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ABSTRACT

Online interactions with the environment to collect data samples for training a
Reinforcement Learning agent is not always feasible due to economic and safety
concerns. The goal of Offline Reinforcement Learning (RL) is to address this
problem by learning effective policies using previously collected datasets. Stan-
dard off-policy RL algorithms are prone to overestimations of the values of out-
of-distribution (less explored) actions and are hence unsuitable for Offline RL.
Behavior regularization, which constraints the learned policy within the support
set of the dataset, has been proposed to tackle the limitations of standard off-policy
algorithms. In this paper, we improve the behavior regularized offline reinforce-
ment learning and propose BRAC+. We use an analytical upper bound on KL
divergence as the behavior regularizor to reduce variance associated with sample
based estimations. Additionally, we employ state-dependent Lagrange multipli-
ers for the regularization term to avoid distributing KL divergence penalty across
all states of the sampled batch. The proposed Lagrange multipliers allow more
freedom of deviation to high probability (more explored) states leading to better
rewards while simultaneously restricting low probability (less explored) states to
prevent out-of-distribution actions. To prevent catastrophic performance degra-
dation due to rare out-of-distribution actions, we add a gradient penalty term to
the policy evaluation objective to penalize the gradient of the Q value w.r.t the
out-of-distribution actions. By doing so, the Q values evaluated at the out-of-
distribution actions are bounded. On challenging offline RL benchmarks, BRAC+
outperforms the state-of-the-art model-free and model-based approaches.

1 INTRODUCTION

Reinforcement Learning (RL) has shown great success in a wide range of applications including
board games (Silver et al., 2016), strategy games (Vinyals et al., 2019), energy systems (Zhang
et al., 2019), robotics (Lin, 1992), recommendation systems (Choi et al., 2018), etc. The success of
RL relies heavily on extensive online interactions with the environment for exploration. However,
this is not always feasible in the real world as it can be expensive or dangerous (Levine et al., 2020).

Offline RL, also known as batch RL, avoids online interactions with the environment by learning
from a static dataset that is collected in an offline manner (Levine et al., 2020). While standard off-
policy RL algorithms (Mnih et al., 2013; Lillicrap et al., 2016; Haarnoja et al., 2018a) can, in theory,
be employed to learn from an offline data, in practice, they perform poorly due to distributional shift
between the behavior policy (probability distribution of actions conditioned on states as observed in
the dataset) of the collected dataset and the learned policy (Levine et al., 2020). The distributional
shift manifests itself in form of overestimation of the out-of-distribution (OOD) actions leading to
erroneous Bellman backups.

Prior works tackle this problem via behavior regularization (Fujimoto et al., 2018b; Kumar et al.,
2019; Wu et al., 2019; Siegel et al., 2020). This ensures that the learned policy stays “close” to the
behavior policy. This is achieved by adding a regularization term that calculates the f -divergence
between the learned policy and the behavior policy. Kernel Maximum Mean Discrepancy (MMD)
(Gretton et al., 2007), Wasserstein distance and KL divergence are widely used (Wu et al., 2019).
The regularization term is either fixed (Wu et al., 2019), or tuned via dual gradient descent (Kumar
et al., 2019), or applied using a trust region objective (Siegel et al., 2020).
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In this paper, we propose improvements to the Behavior Regularized Actor Critic (BRAC) algorithm
presented in (Wu et al., 2019). To obtain the same, we observe that sample based estimation of di-
vergence measures is computationally expensive and prone to higher variance. Therefore, to reduce
variance, we derive an analytical upper bound on the KL divergence measure as the regularization
term in the objective function. Moreover, we show that current works that apply the regularization
term i.e. the divergence measure, on the entire batch, end up distributing the penalty over all states
in the batch in amounts inversely proportional to the state’s probability of occurrence in the batch.
This needlessly restricts the deviation of highly explored states while allowing less explored ones to
deviate farther leading to OOD actions. To address the same, we employ state dependent Lagrange
multipliers for the regularization terms and automatically tune their strength using state-wise dual
gradient descent. In addition, the performance of the learned agent trained using prior methods
often deteriorates over the course of training. We found that if the learned Q function generalizes
such that the gradient of the Q function w.r.t the OOD actions is monotonically increasing, behavior
regularization fails to keep such actions within the support set. To mitigate this issue, we penalize
the gradient of the Q function w.r.t the OOD actions by adding a gradient penalty term to the pol-
icy evaluation objective. This reduces the policy improvement at OOD actions to the problem of
minimizing the divergence between the learned policy and the behavior policy.

We call our improved algorithm BRAC+ following (Wu et al., 2019). Our experiments suggest that
BRAC+ outperforms existing state-of-the-art model-free and model-based offline RL algorithms in
various datasets on the D4RL benchmark (Fu et al., 2020).

