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Abstract

Linear attention has been proposed as an efficient alternative to softmax attention, par-
ticularly for language modeling. Motivated by its lower computational complexity, many
works have applied linear attention to vision tasks as well. In this paper, we focus on sim-
ple isotropic architectures and investigate two key architectural design aspects of extending
linear attention to visual data: scanning methods and hybrid architectures combining linear
and softmax attention. We study a series of scanning methods, and empirical results sug-
gest that the scanning strategy itself provides limited benefits. In contrast, hybrid models
yield promising results compared to pure linear attention models. Focusing on the hybrid
design, we further investigate several types of softmax attention suitable for integration
and find that the tiled version of high-order sliding window attention (HSWA) is efficient
in both theory and practice. We name the resulting simple architecture, which combines
linear attention with HSWA, VBased, and conduct additional experiments to evaluate its
effectiveness. With performance comparable to Transformers and equal efficiency (on mod-
erate sequences) or superior efficiency (on long sequences), VBased offers a promising path
for the adoption of linear attention in vision and can serve as a simple baseline for future
architectural research.

1 Introduction
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Figure 1: An overview of the architecture of
VBased with alternating layers of linear and lo-
cal attention. Note that although we ultimately
perform no sequence permutation (i.e., scan-
ning), the framework remains compatible with
any scanning method.

Softmax attention typically has quadratic time complex-
ity with respect to its context length, making it inefficient
for long sequences when employing full-context (full at-
tention). Limiting the context to a local window (local
attention) can significantly reduce the computational cost
but can lead to notably downgraded performance. To ad-
dress this, linear attention models1 have emerged as ef-
ficient alternatives. Representative variants include Ret-
Net (Sun et al., 2023), HGRN (Qin et al., 2024), GLA
(Yang et al., 2024a), GSA (Zhang et al., 2024), Mamba
(Gu & Dao, 2023) and RWKV (Peng et al., 2023). Subse-
quent advancements such as DeltaNet (Yang et al., 2024b),
Gated DeltaNet (Yang et al., 2025), DeltaProduct (Siems
et al., 2025), LaCT (Zhang et al., 2025b) and MesaNet
(von Oswald et al., 2025) further enhance expressiveness
while preserving linear-time complexity and are optimized
for parallel training. Drawing inspiration from their effi-
cacy in language modeling, linear attention models have
been extended to vision tasks, leading us to consider two major architectural design aspects.

1In this paper, the term "linear attention" is used to denote token mixing mechanisms that perform sequence modeling via
state updates with linear time complexity. We also provide comprehensive explanations of the terms used in the paper in
Appendix 7.
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1.1 Design Aspect 1: Scanning Methods

To reconcile both the inherent one-dimensional nature and the often causal implementation of linear attention
models with the N-dimensional and non-causal structure of visual data (e.g., images and videos), prior works
typically employ various "scanning" methods. These methods transform an input into single (single-pass
scan) or multiple (multi-pass scan) derived sequences using predefined patterns, subsequently processed by
a shared token mixer.

However, multi-pass scanning methods process multiple sequences at once (either serially or in parallel),
causing significant speed and memory overhead when using the same sequence length. Consequently, in sim-
ple Vision Transformers (ViT)-style architectures, multi-pass scanning often makes linear attention models
significantly slower than ViT with FlashAttention (Dao, 2023) when processing moderate sequence lengths,
despite having linear-time complexity. To address this inefficiency, many works introduce more complex
architectures, such as downsampling, to reduce computational cost. Recent works (Wang et al., 2024; Zhu
et al., 2024) propose single-pass approaches that permute the sequence between blocks while ensuring that
only a single sequence is fed to the linear attention model. However, the effectiveness of these single-pass
methods has not yet been comprehensively evaluated. In this work, we include a range of scanning methods,
either adopted from prior work or proposed by ourselves, to conduct this evaluation on scanning.

1.2 Design Aspect 2: Hybrid Models

Alternatively, hybrid architectures combining linear attention and softmax attention are also a viable option.
While linear attention compresses information into a fixed-size state, it may overlook important local patterns
due to the limited state size. Introducing softmax attention helps compensate for this limitation. For long
sequences, we primarily consider local attention for integration. Local attention can effectively leverage the
inherent locality in data while maintaining computational efficiency. For short sequences, we adopt full
attention in the hybrid architecture.

While we can directly call FlashAttention functions when using Sliding Window Attention (SWA) as the local
attention in language modeling, the types of local attention for vision require additional consideration. We
categorize local attention for visual data into block attention and high-order SWA (HSWA). Block attention
divides the sequence into non-overlapping blocks and computes softmax attention within each block. In
contrast, HSWA defines local regions centered around each window center (which could be one token or a
group of tokens), enabling finer-grained locality modeling. Our experiments show that a hybrid model using
HSWA outperforms one using block attention. Additionally, HSWA whose unit is a single token is hardware-
inefficient despite its theoretical advantage, as analyzed in (Zhang et al., 2025a). Meanwhile, HSWA with a
group of tokens as the unit, also named Sliding Tile Attention (STA), achieves actual hardware efficiency.
Therefore, STA ultimately becomes our choice for HSWA.

1.3 VBased: A Simple yet Effective Hybrid Architecture

Based on our findings, we propose VBased, a simple hybrid architecture that combines linear attention
and local softmax attention, as illustrated in Fig. 1. VBased maintains a straightforward layer-wise hybrid
architecture for ease of implementation and to avoid unnecessary complexity. For VBased, we primarily
use DeltaNet (Yang et al., 2024b) without sequence permutation (i.e., scanning) as the linear attention,
since it achieved the best performance in ImageNet pretraining experiments among other linear attention
variants. As described before, we use STA as the local attention for long sequences and full attention for short
sequences. Being simple yet effective, as demonstrated by our experiments, VBased serves as a potential
baseline for future architecture research.

2 Two Design Aspects

In this section, We discuss two main architectural design aspects for simple linear attention models in Vision:
scanning methods for pure linear attention models and hybrid architectures.
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Figure 2: A simple illustration of the operations performed by different scanning methods. Single-pass scan
rearranges the input into one sequence, while multi-pass scanning generates multiple input sequences. For
multi-pass scanning, the output sequences are merged into a single output sequence. Uni-directional scan
is a special case of single-pass scan where no rearrangement is performed. The rules for rearrangement and
merging are mostly predefined and fixed.

Table 1: Overview of different scanning methods considered. B represents batch size, L represents sequence
length, and D represents the feature dimension. In multi-pass methods, we arrange multiple sequences along
the batch dimension to enable parallel processing, even though prior works might perform these operations
sequentially. Since single-pass scanning is underexplored, we introduce several new scan types for comparison,
marked in light blue and light red. Methods highlighted in light red leverage the multi-head design in token
mixers to enable multi-directional scan within a single pass.

