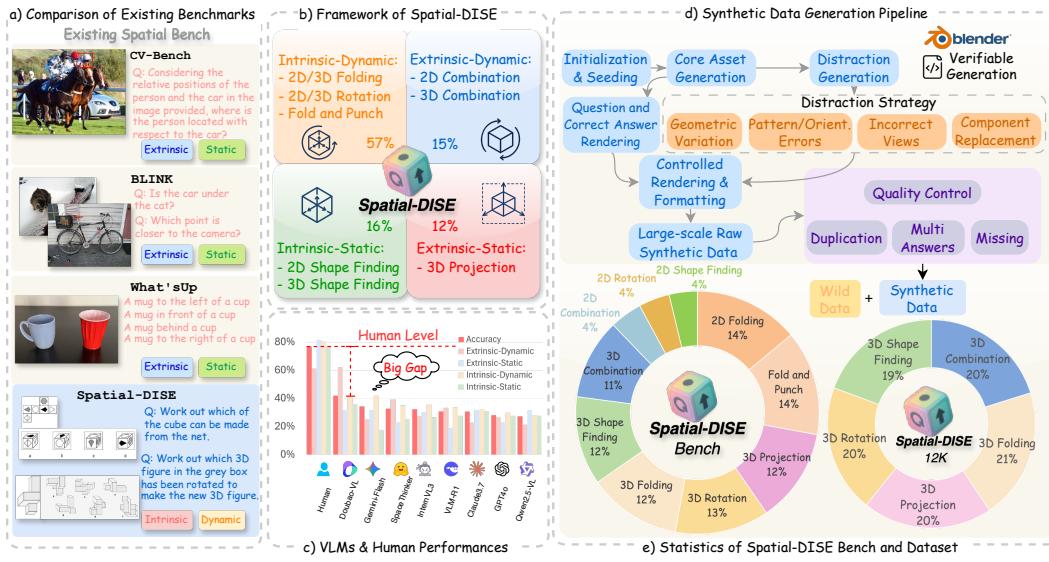


# SPATIAL-DISE: A UNIFIED BENCHMARK FOR EVALUATING SPATIAL REASONING IN VISION-LANGUAGE MODELS

Anonymous authors

Paper under double-blind review



**Figure 1:** A Comprehensive Overview of the **Spatial-DISE** Framework, Generation Pipeline, and Benchmark Statistics. a) Comparison of examples from existing benchmarks, which primarily test general static reasoning, with cognition intrinsic-dynamic tasks from our Spatial-DISE benchmark. b) introduces the core DISE taxonomy, showing the four quadrants of spatial reasoning and their distribution in the 559-pair evaluation bench. c) presents evaluation results, showing a significant gap between model and human performance. d) details the synthetic data generation pipeline implemented in Blender, and e) provides a statistical breakdown of the task categories within both the Spatial-DISE Bench and the Spatial-DISE-12K.

## ABSTRACT

Spatial reasoning ability is crucial for Vision Language Models (VLMs) to support real-world applications in diverse domains including robotics, augmented reality, and autonomous navigation. Unfortunately, existing benchmarks are inadequate in assessing spatial reasoning ability, especially the *intrinsic-dynamic* spatial reasoning which is a fundamental aspect of human spatial cognition. In this paper, we propose a unified benchmark, **Spatial-DISE**, based on a cognitively grounded taxonomy that categorizes tasks into four fundamental quadrants: **Intrinsic-Static**, **Intrinsic-Dynamic**, **Extrinsic-Static**, and **Extrinsic-Dynamic** spatial reasoning. Moreover, to address the issue of data scarcity, we develop a scalable and automated pipeline to generate diverse and verifiable spatial reasoning questions, resulting in a new **Spatial-DISE** dataset that includes Spatial-DISE Bench (559 evaluation VQA pairs) and Spatial-DISE-12K (12K+ training VQA pairs). Our comprehensive evaluation across 33 state-of-the-art VLMs reveals that, current VLMs have a large and consistent gap to human competence, especially on multi-step multi-view spatial reasoning. Spatial-DISE offers a robust framework, valuable dataset, and clear direction for future research toward human-like spatial intelligence. Benchmark, dataset, and code will be publicly released.

054 **1 INTRODUCTION**

055

056 Recent advances in vision language models (VLMs) have demonstrated impressive capabilities in  
 057 various tasks such as object detection (Li et al., 2022; Peng et al., 2023; Anil et al., 2025), scene  
 058 caption (Alayrac et al., 2022; Chen et al., 2023; Li et al., 2023), and visual question answering (Wang  
 059 et al., 2023; Anil et al., 2025; Alayrac et al., 2022). However, their capability for sophisticated  
 060 *dynamic* spatial reasoning, a cornerstone of human cognition and a critical requirement for appli-  
 061 cations in robotics, augmented reality, and autonomous navigation, remains a significant limitation  
 062 (Ramakrishnan et al., 2024) and largely under-evaluated.

063 Existing benchmarks for evaluating the spatial reasoning of VLMs have three major limitations.  
 064 Firstly, current benchmarks **lack a systematic cognitive framework** for categorizing and evaluating  
 065 different types of spatial reasoning abilities, leading to fragmented, unbalanced tasks that typically  
 066 focus only on basic skills(Liu et al., 2023; Chen et al., 2024; Cheng et al., 2024). Consequently,  
 067 there is a notable scarcity of benchmarks designed to evaluate deeper cognitive abilities. Secondly,  
 068 current benchmarks are **limited in scope**, focusing predominantly on *static* spatial questions that do  
 069 not require *multi-step dynamic* reasoning (Wang et al., 2024; Han et al., 2020). Consequently, crucial  
 070 cognitive abilities like mental rotation and folding are significantly under-tested. Thirdly, the few  
 071 benchmarks that address dynamic tasks are **insufficient in scale** (Ray et al., 2024; Ramakrishnan  
 072 et al., 2024), making them insufficient to robustly evaluate the capabilities of the model or to drive  
 073 further model development.

074 To bridge these gaps, we propose **Spatial-DISE**. Unlike previous benchmarks that focus on isolated  
 075 abilities or static scenes, Spatial-DISE introduces a unified 2x2 cognitive taxonomy (Maier, 1996;  
 076 Uttal et al., 2013), as illustrated in Figure 1 (b), which covers both 2D and 3D aspects, and critically,  
 077 places a strong emphasis on *dynamic* spatial reasoning tasks. The first dimension distinguishes  
 078 between **intrinsic** information, which defines an object by its internal parts and their arrangement,  
 079 and **extrinsic** information, which pertains to the spatial relations among different objects; the second  
 080 dimension differentiates **static** tasks, which involve fixed and stationary information, from **dynamic**  
 081 tasks, which require mental transformation. Figure 1 provides an overview of the Spatial-DISE  
 082 framework, generation pipeline, and benchmark statistics.

083 **Spatial-DISE** contains more than 12K verified spatial reasoning Visual Question-Answer (VQA)  
 084 pairs. It is created through a combination of real-world data collection and synthetic generation using  
 085 Blender<sup>1</sup>. Firstly, it has a set of 559 real-world and synthetic VQA pairs split into 10 different spatial  
 086 reasoning tasks, covering the four DISE quadrants. Secondly, it includes a set of over 12,000 verified  
 087 3D spatial reasoning VQA pairs that are generated through an automated pipeline. The synthetic  
 088 VQA pairs spread across five 3D Spatial Reasoning tasks.

089 We conducted a comprehensive evaluation across 33 state-of-the-art (SOTA) VLMs on Spatial-DISE.  
 090 These encompassed a range of advanced VLMs, featuring both proprietary and open-source models:  
 091 18 foundation models, 7 reasoning models, and 3 models post-trained with spatial-related datasets.  
 092 Our findings reveal a profound and universal weakness in current VLMs. Overall performance  
 093 remains low, with most models scoring only slightly above random chance and far below the human  
 094 baseline. Our in-depth error analysis further reveals that these failures stem not from simple visual  
 095 perception, but from fundamental deficits in cognitive processes like rule-based reasoning and mental  
 096 simulation.

097 Our key contributions include:

- **A cognitively grounded Taxonomy:** We introduce a cognitively grounded framework that, unlike previous task-oriented benchmarks, provides a unified taxonomy to classify any spatial task, revealing specific weaknesses like dynamic reasoning that are otherwise obscured.
- **A Scalable and Verifiable Data Generation Pipeline:** We design and implement a novel, automated pipeline using Blender to programmatically generate complex 3D spatial reasoning tasks. This methodology is a key contribution, offering a reusable tool for the community to overcome the data scarcity that has limited previous dynamic reasoning research. The

1<sup>1</sup><https://www.blender.org/>

108 pipeline ensures verifiability through seeded randomization and reproducible distractor  
 109 generation strategies.  
 110

- 111 • **A Unified & Verifiable Cognitive Benchmark:** Leveraging our pipeline, we introduce the  
 112 Spatial-DISE and the accompanying 12,000-VQA dataset, as a benchmark to systematically  
 113 and extensively evaluate complex cognitive spatial reasoning tasks at a scale sufficient for  
 114 robust evaluation and future model training.  
 115
- 116 • **Exploring the Boundaries of Cognitive Spatial Reasoning in VLMs:** By benchmarking  
 117 33 SOTA models, we define the current boundaries of VLM capabilities in cognitive spatial  
 118 reasoning. Our analysis reveals a universal performance ceiling, especially for multi-step  
 119 mental simulation, highlighting the significant gap between AI and human-level spatial  
 120 intelligence.

## 121 2 RELATED WORK

123 **Table 1:** Comparison of Existing Benchmarks under DISE Taxonomy. Abbreviations— I-S: Intrinsic-Static;  
 124 I-D: Intrinsic-Dynamic; E-S: Extrinsic-Static; E-D: Extrinsic-Dynamic.

| Benchmark                          | Data Scale | Domain            | Source          | I-S | I-D | E-S | E-D |
|------------------------------------|------------|-------------------|-----------------|-----|-----|-----|-----|
| SpatialRGPT (Cheng et al., 2024)   | 1k+        | General           | Real-World      | ✗   | ✗   | ✓   | ✗   |
| BLINK (Fu et al., 2024)            | 7k+        | General           | Real-World      | ✗   | ✗   | ✓   | ✓   |
| VSR (Liu et al., 2023)             | 10k        | General           | Real-World      | ✓   | ✗   | ✓   | ✗   |
| What's Up (Kamath et al., 2023)    | 820        | General           | Real-World      | ✗   | ✗   | ✓   | ✗   |
| CV-Bench (Tong et al., 2024)       | 2638       | General           | Real-World      | ✗   | ✗   | ✓   | ✗   |
| LEGO-Puzzles (Tang et al., 2025)   | 1100       | Objects           | Syn.            | ✗   | ✓   | ✓   | ✓   |
| COMFORT (Zhang et al., 2025)       | 1220       | Objects           | Syn.            | ✓   | ✗   | ✓   | ✗   |
| 3DSRBench (Ma et al., 2025)        | 2772       | General           | Real-World      | ✗   | ✗   | ✓   | ✗   |
| VSI-Bench (Yang et al., 2024)      | 5k         | General           | Real-World      | ✗   | ✗   | ✗   | ✓   |
| Spatial457 (Wang et al., 2025)     | 20k+       | Objects           | Syn.            | ✓   | ✗   | ✓   | ✓   |
| Q-SpatialBench (Liao et al., 2024) | 271        | General           | Real-World      | ✗   | ✗   | ✓   | ✗   |
| SAT (Ray et al., 2024)             | 175k       | General           | Real-World+Syn. | ✗   | ✗   | ✓   | ✓   |
| SPARE3D (Han et al., 2020)         | 10k+       | Cognition         | Syn.            | ✓   | ✗   | ✗   | ✗   |
| SpatialEval (Wang et al., 2024)    | 13k+       | Cognition         | Real-World      | ✓   | ✗   | ✓   | ✓   |
| BSA (Xu et al., 2025)              | 312        | Cognition         | Real-World      | ✓   | ✓   | ✓   | ✓   |
| SPACE (Ramakrishnan et al., 2024)  | 5k+        | Cognition         | Real-World      | ✓   | ✓   | ✗   | ✓   |
| OmniSpatial (Jia et al., 2025)     | 1.5k       | General+Cognition | Real-World      | ✓   | ✓   | ✓   | ✓   |
| <b>Spatial-DISE Bench</b>          | 559        | Cognition         | Real-World+Syn. | ✓   | ✓   | ✓   | ✓   |
| <b>Spatial-DISE-12K</b>            | 12k+       | Cognition         | Real-World+Syn. | ✓   | ✓   | ✓   | ✓   |

141 The evaluation of spatial reasoning ability in VLMs has been an active area of research, but prior work  
 142 suffers from critical gaps in scope, cognitive depth, and scale. Table 1 compares existing benchmarks  
 143 in coverage scope, number of instances, and data sources.

144 Previous benchmarks offer a fragmented evaluation, lacking a unified cognitive framework. Bench-  
 145 marks such as LEGO-Puzzles (Tang et al., 2025), SAT (Ray et al., 2024) and VSI-Bench (Yang  
 146 et al., 2024) are confined to narrow, specific tasks, preventing a holistic assessment of a model’s true  
 147 spatial abilities. Spatial-DISE overcomes this by introducing a unified 2x2 cognitive taxonomy. This  
 148 framework, rooted in cognitive science, enables a comprehensive and balanced evaluation, allowing  
 149 for the precise diagnosis of model weaknesses.

150 Furthermore, prior benchmark has a disproportionate focus on static reasoning. A vast number  
 151 of benchmarks—including SpatialRGPT (Cheng et al., 2024), SPARE3D (Han et al., 2020), VSR  
 152 (Liu et al., 2023), CV-Bench (Tong et al., 2024), BLINK (Fu et al., 2024), and What'sUp (Kamath  
 153 et al., 2023), SpatialEval (Wang et al., 2024) primarily test a model’s ability to perceive fixed scenes  
 154 and relationships. They evaluate what models "see" but not how they can "reason" about potential  
 155 changes. Spatial-DISE targets this gap by focusing on intricate dynamic reasoning to thoroughly  
 156 assess cognitive tasks such as 3D rotation and folding.

157 Finally, while SAT (Ray et al., 2024), SPACE (Ramakrishnan et al., 2024), BSA (Xu et al., 2025) and  
 158 OmniSpatial (Jia et al., 2025) have begun to explore the dynamic domain, Spatial-DISE’s uniqueness  
 159 lies in its integration of a cognitively unified framework and a verifiable generation process. Our  
 160 work complements these existing efforts by providing a structured and reproducible approach to  
 161 understanding model failures. With the scalable and verifiable data generation pipeline, it provides a  
 162 valuable resource for both fine-grained evaluation and future model training.

162  
163

## 3 METHODOLOGY

164  
165  
166  
167  
168  
169  
170  
171

Drawing from cognitive science research (Maier, 1996; Uttal et al., 2013), we organize spatial reasoning into two key dimensions: **Intrinsic vs. Extrinsic** and **Static vs. Dynamic**. The first dimension differentiates between **Intrinsic vs. Extrinsic** information. Intrinsic information refers to the essential characteristics and relationships that define an object. Extrinsic information refers to the relation among objects in a group, relative to one another or to an overall framework. The second dimension, **Static vs. Dynamic**, centers on movement. Movement can alter intrinsic information, such as through folding, cutting, or rotation. It can also shift an object’s position relative to other objects and the surrounding environment.

172  
173  
174  
175  
176  
177  
178

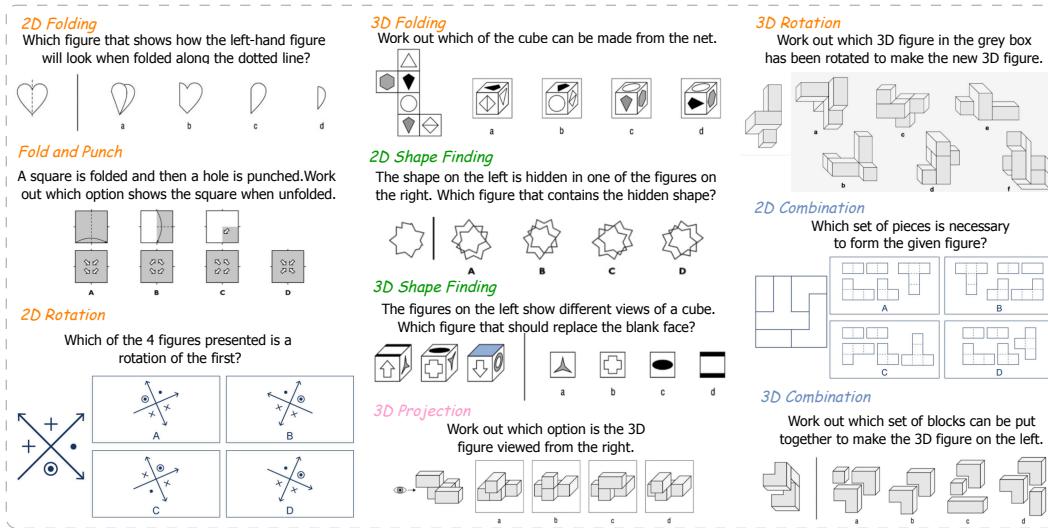
This framework comprehensively covers existing task classifications by placing them into four distinct quadrants. This creates a 2x2 taxonomy that categorizes spatial reasoning into four distinct quadrants: **Intrinsic-Static (I-S)** tasks involve analyzing the internal properties of a single, unchanged object; **Extrinsic-Static (E-S)** tasks assess the relationships between multiple objects in a fixed scene; **Intrinsic-Dynamic (I-D)** tasks require mentally simulating transformations on a single object; and **Extrinsic-Dynamic (E-D)** tasks involve reasoning about the changing spatial relationships between multiple objects.