2 BACKGROUND

Markov Decision Process RL algorithms aim to solve Markov Decision Process (MDP) with
unknown dynamics. A Markov decision process (Sutton & Barto, 2018) is defined as a tuple <
S,A, R, P, µ >, where S is the set of states, A is the set of actions, R(s, a, s′) : S × A × S → R
defines the intermediate reward when the agent transitions from state s to s′ by taking action a,
P (s′|s, a) : S × A × S → [0, 1] defines the probability when the agent transitions from state s
to s′ by taking action a, µ : S → [0, 1] defines the starting state distribution. The objective of
reinforcement learning is to select policy π : µ→ P (A) to maximize the following objective:

J(π) = E
s0∼µ,at∼π(·|st)
st+1∼P (·|st,at)

[

∞∑
t=0

γtR(st, at, st+1)] (1)

Offline Reinforcement Learning The goal of offline RL is to learn policy πθ from a fixed dataset
D = {(si, ai, s′i, ri)}Ni=1 consisting of single step transitions {(si, ai, s′i, ri)}. The dataset is as-
sumed to be collected using a behavior policy πβ which denotes the conditional distribution p(a|s)
observed in the dataset. Note that πβ may consist of multi-modal policy distribution. In principle,
standard off-policy RL algorithms using a replay buffer (Mnih et al., 2013; Lillicrap et al., 2016;
Haarnoja et al., 2018a) can directly learn fromD. The key challenge resides in the policy evaluation
step:

Qψ = arg min
ψ

[(Qψ(s, a)− (r(s, a) + γEa′∼πθQψ′ (s′, a′)))]2 (policy evaluation) (2)

In this step, the target Q value depends on the learned policy. If the learned policy distribution
πθ diverges from the data distribution πβ , it results in evaluation of target Q values using out-
of-distribution (OOD) actions. Such evaluations are prone to errors. Erroneous overestimation
of values get exploited by the policy improvement, preventing the algorithm from learning useful
policies. In order to avoid such cases, behavior regularization is adopted to force the learned policy
to stay “close” to the behavior policy (Fujimoto et al., 2018b; Kumar et al., 2019; Wu et al., 2019).

3 IMPROVING BEHAVIOR REGULARIZED OFFLINE REINFORCEMENT
LEARNING

In this section, we discuss and propose three non-trivial improvements to the Behavior Regularized
Actor Critic (BRAC) offline reinforcement learning (Wu et al., 2019). BRAC (Wu et al., 2019)
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augments either the policy improvement or the policy evaluation step with a penalty term to constrain
the policy within the support set of the behavior policy. For simplicity of illustration, we only
consider the policy improvement step (Wu et al., 2019):

max
πθ

E(s,a,r,s′)∼D[Ea′′∼πθ(·|s)[Qψ(s, a′′)]− αD̂(πθ(·|s), πβ(·|s))] (3)

Here, D̂ is a selected f -divergence (Csiszár, 1972) measure used for behavior regularization. Zoom-
ing into the regularization term, we get:∑

s∈S
(Psα)D̂(πθ(·|s), πβ(·|s)) (4)

In the equation above, S denotes the states that occur in a single sampled batch and Ps is the
probability of state s in the sampled batch. The first two improvements that we propose are targeted
towards the following two terms in Equation 4: (1) The divergence term D̂ which for each fixed πθ
determines the impact actions have on the overall objective conditional on the state, and (2) the term
(Psα) which determines the impact the “divergence penalty” of each state will have on the overall
objective function. Note that this term is dependent upon the probability of the occurrence of state in
the sampled batch. For (1), we propose to use an analytical upper bound of KL divergence to reduce
variance. For (2), we propose to decouple the impact of “divergence penalty” of each state from
the probability of its occurrence. Detailed explanation of the two improvements and the rationale
behind them follows in the next two sub-sections.

3.1 REGULARIZATION METHOD

Behavior regularization is used to constrain the learned policy with the support set of the behavior
policy. In other words, it ensures that the “difference” between the probability distributions of the
learned policy πθ(·|s) and behavior policy πβ(·|s) is small. The following divergence measures are
most widely used in the community:

Kernel MMD Kernel Maximum Mean Discrepancy (MMD) (Gretton et al., 2007) was first intro-
duced in (Kumar et al., 2019) to penalize the policy from diverging from the behavior policy:

MMD2
k(π(·|s), πb(·|s)) = E

x,x′∼π(·|s)
[K(x, x′)]− 2 E

x∼π(·|s)
y∼πb(·|s)

[K(x, y)] + E
y,y′∼πb(·|s)

[K(y, y′)] (5)

where K is a kernel function. Symmetric kernel functions such as Laplacian and Gaussian kernels
are typically used (Gretton et al., 2007).

KL divergence For two probability distributions P and Q on some probability space χ, the KL-
Divergence from Q to P is given as

DKL(P,Q) =

∫
x∼χ

P (x) log
P (x)

Q(x)
dx (6)

KL divergence is assymetric and both DKL(πθ(·|s), πb(·|s)) and DKL(πb(·|s), πθ(·|s)) are valid.
However, DKL(πb(·|s), πθ(·|s)) is not suitable because it requires πθ(a|s) 6= 0 when πb(a|s) 6= 0,
for each a. It may assign πθ(a|s) > 0 when πb(a|s) = 0, producing out of distribution actions.
Therefore, DKL(πθ(·|s), πb(·|s)) is used for regularization.

3.1.1 ANALYTICAL KL DIVERGENCE UPPER BOUND

All the existing behavior regularized methods estimate the divergence via samples (Kumar et al.,
2019; Wu et al., 2019). While in theory it produces an unbiased estimator, it requires a large number
of samples to reduce the variance.

To stabilize the performance, the key idea is to have a low variance estimator for KL divergence. We
obtain this by deriving an upper bound on the KL divergence between the learned policy πθ and the
behavior policy πβ that can be computed analytically.
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Assume we learn πβ using a latent variable model (e.g. VAE (Kingma & Welling, 2014)) with
latent variable Z. According to the evidence lower bound (ELBO), we obtain log πβ(a|s) ≥
Ez∼q(z)[log p(a|s, z)]−DKL(q(z)||p(z)), where q(z) is the approximated posterior distribution and
p(z) is the prior. Then, the KL divergence is bounded by:

DKL(πθ(·|s)||πβ(·|s)) = Ea∼πθ [log πθ(a|s)]− Ea∼πθ [log πβ(a|s)]
≤ Ea∼πθ [log πθ(a|s)]− Ea∼πθ [Ez∼q(z)[log p(a|s, z)]−DKL(q(z)||p(z))]
= Ea∼πθ,z∼q(z)[DKL(πθ(·|s)||p(·|s, z)) +DKL(q(z)||p(z))] (7)

Thus, if we choose p(·|s, z) to be a tractable distribution, Equation 7 can be computed analytically.
Note that although p(·|s, z) has a special form (e.g. Gaussian), the latent variable model can in
theory represent any probability distribution without sacrificing the expressiveness. In practice, we
choose p(·|s, z) to be a Gaussian distribution.