Scan Type Pass Operation Flow
uni-scan Single [B,L,D] → token mixer → [B,L,D]
switch-scan Single [B,L,D] → token mixer → flip/transpose → [B,L,D]
flip-scan Single [B,L,D] → flip → token mixer → [B,L,D]
1d-shift-scan Single [B,L,D] → token mixer → shift → [B,L,D]
2d-shift-scan Single [B,L,D] → token mixer → reshape → 2D shift → [B,L,D]
random-scan Single [B,L,D] → random shuffle → token mixer → [B,L,D]
learnable-scan Single [B,L,D] → learnable module → token mixer → [B,L,D]
multi-head-bi-scan Single [B,L,D] → head-wise flip → token mixer → head-wise reverse flip →

[B,L,D]
multi-head-2d-scan Single [B,L,D] → head-wise rearrange → token mixer → head-wise reverse

rearrange → [B,L,D]

bi-scan Multiple [B,L,D] → flip → [2B,L,D] → token mixer → [2B,L,D] → merge →
[B,L,D]

cross-scan Multiple [B,L,D] → rearrange → [4B,L,D] → token mixer → [4B,L,D] → merge →
[B,L,D]
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2.1 Scanning for Linear Attention

The diverse scanning methods outlined in Table 1 can be described with a general formulation. Let X ∈
RB×L×D be the input tensor, where B is the batch size, L is the sequence length, and D is the feature
dimension. The core of each method involves a token mixer operation, denoted as T M(·), which maps an
input tensor to an output tensor of the same shape.

For single-pass methods, the transformation can be expressed generally. For example, the uni-scan performs
a direct token mixing:

Y = T M(X) (1)

Methods that permute the sequence such as flip-scan and switch-scan can be unified as applying a pre-
processing mapping OPpre(·) and a post-processing mapping OPpost(·) around the token mixer:

Y = OPpost(T M(OPpre(X))) (2)

Here, OPpre(·) and OPpost(·) may be identity mappings or concrete operations such as flip(·) or shift(·),
depending on the specific method.

For multi-pass methods like bi-scan, the input X is first transformed into multiple (N) views (e.g., X1 = X,
X2 = flip(X) for N = 2). These views are processed in parallel using a shared token mixer T M(·), and the
outputs are merged into a single sequence:

Y = 1
N

N∑
i=1

T M(Xi) (3)

The cross-scan follows a similar pattern with N = 4 views. Note that the merge operation can be more
sophisticated than simple summation; however, we adopt summation for simplicity.

While we include two common multi-pass methods, our primary focus is on the less explored single-pass
approaches. To facilitate a comprehensive comparison, we introduce several single-pass variants: 1D scan
and 2D shift-scan, which shift tokens along spatial or flattened dimensions, respectively; random-scan, which
applies a random token permutation prior to the token mixer; and learnable-scan, which learns token re-
ordering through a trainable permutation matrix, employing Gumbel-Softmax for differentiable selection.
Learnable-scan is initialized near identity and trained end-to-end. However, it is inefficient and, in our
current implementation, can lead to the omission of tokens due to repeated selections. Finally, we also
introduce multi-head scanning methods, including multi-head-bi-scan and multi-head-2d-scan, which divide
the attention heads into groups and assign each group a dedicated scanning direction. These methods aim
to achieve multi-directional scanning within a single pass; however, in our current experiments, they
yield no notable performance gains over a simple uni-scan in our experiments..

2.2 Integrating Softmax Attention

An alternative approach incorporates auxiliary token mixers to compensate for inherent limitations of linear
models, such as their lack of fine-grained local information. The linear model compresses global context, while
the auxiliary mixer captures local patterns, creating a complementary architecture. A natural consideration
for such token mixers is softmax attention, including full attention and local attention, divided by their
respective context lengths. For moderate sequence, we can directly use full attention. For long sequence we
typically consider local attention, in which attention is restricted to a fixed window, leveraging the inherent
locality of the data.

The layer-wise hybrid approach used in 1 can be formulated as follows. Let X(0) denote the initial embed-
dings. For the i-th block in a model, the output X(i) is computed as:

X′(i) = X(i−1) + T M(i)(N (X(i−1)))
X(i) = X′(i) + CM(N (X′(i)))

(4)
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where N denotes normalization and CM is the channel mixer. The token mixer T M(i) alternates according
to the block index:

T M(i) =
{

T Mlinear if i mod 2 = 1
T Mlocal if i mod 2 = 0

(5)

Here, T Mlinear denotes the linear model, and T Mlocal denotes local attention. This alternating strategy
aims to balance global context aggregation with local feature refinement.

We further categorize local attention into two main types:

1. Local attention with non-overlapping blocks (Block attention). This type of local attention is easy
to implement with FlashAttention and achieves high hardware utilization. However, as we will
demonstrate in our experiments, this simple partitioning impose restrictions on queries near the
block borders, resulting in sub-optimal performance. Swin (Liu et al., 2021) addresses this by
shifting blocks across layers, but at the cost of increased architecture complexity.

2. High-order sliding window attention (HSWA). These types of local attention are natural extensions of
SWA from language modeling to higher-order domains, imposing no restrictions on border queries.
However, as illustrated in Zhang et al. (2025a), naive implementations in which the window is
centered on a single token (Hassani et al., 2023; Liu et al., 2024) suffer from poor hardware utilization
and thus offer little to no speedup over full attention, despite having significantly fewer FLOPs due
to high attention sparsity.

As prior works point out, the primary reason for slow HSWA is the generation of mixed blocks in the attention
map, where only a subset of elements require computation. Therefore, Sliding Tile Attention (STA Zhang
et al. (2025a)) addresses this by sliding the window tile by tile (a group of tokens), which eliminates mixed
blocks and achieves true hardware speedup over full attention. At a high level, STA is a coarser-grained
variant of HSWA. This design choice enables it to leverage the underlying hardware efficiently and achieve
tangible speedups.

3 Evaluate Design Choices

This section evaluates the two design aspects on ImageNet classification pretraining to guide our architecture
design. We start with short sequences (196) and gradually move to long sequences (4096) to refine our choices.

3.1 Scanning or Hybrid?

We evaluate a range of scanning methods using DeltaNet (Yang et al., 2024b) on ImageNet with a short
sequence length, with the baseline being Transformer. For these short sequences, full attention is compu-
tationally feasible and is thus used in the hybrid model. In Table 2, we compare several scanning methods
(primarily single-pass) along with full attention hybrid models. We observe that uni-scan, as a simple
baseline, already yields good performance, whereas many single-pass scanning variants slightly degrade per-
formance compared to the baseline. Bi-scan and multi-head-scan fail to show notable improvement over the
uni-scan baseline. In contrast, integrating full attention into just several layers yields a notable performance
boost. Regarding the position and number of softmax attention layers, we find that:

1. Integrating softmax attention into half of the layers yields performance comparable to Transformer.

2. Interleaving softmax attention layers across the model achieves better performance than stacking
attention only in the deeper layers, as discussed in (Hatamizadeh & Kautz, 2024).

