. A regression task based on a genomics dataset, where the objective is the
cross-validation error of an ℓ1-regularized linear regression model. The dimensionality is
d = 180. The dataset is taken from the LassoBench benchmark suite.

• LASSO-Leukemia. Another genomics regression problem on leukemia expression data
with dimension d = 7129. As in Lasso-DNA, the optimization task is to tune LASSO
hyperparameters to minimize prediction error. This dataset is also included in LassoBench.

• LASSO-RCV1. A text classification dataset derived from the RCV1 corpus, represented
as a sparse bag-of-words feature space. In the LassoBench paper (Šehić et al., 2022), the
dimensionality is reported as d = 19959. However, the RCV1-v2 corpus used in the official
LassoBench code actually has d = 47236 features (Lewis et al., 2004), and when directly
running the released code the dimensionality is confirmed to be d = 47236. Therefore, we
follow the code implementation and treat the dataset as d = 47236-dimensional, with the
optimization objective being the cross-validation error of the LASSO model.

• HalfCheetah. A reinforcement learning control task in the Mujoco simulator. We optimize
policy parameters of dimensionality d = 102 for the HalfCheetah-v4 environment. The
objective is to maximize episode return under the learned policy. The implementation
follows the Mujoco benchmark suite.

• Humanoid. A challenging locomotion task in the Mujoco simulator, where a humanoid
robot must learn to walk and balance. The policy search space is high-dimensional, with
d = 6392 parameters for the Humanoid-v4 environment. The optimization objective is to
achieve the highest possible episode return, reflecting stable and efficient locomotion. Our
setup is consistent with the standard Mujoco control benchmarks.

B.3 EXPERIMENTAL SETUP

In all of our main experiments, we fix the algorithmic parameters of GRABBO as follows. The
parameter η denotes the proportion of the total evaluation budget that is uniformly distributed across
all subspaces in addition to the linearly allocated evaluations. For example, if the total budget is
N and there are K subspaces, then ηN evaluations are evenly divided among all K subspaces,
while the remaining (1− η)N evaluations follow the linear allocation rule. We set η = 0.05 in our
experiments.

The parameter b controls the dimensionality expansion rule: when a subspace is expanded, each
existing dimension in the subspace is replaced by b new dimensions. In other words, one old dimen-
sion is split into b new dimensions, so the size of the subspace scales multiplicatively with b at each
expansion step. We set b = 4 in our experiments.

For the trust region mechanism, the base length parameters are: initial 0.8, maximum 1.6, and
minimum 0.0078125. The acquisition function is Thompson Sampling, and the surrogate model
is a Gaussian process with a Matérn-3/2 kernel and Automatic Relevance Determination (ARD)
lengthscales.

For SBO and VBO, since their initialization relies on Sobol sequences, which are limited to a max-
imum dimension of 21201, we modified their initialization method to uniform sampling for the
Lasso-RCV1 benchmark, whose dimensionality exceeds this Sobol limit.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B.4 REASONS FOR THE SCALABILITY FAILURE OF BASELINE METHODS

We ran the BOiDS experiments on a workstation equipped with RTX 3080 GPUs (20GB VRAM),
12 vCPUs (Intel Xeon Platinum 8352V @ 2.10GHz), and 48GB of system memory for the Lasso-
Leukemia, Lasso-RCV1, and Humanoid benchmarks. For BAxUS, we used the same workstation
with RTX 3080 GPUs on the Lasso-Leukemia and Lasso-RCV1 benchmarks, while the Humanoid
benchmark was run on an RTX A5000 GPU (24GB VRAM). Both methods encountered scalability
issues when applied to ultra-high-dimensional benchmarks, either due to GPU memory exhaustion
or excessive runtime.

In particular, BOIDS maintains multiple incumbent-guided search lines at each iteration and applies
NSGA-II for multi-objective acquisition optimization along these lines. While effective in lower-
dimensional settings, this design leads to substantial memory overhead for GP batch prediction and
candidate evaluation. On the over 6K-dimensional Humanoid, Lasso-Leukemia, and Lasso-RCV1
benchmarks, BOIDS consistently triggered out-of-memory errors. This suggests that its acquisition
optimization pipeline cannot scale to ultra-high-dimensional domains within practical GPU con-
straints.

Similarly, the BAxUS method suffers from extreme runtime inefficiency in high dimensions. On the
Lasso-RCV1 benchmark, we observe that around iteration 170, BAxUS expands the search subspace
to the full ambient space. From this point onward, the method stalls entirely: no new evaluation is
produced for over an hour. At this rate, completing the 1000-step optimization budget would require
more than 30 days of continuous execution, which is clearly infeasible in practice. Moreover, the
performance curve shows minimal improvement in the best-found value after expansion, indicating
that BAxUS fails to make effective progress in this setting.

For the humanoid benchmark, we include only advanced methods such as BAxUS, VBO, BOiDS,
and SBO as baselines. The rationale is that the work of Xu et al. (2024), which introduced SBO, con-
ducted comparisons only with VBO on their self-constructed 1003-dimensional Humanoid-Standup
subproblem. Based on this, we consider earlier methods insufficient for optimizing this problem
and therefore exclude them from comparison. In addition, for BAxUS we report average results
over only 4 runs on the humanoid benchmark, as after 400 evaluations, the BAxUS method slowed
to completing only 6 evaluations per hour, and by around 700 evaluations, the speed further de-
creased to approximately 1 evaluation per hour. Such computational overhead is prohibitive within
our available time budget. For the camera ready verison, we plan to complete and add six additional
runs of BAxUS (allowing us to provide BAxUS results averaged over 10 total runs on this task).