3.2 STATE DEPENDENT LAGRANGE MULTIPLIER

From the term (Psα) in Equation 4, one can infer that the “penalty budget” of divergence mea-
sure gets distributed among the states in amounts inversely proportional to the probability of the
occurrence of the states in the sampled batch. If we assume the batches are sampled uniformly, this
implies that the states which are more numerous in the offline dataset D i.e. the states that have
been explored more thoroughly are restricted from deviating from the behavior policy. Whereas the
less numerous state that have had limited exploration enjoy more freedom for deviation. This is
undesirable as restricting highly explored states is overly conservative while allowing less explored
states to deviate can lead to OOD actions.

To address this we add a state wise constraint for KL divergence as follows:

max
πθ

Es∼D[Ea′∼πθ(·|s)[Qψ(s, a′)]] s. t. DKL(πθ(·|s), πβ(·|s)) ≤ εKL,∀s (policy improvement)

This translates to assignment of state dependent Lagrange multipliers when solved using dual gra-
dient descent:

max
πθ

Es∼D[Ea′∼πθ(·|s)[Qψ(s, a′)− α(s)DKL(πθ(·|s), πβ(·|s))]] (8)

Maintaining a Lagrange multiplier for each state is impractical for large datasets. In practice, we
parameterize α(s) with a neural network.

3.3 GRADIENT PENALIZED POLICY EVALUATION

The fundamental challenge in offline reinforcement learning is to mitigate the impact of erroneous
Q values that are evaluated at out-of-distribution actions and used in policy evaluation. Due to the
limited representation capacity of neural networks, such actions are unavoidable for large datasets,
even with state-dependent behavior regularization. CQL (Kumar et al., 2020) resolves this problem
by optimizing a conservative lower bound of the Q value. The key idea in this paper is to bound
the Q value at the out-of-distribution actions such that their values are not greater than the Q
value of in-distribution actions. We achieve this by augmenting the policy evaluation step with a
gradient penalty regularization term. To elaborate our approach, we first analyze the gradient of the
policy improvement step:

∇θJ ≈
1

N

N∑
i=1

∇aiQφ(s, a)|s=si,a=ai∇θπθ(a|s)|s=si,a=ai − α(si)∇θ DKL(πθ(·|s), πβ(·|s)) (9)

If the current policy produces out-of-distribution actions and the Q network erroneously generalizes
in such a way that the gradient of Q network is monotonically increasing, this leads to the unbounded
value of the Q network and the failure of the behavior regularization. We created a toy example to
illustrate this phenomenon in Appendix A. The analysis suggests that if we penalize the gradient
of the Q network with respect to the out-of-distribution actions such that they are close to zero,
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Algorithm 1 BRAC+: Improved Behavior Regularized Actor Critic

1: Train the behavior policy πβ on the offline dataset D = {(si, ai, ri, s
′

i)}Ni=1 via maximum
likelihood estimation: πβ = arg maxπβ

∑N
i=1 log πβ(ai|si)

2: Train initial policy: πθ = arg minπθ∈ΠDKL(π, πβ)

3: Train initial Q network: Qψ = arg minψ[(Qψ(s, a)− (r(s, a) + γEa′∼πθQψ′ (s′, a′)))]2

4: for e = 1 : E do
5: for t = 1 : T do
6: Update Q network using Equation 10
7: Update the policy using Equation 7
8: Update α via dual gradient descent: α(s)← α(s) + λα(DKL(πθ(·|s), πβ(·|s))− εKL)
9: Update β via dual gradient descent: β ← β + λβ(H(πθ(·|s))−H0)

10: Update the target network ψ
′

= τψ + (1− τ)ψ
′

11: end for
12: end for

performing policy improvement step simply reduces to minimizing the KL divergence. Inspired
from (Gulrajani et al., 2017), we add a gradient penalty term to the policy evaluation step as:

min
ψ

E(s,a)∼D((Qψ(s, a)− r(s, a) + γEa′∼πθQψ′ (s′, a′))2

+ λEa′′∼πθ(·|s)(||∇a′′Qψ(s, a
′′
)||2f(DKL(πθ(·|s), πβ(·|s))− εGP))

(10)

where f is a non-decreasing function and εGP is the threshold for gradient penalty. In this paper,
we set f to be the Heaviside step function (or indicator). Other variants such as its soft version
(sigmoid function) is left for future work. Setting εGP = εKL is too conservative because it
prevents generalization. In practice, we set εGP at epoch t to be µKL + σKL, where µKL and σKL
is the mean and standard deviation of the KL divergence for all the states in the dataset at epoch
t− 1. In addition, we found that λ = 0.1 works well for all the tasks.