3. In our implementation, scanning alone fails to improve performance and can sometimes be detri-
mental.
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Table 2: Top-1 accuracy of DeltaNet (30M parameters, 12 layers) on ImageNet-1K validation set. The input
resolution is set to 224 with a patch size of 16, resulting in a sequence length of 196. The model is trained
from scratch under various settings for 100 epochs, with a batch size of 2048 (unless otherwise specified,
2048 is used as the default batch size for ImageNet training). For comparison, a baseline transformer trained
using the same codebase is also included.

Variant Top-1 Acc (%)
Baseline

Transformers 78.51

Single-pass Scan Variants

uni-scan 75.75
random-scan 68.91
flip-scan 72.78
switch-scan 72.63
2dshift-scan 72.16
learnable-scan 72.64

Multi-pass Scan Variants

bi-scan 75.45

Multi-Head Scan Variants

multi-head-cross-scan 75.34
multi-head-bi-scan 75.04

Uni-Scan with Full Attention Layers

Layers: 5,11 76.77
Layers: 0,6 77.20
Layers: 3,7,11 77.38
Layers: 0,2,4,6,8,10 78.28
Layers: 6,7,8,9,10,11 77.75

Uni-Scan with 1D Sliding Window Attention

Layers: 0,2,4,6,8,10 ; Window Size: 32 77.16

Table 3: Validating the effectiveness of cross-scan. We report Top-1 accuracy (%) on ImageNet-1K validation
set. All models are trained from scratch for 100 epochs at a resolution of 224 with a patch size of 16, resulting
in a sequence length of 196. Since cross-scan requires more GPU memory, we use a batch size of 1024. Uni-
scan + full attn {0, 6} denotes hybrid architecture where layer 0 and 6 are replaced with full attention layers.
We can observe that simply integrating two full attention layer could yield better result than cross-scan.

Model / Configuration Top-1 Acc (%)
DeltaNet + uni-scan 76.42
DeltaNet + cross-scan 77.30
DeltaNet + uni-scan + full attn {0, 6} 77.71

To corroborate this finding, we evaluate single-pass scanning using more linear attention model types in
Table 4. The results consistently show that uni-scan outperforms other single-pass variants, reaffirming
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Table 4: Top-1 accuracy (%) of Single-pass Scan Variant using various linear model on ImageNet-1K valida-
tion set. We evaluate various scan methods (uni-scan, flip-scan, switch-scan, and 2D-shift-scan with a shift
size of 7) across different linear model. For reference, we also include results when employing a full-attention
hybrid (we use half of the layers for full attention). All models are trained from scratch for 100 epochs at a
resolution of 224 with a patch size of 16, resulting in a sequence length of 196.

Top-1 Acc (%)
Model uni-scan flip-scan switch-scan 2d-shift-scan full-attention
DeltaNet 75.75 71.22 72.63 72.16 78.28
HGRN 74.11 71.22 70.80 69.45 76.07
RetNet 64.03 58.06 54.48 55.57 67.32

Table 5: Top-1 accuracy (%) on the ImageNet-1K validation set for hybrid DeltaNet models with 30M
parameters and 12 layers. For DeltaNet hybrid architectures (denoted as "DeltaNet + ..."), odd-numbered
layers utilize DeltaNet, while even-numbered layers employ the specified attention mechanism as token
mixers. We use an input resolution of 448 with a patch size of 16, resulting in a sequence length of 784.
For 2D sliding window attention, we adopt the implementation from Hassani et al. (2023). All models are
trained from scratch for 100 epochs.

Model / Configuration Top-1 Acc (%)
Baselines
Pure DeltaNet 64.17
Pure 2D SWA (window size=14x14) 66.83
DeltaNet + Full Attention 68.72
Hybrid with 1D Attention
DeltaNet + 1D BA (block size=128) 66.58
DeltaNet + 1D BA (block size=196) 66.47
DeltaNet + 1D SWA (window size=128) 67.19
DeltaNet + 1D SWA (window size=256) 67.91
Hybrid with 2D Attention
DeltaNet + 2D BA (block size=14x14) 63.66
DeltaNet + 2D SWA (window size=14x14) 68.17

Table 6: Top-1 accuracy (%) and training time for hybrid DeltaNet models with sparse sequences on
ImageNet-1K. For DeltaNet hybrid architectures (denoted as "DeltaNet + ..."), odd-numbered layers utilize
DeltaNet, while even-numbered layers employ the specified attention mechanism. Input resolution is 448,
patch size is 7 (sequence length 4096). All models are trained from scratch for 100 epochs.

Model / Configuration Training Time Top-1 Acc (%)
Baselines
DeltaNet + Full Attention 14h 42m 66.11
Pure DeltaNet 07h 41m 61.38
Hybrid with 1D Attention
DeltaNet + 1D SWA (window size=256) 08h 35m 62.35
Hybrid with 2D Attention
DeltaNet + 2D SWA (window size=16x16) 13h 03m 66.34
DeltaNet + 2D STA (window size=32x16, tile size=16x8) 09h 17m 65.28
DeltaNet + 2D STA (window size=48x24, tile size=16x8) 10h 55m 66.41
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that these scanning methods offer limited advantages over a simple uni-scan baseline. Meanwhile, the full-
attention hybrid provides consistent gains across different types of linear attention.

Meanwhile, we evaluate cross-scan using DeltaNet and a smaller batch size due to its significant memory
overhead. As shown in Table 3, we observe that:

5. Although cross-scan outperforms uni-scan, it incurs significantly higher latency and memory over-
head. Moreover, its performance still lags behind that of the Transformer.

6. Integrating just two full attention layers achieves even higher accuracy, making the cost
of cross-scan unjustified.

In summary, scanning methods offer limited performance benefit compared to forming a hybrid
model with softmax attention. Therefore, hybrid attention is a more promising choice in our subsequent
exploration. However, when processing longer sequences, even several full attention layers optimized with
FlashAttention can impose significant latency, making local attention a viable choice for processing longer
sequences efficiently.

3.2 Choosing the Right Local Attention

As noted in Section 2.2, there are two types of local attention: Block Attention (BA), which operates in
non-overlapping blocks, and high-order sliding window attention (HSWA) with a flexible local window. We
evaluate their effectiveness using a longer sequence length (784) with DeltaNet on ImageNet. The results are
presented in Table 5. The baselines are pure DeltaNet with no scanning, pure 2D HSWA, and DeltaNet + full
attention. For all the local attentions, we consider both 1D and 2D variants, and we use NATTEN (Hassani
et al., 2023) as the implementation for 2D HSWA.