Overall, these observations demonstrate that baseline methods relying on full GP updates or multi-
objective subspace expansion face scalability limitations, both in terms of memory and wall-clock
time, and cannot be applied reliably to optimization problems with thousands of dimensions.

C ALATION STUDIES

We perform ablation experiments on two representative and challenging benchmarks: the 1000-
dimensional extension of the Hartmann6 function and the real-world Lasso-Leukemia task. The
Hartmann6 function is a classical synthetic benchmark with intrinsically low effective dimensional-
ity, but when embedded into 1000 dimensions it becomes extremely difficult and serves as a stress
test for whether an algorithm can identify and exploit low-dimensional structure without being
overwhelmed by the ambient dimensionality. In contrast, the Lasso-Leukemia task represents a
real-world high-dimensional regression problem with noisy and correlated features, where the in-
trinsic structure is less explicit and the optimization landscape is substantially harder to navigate
than in synthetic benchmarks. Together, these two problems highlight complementary challenges:
Hartmann6-1000 emphasizes exploiting low effective dimensionality in a vast search space, while
Lasso-Leukemia tests robustness under noisy, real-world conditions.

In Figure 2, we compare the following four variants to isolate the contribution of each component:

• BAxUS init 2: baseline BAxUS with the initial subspace dimension set to 2, serving as the
unimproved reference method.
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Figure 2: Ablation study on Hartmann6-1000 and Lasso-Leukemia benchmarks.

• BAxUS init 1: a variant that reduces the initial subspace dimension to 1, emphasizing
aggressive low-dimensional initialization.

• GRABBO expanded/ not cap: built upon BAxUS init 1, this variant introduces our pro-
posed linear allocation of evaluation budgets across subspaces. The term “expanded / not
cap” reflects benchmark-specific behavior: for Hartmann, the subspace is expanded until
reaching the full ambient dimension; for Lasso-Leukemia, no maximum expansion cap is
imposed.

• GRABBO not expanded/ cap: further modifies the above by avoiding full expansion.
For Hartmann, the subspace stops short of the ambient dimension; for Lasso-Leukemia, a
maximum cap of 1024 dimensions is enforced.

The results show that on the Hartmann benchmark, all methods except BAxUS init 2 reach errors
around or below 10−3, surpassing the current state-of-the-art. Each modification—starting from
dimension 1, applying linear allocation, and finally restricting full expansion—progressively im-
proves performance. On the real-world Lasso-Leukemia benchmark, each modification also brings
gains, though whether a cap is imposed has little effect, suggesting that low-dimensional subspace
exploration itself already plays a key role in driving optimization in extremely high-dimensional
problems.

D PARAMETER SENSITIVITY ANALYSIS

To further investigate the robustness of our method, we conduct a sensitivity analysis on the two key
parameters introduced in our algorithm: η and b. The parameter η controls the additional budget
compensation allocated to each subspace beyond the linear allocation rule, while b determines the
number of dimensions by which the search subspace is expanded at each stage. We perform these
experiments on the same two representative benchmarks as in the ablation study, namely Hartmann6-
1000 and Lasso-Leukemia. The results are shown on Figure 3.

For η, we consider five representative values: 0, 0.07, 0.05, 0.07, and 0.10. The case η = 0
corresponds to no additional compensation, meaning that the evaluation budget for each subspace
is determined strictly by linear allocation. At the other extreme, η = 0.10 represents a setting
where lower-dimensional subspaces receive a large amount of extra budget, thus emphasizing more
thorough exploration in the early stages of the search. The intermediate value η = 0.05 provides a
balanced trade-off between early exploration and later-stage refinement. We do not consider values
of η greater than 0.10, since excessive compensation would starve higher-dimensional subspaces of
evaluations, despite the fact that more complex structures typically emerge in higher dimensions.
Our intention is to mitigate insufficient exploration in the lowest-dimensional subspaces, not to
prioritize them exclusively.

For b, we vary the expansion factor across {3, 4, 5}. A value of b = 1 would imply no expansion at
all, which defeats the purpose of progressive subspace growth, while b = 2 corresponds to a very
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Figure 3: Parameter sensitivity analysis: (top) bin-based results and (bottom) eta-based results on
Hartmann6 and Leukemia benchmarks.

slow expansion where the subspace dimension only doubles each time. Such slow growth leads
to an excessive number of expansion stages, which can hinder effective low-dimensional subspace
exploration. On the other hand, b = 6 would correspond to overly aggressive exponential expansion
that rapidly escalates to the full ambient space. Hence, we restrict our study to the range b ∈ [3, 5],
which provides a meaningful balance between gradual subspace growth and timely access to higher-
dimensional information.

The sensitivity analysis indicates that setting b = 4 is most effective, as it provides a balanced
expansion rate. In addition, we capped the maximum dimensionality at 1024, which is divisible
by 4, to avoid uneven allocation of evaluation budgets across subspaces that would otherwise result
from the dimensionality limit. For η, we observe that all settings except η = 0, which corresponds
to purely linear allocation of evaluations with respect to dimensionality, achieve performance close
to or better than the strongest baseline. This highlights the importance of incorporating additional
uniform allocation in order to enhance optimization performance.

E LLM USAGE STATEMENT

Large language models (LLMs) were used only as auxiliary tools to improve the writing and presen-
tation of this paper and to assist in code implementation (e.g., debugging and code formatting). They
were not involved in the generation or refinement of research ideas, experimental design, or theoret-
ical developments. The authors take full responsibility for the entire content and the correctness of
the code.
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