4 RELATED WORK

We briefly summarize prior works in offline RL and discuss their relationship with our approach.
As discussed in Section 1, the fundamental challenge in learning from a static data is to avoid
out-of-distribution actions (Levine et al., 2020). This requires solving two problems: 1) estima-
tion of behavior policy, 2) quantification of out-of-distribution actions. We follow BCQ (Fujimoto
et al., 2018b), BEAR (Kumar et al., 2019) and BRAC (Wu et al., 2019) by learning the behavior
policy using a conditional VAE (Kingma & Welling, 2014). To avoid out-of-distribution actions,
BCQ generates actions in the target values by perturbing the behavior policy. However, this is
over-pessimistic in most of the cases. BRAC (Wu et al., 2019) constrains the policy using vari-
ous sample-based f -divergence measures including MMD, Wasserstein distance and KL divergence
with penalized policy improvement or policy evaluation. BEAR (Kumar et al., 2019) is an instance
of BRAC with penalized policy improvement using MMD (Gretton et al., 2007). Sample-based
estimation is computationally expensive and suffers from high variance. In contrast, our method
uses an analytical upper-bound of the KL divergence to constrain the distance between the learned
policy and the behavior policy. It is both computationally efficient and has low variance. (Siegel
et al., 2020) solves trust-region objective instead of using penalty. CQL (Kumar et al., 2020) avoids
estimating the behavior policy by learning a conservative Q function that lower-bounds its true
value. Hyperparameter search is another challenging problem in offline RL. (Lee et al., 2020) uses
a gradient-based optimization of the hyperparameter using held-out data. MOPO (Yu et al., 2020)
follows MBPO Janner et al. (2019) with additional reward penalty on unreliable model-generated
transitions. MBOP (Argenson & Dulac-Arnold, 2020) learns the dynamics mode, the behavior
policy and a truncated value function to perform online planning. (Kidambi et al., 2020) learns a
surrogate MDP using the dataset, such that taking out-of-distribution actions transit to the terminal
state. The out-of-distribution actions are detected using the agreement of model ensembles.
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5 EXPERIMENTS

Our experiments1 aim to answer the following questions: 1) How does the performance of our
improvements compare with state-of-the-art model-free and model-based offline RL methods? 2)
How does the use of analytical variational upper bound on KL divergence for regularization term
compare with sampled-based MMD? 3) How does the state-dependent Lagrange multiplier based
regularization (state-wise regularizor) compare with global policy regularization? 4) Does the gradi-
ent penalized policy evaluation improve the stability during the training? To answer these questions,
we evaluate our methods on a subset of the D4RL (Fu et al., 2020) benchmark. We consider three
locomotion tasks (hopper, walker2d, and halfcheetah) and four types of datasets: 1) random (rand):
collect the interactions of a run of random policy for 1M steps to create the dataset, 2) medium
(med): collect the interactions of a run of medium quality policy for 1M steps as the dataset, 3)
medium-expert (med-exp): run a medium quality policy and an expert quality policy for 1M steps,
respectively, and combine their interactions to create the dataset, 4) mixed (medium-replay): train
a policy using SAC (Haarnoja et al., 2018a) until the performance of the learned policy exceeds a
pre-determined threshold, and take the replay buffer as the dataset. In addition, we consider more
complex Adroit tasks (Rajeswaran et al., 2018) that requires controlling a 24-DoF robotic hand,
using limited data from human demonstrations.

We compare against state-of-the-art model-free and model-based baselines, including behavior
cloning, BEAR (Kumar et al., 2019) that constrains the learned policy within the support of the
behavior policy using sampled MMD, BRAC-p/v (Wu et al., 2019) that constrains the learned pol-
icy within the support of the behavior policy using various sample-based f -divergences to penalize
either the policy improvement (p) or the policy evaluation (v), CQL(H) (Kumar et al., 2020) that
learns a Q function that lower-bounds its true value. We also compare against model-based ap-
proaches including MOPO (Yu et al., 2020) that follows MBPO (Janner et al., 2019) with additional
reward penalties and MBOP (Argenson & Dulac-Arnold, 2020) that learns an offline model to per-
form online planning.

5.1 COMPARATIVE RESULTS

Table 1: Results for OpenAI gym (Brockman et al., 2016) environments in the D4RL (Fu et al.,
2020) datasets. For each task, we train for 1 million gradient steps and report the performance by
running the policy obtained at the last epoch of the training for 100 episodes, averaged over 4 random
seeds with standard deviation. Each number is the normalized score as proposed in (Fu et al., 2020).
Please refer to (Fu et al., 2020) for results on more baselines.

Task Name Model-Free Model-Based

BEAR BRAC-p/v CQL(H) BRAC+ (Ours) MOPO MBOP

halfcheetah-rand 25.1 24.1/31.2 35.4 26.4±1.0 31.9±2.8 6.3±4.0
walker2d-rand 7.3 -0.2/1.9 7.0 16.7± 2.3 13.0±2.6 8.1± 5.5
hopper-rand 11.4 11.0/12.2 10.8 12.5±0.3 13.3±1.6 10.8± 0.3

halfcheetah-med 41.7 43.8/46.3 44.4 46.6±0.6 40.2± 2.7 44.6±0.8
walker2d-med 59.1 77.5/81.1 79.2 75.1±3.5 14.0±10.1 41.0 ± 29.4
hopper-med 52.1 32.7/31.1 58.0 53.2±3.1 26.5±3.7 48.8 ± 26.8

halfcheetah-med-exp 53.4 44.2/41.9 62.4 61.2±2.8 57.9± 24.8 105.9± 17.8
walker2d-med-exp 40.1 76.9/81.6 98.7 95.3± 5.9 55.0± 19.1 70.2 ± 36.2
hopper-med-exp 96.3 1.9/0.8 111.0 112.9±0.1 51.7±42.9 55.1 ± 44.3

halfcheetah-mixed 38.6 45.4/47.7 46.2 46.1±0.2 54.0±2.6 42.3 ± 0.9
walker2d-mixed 19.2 -0.3/0.9 26.7 39.0±4.6 42.7±8.3 9.7 ± 5.3
hopper-mixed 33.7 0.6/0.6 48.6 72.7±18.9 92.5±6.3 12.4 ± 5.8