From the results, we can conclude that:

1. The choice of local attention must account for data dimensionality, as 2D local attention consistently
outperforms its 1D counterpart.

2. HSWA outperforms block attention in both 1D and 2D scenarios. This is likely due to the restrictive
boundary effects imposed by block attention’s non-overlapping partitions.

3. A 2D HSWA hybrid achieves performance comparable to a full attention hybrid.

4. Both pure DeltaNet and pure 2D SWA underperform their hybrid counterpart, which serves as an
ablation demonstrating that the two components are complementary.

While vanilla HSWA performs well, it offers no significant speedup over full attention, despite the high
sparsity. This limitation motivates our adoption of Sliding Tile Attention (STA Zhang et al. (2025a)), a
hardware-efficient variant of high-order SWA.

3.3 Sliding the Window by Tiles of Tokens Instead of Individual Tokens

STA is a hardware-efficient variant of HSWA. Rather than shifting the window token-by-token, STA shifts
the window tile-by-tile, with tokens within a tile sharing the same window. This way, by ensuring that the
number of tokens within a tile equals the block size used in Flex Attention (Dong et al., 2024), no mixed
blocks are generated, which enables tangible hardware speedups over full attention. 2.

We evaluate the effectiveness of STA in Table 6 using a sequence length of 4K. Since the block size used in
Flex Attention is required to be at least 128, we use a longer sequence length of 4096. The baseline is the
full attention hybrid. From the table, we can conclude that:

2The official STA implementation primarily uses kernels written in ThunderKittens. For simplicity, we implement STA using
Flex Attention while preserving the same high-level design.
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1. As previously observed, dimensionality is critical, with 2D HSWA variants significantly outperform-
ing their 1D counterparts.

2. Pure linear attention models have an advantage in hardware efficiency compared to hybrid models
on long sequences, but exhibit significantly worse performance.

3. The STA hybrid achieves performance comparable to the full attention hybrid with faster speed.
While vanilla 2D HSWA ensures performance, it provides no notable speedup over full attention.

Therefore, for the integration of local attention in processing long sequences, STA stands out as both a fast
and expressive local attention mechanism compared to vanilla HSWA and Block Attention. We note that
our experiments are limited to moderately long sequences due to the computational cost of including a full
attention hybrid baseline.

4 VBased: A Simple yet Effective Hybrid Architecture

4.1 Architecture Overview

We name our proposed architecture, a simple layer-wise hybrid of linear attention and efficient HSWA,
VBased. A simple illustration is shown in Fig. 1. We highlight several key aspects of VBased below:

1. Unlike many prior works that focus on domain-specific enhancements to linear attention models, such
as introducing multi-scale processing, modifying gating mechanisms, or altering update rules, this
work directly adopts the linear model implementations from FLA (Yang & Zhang, 2024), originally
designed for language tasks. These domain-specific enhancements are orthogonal to VBased’s ar-
chitecture. Notably, these linear models, originally designed for language, already yield competitive
results on vision tasks without domain-specific modifications.

2. We directly adopt this interleaved hybrid pattern without performing any search for optimal layer
placements. The primary reason is that we treat the combination of linear and local attention as a
single functional module, complementing each other as described in previous sections. In general,
two adjacent layers in VBased can be viewed as an unified big layer. In cases where a transformer
requires both self-attention and cross-attention in a single layer for an application, for example text-
to-video generation, VBased must use linear attention for the self-attention part and local attention
for the cross-attention part. Thus, the configuration is fixed by design, and there is also no need to
perform a search over layer placements.

3. We do not focus on scanning, as our experiments show its benefits are marginal compared to those
of a hybrid architecture. Unless otherwise specified, we use uni-scan without any permutation to
the sequence, even when using a causal linear attention model.

4. We use full attention for short sequences (typically < 1K tokens), where local attention offers no
efficiency benefits but degrades performance. As shown in Section 4.4.3, VBased with full attention
(i.e., half linear attention and half full attention) sometimes even outperforms Transformers (which
use full attention throughout all layers).

5. We primarily use DeltaNet as the linear attention in VBased due to its strong empirical performance
and lower sensitivity to the learning rate in ImageNet pretraining compared to other types of linear
attention. Other types of linear attention models are discussed in the previous section (e.g., HGRN,
RetNet), and we aim to include a more comprehensive discussion in the future.

6. Throughout this paper, VBased denotes our proposed hybrid architecture. We specify the atten-
tion type, e.g., VBased-DeltaNet-Full-Attention, to distinguish between full attention and STA
variants.
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Table 7: Top-1 accuracy (%) on the K400 test set for hybrid DeltaNet models with sparse sequences. For
hybrid architectures (denoted as "VBased-"), odd-numbered layers use DeltaNet, while even-numbered layers
employ the specified attention mechanism as token mixers. We evaluate models at input resolution 224 with
patch sizes of 16 and 14, using 32 frames. Since the sequence length is long enough, VBased uses 3D STA,
and the corresponding window size and tile size are provided in the table. The resulting sequence lengths
are 6272 and 8192, respectively. All models are initialized from distilled image models and trained for 25
and 20 epochs.

Model / Configuration Top-1 Acc (%)
Sequence Length = 6272
Pure DeltaNet 69.74
VBased-DeltaNet-Full Attention 75.14
VBased-DeltaNet-STA (window size=32×6×6, tile size=32×2×2) 73.79
Sequence Length = 8192
Pure STA (window size=24×12×12, tile size=8×4×4) 65.90
VBased-DeltaNet-Full Attention 72.28
VBased-DeltaNet-STA (window size=24×12×12, tile size=8×4×4) 72.63

While combining linear models with SWA is not new, as explored in Arora et al. (2024), VBased can be viewed
as a natural extension of this idea, with the key distinction being the N-dimensional data. We additionally
conduct several experiments to validate its performance. Note that we also include a text-to-video generation
experiment based on a toy dataset in Appendix 7, which we use as a proof of concept.

4.2 VBased in 3D Understanding

To validate the architectural principles established in 2D image classification, we now evaluate VBased’s
performance on 3D video classification. For datasets, we use K400 (Kay et al., 2017). The video model is
initialized using image classification models distilled from a ImageNet-1K finetuned version of SigLIP2. We
evaluate two settings: sequence lengths of 6K and 8K, trained for 25 and 20 epochs, respectively. Given the
long sequence length, VBased employs 3D STA in these experiments and we still employ DeltaNet as the
linear attention. The results are shown in Table 7, from which we can conclude that:

1. STA hybrid steadily improves pure linear attention even in 3D scenarios. As shown in the 6K and
8K settings, adding STA improves the performance notably.

2. For high-order visual data, STA must leverage locality across all dimensions to maintain high per-
formance. In the 6K setting, we do not utilize the locality of the time dimension, thus resulting
in worse performance than full attention hybrids. However, in the 8K setting, we utilize all three
dimensions’ locality, resulting in even better performance than the full attention hybrid.