179

## 3.1 TASKS DESIGN

180  
181  
182  
183  
184  
185  
186  
187

We designed 10 cognitive science-based tasks to probe spatial reasoning. Figure 2 provides a visual guide to this categorization, showing how various spatial tasks map onto our **Spatial-DISE** taxonomy. The 10 task we designed not only fully map to the four quadrants of the DISE framework, but their design inspiration also stems from classical psychometric tests. These tasks are specifically designed to assess core spatial abilities such as mental rotation and spatial visualization (see Appendix A.1 for detailed correspondence).

188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204

**Figure 2:** 10 Tasks in Spatial-DISE Bench. Orange shows the Intrinsic-Dynamic Tasks, Green shows the Intrinsic-Static Tasks, Pink shows the Extrinsic-Static Tasks and Blue shows the Extrinsic-Dynamic Tasks.

205  
206  
207  
208  
209  
210  
211

**Intrinsic-Static Tasks.** These tasks evaluate the understanding of an object’s fixed, internal spatial properties without transformation. This is assessed through **2D/3D Shape Finding**, which requires identifying a hidden shape within a more complex figure or determining a cube’s missing face from other views, thereby testing the static analysis of intrinsic part-whole relationships.

212  
213  
214  
215

**Intrinsic-Dynamic Tasks.** These tasks test the ability to mentally manipulate the internal properties of an object, requiring pure mental simulation. This includes **2D/3D Rotation**, a classic test of mental transformation that requires predicting an object’s appearance after rotation, and **2D/3D Folding & Fold&Punch**, which tests the outcome of folding a 2D net into a 3D shape or unfolding a punched paper.

216 **Extrinsic-Static Tasks.** These tasks investigate the understanding of fixed spatial relationships from  
 217 an external viewpoint. This is probed using **3D Projection**, which requires identifying the correct 2D  
 218 orthographic projection of a 3D object from a specified external direction, a task dependent on the  
 219 extrinsic relationship between observer and object.

220 **Extrinsic-Dynamic Tasks.** These tasks assess the ability to reason about the changing relationships  
 221 between multiple objects or parts. The primary tasks here are **2D/3D Combination**, which require  
 222 mentally assembling separate parts into a coherent whole and thus tests the ability to simulate how  
 223 components must move, orient, and connect.

### 225 3.2 BENCHMARK CURATION

227 To ensure the scientific rigor and validity of the dataset, a 3-stage curation pipeline was employed.  
 228 This process integrates wild data from real-world sources with a scalable synthetic data generation,  
 229 followed by human quality control.

230 **Stage 1: Wild Data Collection.** The initial phase aimed to establish a conceptual foundation and  
 231 a repository of templates for subsequent data synthesis. We collected a corpus of existing, high-  
 232 quality spatial reasoning problems from publicly available and validated sources, including academic  
 233 psychometric tests and professional aptitude assessments. This phase yielded an initial corpus of  
 234 1180 VQA pairs, providing a diverse set of concepts and structures that informed the automated  
 235 generation process. Detailed wild data collection is presented in Appendix A.3.

236 **Stage 2: Scalable Synthetic Data Generation.** As illustrated in Figure 1 d, this core stage was  
 237 designed to overcome the scale limitations of existing benchmarks, particularly for dynamic and  
 238 3D tasks. Leveraging the Blender engine, we transformed the concepts from the initial corpus into  
 239 a scalable, automated pipeline. This pipeline follows a general paradigm, customized for each of  
 240 the five 3D task types: **1) Initialization and Seeding:** Each generation task begins with a unique  
 241 *question\_id*, which is hashed to create a reproducible random seed, ensuring the uniqueness and  
 242 verifiability of every generated instance. **2) Core Asset Generation:** We generate the core 3D  
 243 object for a given problem. This includes creating complex, irregular shapes for tasks like 3D  
 244 Rotation or generating cubes with unique face textures for 3D Folding and 3D Shape Finding. **3)**  
 245 **Question and Correct Answer Rendering:** We render the question and correct answer images  
 246 from optimal camera perspectives. **4) Systematic Distractor Generation:** To ensure the diagnostic  
 247 challenge of each item, the pipeline implements a suite of tiered strategies to create plausible, near-  
 248 miss distractors. These strategies include: - *Geometric Variations*: Introducing subtle alterations  
 249 to the core object's geometry, such as adding or removing components. - *Pattern/Orientation  
 250 Errors*: Generating incorrect texture layouts or orientations on the faces of an object. - *Incorrect  
 251 Views*: Rendering a correct object from an incorrect orthographic perspective for projection tasks.  
 252 - *Component Replacement*: Swapping a correct part with a geometrically similar but incorrect one  
 253 in assembly tasks. **5) Controlled Rendering and Formatting:** All question, correct answer, and  
 254 distractors are rendered in a controlled virtual environment with consistent lighting, materials, and  
 255 camera parameters. The final output is a standardized VQA data pair. Detailed illustration and  
 256 pseudocode of synthetic data generation is shown in Appendix A.4.

257 **Stage 3: Rigorous Human Quality Control.** Following generation, all synthetic instances underwent  
 258 a rigorous manual verification process to guarantee the benchmark's integrity and reliability. The  
 259 review protocol assessed each instance against three quality criteria. **1) Solution Uniqueness:** Each  
 260 problem must have a single, unambiguous correct answer. **2) Accuracy and Clarity:** All images  
 261 must be free of rendering artifacts, and the corresponding questions must be clearly articulated. All  
 262 options must be valid according to the task's criteria. **3) Redundancy Elimination:** The instance  
 263 should not be logically or visually redundant with other items in the dataset. Instances failing to  
 264 meet these standards were removed from the final dataset. Combined with wild data, two sets of  
 265 Sptial-DISE are created:

- 266 • **Spatial-DISE Bench:** An evaluation set of 559 carefully selected VQA pairs, covering all  
 267 10 task types and four DISE dimensions, designed for model benchmarking.
- 268 • **Spatial-DISE 12K:** A large-scale dataset consisting of over 12,000 verifiable VQA pairs  
 269 cover five 3D tasks, intended as a valuable resource for the future training and fine-tuning of  
 spatial reasoning capabilities in VLMs.

270 4 EVALUATION ON SPATIAL-DISE BENCH  
271272 4.1 EXPERIMENT SETTING  
273274 **Benchmark Models.** For the evaluation, we select a diverse set of **33** models across **10** model  
275 families. Our selection includes both proprietary and open-source models, spanning general founda-  
276 tion models, reasoning models, and spatial-specified models. For proprietary foundation models, we  
277 evaluated Claude3.7-Sonnet, DoubaoVL (Guo et al., 2025b), GeminiFlash2.0, GPT-4.1-nano, GPT4o  
278 and GPT4o-mini. For open-source foundation models, we evaluated InternVL-3-[8B/14B/38B] (Zhu  
279 et al., 2025), Llama-3.2-11B-Vision (Grattafiori et al., 2024), Kimi-VL-A3B (Du et al., 2025), Ovis2-  
280 [8B/16B] (Lu et al., 2024), Cambrian-[8B/13B] (Tong et al., 2024) and Qwen2.5-VL-[3B/7B/32B]  
281 (Bai et al., 2025). For reasoning models, we evaluated LLaVA-CoT (Xu et al., 2024), LMM-R1 (Peng  
282 et al., 2025), VLM-R1 (Shen et al., 2025), VLAA-Thinker-[3B/7B] (Chen et al., 2025), Kimi-VL-  
283 A3B-Thinking (Du et al., 2025) and Doubao-1.5-thinking (Guo et al., 2025b). For spatial-specified  
284 model, we evaluate SpaceThinker (Chen et al., 2024), SpaceOM (Chen et al., 2024) and SpaceR  
285 (Ouyang et al., 2025).286 **Baseline.** For comparison, we include two baselines: Random Guessing and Human Performance.  
287 Random Guessing is the accuracy of randomly choosing a multiple-choice answer. To establish a  
288 robust Human Performance baseline, we recruited 54 participants, including individuals from both  
289 academic and non-academic backgrounds, with ages ranging from 15 to 55. To ensure the reliability  
290 of the results, each question was answered by a minimum of three unique participants. The final  
291 human performance is reported as the average accuracy across all collected responses. More details  
292 of human performance in Appendix B.1.293 **Implementation Details.** We evaluate multiple-choice accuracy using exact match via the  
294 VLMEvalKit (Duan et al., 2025). Deepseek-R1 (Guo et al., 2025a) is used to parse answers from  
295 malformed model outputs. Additional implementation details are provided in the Appendix B.2.297 4.2 MAIN RESULTS  
298299 Our comprehensive evaluation reveals that spatial reasoning remains a significant and universal  
300 challenge for current VLMs. Table 2, 3 present the main results of our evaluation. More results are  
301 presented in Appendix B.3. We summarize the key findings as followed:302 *Spatial reasoning remains a universal challenge.* The overall performance across all 33 tested  
303 models was low, with average accuracy of **28.4%**, only marginally above random chance (25%)  
304 and falling drastically short of the human baseline (76.8%). Of all models evaluated, the reasoning-  
305 enhanced Doubao1.5-VL-thinking achieved the highest overall accuracy at 42.0%. This widespread  
306 underperformance indicates a critical weakness in tasks requiring genuine mental transformation,  
307 highlighting a failure to move beyond pattern recognition to true spatial cognition.308 *Multi-Step transformations overwhelm VLMs reasoning.* Models demonstrate a particular vulnerabil-  
309 ity to tasks requiring a sequence of mental transformations. The Fold and Punch task, which requires  
310 simulating a fold, a punch, and then an unfold, serves as a clear example of this failure. Even the  
311 top-performing model, Doubao-1.5-thinking, only achieved 30.8% accuracy, while the average of  
312 all models is only 25.4%, performed near random chance. This indicates that while a model might  
313 handle a single transformation, its ability to maintain a coherent mental state breaks down across  
314 multiple steps. This suggests a critical deficit in "spatial working memory," preventing models from  
315 reliably tracking an object through a sequence of changes.316 *Post-training shows improvement but not enough.* The results reveal that post-training with rein-  
317 forcement learning or fine-tuning on spatial datasets offers limited improvements. While models like  
318 Doubao-1.5-thinking and SpaceThinker showed performance gains, their absolute accuracies remain  
319 low and far from the human baseline.320 *Static comprehension is not a solved precursor to dynamic reasoning.* Counter-intuitively, the results  
321 show that proficiency in static reasoning is not a prerequisite for dynamic reasoning. Several top  
322 models perform better on dynamic tasks than static ones. For example, Gemini2.0-Flash scored  
323 significantly higher on dynamic tasks (38.3%) than on static tasks (23.6%). Doubao-1.5-thinking  
even outperform human performance in Extrinsic-Dynamic questions. This suggests that models are

**Table 2:** Evaluation results of 28 SOTA models and 2 models SFT on Spatial-DISE. Row colors: Base,  $\Delta$  vs base, Reasoning, Spatial, SFT on Spatial-DISE-12k. A  $\Delta$  row shows the *absolute change in percentage points (pp)* relative to its base model and is placed between the parent and the derived model. Values are accuracy (%); brackets use [lower, upper] for the 95% CI. **Bold** indicates the highest accuracy; Underline indicates the second highest.