Performance on multi-modal datasets We first compare the performance on multi-modal
datasets i.e. med-exp and mixed datasets. Results shown in Table 1 suggest that our method outper-
forms various model-free baselines on most of the multi-modal datasets, especially on hopper-mix

1Our code will be released at https://github.com/xxx/xxx.
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Table 2: Results for Adroit tasks with human demonstrations in the D4RL (Fu et al., 2020) datasets.
The numbers are reported by following the same procedure as in Table 1 except we run the policy
obtained at the last epoch of training for 1000 episodes due to large variance across different runs.

Task Name BC BEAR BRAC-p/v CQL(H) CQL(ρ) BRAC+ (Ours)
pen-human 34.4 -1.0 8.1/0.6 37.5 55.8 64.9± 1.6

hammer-human 1.5 0.3 0.3/0.2 4.4 2.1 3.9 ± 0.9
door-human 0.5 -0.3 -0.3/-0.3 9.9 9.1 11.5± 1.2

relocate-human 0.0 -0.3 -0.3/-0.3 0.20 0.35 0.20 ± 0.11

and walker2d-mix by up to 1.5x. Compared with BEAR (Kumar et al., 2019), our performance
improvement arises from the advantage of the KL divergence over the kernel MMD (see discussions
in Appendix B). The choice of parameters in CQL(H) makes it too conservative to achieve higher
performance.

Performance on single-modal datasets The performance of our method on single-modal (rand
and med) dataset outperforms or matches with baseline methods as evident from Table 1 except
halfcheetah-random dataset. We observe that the performance is very sensitive to the choice of
target policy entropy. We hypothesize that the our choice of target policy entropy in the halfcheetah-
random task makes it hard to compose correct sub-optimal policies from a random collected dataset.
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Figure 1: Left: learning curve of pen-human-v0 task. Right: the average Q value of the first ensem-
ble over the course of training. Both curves are smoothed by a factor of 20.

Performance on datasets with human demonstrations The performance on Adroit tasks is
shown in Table 2. These tasks are substantially harder than OpenAI gym tasks due to limited training
data in a high dimensional observation and action space. Our method makes non-trivial improve-
ment over the behavior cloning. Compared with the state-of-the-art approaches, our approach is
superior on half of the tasks and matches the asymptotic performance on the remaining ones. Fig-
ure 1 shows that the Q value is bounded when the gradient penalized policy evaluation technique is
employed. On the contrary, the Q value without the gradient penalized policy evaluation increases
exponentially. Note that we use MMD with Laplacian kernel for Adroit tasks. We observe that the
KL-based regularization struggles with datasets collected with narrow behavior distributions (have
large density within a tiny space and almost zero density anywhere else). In such a case, the KL
divergence is sensitive to tiny policy changes, making gradient-based optimization hard to converge.

5.2 ABLATION STUDY

To answer question (2), (3) and (4), we conduct a thorough ablation study on BRAC+ on various
tasks with different data collection policies (hopper-mixed, walker2d-medium-expert, halfcheetah-
medium).

Sampled-based MMD vs. analytical upper bound KL The results of using sampled-based
MMD versus analytical upper bound KL are shown in Figure 2a. The difference of the perfor-
mance in the single-modal dataset (halfcheetah-medium) is negligible. However, the performance
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(a) MMD vs. forward KL. Global Lagrange multiplier. No gradient penalty.
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(b) Global vs. state-wise Lagrange multiplier. Forward KL. No gradient penalty.
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(c) Gradient penalty vs. No gradient penalty. State-wise Lagrange multiplier. Forward KL.

Figure 2: Figures of ablation study. Each setting is repeated for 4 random seeds. The curve is the
mean and the shaded area is the standard deviation. The curves are smoothed by a factor of 20. The
number of gradient steps per epoch is 2000. To make fair comparison, we only substitute KL diver-
gence with MMD-based measurement with additional MMD-specific hyperparameter tuning. The
other design choices are different from (Kumar et al., 2019). Details can be found in Appendix D.

on multi-modal datasets is varied. Our toy example in Appendix B suggests that MMD and the
backward KL divergence tends to cover all the “modes” in the behavior policy while the forward
KL divergence tends to seek one of the “mode” in the behavior policy. Note that this argument is only
valid if the learned policy is single-modal (e.g. Gaussian distribution). The superior performance
in the walker2d-medium-expert when using forward KL regularization supports this argument. The
results in hopper-mixed task seems to be contradictory. We hypothesize that since the analytical KL
has low variance, the policy quickly adopts the out-of-distribution actions when available while in
sample-based methods, such adoption is slower due to higher variance in the policy regularization.

State-wise vs. global regularization The performance of using global and state-wise regulariza-
tion on various tasks is shown in Figure 2b. It is noticeable that the state-wise regularization im-
proves the performance in hopper-mixed and walker2d-medium-expert task, while the performance
in halfcheetah-medium does not show much improvement. To understand the consequence of the
state-wise regularization, we plot the histogram of the KL divergence of all the states in the dataset
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Figure 3: Histogram of the KL divergence of all the states in the dataset with global and state-wise
Lagrange multiplier.

in Figure 3. The KL divergence histogram of using state-wise regularization is more concentrated
around the threshold while the global regularization is more sporadic. Strictly enforcing the policy
regularization around the threshold helps avoid out-of-distribution actions, that is often caused by a
few states in the dataset.