3. The pure STA model in the 8K setting serves as an ablation for the effectiveness of linear attention.
The inferior performance of the pure STA model confirms the necessity of the linear attention
component in our hybrid architecture.

4.3 VBased in 2D Generation

We train an image generation model using REPA (Yu et al., 2024). The model builds on the SiT-style (Ma
et al., 2024) architecture, using DeltaNet as the linear attention and STA as the local attention. We use
half the batch size of the original REPA setting and train for 400K and 600K steps (equivalent to 200K and
300K steps in REPA’s setting, respectively). We first train the model for 400K steps, then fine-tune it for
an additional 200K steps using both uni-scan and multi-head-2d-scan to further compare their effects. We
use Muon as the optimizer and adopt a higher overall learning rate for faster convergence.
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Figure 3: Selected image generation results from vbased-deltanet-sta-w24x24-t8x8-xl-gen2d on ImageNet with
a resolution of 512 × 512.

Table 8: Quantitative generative performance metrics of vbased-deltanet-xl-gen2d on ImageNet 512 × 512
over 50k samples.

Iterations FID↓ sFID↓ IS↑ Pre.↑ Rec.↑
400k (uni-scan) 4.7 4.7 170.1 0.83 0.58
600k (uni-scan) 4.4 4.6 174.1 0.83 0.60
600k (mh2d-scan) 4.6 4.8 170.7 0.82 0.59

Since the maximum sequence length of REPA is 1024 when using a resolution of 512 × 512 (due to feature
alignment constraints from pretrained encoders), we apply a window size of 24 × 24 in STA only, as a proof-
of-concept. This leads to only 44% sparsity and is not optimal in terms of efficiency, as the minimum block
size of Flex Attention should be 128, while we use 64 here. We train a model with roughly 366M parameters,
referred to as vbased-deltanet-sta-w24x24-t8x8-xl-gen2d.

Selected qualitative generation results are shown in Fig. 3, and quantitative metrics are provided in Table 8.
We report Frechet Inception Distance (FID↓), sFID↓, Inception Score (IS↑), precision (Pre.↑), and recall
(Rec.↑) using 50K generated samples. Lower values indicate better performance for FID and sFID, while
higher values are preferred for IS, precision, and recall. We observe fast convergence at 400K steps (equivalent
to 200K steps in REPA), reaching a FID of 4.7. To further evaluate multi-head scanning, we finetune the
400K checkpoint (which uses uni-scan, i.e., no permutation) using both uni-scan and multi-head-2d-scan
(denoted as mh2d-scan) for an additional 200K steps. For the mh2d-scan variant, we use a learning rate
twice as high as the uni-scan counterpart. This result reinforces our earlier finding that scanning methods
have a negligible impact on performance.

To compare against the Transformer and VBased with full attention, we conduct an additional experiment
for 400K steps, using a learning rate that decays from 1 × 10−3 to 1 × 10−4 after a 10K-step warmup

11
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Table 9: Quantitative generative performance metrics for different models on ImageNet 512 × 512 over 50k
samples. All models were trained for 400k iterations with a learning rate decaying from 1 × 10−3 to 1 × 10−4

after a 10k warmup period.

Models FID↓ sFID↓ IS↑ Pre.↑ Rec.↑
SiT 5.88 4.98 150.51 0.84 0.56
VBased-Deltanet-Full Attention 5.02 5.16 165.71 0.82 0.61
VBased-DeltaNet-STA (window size=24×24, tile size=8×8) 4.87 4.81 165.21 0.83 0.58

period, with the results shown in Table 9. From the table, we observe that VBased with full attention
generally achieves comparable or even better performance than the Transformer. Meanwhile, VBased with
50%-sparsity STA also performs on par with VBased with full attention. These observations confirm our
central finding: combining linear attention and softmax attention is beneficial, and that further speedups
can be obtained by controlling the attention sparsity level by using local windows.

4.4 Impact of Important Factors

We introduce several important factors that can influence training. Due to our limited computational
resources, we limit our experiments to ImageNet pretraining and provide some complementary experiments.

4.4.1 Impact of Learning Rate

While our main experiments use a learning rate of 2e-3, some gated linear attention models like Gated
DeltaNet (GDN) and Gated DeltaProduct (GDP) are known to prefer smaller learning rates in our ex-
periments. We conducted experiments in Table 10 to verify that VBased’s performance gains hold across
different learning rates. Since training with a short sequence length, VBased here employs full attention.
From the table, we can observe that:

1. Smaller learning rates indeed improve the performance of gated linear attention models.

2. VBased consistently outperforms pure linear models regardless of the learning rate.

3. VBased performs better using a larger learning rate than the optimal learning rate for gated linear
models, consistent with our default settings.

4.4.2 Impact of Optimizer

We use AdamW as the default optimizer in previous explorations. To demonstrate that VBased’s benefits
are not optimizer-specific, we replaced AdamW with Muon (Jordan et al., 2024) as the optimizer and test
the performance in 4K sequence length training with STA. We use a larger learning rate of 4e-3 for Muon.
Since training with a long sequence length, VBased here uses 2D STA. From the results shown in Table
11, we can observe that VBased (the hybrid) performs notably better than the pure DeltaNet model, thus
demonstrating that the benefits of VBased are not specific to a single optimizer.

4.4.3 Impact of Sparsity Levels

The attention in VBased can have varying sparsity levels, determined by the window size used in local
attention. Different levels of sparsity affect both hardware efficiency and model performance. To investigate
this, we first conduct a set of experiments on ImageNet-1K pretraining with a sequence length of 1K as a
proof of concept. The image size is set to 128 and the patch size to 4. We use both Muon and AdamW
optimizers and present the training dynamics in Fig. 4. The batch size is 128 × 8, with learning rates of
1e−2 for Muon and 2e−3 for AdamW. All models are trained for 25 epochs with 5 epochs of linear warmup.
The sparsity level in STA is controlled by the window size with larger windows correspond to lower sparsity.
The tile size is fixed at 4 × 4.

12



Under review as submission to TMLR

Table 10: The influence of learning rate. Gated linear models perform better in a small learning rate.
However, hybrid model (VBased) consistently improve the performance. We use a 12-layer model with a
hidden size of 448, resulting in a 30M parameters model. Since training with a sequence length of 196,
VBased here uses full attention.