| Model Tree                           |              | Acc. [95% CI]             | E-D [95% CI]              | E-S [95% CI]              | I-D [95% CI]              | I-S [95% CI]              |
|--------------------------------------|--------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| <i>Proprietary Bases</i>             |              |                           |                           |                           |                           |                           |
| <b>Claude 3.7 Sonnet</b>             | Base         | 30.6% [26.8, 34.3]        | 22.6% [14.3, 32.1]        | 31.4% [21.4, 42.9]        | 32.4% [27.4, 37.7]        | 31.0% [21.8, 41.4]        |
| <b>Doubaol1.5VL</b>                  | Base         | 33.8% [29.9, 37.7]        | 31.0% [21.4, 40.5]        | <u>37.1%</u> [25.7, 48.6] | 33.6% [28.6, 39.0]        | 34.5% [25.3, 44.8]        |
| - Doubaol1.5VL-thinking              | RLHF+RLVF    | 42.0% [37.9, 46.2]        | 61.9% [51.2, 72.6]        | 31.4% [21.4, 42.9]        | 40.9% [35.5, 46.2]        | 35.6% [25.3, 46.0]        |
| <b>Gemini 2.0 Flash</b>              | Base         | 34.2% [30.4, 37.9]        | 25.0% [15.5, 34.5]        | 31.4% [21.4, 42.9]        | 41.8% [36.5, 47.2]        | 17.2% [9.2, 25.3]         |
| <b>Gemini 2.5 Flash</b>              | Base         | 31.5% [27.7, 35.2]        | 16.7% [9.5, 25.0]         | 27.1% [17.1, 37.1]        | 39.3% [33.9, 44.7]        | 20.7% [12.6, 29.9]        |
| <b>Gemini 2.5 Flash w/o thinking</b> | Base         | 32.0% [28.3, 35.8]        | 15.5% [8.3, 23.8]         | 28.6% [18.6, 38.6]        | 39.6% [34.3, 45.0]        | 23.0% [14.9, 32.2]        |
| <b>GPT-4.1 nano</b>                  | Base         | 29.3% [25.6, 33.1]        | 29.8% [20.2, 40.5]        | <u>35.7%</u> [25.7, 47.1] | 31.1% [26.1, 36.2]        | 17.2% [9.2, 25.3]         |
| <b>GPT-4o</b>                        | Base         | 28.1% [24.5, 31.8]        | 26.2% [16.7, 35.7]        | 22.9% [12.9, 32.9]        | 29.9% [24.8, 34.9]        | 27.6% [18.4, 36.8]        |
| <b>GPT-4o-mini</b>                   | Base         | 25.6% [22.0, 29.2]        | 16.7% [9.5, 25.0]         | 21.4% [12.8, 31.4]        | 28.0% [23.0, 33.0]        | 28.7% [19.5, 37.9]        |
| <b>GPT-5</b>                         | Base         | 30.1% [26.3, 34.0]        | 23.8% [15.5, 33.3]        | 25.7% [15.7, 35.7]        | 33.6% [28.6, 39.0]        | 26.4% [17.2, 35.6]        |
| <b>o4-mini</b>                       | Base         | 33.3% [29.5, 37.2]        | 16.7% [9.5, 25.0]         | 25.7% [15.7, 35.7]        | 36.8% [31.8, 42.1]        | 42.5% [32.2, 52.9]        |
| <i>Proprietary Average</i>           |              | 31.9% [29.0, 34.7]        | 26.0% [17.2, 34.8]        | 28.9% [25.6, 32.3]        | 35.2% [32.0, 38.4]        | 27.7% [22.3, 33.0]        |
| <i>Open-source Bases</i>             |              |                           |                           |                           |                           |                           |
| <b>Llama3V-11B</b>                   | Base         | 24.5% [20.9, 28.1]        | 29.8% [20.2, 39.3]        | 14.3% [7.1, 22.9]         | 25.5% [20.8, 30.5]        | 24.1% [14.9, 33.3]        |
| - LLaVA-CoT                          | CoT          | 24.0% [20.6, 27.5]        | 29.8% [20.2, 39.3]        | 22.9% [12.9, 32.9]        | 24.5% [19.8, 29.2]        | 17.2% [10.3, 25.3]        |
| <b>Cambrion-13B</b>                  | Base         | 26.7% [23.1, 30.4]        | 25.0% [16.7, 34.5]        | 32.9% [21.4, 44.3]        | 25.8% [21.1, 30.8]        | 26.4% [17.2, 35.6]        |
| <b>Cambrion-8B</b>                   | Base         | 22.9% [19.5, 26.3]        | 19.0% [10.7, 27.4]        | 15.7% [7.1, 24.3]         | 23.9% [19.2, 28.6]        | 28.7% [19.5, 37.9]        |
| <b>InternVL3-38B</b>                 | Base         | 32.4% [28.6, 36.3]        | 27.4% [17.9, 36.9]        | 30.0% [20.0, 41.4]        | 35.8% [30.8, 41.2]        | 26.4% [17.2, 35.6]        |
| <b>InternVL3-14B</b>                 | Base         | 31.1% [27.4, 34.9]        | 21.4% [13.1, 29.8]        | 31.4% [20.0, 42.9]        | 37.1% [31.8, 42.5]        | 18.4% [10.3, 26.4]        |
| <b>InternVL3-8B</b>                  | Base         | 26.3% [22.7, 29.9]        | 23.8% [15.5, 33.3]        | 28.6% [18.6, 40.0]        | 30.8% [25.8, 35.8]        | 10.3% [4.6, 17.2]         |
| <b>Kimi-VL-A3B</b>                   | Base         | 24.3% [20.8, 27.9]        | 17.9% [9.5, 26.2]         | 27.1% [17.1, 37.1]        | 27.7% [22.6, 32.7]        | 16.1% [9.2, 24.1]         |
| - Kimi-VL-Thinking                   | CoT+RL       | 24.7% [21.1, 28.3]        | 27.4% [17.9, 36.9]        | 28.6% [18.6, 38.6]        | 23.9% [19.2, 28.6]        | 21.8% [13.8, 31.0]        |
| <b>Ovis2-16B</b>                     | Base         | 26.3% [22.7, 29.9]        | 20.2% [11.9, 28.6]        | 27.1% [17.1, 38.6]        | 31.4% [26.4, 36.8]        | 12.6% [5.7, 19.5]         |
| <b>Ovis2-8B</b>                      | Base         | 23.8% [20.4, 27.4]        | 15.5% [8.3, 23.8]         | 21.4% [12.9, 31.4]        | 29.6% [24.5, 34.6]        | 12.6% [5.7, 20.7]         |
| <b>Qwen2.5-VL-32B</b>                | Base         | 27.2% [23.4, 30.9]        | 21.4% [13.1, 29.8]        | 31.4% [21.4, 42.9]        | 27.7% [23.0, 32.7]        | 27.6% [18.4, 37.9]        |
| <b>Qwen2.5-VL-7B</b>                 | Base         | 26.1% [22.5, 29.9]        | 32.1% [22.6, 42.9]        | 24.3% [14.3, 34.3]        | 27.7% [22.6, 32.7]        | 16.1% [9.2, 24.1]         |
| - VLAAThinker-7B                     | GRPO         | 27.9% [24.3, 31.7]        | 27.4% [17.9, 36.9]        | 27.1% [17.1, 37.1]        | 28.6% [23.9, 33.6]        | 26.4% [17.2, 35.6]        |
| - Qwen2.5-VL-7B-sft                  | SFT (SD-12k) | <b>47.0%</b> [42.9, 51.2] | <b>66.7%</b> [56.0, 76.2] | <b>35.7%</b> [24.3, 47.1] | <b>43.1%</b> [37.7, 48.7] | <b>51.7%</b> [41.4, 62.1] |
| - SpaceR                             | SG-RLVR      | 27.0% [23.4, 30.8]        | 29.8% [20.2, 39.3]        | 17.1% [8.6, 27.1]         | 29.6% [24.5, 34.6]        | 23.0% [14.9, 32.2]        |
| <b>Qwen2.5-VL-3B</b>                 | Base         | 22.9% [19.5, 26.5]        | 25.0% [15.5, 34.5]        | 17.1% [8.6, 25.7]         | 26.4% [21.7, 31.4]        | 12.6% [5.7, 20.7]         |
| - LMM-R1                             | PPO          | 26.1% [22.5, 29.9]        | 29.8% [20.2, 39.3]        | 20.0% [11.4, 30.0]        | 26.4% [21.7, 31.4]        | 26.4% [17.2, 35.6]        |
| - VLM-R1                             | GRPO         | 30.8% [27.0, 34.7]        | 33.3% [23.8, 44.0]        | 18.6% [10.0, 28.6]        | 33.6% [28.6, 39.0]        | 27.6% [18.4, 36.8]        |
| - VLAA-Thinker-3B                    | GRPO         | 25.9% [22.4, 29.5]        | 28.6% [19.0, 38.1]        | 30.0% [20.0, 41.4]        | 27.7% [23.0, 32.7]        | 13.8% [6.9, 21.8]         |
| - SpaceThinker                       | SFT          | 32.6% [25.4, 32.9]        | 39.3% [20.2, 40.5]        | 22.9% [15.7, 35.7]        | 34.9% [27.7, 37.7]        | 25.3% [10.3, 26.4]        |
| - SpaceOM                            | SFT          | 25.9% [22.4, 29.5]        | 31.0% [20.2, 39.3]        | 24.3% [14.3, 34.3]        | 26.7% [22.0, 31.8]        | 19.5% [11.5, 28.7]        |
| - SpaceOM-sft                        | SFT (SD-12k) | 41.3% [37.4, 45.4]        | 52.4% [41.7, 63.1]        | 27.1% [17.1, 37.1]        | 37.7% [32.4, 43.1]        | <b>55.2%</b> [44.8, 65.5] |
| <i>Open-source Average</i>           |              | 26.2% [25.2, 27.3]        | 23.2% [20.7, 25.8]        | 25.1% [22.2, 28.0]        | 29.1% [27.7, 30.6]        | 19.3% [17.0, 21.7]        |
| <b>Human Level</b>                   |              | 76.8% [74.8, 78.9]        | 61.1% [56.6, 65.5]        | 81.1% [76.7, 85.5]        | 80.2% [78.2, 82.3]        | 76.8% [72.9, 80.7]        |
| <b>Random Guessing</b>               |              | 24.8%                     | 25.4%                     | 26.3%                     | 24.3%                     | 24.7%                     |

**Table 3: Accuracy datasets for Qwen2.5-VL (Base vs SFT) and SpaceOm (Base vs SFT).  $\Delta$  is SFT-Base in percentage points (pp).**

|               | Spatial-DISE       | CVBench            | SAT                | SPACE              | OmniSpatial        | VSIBench_MCQ       |
|---------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| SpaceOm       | 25.9%              | 68.8%              | 46.67%             | 27.22%             | 27.91%             | 31.05%             |
| +DISE SFT     | 41.3%              | 70.33%             | 49.33%             | 32.6%              | 34.28%             | 33.7%              |
| $\Delta$      | ( <b>↑ 15.4%</b> ) | ( <b>↑ 1.53%</b> ) | ( <b>↑ 2.66%</b> ) | ( <b>↑ 5.38%</b> ) | ( <b>↑ 6.37%</b> ) | ( <b>↑ 2.65%</b> ) |
| Qwen2.5-VL-7B | 26.1%              | 75.9%              | 65.3%              | 28.7%              | 21.8%              | 19.3%              |
| +DISE SFT     | 47.0%              | 77.4%              | 69.3%              | 32.2%              | 34.0%              | 22.6%              |
| $\Delta$      | ( <b>↑ 20.9%</b> ) | ( <b>↑ 1.5%</b> )  | ( <b>↑ 4.0%</b> )  | ( <b>↑ 3.5%</b> )  | ( <b>↑ 12.2%</b> ) | ( <b>↑ 3.3%</b> )  |

not learning spatial reasoning in a human-like, scaffolded manner. Instead of building dynamic capabilities upon a solid foundation of static scene understanding, they appear to be learning fragmented strategies, recognizing patterns of "change" without a robust, underlying model of the static world.

*Computational rigor can outperform fallible human simulation.* This is evident in Doubaol-1.5-thinking model, which surpassed the human baseline on E-D tasks. This superior performance can

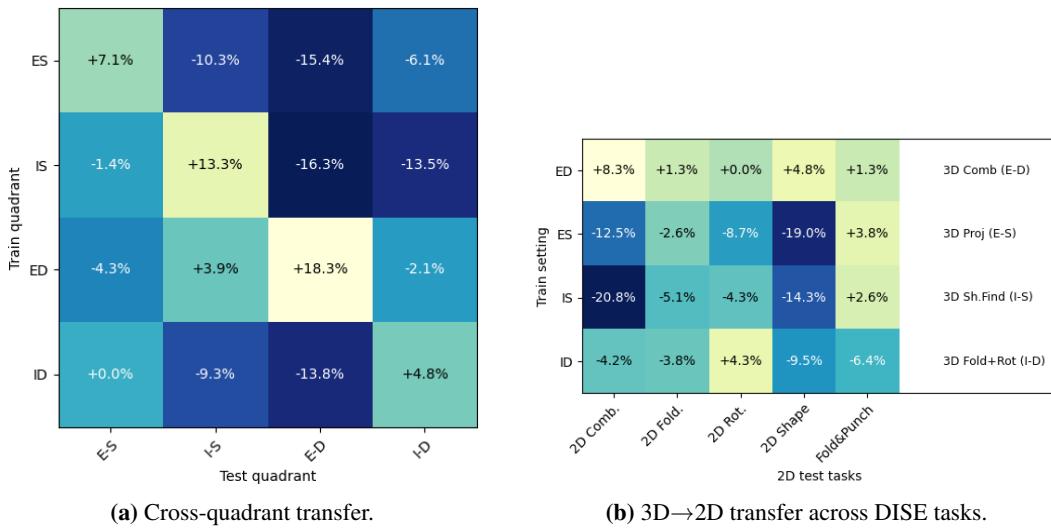


Figure 3: Transfer heatmap by fine-tuning Qwen2.5-VL-7B on Spatial-DISE quadrant-wise.

likely be attributed to the nature of 2D/3D combination. As confirmed by our human performance analysis (Appendix, Table 8), these tasks are particularly arduous and cognitively demanding for humans. 3D Combination commanding the longest mean response time (59.2s) among all tasks—who must rely on fallible mental simulation. In contrast, we observed that the Doubao model transforms these challenges into computational problems by employing a more algorithmic strategy to compute and compare geometric features of components—such as edges, angles, and connection points. Essentially, the model excels by converting a cognitively exhausting simulation task into a precise computational problem, a domain where it holds a distinct advantage over human intuition.

#### 4.3 FINE-TUNING ON SPATIAL-DISE-12K

We next ask whether Spatial-DISE-12K can shape models’ spatial reasoning, and how such training interacts with other tasks and benchmarks. We fine-tune two representative open-source VLMs, Qwen2.5-VL-7B and SpaceOm, using LoRA on all linear layers and training on the Spatial-DISE-12K split (details in Appendix B.4). We then evaluate on Spatial-DISE Bench and five external benchmarks: CVBench, SAT, SPACE, OmniSpatial, VSIBench\_MQC.

*In-domain: 3D training improves a broad but structured set of skills.* Fine-tuning on Spatial-DISE-12K yields large gains on Spatial-DISE Bench: Qwen2.5-VL-7B improves from 26.1% to 47.0%, and SpaceOm from 25.9% to 41.3%. The largest jumps occur on Intrinsic-Dynamic and Extrinsic-Dynamic tasks, with Qwen2.5-VL-7B also showing a substantial improvement on Intrinsic-Static ( $16.1\% \rightarrow 51.7\%$ ).

To understand which spatial abilities drive these gains, we train Qwen2.5-VL-7B on each DISE quadrant and visualize the change in accuracy on all quadrants (Figure 3a). The heatmap shows a strong diagonal pattern: training on I-S, I-D, E-S, or E-D items primarily boosts the same quadrant in evaluation, while many off-diagonal effects are negative. Only a few cross-quadrant paths, such as 3D E-D → I-S (+3.9 pp), show mild positive transfer. This suggests that the four DISE quadrants correspond to relatively distinct families of spatial skills: strengthening one family (e.g., dynamic extrinsic reasoning) does not automatically improve others, and gains on Spatial-DISE Bench come from covering multiple 3D quadrants in training, not from a single “universal” spatial skill.

*Cross-quadrant transfer.* Figure 3a shows strong quadrant-specific specialization: fine-tuning on a given DISE quadrant mainly improves that quadrant (large diagonal gains), while most off-diagonal entries are small or even negative. Rather than clean, factorized transfer along the Intrinsic/Extrinsic or Static/Dynamic axes, we observe interference and asymmetry between quadrants (e.g., E-D → I-S is mildly positive, whereas I-S → E-D is strongly negative). This suggests that current VLMs

432 do not learn neatly independent DISE dimensions, but instead form entangled, quadrant-specific  
 433 representations.

434 *3D → 2D transfer.* Figure 3b probes how 3D DISE training influences 2D performance. Here we fine-  
 435 tune tasks from a single quadrant and evaluate on all 2D DISE tasks. Training on extrinsic–dynamic  
 436 3D tasks leads to broadly positive transfer across 2D settings, indicating that scene-centric dynamic  
 437 reasoning supports a reusable representation for projection, combination, occlusion, and related  
 438 2D problems. In contrast, training on intrinsic–static or extrinsic–static 3D tasks often leads to  
 439 narrow or even negative transfer, and intrinsic–dynamic training mainly benefits 2D rotation while  
 440 degrading simpler 2D tasks. These patterns show that DISE is not just a larger or more finely labelled  
 441 benchmark: it exposes qualitatively different reasoning regimes. Scene-centric dynamic reasoning  
 442 tends to induce representations that are widely reusable across formats and dimensionalities, whereas  
 443 object-centric static reasoning is more specialized and can interfere with tasks that rely on relative or  
 444 dynamic frames.

445 *Out-of-domain effects.* In external benchmarks (Table 3), Spatial-DISE fine-tuning produces con-  
 446 sistent but selective gains. Improvements are most pronounced on SPACE and OmniSpatial, which  
 447 also emphasize viewpoint changes and 3D-consistent reasoning, while benchmarks that mix spatial  
 448 reasoning with broader language or diagram understanding benefit more modestly. This selective  
 449 pattern is consistent with the above analyzes: Spatial-DISE-12K acts as a targeted spatial curricu-  
 450 lum, enriching specific spatial reasoning capabilities that are then partially reused in other spatial  
 451 benchmarks.

452 Even after fine-tuning, the best model (Qwen2.5-VL-7B-sft) remains far below the human baseline  
 453 on Spatial-DISE Bench, indicating substantial remaining headroom. Taken together, the quadrant-  
 454 wise and 3D→2D transfer results suggest that current VLMs still lack robust, human-like spatial  
 455 schemas, but that carefully structured 3D training on Spatial-DISE-12K can systematically strengthen  
 456 distinct spatial skill families and induce meaningful, though selective, cross-task and cross-benchmark  
 457 transfer.

## 460 5 ERROR ANALYSIS

462 To move beyond simply measuring what models  
 463 fail at, this section provides a cognitive diagnosis  
 464 to understand why they fail. We use Doubao-1.6-  
 465 thinking as a judge, and combined with human anal-  
 466 ysis, analyzes on a sample of 200 incorrect responses  
 467 from four representative models: **GeminiFlash2-0**,  
 468 **Qwen2.5-VL-3B**, **Doubao-1.5-thinking**, and **Space-  
 469 Thinker**, with 50 samples drawn from each.

470 We established a high-level error taxonomy to systematically diagnose failures by deconstructing  
 471 the model mistakes into three errors: **Perceptual Error**, **Comprehension Error** and **Reasoning  
 472 Error**. The analysis reveals that Reasoning errors are the predominant failure category, accounting  
 473 for an overwhelming 72.5% of all analyzed failure responses. Perceptual errors constituted 17.5%  
 474 of the total, while comprehension errors were the least common at 10%. This distribution strongly  
 475 suggests that the primary bottleneck for current VLMs is not in visual perception but in complex  
 476 spatial-logical inference. The predominance of reasoning errors (145) prompted a deeper analysis,  
 477 which identified three fundamental cognitive deficits.

478 The most significant issue was a **Failure in Rule Application** (44.8%), where models disregard basic  
 479 geometric axioms, such as the spatial relationship between adjacent and opposite faces on a cube.  
 480 This suggests an inability to link visual data with abstract principles. The second major deficit was  
 481 a **Failure in Mental Simulation** (40.0%), indicating a lack of "spatial working memory" to track  
 482 objects through transformations, as seen in Fold and Punch where state changes are consistently  
 483 miscalculated. Finally, a **Failure in Holistic-Local Processing** (15.2%) was observed, where models  
 484 cannot appropriately shift attention between an object's overall structure and its local details, often  
 485 being misled by superficial similarities while ignoring critical flaws. Detailed error analysis pipeline,  
 definition of error categories and more discussion is presented in Appendix C.