Gradient penalty vs. no gradient penalty Even with policy regularization, evaluating the Q
value at the out-of-distribution actions can’t be fully avoided. Thus, it is important to bound the Q
value at the out-of-distribution actions such that their values are not greater than the Q value of in-
distribution actions. Figure 2c shows the performance with and without gradient penalty in the policy
evaluation step. While there is little difference in the hopper-mixed and the halfcheetah-medium
task, the performance in the walker2d-medium-expert task stabilizes with the gradient penalized
policy evaluation. On the contrary, the performance deteriorates over time without gradient penalty.
Please refer to Appendix D for more analysis.

6 DISCUSSIONS AND LIMITATIONS

There are several limitations of our approach. The discussion in Appendix D suggests that although
KL-regularized offline policy optimization is good at combining sub-optimal policies, they may
stuck at local optimums; and they are hard to escape. Another drawback is that the threshold value
is hard to set. In our experiments, we try a few numbers that are above the minimum possible KL
threshold, which is obtained by training a policy that minimizes that KL divergence.

Finally, we conjecture that the behavior-regularized approach is not sufficient to tackle offline RL
problems since it fully ignores the state distribution. To see this, we can create a dataset that only
adds a few trajectories from an expert policy to a dataset collected by a low-quality policy. If the
low-quality policy doesn’t visit the “good” states in the expert policy (can’t combine sub-optimal
policies), behavior-regularized approach leads to a policy that imitates the expert policy. Such imita-
tion is likely to fail due to compounding errors (Ross et al., 2010). The right approach for this dataset
is to completely ignore expert trajectories and combine sub-optimal policies in the low-quality re-
gions. To achieve this, we need to consider the state distribution as the density of the “good” states
is very low.

7 CONCLUSION

In this paper, we improved the behavior regularized offline reinforcement learning by proposing
a low-variance upper bound of the KL divergence estimator to reduce variance, state-dependent
Lagrange multiplier to allow more freedom of deviation to high probability states while restricting
low probability states and gradient penalized policy evaluation such that the Q values of out-of-
distribution actions are not greater than those of in-distribution actions. Our experimental results on
challenging benchmarks illustrate the benefits of our improvements.
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Figure 4: Fitting a regression model with out of distribution data

A TOY EXAMPLE TO DEMONSTRATE BOUNDING THE VALUE OF THE OUT OF
DISTRIBUTION INPUTS VIA GRADIENT PENALTY

To demonstrate the effectiveness of the gradient penalty to enforce the bound of the predicted values
of a regression model, we conduct experiments by fitting a regression model with in-distribution data
while minimizing the norm of the gradient at out of distribution inputs. Specifically, we generate
dataset {(xi, yi)}N=100

i=1 as xi ∼ U(−0.8, 0.8), yi = 5 sin(π2xi) + εi, where εi ∼ N (0, 0.5). In
addition, we generate out of distribution dataset {x̃}M=100

j=1 as x̃ ∼ U(−2,−0.8) ∪ U(0.8, 2). We
fit a regression model f , represented as a two-layer feed-forward neural network. The size of the
hidden layer is 64 and the activation is RELU. We use Adam (Kingma & Ba, 2015) optimizer with
learning rate 0.01. In addition to the standard MSE loss, we add a gradient penalty term inspired
from (Gulrajani et al., 2017) such that the gradient at the out of distribution inputs is penalized. The
overall loss function is:

L =
1

N

N∑
i=1

(f(xi)− yi)2 + λ · 1

M

M∑
j=1

||∇x̃f(x̃j)||2 (11)

In our experiments, we set λ = 0.1. We fit f with and without the gradient penalty term. Figure 4
shows the predicted value at both in-distribution and out-of-distribution inputs. The results suggest
that: 1) both models generate good prediction for in-distribution inputs ([−0.8, 0.8]), which is be-
tween the two red lines 2) both models generalize well at the out-of-distribution regions between
the red line and the blue line ([−1,−0.8] and [0.8, 1]). 3) both models erroneously generalize be-
yond the blue lines ([−2,−1] and [1, 2]). However, the value of the model trained without gradient
penalty keep on increasing or decreasing while the model trained with gradient penalty has zero
gradient. This suggests that with proper out-of-distribution regularization, the gradient direction at
the out-of-distribution inputs point to the in-distribution regions.

B VISUALIZATION OF VARIOUS PROBABILITY DIVERGENCE MEASUREMENT

To understand the impact of forward KL (DKL(πθ||πb)), backward KL (DKL(πb||πθ)) and MMD
distance in constraining the learned policy within the support set defined by the behavior policy,
we create a toy example as shown in Figure 5. The black curves in the two figures represent the
behavior distribution πb. The orange, blue and green curves in the graph show forward KL, backward
KL and MMD with Laplacian kernel between πb and πθ = N (x, σ), respectively, where x is a
variable between [−10, 10] and σ is fixed. If we draw a horizontal line (red), the area below this
line defines the support set. In the left figure, the behavior policy is single-modal and there is
little difference between the three metrics. However, when the behavior policy is multi-modal, the
forward KL divergence contains two bottoms, each corresponds to the peak probability density of
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Figure 5: The black curve in the two figures represents the behavior distribution πb. The orange,
blue and green curves in the graph show forward KL, backward KL and MMD with Laplacian kernel
between πb and πθ = N (x, σ), respectively, where x is a variable between [−10, 10] and σ is fixed.

the behavior policy. However, in backward KL and MMD distance, the policy with the smallest
divergence actually has low probability density in the behavior policy. This is because minimizing
the forward KL leads to “mode seeking” while minimizing the backward KL and MMD leads to
“mode covering”. These two terms are heavily used when talking about generative models such
as VAEs and GANs (Ke et al., 2019). When performing offline RL in multi-modal dataset, it is
necessary to combine sub-optimal actions in the behavior policy, which is in fact “mode seeking”.
Mode covering typically leads to out-of-distribution actions even when the divergence measurement
is small (e.g. the area between the two modes are actually out-of-distribution) while mode seeking
may be stuck at a local optimum (e.g. moving across different “modes” is hard).