Model / Configuration Learning Rate Top-1 Acc (%)
Sequence Length = 196, 20 Epochs, Warmup Epochs = 20
Pure GDP 2e-3 36.34
VBased-GDP-Full Attention 2e-3 55.25
Pure GDP 5e-4 47.29
VBased-GDP-Full Attention 5e-4 49.91
Pure GDN 2e-3 34.92
VBased-GDN-Full Attention 2e-3 47.48
Pure GDN 2e-4 34.62
VBased-GDN-Full Attention 2e-4 39.07
Sequence Length = 4096, 10 Epochs, Warmup Epochs = 2
Pure GDP 5e-4 38.06
VBased-GDP-STA (window size=48x24, tile size=16x8) 5e-4 39.76

Table 11: Performance using Muon as the optimizer. It can be shown that hybrid model (VBased) consis-
tently improves the performance regradless of the optimizer. We use a 12-layer model with a hidden size of
448, resulting in a 30M parameters model. Since training with a sequence length of 4096, VBased here uses
2D STA.

Model / Configuration Top-1 Acc (%)
Pure DeltaNet 68.95
VBased-DeltaNet-STA (window size=48x24, tile size=16×8) 74.45

From the results, we observe that increasing the window size (i.e., reducing sparsity) yields diminishing
performance improvements. For example, under the AdamW setting, a window size of 24×12 (approximately
72% sparsity) achieves accuracy comparable to full attention (0% sparsity). Further increasing the window
size to 28 × 28 does not lead to noticeable performance gains. A similar trend is observed when using Muon,
where a window size of 12 × 12 already matches the performance of full attention, and larger windows incur
additional computation without meaningful improvements.

We present the 4K sequence length training results using AdamW in Table 6, where VBased with a window
size of 48 × 24 for STA (corresponding to 72% sparsity) matches the performance of VBased with full
attention. To support a more robust conclusion, we also report 4K training dynamics using Muon in Fig. 4,
which confirm the same observation.

To evaluate the generalization of this trend in longer sequences, we finetune the VBased model pretrained
with full attention (from Fig. 4) on ImageNet-1K at a sequence length of 16,384. The image size is set to
512 and the patch size remains 4. All other parameters are kept the same, except for a randomly initialized
learnable positional embedding. We use a constant learning rate of 1e−4 and train for 2 epochs. As shown
in Fig. 5, the same observation holds: increasing the window size leads to diminishing gains, with a sparsity
level around 70% once again achieves performance comparable to full attention. It is important to note
that this observation can also be found in Table 6, where VBased with 70% sparse STA yields performance
comparable to VBased with full attention.

Overall, our findings on the impact of sparsity levels for VBased can be summarized as follows:
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Training Dynamics Comparison: ImageNet-1K Validation Accuracy

Figure 4: Training dynamics comparison on ImageNet-1K under various settings. Left: Muon optimizer with
sequence length 1024. Middle: AdamW optimizer with sequence length 1024. Right: Muon optimizer with
sequence length 4096. The hybrid architecture of VBased consistently outperforms the standard Transformer
across all configurations. The performance gain from decreasing sparsity levels (i.e., increasing window size)
gradually diminishes, indicating diminishing returns. Notably, the performance gap between Transformer
and hybrid models is larger with AdamW. With approximately 70% sparsity at 4K sequence length, VBased
with STA even outperforms VBased using full attention. For STA, we use the notation w12×12 and t4×4 to
denote a window size of 12 × 12 and a tile size of 4 × 4 (for 1K sequences), and w48×24 and t16×8 for 48 × 24
window and 16 × 8 tile (for 4K sequences).
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Adapting Pretrained VBased-Full-Attn Model from 1K to 16K Seq Len

Figure 5: ImageNet-1K validation accuracy at a sequence length of 16,384, obtained by finetuning VBased
models pretrained with a sequence length of 1K using full attention under various settings. Reducing sparsity
by increasing the window size leads to diminishing performance gains, with a sparsity level of approximately
70% achieving performance comparable to full attention.

1. The strong locality inherent in many datasets means that full attention often performs redundant
computations on distant, irrelevant tokens. Local attention leverages this redundancy to improve
efficiency while maintaining comparable performance.

2. Reducing sparsity by increasing the window size yields diminishing, and even negligible, performance
gains.

3. To maintain a consistent trade-off between performance and efficiency across different sequence
lengths, fixing the sparsity level is more effective than fixing the window size. As shown in Fig. 5,
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overly high sparsity levels can degrade performance. Based on our experiments, a sparsity level of
around 70% (i.e., each token attends to only 30% of the sequence) offers a good trade-off and we
use this level of sparsity in our hardware-efficiency analysis as well.

5 Discussions

We provide useful discussions consolidating our established findings in this section. Additional experiments
and sections can also be found in Appendix if readers are interested.

Table 12: Faster training results on ImageNet using Muon. The resolution is 224 with a patch size of 16,
resulting in a sequence length of 196. Since training with a short sequence length, VBased here uses full
attention.

Model / Configuration Top-1 Acc (%) Epoch Warmup
VBased-DeltaNet-Full Attention 74.27 20 4
VBased-DeltaNet-Full Attention 77.08 30 5

5.1 Training VBased Faster with Muon

We find that using Muon results in faster convergence compared to AdamW. We train the tiny-size model
(30M parameters) using Muon and a larger learning rate, with a cosine learning rate scheduler. The results
are shown in Table 12, from which we can observe that using Muon can accelerate the convergence speed.
This approach achieves performance comparable to 100-epoch training with AdamW in a fraction of the
time, making it resource-efficient for future architectural evaluations. Given the observation, we also use
Muon as the optimizer for image generation and video generation. Note that although the ultimate absolute
performance of Muon is still slightly worse than that of AdamW despite faster convergence.

5.2 Why VBased?

This paper mainly studies two design aspects of linear attention model in vision and introduces a simple
hybrid architecture that combines linear attention with HSWA. A natural question is: why prefer a hybrid
model over a standard Transformer? Besides, some works have also introduced hybrid architectures combin-
ing linear and softmax attention, including MambaVision (Hatamizadeh & Kautz, 2024), TTT-MLP (Dalal
et al., 2025), and LaCT (Zhang et al., 2025b). How do they compare to VBased? We offer several reasons
for using VBased and discussions, as partially demonstrated by previous experiments.

1. An VBased model with full attention already replaces half of the layers in Transformer with linear
attention, which has linear time complexity and is much faster when modeling long sequences. This
setup already performs comparably to or sometimes better than Transformer, as shown in Table 2,
Table 9 and Fig. 4. A more comprehensive evaluation and explanation remains as future work.

2. Furthermore, the full attention component can be replaced with HSWA to achieve greater speedups
with minimal performance loss, as shown in previous sections. By carefully controlling the sparsity
level in HSWA, we can achieve similar performance than using full attention.