Table 4: Error Types and Their Frequencies.

| Major Error        | Sub-category                         | Num. |
|--------------------|--------------------------------------|------|
| Reasoning Err.     | Failure in Rule Application          | 65   |
|                    | Failure in Mental Simulation         | 58   |
| Perceptual Err.    | Failure in Holistic-Local Processing | 22   |
| Comprehension Err. | —                                    | 35   |
|                    | —                                    | 20   |

## 486 6 CONCLUSION AND LIMITATIONS

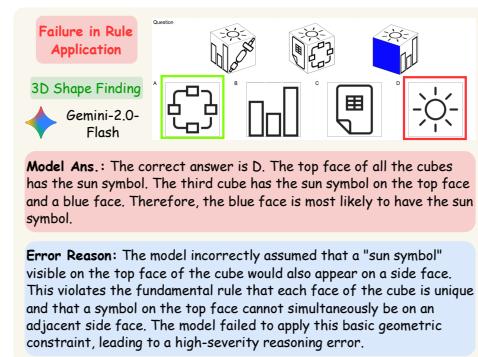
488 **Conclusion and future direction.** We introduced  
 489 **Spatial-DISE**, a comprehensive benchmark for eval-  
 490 uating VLMs spatial reasoning, supported by Spatial-  
 491 DISE-12K created via a synthetic data generation  
 492 pipeline. Our evaluation and error analysis reveal  
 493 that VLMs universally have spatial cognitive deficits,  
 494 specifically an inability to apply geometric rules and  
 495 perform mental simulations. This research offers a  
 496 framework, dataset, and diagnosis to direct future  
 497 efforts in developing VLMs with robust spatial intel-  
 498 ligence.

499 For advancing spatial intelligence, future work should  
 500 aim to impart human-like cognitive abilities, shifting  
 501 from mere perception to active reasoning. A major  
 502 focus should be on closing the sim-to-real gap by  
 503 transferring abstract cognitive concepts, such as ob-  
 504 ject permanence and causal geometry, derived from synthetic settings, avoiding reliance on basic  
 505 visual generalization. Evaluation should progress from isolated puzzles to interactive tasks like  
 506 navigation and robot manipulation, which test an agent’s capability in spatial planning and execution.  
 507 Importantly, assessments should become process-oriented, requiring outputs like textual justifica-  
 508 tions or action plans, enabling a more nuanced examination of the VLA’s cognitive architecture,  
 509 distinguishing true mental simulation from fragile heuristic matching.

510 **Limitations.** Our error analysis relies on a hybrid LLM+human pipeline: Doubao-1.6-thinking  
 511 first proposes an explanation and error type for each sampled failure, and a human annotator then  
 512 verifies and, if needed, corrects this label. While this substantially reduces manual effort, it also  
 513 introduces two limitations. First, the LLM’s initial explanation may bias the annotator and thus induce  
 514 systematic blind spots or misclassifications. Second, we analyse only 200 errors from four models,  
 515 so the counts in Table 4 should be interpreted as qualitative trends rather than precise population  
 516 estimates.

## 517 REFERENCES

- 519 Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, et al. Flamingo: A Visual  
 520 Language Model for Few-Shot Learning. In *NeurIPS 2022*, 2022.
- 522 Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, et al. Gemini: A Family of  
 523 Highly Capable Multimodal Models. *arXiv:2312.11805*, 2025.
- 524 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, et al. Qwen2.5-VL Technical Report.  
 525 *arXiv:2502.13923*, 2025.
- 527 G. K. Bennett, H. G. Seashore, and A. G. Wesman. *Differential Aptitude Tests*. Differential Aptitude  
 528 Tests. 1947.
- 529 GEORGE M. BODNER and ROLAND B. GUAY. The Purdue Visualization of Rotations Test. *The  
 530 Chemical Educator*, 2:1–17, 1997. ISSN 1430-4171.
- 532 Boyuan Chen, Zhuo Xu, Sean Kirmani, Brian Ichter, Danny Driess, Pete Florence, Dorsa Sadigh,  
 533 Leonidas Guibas, and Fei Xia. SpatialVLM: Endowing Vision-Language Models with Spatial  
 534 Reasoning Capabilities. In *CVPR2024*, 2024.
- 535 Hardy Chen, Haoqin Tu, Fali Wang, Hui Liu, Xianfeng Tang, Xinya Du, Yuyin Zhou, and Cihang  
 536 Xie. SFT or RL? An Early Investigation into Training R1-Like Reasoning Large Vision-Language  
 537 Models. *arXiv:2504.11468*, 2025.
- 539 Xi Chen, Xiao Wang, Lucas Beyer, Alexander Kolesnikov, et al. PaLI-3 Vision Language Models:  
 Smaller, Faster, Stronger. *arXiv:2310.09199*, 2023.



500 **Figure 4:** Error example of Failure in Rule Application.

- 540 An-Chieh Cheng, Hongxu Yin, Yang Fu, Qiushan Guo, Ruihan Yang, Jan Kautz, Xiaolong Wang,  
 541 and Sifei Liu. SpatialRGPT: Grounded Spatial Reasoning in Vision Language Models. In *NeurIPS*  
 542 2024, 2024.
- 543
- 544 Angang Du, Bohong Yin, Bowei Xing, Bowen Qu, Bowen Wang, et al. Kimi-VL Technical Report.  
 545 *arXiv:2504.07491*, 2025.
- 546
- 547 Haodong Duan, Xinyu Fang, Junming Yang, Xiangyu Zhao, Yuxuan Qiao, Mo Li, Amit Agarwal,  
 548 Zhe Chen, Lin Chen, Yuan Liu, Yubo Ma, Hailong Sun, Yifan Zhang, Shiyin Lu, Tack Hwa Wong,  
 549 Weiyun Wang, Peiheng Zhou, Xiaozhe Li, Chaoyou Fu, Junbo Cui, Xiaoyi Dong, Yuhang Zang,  
 550 Pan Zhang, Jiaqi Wang, Dahua Lin, and Kai Chen. VLMEvalKit: An Open-Source Toolkit for  
 551 Evaluating Large Multi-Modality Models. In *MM '24: The 32nd ACM International Conference*  
 552 *on Multimedia*, 2025.
- 553
- 554 Ruth B. Ekstrom and Harry Horace Harman. *Manual for Kit of Factor-Referenced Cognitive Tests*,  
 555 1976. 1976.
- 556
- 557 Xingyu Fu, Yushi Hu, Bangzheng Li, Yu Feng, Haoyu Wang, Xudong Lin, Dan Roth, Noah A. Smith,  
 558 Wei-Chiu Ma, and Ranjay Krishna. BLINK: Multimodal Large Language Models Can See but Not  
 559 Perceive. In *ECCV 2024*, 2024.
- 560
- 561 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, et al. The Llama 3 Herd of  
 562 Models. *arXiv:2407.21783*, 2024.
- 563
- 564 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, et al. DeepSeek-R1: Incentivizing Reasoning  
 565 Capability in LLMs via Reinforcement Learning. *arXiv:2501.12948*, 2025a.
- 566
- 567 Dong Guo, Faming Wu, Feida Zhu, Fuxing Leng, Guang Shi, et al. Seed1.5-VL Technical Report.  
 568 *arXiv:2505.07062*, 2025b.
- 569
- 570 Wenyu Han, Siyuan Xiang, Chenhui Liu, Ruoyu Wang, and Chen Feng. SPARE3D: A Dataset for  
 571 SPAtial REasoning on Three-View Line Drawings. In *The IEEE Conference on Computer Vision*  
 572 *and Pattern Recognition (CVPR)*, 2020.
- 573
- 574 Mengdi Jia, Zekun Qi, Shaochen Zhang, Wenyao Zhang, Xinqiang Yu, Jiawei He, He Wang, and  
 575 Li Yi. OmniSpatial: Towards Comprehensive Spatial Reasoning Benchmark for Vision Language  
 576 Models. *arXiv:2506.03135*, 2025.
- 577
- 578 Amita Kamath, Jack Hessel, and Kai-Wei Chang. What’s “up” with vision-language models?  
 579 Investigating their struggle with spatial reasoning. In *Proceedings of the 2023 Conference on*  
 580 *Empirical Methods in Natural Language Processing*, pp. 9161–9175, 2023.
- 581
- 582 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. BLIP-2: Bootstrapping Language-Image  
 583 Pre-training with Frozen Image Encoders and Large Language Models. *arXiv:2301.12597*, 2023.
- 584
- 585 Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan Li, Yiwu Zhong, Li-  
 586 juan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, Kai-Wei Chang, and Jianfeng Gao. Grounded  
 587 Language-Image Pre-training. In *CVPR 2022*, 2022.
- 588
- 589 Yuan-Hong Liao, Rafid Mahmood, Sanja Fidler, and David Acuna. Reasoning Paths with Reference  
 590 Objects Elicit Quantitative Spatial Reasoning in Large Vision-Language Models. In *EMNLP 2024*,  
 591 2024.
- 592
- 593 Marcia C. Linn and Anne C. Petersen. Emergence and Characterization of Sex Differences in Spatial  
 594 Ability: A Meta-Analysis. *Child Development*, 56:1479, 1985. ISSN 0009-3920.
- 595
- 596 Fangyu Liu, Guy Emerson, and Nigel Collier. Visual Spatial Reasoning. *Transactions of the*  
 597 *Association for Computational Linguistics*, 11:635–651, 2023. ISSN 2307-387X.
- 598
- 599 Shiyin Lu, Yang Li, Qing-Guo Chen, Zhao Xu, Weihua Luo, Kaifu Zhang, and Han-Jia Ye. Ovis:  
 600 Structural Embedding Alignment for Multimodal Large Language Model. *arXiv:2405.20797*,  
 601 2024.

- 594 Wufei Ma, Haoyu Chen, Guofeng Zhang, Yu-Cheng Chou, Celso M de Melo, and Alan Yuille.  
 595 3DSRBench: A Comprehensive 3D Spatial Reasoning Benchmark. In *ICCV 2025*, 2025.  
 596
- 597 P.H Maier. Spatial Geometry and Spatial Ability- How to Make Solid Geometry Solid. In *Proceedings*  
 598 *of the Annual Meeting of the GDM*, 1996.
- 599 Kun Ouyang, Yuanxin Liu, Haoning Wu, Yi Liu, Hao Zhou, Jie Zhou, Fandong Meng, and Xu Sun.  
 600 SpaceR: Reinforcing MLLMs in Video Spatial Reasoning. *arXiv:2504.01805*, 2025.  
 601
- 602 George J. Pallrand and Fred Seeber. Spatial ability and achievement in introductory physics. *Journal*  
 603 *of Research in Science Teaching*, 21:507–516, 1984. ISSN 0022-4308.
- 604 Yingzhe Peng, Gongrui Zhang, Miaosen Zhang, Zhiyuan You, Jie Liu, Qipeng Zhu, Kai Yang,  
 605 Xingzhong Xu, Xin Geng, and Xu Yang. LMM-R1: Empowering 3B LMMs with Strong Reasoning  
 606 Abilities Through Two-Stage Rule-Based RL. *arXiv:2503.07536*, 2025.  
 607
- 608 Zhi liang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, and Furu Wei.  
 609 Kosmos-2: Grounding Multimodal Large Language Models to the World. *arXiv:2306.14824*,  
 610 2023.
- 611 Saville Peter. *Minnesota Paper Form Board Test Manual, Series AA and BB*. British (ed.) / (by) peter  
 612 saville .. (et al.). edition, 1974. ISBN 978-0-7005-0012-3.  
 613
- 614 Santhosh Kumar Ramakrishnan, Erik Wijmans, Philipp Kraehenbuehl, and Vladlen Koltun. Does  
 615 Spatial Cognition Emerge in Frontier Models? In *ICLR 2025*, 2024.
- 616 Arijit Ray, Jiafei Duan, Ellis Brown, Reuben Tan, Dina Bashkirova, Rose Hendrix, Kiana Ehsani,  
 617 Aniruddha Kembhavi, Bryan A. Plummer, Ranjay Krishna, Kuo-Hao Zeng, and Kate Saenko. SAT:  
 618 Dynamic Spatial Aptitude Training for Multimodal Language Models. *arXiv:2412.07755*, 2024.  
 619
- 620 Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun  
 621 Zhang, Kangjia Zhao, Qianqian Zhang, Ruochen Xu, and Tiancheng Zhao. VLM-R1: A Stable  
 622 and Generalizable R1-style Large Vision-Language Model. *arXiv:2504.07615*, 2025.
- 623 Roger N. Shepard and Jacqueline Metzler. Mental Rotation of Three-Dimensional Objects. *Science*,  
 624 171:701–703, 1971. ISSN 0036-8075.  
 625
- 626 Kexian Tang, Junyao Gao, Yanhong Zeng, Haodong Duan, Yanan Sun, Zhenning Xing, Wenran Liu,  
 627 Kaifeng Lyu, and Kai Chen. LEGO-Puzzles: How Good Are MLLMs at Multi-Step Spatial  
 628 Reasoning? *arXiv:2503.19990*, 2025.
- 629 Shengbang Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Manoj Middepogu, Sai Charitha Akula,  
 630 Jihani Yang, Shusheng Yang, Adithya Iyer, Xichen Pan, Ziteng Wang, Rob Fergus, Yann LeCun,  
 631 and Saining Xie. Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs. In  
 632 *NeurIPS 2024*, 2024.
- 633 David H. Uttal, Nathaniel G. Meadow, Elizabeth Tipton, Linda L. Hand, Alison R. Alden, Christopher  
 634 Warren, and Nora S. Newcombe. The malleability of spatial skills: A meta-analysis of training  
 635 studies. *Psychological Bulletin*, 139:352–402, 2013. ISSN 1939-1455.  
 636
- 637 Jiayu Wang, Yifei Ming, Zhenmei Shi, Vibhav Vineet, Xin Wang, Yixuan Li, and Neel Joshi. Is A  
 638 Picture Worth A Thousand Words? Delving Into Spatial Reasoning for Vision Language Models.  
 639 In *NeurIPS 2024*, 2024.
- 640 Junke Wang, Lingchen Meng, Zejia Weng, Bo He, Zuxuan Wu, and Yu-Gang Jiang. To See is to  
 641 Believe: Prompting GPT-4V for Better Visual Instruction Tuning. *arXiv:2311.07574*, 2023.
- 643 Xingrui Wang, Wufei Ma, Tiezheng Zhang, Celso M de Melo, Jieneng Chen, and Alan Yuille.  
 644 Spatial457: A Diagnostic Benchmark for 6D Spatial Reasoning of Large Multimodal Models. In  
 645 *CVPR 2025*, 2025.
- 646 H. A. Witkin. Individual differences in ease of perception of embedded figures. *Journal of Personality*,  
 647 19:1–15, 1950. ISSN 1467-6494.

- 648 Guowei Xu, Peng Jin, Hao Li, Yibing Song, Lichao Sun, and Li Yuan. LLaVA-CoT: Let Vision  
649 Language Models Reason Step-by-Step. *arXiv:2411.10440*, 2024.  
650
- 651 Wenrui Xu, Dalin Lyu, Weihang Wang, Jie Feng, Chen Gao, and Yong Li. Defining and Evaluating  
652 Visual Language Models' Basic Spatial Abilities: A Perspective from Psychometrics. In Wanxiang  
653 Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the*  
654 *63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*,  
655 pp. 11571–11590, 2025. ISBN 979-8-89176-251-0.  
656
- 656 Jihan Yang, Shusheng Yang, Anjali W. Gupta, Rilyn Han, Li Fei-Fei, and Saining Xie. Thinking in  
657 Space: How Multimodal Large Language Models See, Remember, and Recall Spaces. In *CVPR*  
658 2025, 2024.  
659
- 660 Sihan Yang, Runsen Xu, Yiman Xie, Sizhe Yang, Mo Li, Jingli Lin, Chenming Zhu, Xiaochen Chen,  
661 Haodong Duan, Xiangyu Yue, Dahua Lin, Tai Wang, and Jiangmiao Pang. MMSI-Bench: A  
662 Benchmark for Multi-Image Spatial Intelligence. *arXiv:2505.23764*, 2025.  
663
- 663 Zheyuan Zhang, Fengyuan Hu, Jayjun Lee, Freda Shi, Parisa Kordjamshidi, Joyce Chai, and Ziqiao  
664 Ma. Do Vision-Language Models Represent Space and How? Evaluating Spatial Frame of  
665 Reference Under Ambiguities. In *International Conference on Learning Representations*, 2025.  
666
- 666 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, et al. InternVL3: Exploring Advanced Training  
667 and Test-Time Recipes for Open-Source Multimodal Models. <https://arxiv.org/abs/2504.10479v3>,  
668 2025.  
669  
670  
671  
672  
673  
674  
675  
676  
677  
678  
679  
680  
681  
682  
683  
684  
685  
686  
687  
688  
689  
690  
691  
692  
693  
694  
695  
696  
697  
698  
699  
700  
701

# 702 Appendices

705 **LLM Usage Statement.** We declare that large language models (LLMs) were used exclusively  
 706 for language editing and stylistic improvements in this manuscript. They did not contribute to the  
 707 conceptual, methodological, or experimental aspects of the work.