In the left figure, πb = N (0, 1). In the right figure, πb is a mixture of two Gaussian distributions:
N (−1.5, 0.3) and N (1, 0.5). The weight of each component is 0.3 and 0.7, respectively. σ is set to
0.2.

C MISSING BACKGROUND

C.1 VARIATIONAL AUTO-ENCODER

A variational auto-encoder (VAE) (Kingma & Welling, 2014) is a generative model that aims to learn
the data distribution p(X) given a set of observations {xi}Ni=1. While directly optimizing p(X) is
intractable, we can optimize its evidence lower-bound (ELBO):

log p(X) ≥ Ez∼q(z)[log p(X|z)]−DKL(q(z)||p(z)) (12)

where q(Z) is the variational distribution and p(Z) is the prior. In VAE, q(Z) is q(Z|X) so that
it is an auto-encoder. Optimizing Equation 12 using gradient descent requires back-propagate the
gradient through a sample operator. Fortunately, if the latent variable is a multivariate Gaussian dis-
tribution, we can use re-parametrization trick. The tightness of the upper bound is the KL divergence
between the approximated posterior distribution and the true posterior distribution.

D MISSING ABLATION STUDY

For fair comparison between MMD and KL divergence in policy regularization, we only substitute
KL divergence with MMD-based measurement with additional MMD-specific hyperparameter tun-
ing. In the original implementation (Kumar et al., 2019), the author uses 4 ensembles of Q network
and compute the Q value by a convex combination of both the minimum of the ensembles and the
maximum of the ensembles. In our implementation, we follow the standard architecture in the online
setting: we only use 2 ensembles of Q networks and compute the Q value as their minimum. In this
work, we only compare against MMD with Laplacian kernels. The MMD-specific hyper-parameters
are shown in Table 3.
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Difference in training the behavior policy (Kumar et al., 2019) learns the behavior policy as
a β-VAE (Higgins et al., 2017) with MSE reconstruction loss. This is equivalent to maximizing
the log probability of a Gaussian distribution with fixed variance as the decoder output. However,
the variational lower bound does not hold in β-VAE that breaks our derivation. In this paper, we
learn the behavior policy as a regular VAE. The decoder outputs a Gaussian distribution with input-
conditioned mean and variance.

Gradient penalized policy evaluation Figure 6 suggests that the L2 norm of the gradient at the
out-of-distribution actions with the gradient penalty is much lower than that without the gradient
penalty.
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Figure 6: Histogram of the L2 norm of the gradients for out-of-distribution actions

Out-of-distribution generalization Lastly, we discuss the out-of-distribution generalization. In
offline RL, we rate the learned policy with three levels. Level I policies are able to strictly follow
the behavior policy. Level II policies are able to combine sub-optimal policies in the bahevior
policy. Level III policies are able to generalize to out-of-distribution actions. To visualize the out-
of-distribution generalization, we plot the KL divergence of the learned policy on the testing state
distribution in Figure 7. In the hopper-mixed and halfcheetah-medium task, there are periodic spikes,
suggesting that the agents visit states which are not in the training distribution at test time. Although
the results suggest that such generalization is correct, our approach is unable to explicitly quantify
it. Thus, we leave it as future work.

0 200 400 600 800
t

0

2

4

6

8

10

kl

hopper-medium-replay-v0 (εKL=3)

0 200 400 600 800 1000
t

0

2

4

6

8

10

kl

walker2d-medium-expert-v0 (εKL=5)

0 200 400 600 800 1000
t

0

2

4

6

8

10

kl

halfcheetah-medium-v0 (εKL=4)

Figure 7: The KL divergence between the learned policy and the behavior policy on the testing data
distribution. The x axis is the step in an episode.

Performance sensitivity to the choices of target entropy During our experiments, we found that
the performance using the KL divergence as the behavior regularization method is very sensitive to
the choice of the target entropy. Policies trained with a larger entropy may not be able to capture the
narrow expert distribution within the behavior policy distribution. This phenomenon is most typical
in the halfcheetah-medium-expert dataset as depicted in Figure 8.
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Figure 8: The performance of the halfcheetah-medium-expert task on various choices of the target
entropy.

Table 3: MMD-specific Hyper-parameters
Hyper-parameter hopper-medium-replay walker-medium-expert halfcheetah-medium

σ in Laplacian kernel 10 20 10
εMMD 0.2 0.2 0.3

Number of samples 10 10 10

E MISSING RELATED WORK

For KL regularized policy improvement with fixed temperature, the optimal policy has a closed
form solution (Wang et al., 2020). Although it avoids estimating the behavior policy, the issue with
fixed temperature is that all the states are penalized equally. This leads to over-pessimistic for states
with higher occurence in the dataset and over-optimistic for states with lower occurence. (Fox,
2019) presents a closed-form expression for the regularization coefficient that completely eliminates
the bias in entropy-regularized value updates. However, the softmax operator introduced by the
approach makes it hard to use in continuous action space.