3. A critical distinction of VBased from previous hybrid models is the adoption of STA. Previous hybrid
models mainly use block attention due to its ease of implementation with Flash Attention as the
backend. However, as we argue in previous experiments, block attention is not an effective local
attention choice for vision, and many works such as Swin need to shift the blocks to enable fine-
grained local modeling. HSWA stands out as an effective choice but requires extra consideration in
its implementation to maintain actual hardware speedup. We discuss these choices and ultimately
integrate STA into VBased.
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Figure 6: Performance comparison between VBased and Flash Attention (FA)-based Transformer vision
encoders across different sequence lengths. Training and inference times (top row), as well as peak memory
usage (bottom row), are measured with a batch size of 4 over 50 epochs using mixed precision on a single
GPU. For sequence lengths ≥ 1152, VBased employs 2D STA (tile size: 16 × 8) with a window size covering
approximately 30% of the tokens, resulting in 70% sparsity.

To conclude, simply combining half linear attention and half full attention yields comparable performance to
Transformer, and the full attention part can be further accelerated using HSWA with a high sparsity level,
without notable performance degradation.

5.3 Hardware Efficiency

We specifically discuss the hardware efficiency of VBased in this section. Both VBased and Transformers
with Flash Attention (FA for short) use a 12-layer encoder with a hidden size of 224, and we report the
results in Fig. 6. For linear attention, we use DeltaNet implemented in FLA (Yang & Zhang, 2024) with
uni-directional scan. We use full attention for short sequences and switch to Flex Attention implementation
of STA when the sequence length exceeds 1152. During training, we apply an MSE loss on the hidden states
and use a window size that covers 30% of the tokens for STA. From the figure, we observe that:

1. VBased’s training and inference times scale more favorably than FA’s, offering notable speedups for
sequence lengths in the thousands.

2. Although VBased’s memory consumption is slightly higher than FA’s, the difference is minor and can
potentially be reduced through kernel fusion. It is also worth noting that both the linear attention
and STA in our implementation are built using Triton, while FA (specifically, FA2) is implemented
directly in CUDA with extensive optimizations for A100 GPUs. As demonstrated in the original
STA paper, further efficiency gains may be achieved by developing specialized kernels using CUDA
or ThunderKittens (Spector et al., 2024). This remains a promising direction for future work.

In addition to direct speed and GPU memory measurement, we also provide arithmetic intensity (AI) of
our studied models in Table 13. As a reference, the boundary arithmetic intensity (AI) between
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Table 13: Arithmetic Intensity comparison across models and sequence lengths. The tests are performed on
an NVIDIA A100 40GB SXM GPU with bf16 precision. The window sizes for STA are 48 × 24, 64 × 64, and
80 × 80, with the tile size being 16 × 8.

Model / SeqLen 256 1024 4096 16384 25600
Transformer 122.67 146.98 307.93 825.51 1240.40
DeltaNet-uni-scan 91.14 85.46 96.32 88.12 82.31
DeltaNet-bi-scan 70.92 70.02 79.08 70.69 65.06
DeltaNet-cross-scan 58.20 55.60 63.49 54.15 48.24
VBased-DeltaNet-Full Attention 105.33 110.62 186.93 284.30 506.65
VBased-DeltaNet-STA – – 127.79 166.99 193.12

memory-bound and computation-bound on an A100 is roughly 200. From the results, we can
observe that:

1. Pure linear attention models have low AI across various sequence lengths, which indicates their low
utilization of the hardware. Multi-pass scanning not only slows down speed and increases GPU
memory usage, but also has a lower AI, which further proves their hardware inefficiency.

2. Transformers using flash attention exhibit a sharp increase in AI with longer sequences, which
indicates the compute-heavy nature of full attention due to the large number of FLOPs required.

3. VBased models strike a balance by significantly improving AI compared to pure linear attention
models while keeping the overall FLOPs small, thus achieving both fast speed and high hardware
utilization.

In conclusion, VBased provides a compelling hybrid architecture for linear attention models in vision, achiev-
ing notable speedups compared to Transformers with comparable memory usage and a high level of hardware
utilization than pure linear attention models.

6 Related Works

Linear attention models are token mixers with states and linear time complexity. Representative ones
include RetNet (Sun et al., 2023), HGRN (Qin et al., 2024), GLA (Yang et al., 2024a), GSA (Zhang et al.,
2024), RWKV (Peng et al., 2023), DeltaNet (Yang et al., 2024b), Gated DeltaNet (Yang et al., 2025),
RWKV-7 (Peng et al., 2025), LaCT (Zhang et al., 2025b), and MesaNet (von Oswald et al., 2025). Other
sub-quadratic token mixers, such as Log-Linear Attention (Guo et al., 2025) have also been proposed to
balance efficiency and expressiveness.

Prior works have also utilized local attention with linear attention, including MambaVision (Hatamizadeh &
Kautz, 2024), TTT-MLP (Dalal et al., 2025), and LaCT (Zhang et al., 2025b). The local attention in these
works typically consists of non-overlapping blocks, denoted in this paper as block attention. Block attention
is simple to implement using Flash Attention but imposes strong restrictions on border tokens.

High-order SWA (HSWA), introduced in Neighborhood Attention (Hassani et al., 2023) extends SWA from
language modeling and, unlike block attention, imposes no border restrictions. However, naive implemen-
tation of HSWA generates many mixed blocks, which prevents actual speedup despite sparsity and reduced
FLOPs, as analyzed in (Zhang et al., 2025a).

Sliding Tile Attention (STA Zhang et al. (2025a)) addresses this by sliding the window by tiles, where a
number of tokens share the same window. In this way, by ensuring that the number of tokens within a
tile equals the block size used in Flex Attention (Dong et al., 2024), no mixed blocks are generated, thus
achieving tangible hardware speedups.
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7 Conclusion

In this paper, we studied two design aspects for adapting linear attention models to visual data: scanning
methods and softmax-attention integration. Our findings show that while scanning offers limited benefits,
integrating efficient high-order sliding window attention yields notable performance gains. Finally, we pro-
pose VBased, a simple yet effective hybrid architecture combining linear attention models with high-order
sliding window attention, achieving performance comparable to Transformers with equal or better hardware
efficiency. VBased is a simple architecture, and we expect it to serve as a baseline for future architectural
research.
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Appendix

Small-Scale Experiments with More Types of Linear Attention

In our major experiments we use DeltaNet as the linear attention for it having the best performance in
ImageNet pretraining across all linear attention variants. Here, we conduct small-scale experiments using
tiny models on small-scale datasets (CIFAR-10/100 and Tiny ImageNet) with more types of linear attention
to evaluate the effectiveness of multi-pass scanning methods (bi-scan and cross-scan) and full attention
hybrids, which are otherwise too slow to test at larger scales. Our central question is: Is the extra cost of
multi-pass scanning worth it compared to simple full attention hybrid?