708 **Ethics Statement.** This work adheres to ethical research practices. The "wild data" portion of  
 709 our benchmark was collected from publicly available and validated sources, such as academic  
 710 psychometric tests and professional aptitude assessments, intended for research and educational use.  
 711 Human performance data was gathered from 54 consenting participants, with procedures conducted  
 712 in accordance with relevant ethical guidelines. Our research aims to advance the evaluation of  
 713 AI systems, and we commit to the public release of our benchmark, dataset, and code to foster  
 714 transparency and further research in the community. The work does not involve sensitive personal  
 715 data or foreseeable negative societal impacts.

716 **Reproducibility Statement.** We provide comprehensive details to ensure full reproducibility. The  
 717 complete dataset curation process, including the synthetic data generation pipeline, is detailed in  
 718 Section 3.2 and Appendix A.4. This includes procedural algorithms (pseudocode) and specific  
 719 implementation details for the five core 3D tasks. All evaluation settings, including benchmark  
 720 models, baselines, and implementation details, are described in Section 4.1. Our human performance  
 721 assessment methodology is thoroughly documented in Appendix B.1. The benchmark, dataset, and  
 722 code will be made publicly available to facilitate direct comparison with our results.

## 724 A DATASET DETAILS

### 727 A.1 TASKS DESIGN DETAILS

729 This subsection describes the task design details, aligning the original cognitive science psychometric  
 730 test with the spatial abilities defined by Linn & Petersen (1985), and its classification within the  
 731 Spatial-DISE taxonomy.

732 **Table 5:** Each spatial task used in our study and its canonical source test. Spatial Perception (SP), Spatial  
 733 Relation (SR), Spatial Orientation (SO), Mental Rotation (MR), and Spatial Visualization (SV)

| 735 Task         | 736 Original Test                                                           | 737 DISE Taxonomy | 738 Spatial Ability |
|------------------|-----------------------------------------------------------------------------|-------------------|---------------------|
| 3D Combination   | Differential Aptitude Tests (Bennett et al., 1947)                          | Extrinsic-Dynamic | SV                  |
| 2D Combination   | Minnesota Paper Form Board Test (Peter, 1974)                               | Extrinsic-Dynamic | SV                  |
| 3D Projection    | Purdue Spatial Visualization Test – Views (BODNER & GUAY, 1997)             | Extrinsic-Static  | SP, SV              |
| Fold and Punch   | Paper Folding Test (VZ-2) (Pallrand & Seeber, 1984; Ekstrom & Harman, 1976) | Intrinsic-Dynamic | SV, SR              |
| 3D Folding       | Paper Folding Test (VZ-3) (Ekstrom & Harman, 1976)                          | Intrinsic-Dynamic | SV, SR, SO          |
| 2D Folding       | Paper Folding Test (VZ-2) (Ekstrom & Harman, 1976)                          | Intrinsic-Dynamic | SV, SR, SO          |
| 3D Rotation      | Mental Rotations Test (Shepard & Metzler, 1971)                             | Intrinsic-Dynamic | SV, MR, SO          |
| 2D Rotation      | Card Rotations Test (S-1) (Ekstrom & Harman, 1976)                          | Intrinsic-Dynamic | SV, MR, SO          |
| 3D Shape Finding | Cube Comparisons Test (Ekstrom & Harman, 1976)                              | Intrinsic-Static  | SV, SR              |
| 2D Shape Finding | Embedded Figures Test (Witkin, 1950)                                        | Intrinsic-Static  | SV, SR              |

### 743 A.2 DATASET SPLIT DETAILS

| 745 Subset         | 746 Q&A Pairs | 747 Source Mix (RWD / SD) | 748 Tasks |
|--------------------|---------------|---------------------------|-----------|
| Spatial-DISE-Bench | 559           | 53% / 47%                 | 2D + 3D   |
| Spatial-DISE-12K   | 12355         | 5% / 95%                  | 3D        |
| -Train             | 8648          | 5.1% / 94.9%              | 3D        |
| -Val               | 1853          | 5.5% / 94.5%              | 3D        |
| -Test              | 1854          | 4.5% / 95.5%              | 3D        |

750 **Table 6:** Description of Spatial-DISE Subsets. RWD: Real-World Data, SD: Synthetic Data. Note that Spatial-  
 751 DISE Bench includes 2D questions absent from training splits, enabling zero-shot 2D evaluation.

### 754 A.3 WILD DATA COLLECTION DETAILS

755 Wild data are collected from open source online resources, mainly from the following resources:

- 756  
757  
758  
759  
760  
761  
762  
763  
764  
765  
766  
767  
768  
769  
770  
771  
772  
773  
774  
775  
776  
777  
778  
779  
780  
781  
782  
783  
784  
785  
786  
787
1. Open-Source Spatial Reasoning Tests: Psychometric test materials published by academic research entities for evaluating spatial abilities.
  2. CEM 11+ Non-verbal Reasoning Tests: Validated spatial reasoning items from authoritative aptitude tests used for secondary school admissions in the UK.
  3. Online Employment Aptitude Tests: High-quality spatial and logical problems administered by corporations during recruitment.

#### A.4 SYNTHETIC DATA GENERATION DETAILS

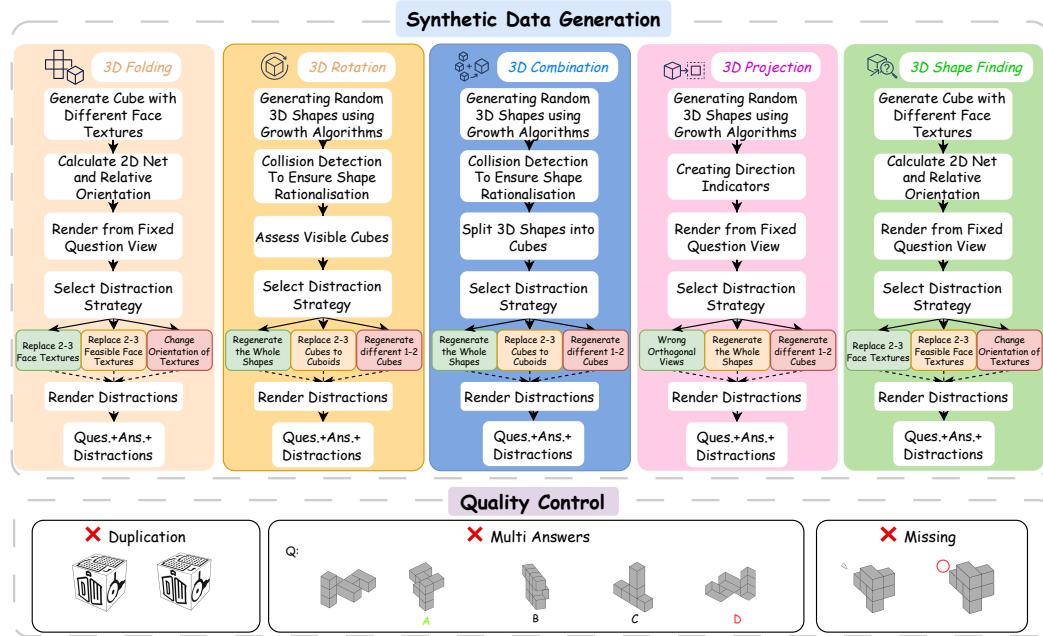


Figure 5: Synthetic Data Generation and Quality Control.

This section provides detailed procedural algorithms (pseudocode) and visual examples for the automated generation of our five core 3D spatial reasoning tasks. Each algorithm is designed for verifiability and incorporates sophisticated, task-specific strategies for generating plausible distractors.

Synthetic data generation employs Blender 4.4.0 on Apple Silicon M4. Some texture icons © Icons8 — under Universal Multimedia License. Task details, pseudocode<sup>2</sup>, and examples for synthetic data generation are outlined below:

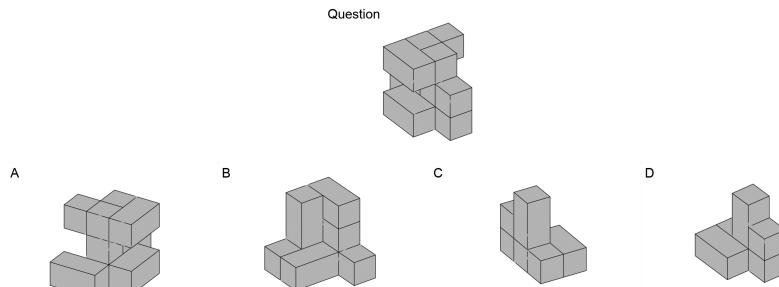


Figure 6: Synthetic 3D Rotation Data Example.

<sup>2</sup>All functions referenced in the code listings are project-specific utility routines; their full implementations will be provided in the accompanying public code repository.

```

810 Algorithm 1: GENERATE3DROTATIONQUESTION
811
812 1: Input: question id  $q\_id$ , list of isometric camera presets  $iso\_views$ , number of distractors  $n$ 
813 2:  $seed \leftarrow \text{Hash}(q\_id)$ 
814 3:  $\text{SetRandomSeed}(seed); \text{ClearScene}()$ 
815 4:  $orig \leftarrow \text{CreateCombinationShape}(cells \in [5, 15], \text{rectangularPrisms}=\text{True}, seed)$ 
816 5:  $qView \leftarrow \text{FindBestView}(orig, iso\_views)$ 
817 6:  $\text{SetCamera}(qView, jitter=\text{True})$ 
818 7:  $\text{RenderImage}(q\_id\_Q)$ 
819 8:  $ansView \leftarrow \text{ChooseDifferentView}(iso\_views, \text{exclude}=\text{qView})$ 
820 9:  $\text{SetCamera}(ansView, jitter=\text{True})$ 
821 10:  $\text{RenderImage}(q\_id\_A0)$ 
822 11: for  $i \leftarrow 1$  to  $n$  do
823 12:    $difficulty \leftarrow i/n$  {Higher  $i \Rightarrow$  harder}
824 13:    $dShape \leftarrow \text{GenerateDistractor}(orig, difficulty, seed + i)$ 
825 14:    $dView \leftarrow \text{RandomChoice}(iso\_views)$ 
826 15:    $\text{SetCamera}(dView, jitter=\text{True})$ 
827 16:    $\text{RenderImage}(q\_id\_A\{i\})$ 
828 17: end for
829 18:  $\text{SaveMetadata}(\{q\_id, qView, ansView, seed\})$ 

```

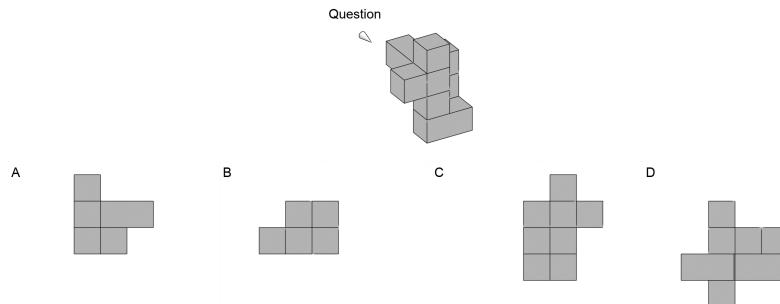
**3D Rotation** The 3D rotation matching task is designed to assess the ability to mentally rotate a three-dimensional object and recognize it from a different angle.

833 The process begins by generating a complex 3D shape composed of multiple cubes or rectangular  
834 prisms. This shape is then rendered from an optimal viewpoint to create the "question" image. This  
835 viewpoint is chosen to maximize the number of visible parts, ensuring a clear presentation of the  
836 object.

837 Next, a set of "answer" options is generated:

839 The Correct Answer: This is created by rendering the original shape from a new viewpoint, different  
840 from the one used for the question image. This requires the participant to recognize that it is the same  
841 object, despite the change in perspective.

842 Distractors: These are generated by creating new shapes that are slightly different from the original  
843 one. Each distractor is then rendered from a different viewpoint. These are designed to confuse the  
844 participant by presenting options that are visually similar but structurally incorrect. The final output  
845 consists of the question image, one correct answer image, and several distractor images, along with a  
846 metadata file containing all the generation parameters to ensure reproducibility.



**Figure 7:** Synthetic 3D Projection Data Example.

**3D Projection** The 3D projection task evaluates a person's ability to interpret a 3D object from an isometric perspective and then identify its correct 2D orthographic projection from a set of options.

863 The process starts by generating a complex 3D shape. A "question" image is then created by rendering this 3D shape from an optimal isometric viewpoint. A visual cue, typically an arrow, is included

---

864   Algorithm 2: GENERATE3DPROJECTIONQUESTION

---

865   1: **Input:**  $q\_id$ ,  $ortho\_views = \{top, front, right, left, bottom, back\}$ ,  $iso\_views$ , number of  
 866   distractors  $n$   
 867   2:  $seed \leftarrow \text{Hash}(q\_id)$   
 868   3:  $\text{SetRandomSeed}(seed)$ ;  $\text{ClearScene}()$   
 869   4:  $shape \leftarrow \text{CreateCombinationShape}(seed=seed)$   
 870   5:  $qView \leftarrow \text{FindBestView}(shape, iso\_views)$   
 871   6:  $targetView \leftarrow \text{RandomChoice}(ortho\_views)$   
 872   7:  $indicator \leftarrow \text{CreateViewIndicator}(\text{direction}=\text{targetView})$   
 873   8:  $\text{SetCamera}(qView)$   
 874   9:  $\text{RenderImage}(q\_id\_Q)$ ;  $\text{Delete}(indicator)$   
 875   10:  $\text{SetCameraOrtho}(targetView)$   
 876   11:  $\text{RenderImage}(q\_id\_A0)$   
 877   12: **for**  $i \leftarrow 1$  **to**  $n$  **do**  
 878   13:   **if**  $\text{Random}() < 0.7$  **then**  
 879   14:      $dShape \leftarrow \text{GenerateDistractor}(shape, \text{difficulty}=0.3 + 0.7 \cdot i/n, seed+i)$   
 880   15:      $dView \leftarrow targetView$   
 881   16:   **else**  
 882   17:      $dShape \leftarrow shape$   
 883   18:      $dView \leftarrow \text{ChooseDifferentView}(ortho\_views, \text{exclude}=\text{targetView})$   
 884   19:   **end if**  
 885   20:    $\text{ApplyScene}(dShape)$   
 886   21:    $\text{SetCameraOrtho}(dView)$   
 887   22:    $\text{RenderImage}(q\_id\_A\{i\})$   
 888   23: **end for**  
 889   24:  $\text{SaveMetadata}(\{q\_id, seed, qView, targetView\})$

---

891   in the question image to indicate the direction from which the orthographic projection should be  
 892   imagined (e.g., "top-down," "front," or "side" view).

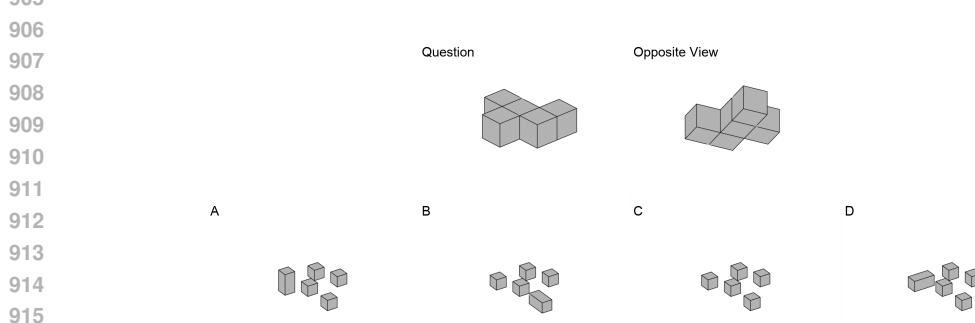
893   A set of options is then generated:

894   The Correct Answer: This is the true 2D orthographic projection of the 3D shape as seen from the  
 895   direction indicated by the arrow in the question image.

896   Distractors: These are incorrect 2D projections. They are generated in a few ways:

897   Incorrect Projections: These are valid orthographic projections but from the wrong viewpoint (e.g., a  
 898   "side" view when the "top-down" view was asked for).

899   Slightly Altered Shapes: These are 2D projections of shapes that are subtly different from the original  
 900   3D shape, testing attention to detail. The participant must select the 2D image that accurately  
 901   represents the specified orthographic projection of the 3D object shown in the question.