F IMPLEMENTATION DETAILS

Computation of the analytical KL upper bound To reduce the variance when computing the
analytical KL upper bound, we sample L latent variable z and compute the average of the L KL
upper bounds. In our experiments, we set L = 5. Note that it doesn’t reduce the bias of the upper
bound.

Reward scaling Any affine transformation of the reward function does not change the optimal
policy of the MDP. In our experiments, we rescale the reward to [0, 1] as:

r′ = (r − rmin)/(rmax − rmin) (13)

where rmax and rmin is the maximum and the minimum reward in the dataset.

Entropy regularization The KL divergence is the sum of negative entropy of the learned policy
plus the cross entropy between the learned policy and the behavior policy: DKL(πθ(·|s), πβ(·|s)) =
−H(πθ(·|s)) + H(πθ(·|s), πβ(·|s)). When the learned policy distribution violates the KL con-
straints, the KL divergence between the policy distribution and the behavior distribution is decreased
by the optimizer. This is equivalent to increasing the entropy of the learned policy and decreasing
the cross entropy between the learned policy and the behavior policy. In soft actor-critic (Haarnoja
et al., 2018a), the minimum entropy of the learned policy is enforced to encourage exploration.
However, due to the absence of exploration, stochastic policy with large entropy will sample out-of-
distribution actions when computing the target Q values in Equation 2. If such values are overesti-
mated, the policy will exploit the erroneous Q values when performing the policy improvement in
Equation 8 and lead to failure, which can’t be corrected without more data. Thus, we maintain the
maximum entropy of the learned policy using the technique proposed in (Haarnoja et al., 2018b).
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Initialization If the dataset is collected using a narrow policy distribution in a high dimensional
space (e.g. human demonstration), the constrained optimization problem using dual gradient descent
finds it difficult to converge if random initialization is used for the policy network. To mitigate
this issue, we start with a policy that has the minimum KL divergence with the behavior policy:
πθ = arg minπθ∈ΠDKL(π, πβ), where Π represents a family of policy types. In this work, we
consider Π as Gaussian policies. Correspondingly, we initialize the Q network to Qπθ .

Policy network Our policy network is a 3-layer feed-forward neural network. The size of each
hidden layer is 512. We apply RELU activation (Agarap, 2018) after each hidden layer. Following
(Haarnoja et al., 2018a), the output is a Gaussian distribution with diagonal covariance matrix. We
apply tanh to enforce the action bounds. The log-likelihood after applying the tanh function has
a simple closed form solution. We refer to (Haarnoja et al., 2018a) Appendix C for more details.

Q network Following (Haarnoja et al., 2018a; Fujimoto et al., 2018a; Wu et al., 2019), we train
two independent Q network {Qψ1

, Qψ2
} to penalize uncertainty over the future states. We maintain

a target Q network {Qψ′
1
, Qψ′

2
} with the same architecture and update the target weights using a

weighted sum of the current Q network and the target Q network. When computing the target Q
values, we simply take the minimum value of the two Q networks:

Qψ′(s′, a′) = min
j=1,2

Qψ′
j
(s′, a′) (14)

Each Q network is a 3-layer feed-forward neural network. The size of each hidden layer is 256. We
apply RELU activation (Agarap, 2018) after each hidden layer.

Behavior policy network Following the previous work (Fujimoto et al., 2018b; Kumar et al.,
2019), we learn a conditional variational auto-encoder (Kingma & Welling, 2014) as our behavior
policy network. The encoder takes a pair of states and actions, and outputs a Gaussian latent variable
Z. The decoder takes sampled latent code z and states, and outputs a mixture of Gaussian distribu-
tions. Both the architecture of the encoder and the decoder is a 3-layer feed-forward neural network.
The size of each hidden layer is 512. The activation is relu (Agarap, 2018). To avoid epistemic
uncertainty, we train B ensembles of behavior policy networks. At test time, we randomly select
one model to perform the calculations. We found B = 3 is sufficient for all the experiments. We
pre-train the the behavior policy network for 400k gradient steps.

α network The α network takes in a state and outputs the Lagrange multiplier for the state. The
architecture of the α network is a 3-layer feed-forward neural network with relu (Agarap, 2018)
activation. The size of each hidden layer is 256. We use softplus activation after the output to
ensure that all the values are positive.

Table 4: Default hyper-parameters
Hyper-parameter Value (Gym/Adroit)

Optimizer Adam (Kingma & Ba, 2015)
Policy learning rate 5e-6/5e-8

Q network learning rate 3e-4
α learning rate 1e-5/1e-7

batch size 100
Target update rate τ 1e-3
Discount factor γ 0.99

Initial β 10
β learning rate 1e-3

Steps per epoch T 2000
Number of epochs 500
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Table 5: Task-specific hyper-parameters for OpenAI gym tasks.
Task name KL divergence threshold εKL Maximum entropyH0

halfcheetah-rand 9 -3
walker2d-rand 0.1 6
hopper-rand 3 -3

halfcheetah-med 4 -12
walker2d-med 2.1 -9
hopper-med 2.4 -6

halfcheetah-med-exp 11.5 -24
walker2d-med-exp 5 -12
hopper-med-exp 2.6 -6

halfcheetah-mixed 6 -12
walker2d-mixed 4 -6
hopper-mixed 3 -3

Table 6: Task-specific hyper-parameters for Adroit tasks with human demonstrations.
Task name MMD threshold εMMD Minimum entropyH0

pen-human 0.06 -200
hammer-human 0.1 -60

door-human 0.1 -60
relocate-human 0.1 -60
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