We compare bi-scan and cross-scan against uni-scan (baseline), random-scan (which helps prevent overfitting
in small-scale datasets), and hybrids that insert a full attention layer at the second block. Linear models
include DeltaNet (Yang et al., 2024b), Gated DeltaNet (Yang et al., 2025), GSA (Zhang et al., 2024),
HGRN, HGRN2 (Qin et al., 2024), and RetNet (Sun et al., 2023). All models use 6 layers and under 10M
parameters, trained for 50/25/30 epochs on CIFAR-100/10 and Tiny ImageNet, respectively, with a learning
rate of 1 × 10−4 and a 0.2 warm-up ratio.

As shown in Table 14, multi-pass scans achieve only the best results in only 5 out of 18 settings, despite
significantly increased latency and memory usage. In contrast, inserting a single full attention layer yields
consistent gains. Meanwhile, using a simple random permutation of the sequence (random-scan) is shown
to surpass multi-pass scanning methods in many cases (although, as shown in Table 2, its effectiveness is
only notable in small-scale experiments). These results demonstrate that the cost of multi-pass scanning is
unjustified even in small-scale settings, and simple attention hybrid brings notable performance gains across
various types of linear attention.

VBased in 3D Generation

We also briefly explore video generation using VBased as a proof-of-concept. Specifically, we adapt the
architecture introduced in CogVideo (Hong et al., 2022; Yang et al., 2024c), which consists of two attention
modules within a single layer: a self-attention and a cross-attention. We replace the self-attention with the
linear model used in VBased, and substitute the cross-attention (Cross attention here refers to attention in
which the query and key-value come from different modalities.) with STA, which supports cross-modality
attention mechanisms. Most weights are initialized from the pretrained CogVideoX-2B model, except for
newly introduced components such as the short convolution used in the linear model. During training, we
freeze all parameters in the channel mixers, updating only the token mixer, thereby minimizing training cost.

As only a proof of concept, we train the model only on a toy dataset of 47 videos. We first adapt the
pretrained transformer model to our target resolution of 1024 × 768. We then use this adapted transformer
as a teacher model. Its noise predictions provide direct supervision for fine-tuning the VBased model. We
still employ DeltaNet as the linear model and STA with a window size of 3 × 24 × 48 and a tile size of
1 × 8 × 16. Throughout training, we use Muon as the optimizer.

The generation results are shown in Fig. 7, exhibiting relatively good temporal consistency. Due to limited
computational resources and the high training cost associated with video generation, the model is trained
for only around 20K steps, resulting in visible artifacts in individual frames. We leave further scaling and
optimization of training settings as future work.

Distillation from Pretrained Models

Distilling from pretrained models is a resource-efficient alternative to training from scratch. To evaluate
VBased’s effectiveness as a student model, we distill knowledge from SigLIP2-Base (Tschannen et al., 2025).
For our base-sized model, we initialize the majority of weights directly from the teacher model.
For smaller models, we randomly initialize the weights. We train on ImageNet-1K using temperature-scaled
KL divergence between student and teacher outputs for 200 epochs, followed by 10 epochs of supervised
finetuning. The results of several models on ImageNet-1K are shown in Table. 15. For naming consistency, we
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Table 14: Small-scale experiments with more types of linear attention conducted with tiny models on several
small datasets: CIFAR-100 (C100), CIFAR-10 (C10), and TinyImageNet (TIN). The terms attn denote the
addition of a full attention layer at the second block.

(a) DeltaNet

Method C100 C10 TIN
uni-scan 16.66 60.30 19.66
random-scan 27.22 62.93 28.62
bi-scan 20.91 59.82 20.94
cross-scan 22.58 61.50 22.20
uni-scan + attn 20.98 61.87 20.35
random-scan + attn 29.17 63.90 28.82

(b) GDN

Method C100 C10 TIN
uni-scan 24.12 68.47 20.35
random-scan 35.00 70.42 28.22
bi-scan 28.81 66.75 21.61
cross-scan 31.95 69.14 26.16
uni-scan + attn 28.59 69.56 21.67
random-scan + attn 35.22 70.85 28.11

(c) GSA

Method C100 C10 TIN
uni-scan 21.96 67.18 25.01
random-scan 24.29 58.02 27.71
bi-scan 26.31 63.02 26.29
cross-scan 27.43 62.20 24.92
uni-scan + attn 22.44 66.88 26.98
random-scan + attn 23.35 58.22 26.39

(d) HGRN

Method C100 C10 TIN
uni-scan 23.72 74.60 26.83
random-scan 31.16 66.30 27.95
bi-scan 30.99 71.84 27.54
cross-scan 31.53 73.78 29.72
uni-scan + attn 37.32 75.35 29.01
random-scan + attn 34.15 67.54 29.05

(e) HGRN2

Method C100 C10 TIN
uni-scan 24.42 74.03 27.46
random-scan 32.08 67.43 26.33
bi-scan 31.94 70.20 26.89
cross-scan 34.22 73.69 28.07
uni-scan + attn 34.28 75.34 27.73
random-scan + attn 31.07 67.79 26.55

(f) RetNet

Method C100 C10 TIN
uni-scan 26.60 70.65 25.53
random-scan 33.91 69.56 28.82
bi-scan 35.26 69.05 26.10
cross-scan 37.72 70.34 29.25
uni-scan + attn 33.60 70.79 26.08
random-scan + attn 33.66 69.09 27.46

Table 15: Performance of distilled model on ImageNet-1K validation set.

Models Top-1 Acc (%)
vbased-deltanet-fullattn-base-imgc-siglip2-base-p16-224 85.15
vbased-lact-fullattn-base-imgc-siglip2-base-p16-224 84.95
vbased-hgrn-fullattn-base-imgc-siglip2-base-p16-224 84.16

adopt the template vbased-{linear model type}-{attention type}-{size}-{task}-{teacher info}
throughout this paper.

Terminologies

We provide a table with clear definitions of all major terminologies used in the paper, as shown in Table 16.
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Figure 7: Video generation results on a toy dataset from vbased-deltanet-sta-w3x24x48-t1x8x16-cogvideox-2b,
demonstrating relatively consistent temporal behavior. Due to the limited training steps and simplified
training settings, some artifacts and blurriness are observed in the spatial dimensions.

Table 16: Terminology of Attention Mechanisms

Term Definition
Linear Attention Sequence modeling mechanisms based on state updates, with linear

time complexity with respect to the context length.
Softmax Attention Sequence modeling mechanisms that use softmax operator and have

quadratic time complexity with respect to the context length.
Full Attention A type of softmax attention in which the context length equals the

sequence length.
Local Attention A type of softmax attention in which the context length is smaller

than the sequence length and equals a predefined local window size.
Block Attention A type of local attention where the sequence is partitioned into sev-

eral non-overlapping blocks, and each query token attends to the
tokens within the block it belongs to.

High-Order Sliding Window At-
tention (HSWA)

A type of local attention where the local window is centered on each
query token or on a group of query tokens.

Sliding Tile Attention (STA) A type of HSWA in which the local window is centered on a group
of query tokens, also referred to as a tile.
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