**Figure 8:** Synthetic 3D Combination Data Example.

---

918   Algorithm 3: GENERATE3DCOMBINATIONQUESTION

---

919   1: **Input:**  $q\_id$ ,  $iso\_views$ , number of distractors  $n$   
 920   2:  $seed \leftarrow \text{Hash}(q\_id)$   
 921   3:  $\text{SetRandomSeed}(seed)$ ;  $\text{ClearScene}()$   
 922   4:  $master \leftarrow \text{CreateCombinationShape}(seed=seed, \text{complexity}=\text{medium})$   
 923   5:  $qView \leftarrow \text{FindBestView}(master, iso\_views)$ ;  $\text{SetCamera}(qView)$   
 924   6:  $\text{RenderImage}(q\_id\_Q)$   
 925   7:  $oppView \leftarrow \text{OppositeView}(qView)$ ;  $\text{SetCamera}(oppView)$   
 926   8:  $\text{RenderImage}(q\_id\_Q\_opp)$   
 927   9:  $components \leftarrow \text{DeconstructShape}(master)$   
 928   10:  $\text{ArrangeComponentsGrid}(components, \text{gap}=2)$   
 929   11:  $\text{SetCamera}(\text{GlobalOverview})$   
 930   12:  $\text{RenderImage}(q\_id\_A0)$   
 931   13: **for**  $i \leftarrow 1$  **to**  $n$  **do**  
 932   14:    $comp \leftarrow \text{RandomChoice}(components)$   
 933   15:    $dComp \leftarrow \text{CreateDistractorComponent}(comp, \text{variation}=i/n, seed+i)$   
 934   16:    $\text{ReplaceComponent}(comp, dComp)$   
 935   17:    $\text{RenderImage}(q\_id\_A\{i\})$   
 936   18:    $\text{RestoreComponent}(comp)$   
 937   19: **end for**  
 938   20:  $\text{SaveMetadata}(\{q\_id, seed, mainView:qView, oppView:oppView\})$

---

939

940   **3D Combination** The 3D combination task, evaluates the ability to mentally deconstruct a complex  
 941   3D object into its constituent parts and then identify which of those parts could be used to build a  
 942   different target shape.

943   The task generation proceeds as follows: Shape Generation: A complex 3D shape is created, which  
 944   serves as the "source" object. This source object is rendered from two opposite isometric viewpoints  
 945   to give the user a complete understanding of its structure. Component Segmentation: The source  
 946   object is programmatically broken down into a set of smaller, non-overlapping 3D components. These  
 947   components are the basic building blocks that could theoretically form the original shape. Question  
 948   Formulation: The "question" is presented as a new, different "target" 3D shape. Option Generation:  
 949   The options provided to the user are the individual 3D components that were segmented from the  
 950   original source object. These components are laid out individually for clear inspection.

---

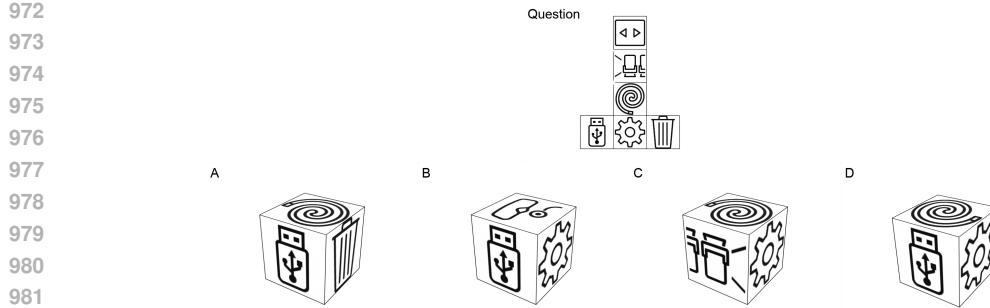
951   Algorithm 4: GENERATE3DFOLDINGQUESTION

---

952   1: **Input:**  $q\_id$ , difficulty tier list  $\{easy, medium, hard\}$ , number of distractors  $n$   
 953   2:  $seed \leftarrow \text{Hash}(q\_id)$   
 954   3:  $\text{SetRandomSeed}(seed)$ ;  $\text{ClearScene}()$   
 955   4:  $cube, faceMap \leftarrow \text{CreateCubeWithTextures}(seed=seed)$   
 956   5:  $layout \leftarrow \text{RandomChoice}(\{cross, T\})$   
 957   6:  $net \leftarrow \text{UnfoldCube}(cube, layout)$   
 958   7:  $\text{SetCamera}(\text{Top})$ ;  $\text{RenderImage}(q\_id\_Q)$   
 959   8:  $bestView \leftarrow \text{Best3DView}(cube)$   
 960   9:  $\text{SetCamera}(bestView)$   
 961   10:  $\text{RenderImage}(q\_id\_A0)$   
 962   11: **for**  $i \leftarrow 1$  **to**  $n$  **do**  
 963   12:    $tier \leftarrow \text{SelectTier}(i, n)$   
 964   13:    $dCube \leftarrow \text{CreateCubeDistractor}(cube, tier=tier, seed+i)$   
 965   14:    $\text{SetCamera}(bestView)$   
 966   15:    $\text{RenderImage}(q\_id\_A\{i\})$   
 967   16: **end for**  
 968   17:  $\text{SaveMetadata}(\{q\_id, seed, layout, faceMap\})$

---

969   **3D Folding** The 3D box folding task evaluates a person's spatial reasoning ability, specifically their  
 970   capacity to visualize how a 2D pattern (a "net") will fold into a 3D cube. The process for generating  
 971   a question is as follows:

**Figure 9:** Synthetic 3D Folding Data Example.

Cube and Texture Generation: A standard 3D cube is created. Each of its six faces is assigned a unique texture or color. This is the "target" cube.

Unfolding: The textured 3D cube is computationally "unfolded" into a 2D net. The net is a flat pattern that shows all six faces of the cube connected in a way that it could be folded back up into the cube. Common net patterns like a "cross" or "T-shape" are used. This 2D net serves as the "question" image.

Option Generation: A set of 3D cubes is then presented as the answer options.

The Correct Answer: This is a 3D rendering of the original, correctly folded cube, showing how the face textures are oriented in relation to each other.

Distractors: These are 3D cubes that are almost correct but have one or more faces manipulated in a way that makes the folded result incorrect. These manipulations can include:

Face Rotation: One or more faces on the cube are rotated from their correct orientation. Face Swapping: The positions of two or more faces are swapped. Texture/Color Replacement: The texture or color of one face is replaced with that of another.

---

**Algorithm 5: GENERATESHAPEFINDINGQUESTION**


---

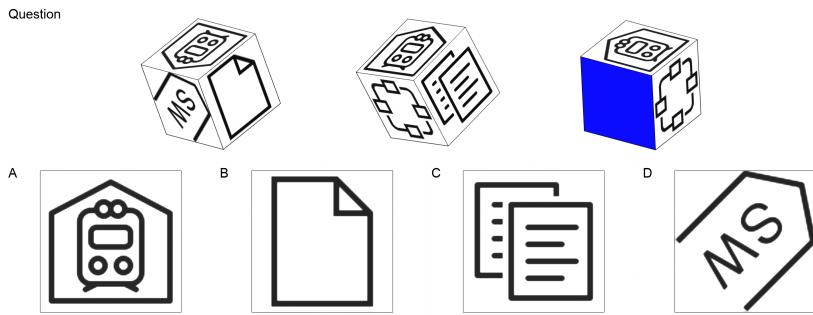
```

1: Input: question id  $q\_id$ , difficulty  $\in \{\text{easy, medium, hard}\}$ , options  $m = 4$ 
2:  $seed \leftarrow \text{Hash}(q\_id)$ 
3:  $\text{SetRandomSeed}(seed); \text{ClearScene}()$ 
4:  $cube \leftarrow \text{CreateCubeWithTextures}(seed)$ 
5:  $(V_0, V_1, V_2) \leftarrow \text{ChooseDistinctViews}(cube, 3, 120^\circ)$ 
6: for  $j \leftarrow 0$  to 1 do
7:    $\text{SetCamera}(V_j)$ ,  $\text{RenderImage}(q\_id\_V\{i\})$ 
8: end for
9:  $vis \leftarrow \text{VisibleFaces}(cube, V_2)$ 
10:  $f^* \leftarrow \text{SampleFace}(vis, \text{strategy}=\text{difficulty})$ 
11:  $mat_{\text{orig}} \leftarrow \text{GetMaterial}(cube, f^*)$ 
12:  $\text{SetMaterial}(cube, f^*, \text{Blue})$ ,  $\text{SetCamera}(V_2)$ ,  $\text{RenderImage}(q\_id\_V2)$ 
13:  $\text{SetMaterial}(cube, f^*, mat_{\text{orig}})$ 
14:  $opts \leftarrow \{f^*\} \cup \text{Sample}(\text{OtherFaces}(cube, f^*), m - 1)$ 
15:  $opts \leftarrow \text{Shuffle}(opts)$ 
16: for  $k, f$  in  $\text{Enumerate}(opts)$  do
17:    $\text{SetCamera}(\text{FaceNormalView}(cube, f))$ 
18:    $\text{RenderImage}(q\_id\_O\{i\})$ 
19: end for
20:  $\text{SaveMetadata}\{id: q\_id, seed, views: [V_0, V_1, V_2], replaced: f^*, \text{correctIdx: } \text{IndexOf}(f^*, opts)\}$ 

```

---

**3D Shape Finding** The 3D Shape Finding task is a visual memory and attention task that tests the ability to track a specific face of a 3D object as the object is rotated in space. Here is how a typical question is generated: Cube Generation: A 3D cube is created with a unique, distinct texture applied to each of its six faces. View Sequence: The participant is shown a sequence of images (typically two)



**Figure 10:** Synthetic 3D Shape Folding Data Example.

of the cube from different viewpoints. This allows them to see the cube and the arrangement of its face textures from multiple angles. The "Change" Event: A third image of the cube is then presented. In this view, one of the visible faces of the cube has its texture replaced with a solid color (e.g., blue). This is the key event in the task. The Question: The participant is implicitly asked: "Which of the original face textures was replaced by the solid color?" Option Generation: The answer options are a set of images, each showing one of the original, individual face textures from the cube. The Correct Answer: This is the image of the face texture that was replaced by the solid color in the third view. Distractors: These are the other original face textures from the cube.

| Task Name        | Distractor Generation Logic                                                                                                                                                                | Specific Implementation Details                                                                                                                                                                        |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3D Rotation      | A new 3D shape is created that is structurally different from the original, yet visually similar, testing the ability to spot subtle structural changes despite viewing-angle differences. | A new shape is generated by altering the “growth history” of the original object (e.g. adding or removing a block in a different location), producing a plausible but incorrect alternative.           |
| 3D Projection    | An incorrect 2D orthographic projection is generated, testing the ability to accurately project a 3D object onto a 2D plane.                                                               | Generating a projection from an incorrect viewpoint (e.g. providing a <i>side view</i> when the <i>top view</i> was requested). Generating a projection of a slightly modified (distractor) 3D shape.  |
| 3D Combination   | A valid component from the original shape is structurally modified, testing detailed analysis of part geometry.                                                                            | A single authentic component is duplicated and then altered—typically by adding or removing a block—yielding a visually similar part that would not fit correctly into the complete assembly.          |
| 3D Folding       | The 2D net is “folded” into an incorrect 3D cube, testing the ability to track face orientation and adjacency during folding.                                                              | <b>Rotation:</b> A face’s texture is rotated by 90°, 180°, or 270°. <b>Swapping:</b> Textures between two faces are swapped. <b>Flipping:</b> A texture is flipped horizontally or vertically.         |
| 3D Shape Finding | The options presented are the other, non-target faces of the cube, testing visual working memory and attention.                                                                            | The task is to identify the original texture of a face that was replaced by a solid colour; distractors are the original textures of the other cube faces that were <i>not</i> the replacement target. |

**Table 7:** Summary of Distractor Generation Logic

1080 **B EVALUATION DETAILS**  
10811082 **B.1 HUMAN PERFORMANCE ASSESSMENT DETAILS**  
10831084 To establish a robust human baseline, we recruited 54 participants through a custom online platform.  
1085 The process yielded 1,684 valid responses, with each of the 559 benchmark items being answered by  
1086 an average of 3 participants.1087 The median response time across all human responses was 26.9 seconds, with a mean of 40.3 seconds.  
1088 The difference suggests that a subset of questions required substantially longer deliberation, skewing  
1089 the mean. A detailed breakdown of performance by task category, presented in Table 8, reveals a  
1090 clear inverse relationship between response time and accuracy. The analysis highlights that the two1091 **Table 8:** Human Performance by Task: Accuracy and Response Time.  
1092

| 1093 <b>Task</b>      | 1094 <b>DISE Category</b> | 1095 <b>Accuracy (%)</b> | 1096 <b>Mean Time (s)</b> | 1097 <b>Median Time (s)</b> |
|-----------------------|---------------------------|--------------------------|---------------------------|-----------------------------|
| 1098 3D Combination   | 1099 E–D                  | 1100 56.4                | 1101 59.2                 | 1102 34.8                   |
| 1103 2D Shape Finding | 1104 I–S                  | 1105 61.5                | 1106 58.5                 | 1107 46.4                   |
| 1108 2D Combination   | 1109 E–D                  | 1110 75.2                | 1111 36.8                 | 1112 32.0                   |
| 1113 2D Folding       | 1114 I–D                  | 1115 76.5                | 1116 25.6                 | 1117 17.0                   |
| 1118 Fold and Punch   | 1119 I–D                  | 1120 76.8                | 1121 55.4                 | 1122 44.4                   |
| 1123 2D Rotation      | 1124 I–D                  | 1125 78.1                | 1126 40.4                 | 1127 31.5                   |
| 1128 3D Projection    | 1129 E–S                  | 1130 81.1                | 1131 28.0                 | 1132 20.8                   |
| 1133 3D Shape Finding | 1134 I–S                  | 1135 81.8                | 1136 31.4                 | 1137 23.3                   |
| 1138 3D Rotation      | 1139 I–D                  | 1140 82.0                | 1141 29.8                 | 1142 21.8                   |
| 1143 3D Folding       | 1144 I–D                  | 1145 86.6                | 1146 44.4                 | 1147 33.6                   |

1104 tasks with the lowest human accuracy, 3D Combination (56.4%) and 2D Shape Finding (61.5%),  
1105 are also the tasks that commanded the longest mean response times (59.2s and 58.5s, respectively).  
1106 This empirically confirms that these tasks impose the highest cognitive load. The mental simulation  
1107 required to assemble complex parts in 3D Combination (Extrinsic-Dynamic) and the demanding  
1108 visual search needed to disentangle embedded figures in 2D Shape Finding (Intrinsic-Static) are  
1109 inherently time-consuming and error-prone for humans, providing a quantitative justification for their  
1110 difficulty. Conversely, tasks with high accuracy, such as 3D Folding and 3D Rotation, generally  
1111 required less time, indicating a lower cognitive barrier.  
11121113 In order to obtain an unbiased estimate of human baseline performance over the full item pool, we  
1114 employ a matrix-sampling design in which each participant completes only a single booklet of  $K$   
1115 items out of the total pool of  $I$  items. Adjacent booklets share a small set of  $a$  anchor items ( $\approx 10$ ).  
1116 We recruited 54 participants for the study. Prior to participation, all individuals provided informed  
1117 consent, and all procedures were conducted in accordance with relevant ethical guidelines. The data  
1118 collection process yielded a total of 1679 valid responses across all items. Each item was answered  
1119 by an average of 3 participants. The main paper reports human performance with Classical Test  
1120 Theory (CTT) results, while Item Response Theory (IRT) is used for cross-validation.  
11211122 **Analysis Methodology** The collected response data were analyzed using two psychometric frame-  
1123 works:  
11241125 **CLASSICAL TEST THEORY (CTT)** For each item booklet and for the anchor-linked “overall” pool,  
1126 the proportion-correct statistic was computed as  
1127

1128 
$$\hat{p} = \frac{x}{N} \quad (1)$$
  
1129

1130 where  $x$  is the number of correct responses and  $N$  is the total number of responses to that booklet or  
1131 pool. Sampling variability was quantified with the Wald standard error

1132 
$$SE_{CTT} = \sqrt{\frac{\hat{p}(1 - \hat{p})}{N}}, \quad (2)$$
  
1133

1134 yielding a two-sided 95% confidence interval (CI)  
 1135

$$\hat{p} \pm 1.96 \text{SE}_{\text{CTT}}. \quad (3)$$

1137  
 1138 ITEM RESPONSE THEORY (IRT) To cross-validate the CTT findings and place all items on a  
 1139 common latent-ability scale, we fitted a two-parameter logistic (2PL) model to the entire response  
 1140 matrix,

$$P_{ij} = \sigma[a_i(\theta_j - b_i)] = \frac{1}{1 + \exp[-a_i(\theta_j - b_i)]}, \quad (4)$$

1141 where  $P_{ij}$  is the probability that participant  $j$  (ability  $\theta_j$ ) answers item  $i$  (discrimination  $a_i$ , difficulty  
 1142  $b_i$ ) correctly.

1143 For a designated item subset (e.g., a DISE category) containing  $I$  items, the model yields an item-level  
 1144 expected probability of success  $\bar{P}_i$ . The category-level expected accuracy is then

$$\hat{p}_{\text{IRT}} = \frac{1}{I} \sum i = 1^I \bar{P}_i. \quad (5)$$

1145 Between-item variability was captured via the sample variance  
 1146

$$s^2 = \frac{1}{I-1} \sum_{i=1}^I (\bar{P}_i - \hat{p}_{\text{IRT}})^2, \quad (6)$$

1147 leading to the standard error  
 1148

$$\text{SE}_{\text{IRT}} = \frac{s}{\sqrt{I}}, \quad (7)$$

1149 and the 95% CI  
 1150

$$\hat{p}_{\text{IRT}} \pm 1.96 \text{SE}_{\text{IRT}}. \quad (8)$$

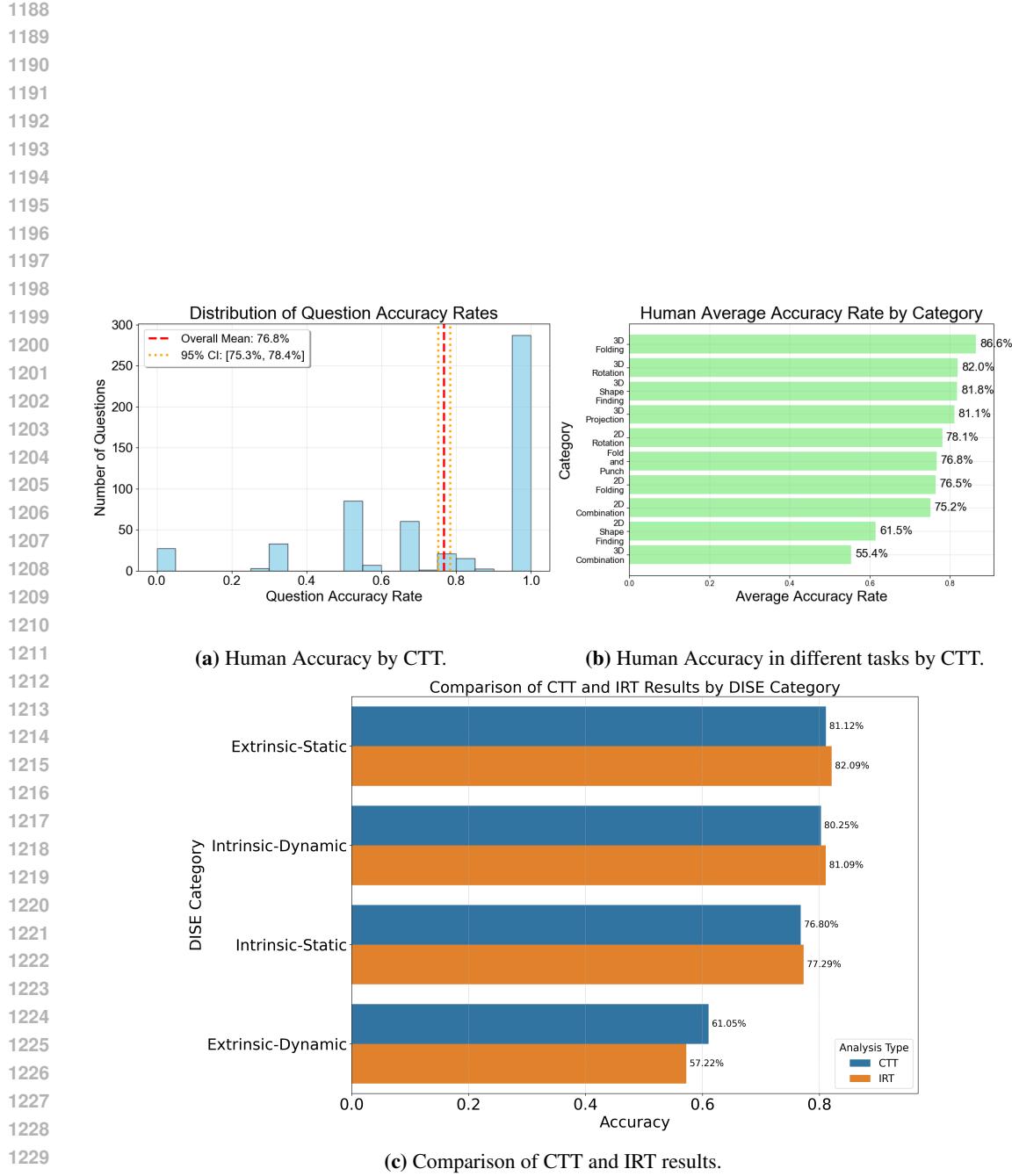
1151 **Results** To provide a comprehensive view, we compare the results from both CTT and IRT analyses.  
 1152 Figure 11, Table 10 juxtaposes the observed accuracy from CTT with the model-based predictions and  
 1153 item parameters from IRT for each DISE category. This comparison highlights the synergy between  
 1154 the two methodologies. The CTT accuracy provides a direct, empirical measure of performance,  
 1155 while the IRT parameters offer an explanation for these results.

1156 **Table 9:** Parameters of the Human Assessment

| Parameters                | Num. |
|---------------------------|------|
| Number of Participants    | 54   |
| Total Number of Items $I$ | 559  |
| Total Responses $N$       | 1679 |
| Number of Booklets        | 19   |

1157 **Table 10:** Human Accuracy by DISE Category

| DISE Category     | CTT Accuracy (95% CI) | IRT Accuracy (95% CI) |
|-------------------|-----------------------|-----------------------|
| Extrinsic-Dynamic | 61.05% $\pm$ 4.46%    | 57.22% $\pm$ 8.67%    |
| Extrinsic-Static  | 81.12% $\pm$ 4.38%    | 82.09% $\pm$ 7.02%    |
| Intrinsic-Dynamic | 80.25% $\pm$ 2.05%    | 81.09% $\pm$ 3.42%    |
| Intrinsic-Static  | 76.80% $\pm$ 3.90%    | 77.29% $\pm$ 7.49%    |
| Overall           | 76.84% $\pm$ 2.02%    | 76.92% $\pm$ 3.79%    |



**Figure 11:** Human Performance Results by CTT and comparison of CTT and IRT results.

1242 B.2 EVALUATION IMPLEMENTATION DETAILS  
12431244 All evaluations were implemented on 3 NVIDIA A100-40G with VLMEvalKit v0.2. Following the  
1245 idea of Duan et al. (2025), all the models used very low temperatures or temperatures equal to 0 and  
1246 set *do\_sample* = *False* to ensure reproducibility and certainty of the results. The API checkpoints  
1247 for proprietary models are listed in Table 11.1248 **Table 11:** Proprietary APIs evaluated in this paper  
1249

| 1250 Proprietary Model & provider        | 1251 API endpoint                           |
|------------------------------------------|---------------------------------------------|
| 1252 Claude 3.7 Sonnet (Anthropic)       | 1253 claude-3-7-sonnet-20250610             |
| 1253 Doubao 1.5 VL (volcengine)          | 1254 doubaol-1-5-vision-pro-32k-250115      |
| 1254 Doubao 1.5 VL-thinking (volcengine) | 1255 doubaol-1-5-thinking-vision-pro-250428 |
| 1255 Gemini 2.0 Flash (Google)           | 1256 gemini-2.0-flash                       |
| 1256 GPT-4.1 nano (OpenAI)               | 1257 gpt-4.1-nano-2025-04-14                |
| 1257 GPT-4o (OpenAI)                     | 1258 gpt-4o-2024-08-06                      |
| 1258 GPT-4o-mini (OpenAI)                | 1259 gpt-4o-mini-2025-06-10                 |

1260 The prompt templates used in the evaluation for different models are shown below:  
12611262 **Listing 1:** Prompt Templates used for Proprietary Models in VLMEvalKit  
1263

```

1264 PROMPT_TEMPLATES = {
1265     "SYSTEM": "You are a helpful assistant.",
1266
1267     "USER": """<image>
1268         Question: The two images above show a 3D structure from
1269         different angles. Which one of the options below could be
1270         constructed to appear the same as both given views when observed
1271         from the corresponding perspectives without rotation and overlaps?
1272         Select the most likely one.
1273         Options:
1274             A. A
1275             B. B
1276             C. C
1277             D. D
1278         Answer with the option's letter from the given choices
1279         directly."""
1280 }
```

1279 **Listing 2:** Prompt Templates used for Llama Serie Models in VLMEvalKit  
1280

```

1281 PROMPT_TEMPLATES = {
1282     "SYSTEM": "",
1283
1284     "USER": """<|begin_of_text|><|start_header_id|>user<|end_header_id|>
1285
1286     <im_start><image><im_end>
1287         Question: The two images above show a 3D structure from
1288         different angles. Which one of the options below could be
1289         constructed to appear the same as both given views when observed
1290         from the corresponding perspectives without rotation and overlaps?
1291         Select the most likely one.
1292         Options:
1293             A. A
1294             B. B
1295             C. C
1296             D. D
1297         Answer with the option's letter from the given choices
1298         directly.<|eot_id|>"""
1299 }
```

1296  
1297

}

1298  
1299**Listing 3:** Prompt Templates used for QwenVL, InternVL, Ovis2 Serie Models in VLMEvalKit1300  
1301

```
PROMPT_TEMPLATES = {
    "USER": """<image>
        Question: The two images above show a 3D structure from
        different angles. Which one of the options below could be
        constructed to appear the same as both given views when observed
        from the corresponding perspectives without rotation and overlaps?
        Select the most likely one.
        Options:
        A. A
        B. B
        C. C
        D. D
        Please select the correct answer from the options above."""
}
```

1312

1313

**Listing 4:** Prompt Templates used for VLM-R1 and LMM-R1 in VLMEvalKit

1314

}

1315  
1316

```
PROMPT_TEMPLATES = {
    "USER": """<image>
        Question: The two images above show a 3D structure from
        different angles. Which one of the options below could be
        constructed to appear the same as both given views when observed
        from the corresponding perspectives without rotation and overlaps?
        Select the most likely one.
        Options:
        A. A
        B. B
        C. C
        D. D
        Please select the correct answer from the options above. Output
        the thinking process in <think> </think> and final answer in
        <answer> </answer> tags."""
}
```

1328

1329

**Listing 5:** Prompt Templates used for VLAA\_Thinker Serie Models in VLMEvalKit

1330

}

1331

```
PROMPT_TEMPLATES = {
    "SYSTEM": "You are VL-Thinking, a helpful assistant with excellent
    reasoning ability. You should first think about the reasoning
    process and then provide the answer. Use <think>...</think> and
    <answer>...</answer> tags."

```

1335

1336

```
"USER": """<image>
        Question: The two images above show a 3D structure from
        different angles. Which one of the options below could be
        constructed to appear the same as both given views when observed
        from the corresponding perspectives without rotation and overlaps?
        Select the most likely one.
        Options:
        A. A
        B. B
        C. C
        D. D
        Please select the correct answer from the options above."""
}
```

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350 **B.3 MORE EVALUATION RESULTS**  
13511352 **Table 12:** Different-task accuracies on Spatial-DISE Bench. Abbreviations—2D Comb.: 2D Combination; 2D  
1353 Fold.: 2D Folding; 2D Rot.: 2D Rotation; 2D S.F.: 2D Shape Finding; 3D Comb.: 3D Combination; 3D Fold.:  
1354 3D Folding; 3D Proj.: 3D Projection; 3D Rot.: 3D Rotation; 3D S.F.: 3D Shape Finding; F&P: Fold and Punch.  
1355 **Bold** indicates the highest accuracy; Underline indicates the second highest.

| Model                                           | Acc.         | 2D Comb.     | 2D Fold.     | 2D Rot.      | 2D S.F.      | 3D Comb.     | 3D Fold.     | 3D Proj.     | 3D Rot.      | 3D S.F.      | F&P          |
|-------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| <b>Proprietary</b>                              |              |              |              |              |              |              |              |              |              |              |              |
| Claude 3.7 Sonnet                               | 30.6%        | <b>29.2%</b> | 25.6%        | <b>30.4%</b> | <b>38.1%</b> | 20.0%        | <b>50.7%</b> | 31.4%        | 31.4%        | <b>28.8%</b> | 24.4%        |
| Doubaol1.5 VL                                   | 33.8%        | <b>41.7%</b> | 25.6%        | <b>43.5%</b> | <u>33.3%</u> | 26.7%        | 44.9%        | <b>37.1%</b> | <u>37.1%</u> | <b>34.8%</b> | 25.6%        |
| Gemini 2.0 Flash                                | <b>34.2%</b> | 20.8%        | <b>41.0%</b> | <u>30.4%</u> | 23.8%        | <b>26.7%</b> | <b>56.5%</b> | 31.4%        | <b>51.4%</b> | 15.2%        | 24.4%        |
| GPT4.1 nano                                     | 29.3%        | <b>29.2%</b> | <b>35.9%</b> | <u>30.4%</u> | 14.3%        | <b>30.0%</b> | 36.2%        | <b>35.7%</b> | 30.0%        | 18.2%        | 23.1%        |
| GPT4o                                           | 28.1%        | <b>29.2%</b> | 26.9%        | 17.4%        | <u>33.3%</u> | 25.0%        | 30.4%        | 22.9%        | 32.9%        | 25.8%        | <b>33.3%</b> |
| GPT4o-mini                                      | 25.6%        | 20.8%        | 28.2%        | 30.4%        | 28.6%        | 15.0%        | 37.7%        | 21.4%        | 22.9%        | 28.8%        | 23.1%        |
| Gemini 2.5 Flash                                | 31.5%        | 12.5%        | 33.3%        | 17.4%        | 33.3%        | 18.3%        | 69.6%        | 27.1%        | 40.0%        | <b>16.7%</b> | 24.4%        |
| Gemini 2.5 Flash w/o thinking                   | 32.0%        | 12.5%        | 33.3%        | 17.4%        | 33.3%        | 16.7%        | 69.6%        | 28.6%        | 40.0%        | 19.7%        | 25.6%        |
| GPT-5                                           | 30.1%        | 20.8%        | 30.8%        | 43.5%        | 14.3%        | 25.0%        | 31.9%        | 25.7%        | 45.7%        | 30.3%        | 24.4%        |
| o4-mini                                         | 33.3%        | 33.3%        | 30.8%        | 52.2%        | 23.8%        | 10.0%        | 47.8%        | 25.7%        | 38.6%        | 48.5%        | 26.9%        |
| <i>Proprietary Average</i>                      | 30.9%        | 25.0%        | 31.1%        | 31.3%        | 27.6%        | 21.3%        | 47.5%        | 28.7%        | 37.0%        | 26.7%        | 25.5%        |
| <b>Open-source</b>                              |              |              |              |              |              |              |              |              |              |              |              |
| Llama-3V-11B                                    | 24.5%        | <b>29.2%</b> | 24.4%        | 21.7%        | 19.0%        | <b>30.0%</b> | 31.9%        | 14.3%        | 24.3%        | <b>25.8%</b> | 23.1%        |
| Cambrian-13b                                    | 26.7%        | 20.8%        | <b>30.8%</b> | 30.4%        | 23.8%        | 26.7%        | 21.7%        | <b>32.9%</b> | 25.7%        | <b>27.3%</b> | 23.1%        |
| Cambrian-8b                                     | 22.9%        | 25.0%        | 26.9%        | 30.4%        | <b>33.3%</b> | 16.7%        | 33.3%        | 15.7%        | 15.7%        | <b>27.3%</b> | 17.9%        |
| InternVL3-38B                                   | <b>32.4%</b> | 29.2%        | 28.2%        | <b>47.8%</b> | 23.8%        | 26.7%        | 42.0%        | 30.0%        | 40.0%        | <b>27.3%</b> | 30.8%        |
| InternVL3-14B                                   | 31.1%        | 25.0%        | 24.4%        | 21.7%        | 14.3%        | 20.0%        | <b>53.6%</b> | 31.4%        | <b>42.9%</b> | 19.7%        | <b>34.6%</b> |
| InternVL3-8B                                    | 26.3%        | <b>33.3%</b> | <b>35.9%</b> | 30.4%        | 14.3%        | 20.0%        | 29.0%        | 28.6%        | 32.9%        | 9.1%         | 25.6%        |
| Kimi-VL-A3B                                     | 24.3%        | 12.5%        | 29.5%        | 26.1%        | <b>33.3%</b> | 20.0%        | 26.1%        | 27.1%        | 35.7%        | 10.6%        | 20.5%        |
| Ovis2-16B                                       | 26.3%        | 20.8%        | 16.7%        | 13.0%        | 19.0%        | 20.0%        | <b>52.2%</b> | 27.1%        | <b>42.9%</b> | 10.6%        | 23.1%        |
| Ovis2-8B                                        | 23.8%        | 25.0%        | 28.2%        | 17.4%        | <b>28.6%</b> | 11.7%        | 36.2%        | 21.4%        | 34.3%        | 7.6%         | 24.4%        |
| Qwen2.5-VL-32B                                  | 27.2%        | 20.8%        | 19.2%        | 21.7%        | 23.8%        | 21.7%        | 34.8%        | 31.4%        | 35.7%        | <b>28.8%</b> | 24.4%        |
| Qwen2.5-VL-7B                                   | 26.1%        | <b>33.3%</b> | 26.9%        | <b>39.1%</b> | <b>33.3%</b> | <b>31.7%</b> | 30.4%        | 24.3%        | 32.9%        | 10.6%        | 17.9%        |
| Qwen2.5-VL-3B                                   | 22.9%        | 29.2%        | 28.2%        | 17.4%        | 14.3%        | 23.3%        | 36.2%        | 17.1%        | 22.9%        | 12.1%        | 21.8%        |
| <i>Open-source Average</i>                      | 26.2%        | 25.3%        | 26.6%        | 26.4%        | 23.4%        | 22.4%        | 35.6%        | 25.1%        | 32.2%        | 18.1%        | 23.9%        |
| <b>Reasoning &amp; Spatial-Specified Models</b> |              |              |              |              |              |              |              |              |              |              |              |
| LLaVA-CoT                                       | 24.0%        | 29.2%        | <b>34.6%</b> | 13.0%        | 9.5%         | 30.0%        | 17.4%        | 22.9%        | 22.9%        | 19.7%        | 25.6%        |
| LMM-R1                                          | 26.1%        | 29.2%        | 28.2%        | 21.7%        | <b>38.1%</b> | 30.0%        | 36.2%        | 20.0%        | 24.3%        | 22.7%        | 19.2%        |
| VLM-R1                                          | 30.8%        | 25.0%        | 26.9%        | <b>39.1%</b> | <b>38.1%</b> | 36.7%        | 47.8%        | 18.6%        | 30.0%        | 24.2%        | 29.5%        |
| Kimi-VL-A3B-Thinking                            | 24.7%        | 16.7%        | 26.9%        | 26.1%        | <b>42.9%</b> | 31.7%        | 26.1%        | 28.6%        | 22.9%        | 15.2%        | 19.2%        |
| Doubaol1.5-VL-thinking                          | <b>42.0%</b> | <b>62.5%</b> | 28.2%        | <b>43.5%</b> | 23.8%        | <b>61.7%</b> | <b>56.5%</b> | <b>31.4%</b> | <b>50.0%</b> | <b>39.4%</b> | 30.8%        |
| VLAA-Thinker-3B                                 | 25.9%        | 37.5%        | 20.5%        | 26.1%        | 28.6%        | 25.0%        | 36.2%        | 30.0%        | 27.1%        | 9.1%         | 28.2%        |
| VLAA-Thinker-7B                                 | 27.9%        | 25.0%        | 25.6%        | 26.1%        | <b>38.1%</b> | 28.3%        | 31.9%        | 27.1%        | <b>35.7%</b> | 22.7%        | 23.1%        |
| SpaceThinker                                    | 32.6%        | 29.2%        | 20.5%        | <b>43.5%</b> | <b>33.3%</b> | 43.3%        | 49.3%        | 22.9%        | <b>35.7%</b> | 22.7%        | 33.3%        |
| SpaceOm                                         | 25.9%        | 25.0%        | 14.1%        | <b>43.5%</b> | 33.3%        | <b>36.7%</b> | <b>49.3%</b> | 24.3%        | 32.9%        | <b>24.2%</b> | <b>37.2%</b> |
| Spacer                                          | 27.0%        | 37.5%        | 32.1%        | 34.8%        | 28.6%        | 26.7%        | 29.0%        | 17.1%        | 37.1%        | 21.2%        | 19.2%        |
| <i>Reasoning &amp; Spatial Average</i>          | 27.6%        | <b>27.8%</b> | <b>25.9%</b> | <b>28.6%</b> | <b>27.0%</b> | <b>28.2%</b> | <b>37.1%</b> | <b>25.1%</b> | <b>31.8%</b> | <b>19.8%</b> | <b>25.4%</b> |
| <i>Overall Average</i>                          | 28.4%        | 27.2%        | 27.8%        | 29.6%        | 27.2%        | 26.0%        | <b>40.1%</b> | 26.0%        | <b>33.6%</b> | 22.0%        | 25.2%        |
| SpaceOm-sft                                     | 33.8%        | 25.0%        | 25.6%        | 26.1%        | 23.8%        | 45.0%        | 46.4%        | 31.4%        | 50.0%        | 30.3%        | 20.5%        |
| Qwen2.5-VL-7B-sft                               | 49.7%        | 33.3%        | 34.6%        | 34.8%        | 9.5%         | 78.3%        | 69.6%        | 41.4%        | 65.7%        | 69.7%        | 21.8%        |
| Human                                           | 76.8%        | 75.2%        | 76.5%        | 78.1%        | 61.5%        | 55.4%        | 86.6%        | 81.1%        | 82.0%        | 81.8%        | 76.8%        |

1382 **B.4 SUPERVISED FINE-TUNING HYPERPARAMETERS**  
13831384 The Supervised Fine-Tuning (SFT) experiments were conducted using the Swift framework. We  
1385 employed the Low-Rank Adaptation (LoRA) technique to efficiently fine-tune both the Qwen2.5-VL-  
1386 7B and SpaceOm models on the Spatial-DISE-12K training set. All linear layers of the models were  
1387 targeted for LoRA adaptation. The key hyperparameters used for the fine-tuning process are detailed  
1388 in Table 13.  
13891390 **Table 13: Hyperparameters for SFT Training**

| Hyperparameter          | Value        |
|-------------------------|--------------|
| Framework               | Swift        |
| Fine-Tuning Method      | LoRA         |
| Target Modules          | all-linear   |
| LoRA Rank (lora_rank)   | 8            |
| LoRA Alpha (lora_alpha) | 32           |
| <b>Batch Size</b>       | <b>48</b>    |
| Precision (torch_dtype) | bfloat16     |
| Learning Rate           | 1.5e-4       |
| <b>Warmup Ratio</b>     | <b>0.05</b>  |
| Number of Epochs        | <b>2</b>     |
| Max Sequence Length     | 4096         |
| Deepspeed               | <b>zero3</b> |

## 1404 C ERROR ANALYSIS DETAILS

1405  
 1406 This section provides a detailed quantitative and qualitative breakdown of the error analysis conducted  
 1407 to understand the failure modes of VLMs on Spatial-DISE Bench.  
 1408

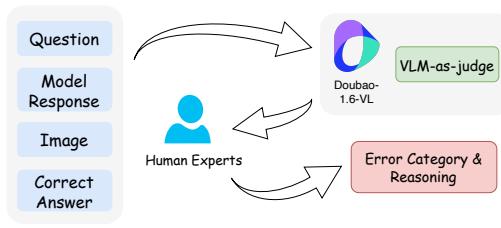
### 1409 C.1 DEFINITION OF HIGH-LEVEL ERROR

1410  
 1411 We established a high-level error taxonomy to systematically diagnose failures by deconstructing the  
 1412 model mistakes into three errors:

- 1413 • **Perceptual Error**, which the model fails to accurately interpret basic visual information,  
 1414 such as the shape, count, or spatial relationship of objects.
- 1415 • **Comprehension Error**, which the model misinterprets the natural language prompt or the  
 1416 objective of the task, indicating a failure to understand the question.
- 1417 • **Reasoning Error**, which the model correctly perceives the visual scene and understands the  
 1418 prompt but fails in the logical deduction required to reach the correct answer. This includes  
 1419 errors in mental rotation, folding, or spatial manipulation.

### 1421 C.2 VLM-AS-JUDGE IN ERROR ANALYSIS

1422  
 1423 Inspired by Yang et al. (2025), we adopted an automated error analysis pipeline. As shown in Figure  
 1424 12, we use Doubao-1.6-thinking as a judge, combined with human inspection. Table 14 lists the  
 1425 distribution of the wrong responses sampled in error analysis.



1435 **Figure 12:** Error Analysis Pipeline

1436 The prompt template used for error analysis:

1437 **Listing 6:** Prompt Templates used for Error Analysis

```

1438
1439 ERROR_ANALYSIS_PROMPTS = {
1440     "detailed_analysis": """
1441     Please provide a detailed analysis of the visual-language model's
1442     incorrect answer:
1443
1444     Question Category: {category}
1445     Question: {question}
1446
1447     Options:
1448     {options}
1449
1450     Correct Answer: {correct_answer}
1451     Model's Predicted Answer: {predicted_answer}
1452     Model's Full Response: {model_prediction}
1453
1454     Please analyze in depth from the following perspectives:
1455     1. Error Type Classification:
1456         - Perception Error: The model failed to correctly identify visual
1457             elements in the image.
1458         - Comprehension Error: The model recognized visual elements but
1459             misunderstood their meaning.
1460         - Reasoning Error: The model understood the content but made a
1461             mistake in reasoning.
  
```

**Table 14:** Error Distribution by DISE category

| DISE Category           | Count |
|-------------------------|-------|
| Intrinsic-Static (I-S)  | 34    |
| Intrinsic-Dynamic (I-D) | 107   |
| Extrinsic-Static (E-S)  | 34    |
| Extrinsic-Dynamic (E-D) | 25    |
| <b>Total</b>            | 200   |

```

1458
1459     2. Specific Cause of the Error
1460     3. Severity Assessment (Low / Medium / High)
1461     4. Possible Directions for Improvement
1462     5. Suggestions to Prevent Similar Errors
1463
1464     Please return the analysis in JSON format:
1465     {{ "Error Type": "Specific type of error",
1466       "Error Subtype": "More detailed category of the error",
1467       "Cause of Error": "Detailed explanation of the cause",
1468       "Severity": "Low/Medium/High",
1469       "Summary": "Brief summary of the error"
1470     } }
1471     """
1472     "category_analysis": """
1473     Please analyze the error patterns of the visual-language model in the
1474     following {category} category questions:
1475
1476     {error_examples}
1477
1478     Analyze from the following perspectives:
1479     1. Most common error types in this category
1480     2. Common features and patterns of errors
1481     3. Category-specific challenges
1482
1483     Please provide a structured response.
1484     """
1485
1486     "comparison_analysis": """
1487     Please compare the error performance of the following models on the same
1488     question:
1489
1490     {model_comparisons}
1491
1492     Analyze:
1493     1. Differences in error types across models
1494     2. Strengths and weaknesses of each model
1495     3. Comparison of error severity
1496
1497     Please provide a detailed comparative analysis.
1498     """
1499   }

```

1496 Our analysis reveals a clear and consistent pattern: Reasoning Error is the predominant failure  
1497 category, accounting for an overwhelming 72.5% (145 out of 200) of all analyzed mistakes. Perceptual  
1498 errors constituted 17.5% of the total, while comprehension errors were the least common at 10%.  
1499 This distribution strongly suggests that the primary bottleneck for current VLMs is not in visual  
1500 perception but in complex spatial-logical inference. While this initial classification identifies where  
1501 the models fail, a more granular analysis is required to understand why they fail.

### 1503 C.3 A DEEP DIVE INTO REASONING FAILURES

1505 To move from symptom to cause, we performed a deeper analysis of the 145 reasoning errors,  
1506 re-categorizing them based on the underlying cognitive abilities that are deficient. This approach,  
1507 inspired by cognitive science, reveals that the models' failures stem from a lack of fundamental  
1508 cognitive mechanisms for spatial intelligence. We identified three primary root causes.

1509 **Failure in Rule Application (44.8%)** This was the most critical category of failure. Models  
1510 demonstrate an ignorance of the fundamental axioms, constraints, and invariances of the geometric  
1511 world. The errors are not in complex derivations but in the application of basic, non-negotiable

1512 rules. The root cause appears to be a failure to link visual percepts to an abstract library of geometric  
 1513 principles; the models see pixels, not entities governed by rules.  
 1514

1515 A frequent failure was confusing adjacent and opposite faces in 3D cube problems. For instance, a  
 1516 model might correctly identify the symbols on a cube's faces but fail to apply the simple rule that  
 1517 adjacent faces cannot be opposite one another.  
 1518

1519 **Failure in Mental Simulation (40.0%)** The second most significant failure was the inability to  
 1520 construct a dynamic, operable internal representation to simulate a continuous spatial transformation.  
 1521 Models lack a reliable "spatial working memory" to track an object's state through a sequence of  
 1522 operations. They cannot robustly answer the question, "what happens next?"  
 1523

1524 This was most evident in "Fold and Punch" tasks. Models consistently failed to track the number of  
 1525 layers created by folds and, consequently, could not predict the symmetric replication of holes upon  
 1526 unfolding. For example, after simulating a two-fold process (creating four layers), a model might  
 1527 incorrectly predict only two holes in the unfolded paper, demonstrating a breakdown in state tracking.  
 1528

1529 **Failure in Holistic-Local Processing (15.2%)** Finally, models exhibited an imbalance in processing  
 1530 visual information, struggling to shift between holistic understanding and local detail analysis. Their  
 1531 attention mechanisms appear unable to dynamically allocate cognitive resources to the most salient  
 1532 features required by the task.  
 1533

1534 Models were often misled by superficial similarity. In rotation tasks, a model might identify an option  
 1535 as correct simply because it "looks similar" to the target, while ignoring a fatal flaw in the local  
 1536 arrangement of its components, such as an incorrect orientation of a key part.  
 1537

1538 In summary, the failures of current VLMs in spatial reasoning are systemic and deeply rooted in  
 1539 cognitive deficiencies. They lack an internal "world model" that is constrained by geometric rules,  
 1540 can be manipulated through dynamic simulation in a spatial working memory, and is guided by a  
 1541 flexible attentional mechanism. This points to a clear direction for future research: efforts must  
 1542 transcend simple pattern matching and focus on imbuing models with the foundational capabilities  
 1543 for genuine spatial cognition.  
 1544

1545 **Table 15:** Error Analysis Across Different Models

| Err.\ Models       | Qwen2.5-VL | GeminiFlash | Doubao-1.5 | SpaceThinker |
|--------------------|------------|-------------|------------|--------------|
| Reasoning Err.     | 31         | 31          | 37         | 46           |
| Perceptual Err.    | 12         | 12          | 8          | 3            |
| Comprehension Err. | 7          | 7           | 5          | 1            |

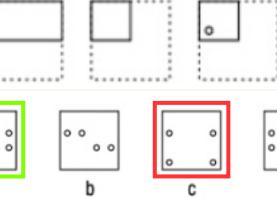
1546  
 1547  
 1548  
 1549  
 1550  
 1551  
 1552  
 1553  
 1554  
 1555  
 1556  
 1557  
 1558  
 1559  
 1560  
 1561  
 1562  
 1563  
 1564  
 1565

1566  
1567  
1568  
1569  
1570  
1571  
1572  
1573  
1574  
1575  
1576  
1577  
1578  
1579  
1580  
1581  
1582  
1583  
1584  
1585  
1586  
1587  
1588  
1589  
1590  
1591  
1592  
1593  
1594  
1595  
1596  
1597  
1598  
1599  
1600  
1601  
1602  
1603  
1604  
1605  
1606  
1607  
1608  
1609  
1610  
1611  
1612  
1613  
1614  
1615  
1616  
1617  
1618  
1619

**Failure in Mental Simulation**

**3D Rotation**

 Doubao-1.5-  
Thinking



**Model Ans.:** To solve this problem, we analyze the folding and punching process:

1. **Folding Steps:** The square is folded twice. First, a horizontal fold (reducing height), then a vertical fold (reducing width). This creates 4 layers of the square.
2. **Punching a Hole:** When a hole is punched through 4 layers, the unfolded square will have 4 holes (one in each layer).
3. **Position of Holes:** The hole in the folded square is symmetric across both folds. When unfolded, the holes must be evenly distributed in a symmetric pattern.

Among the options:

- a and d have only 2 holes (insufficient, as 4 layers mean 4 holes).
- b has 4 holes but their placement is not symmetric with the folding logic.
- c has 4 holes arranged symmetrically, matching the result of two folds and a single punch.

Thus, the correct answer is c.

**Error Reason:** The model correctly identified that the process would result in four holes. However, it failed to accurately simulate the unfolding process. It incorrectly calculated the reflective positions of the holes, placing them on the middle and bottom edges instead of in the middle. This demonstrates a breakdown in its ability to track the state and symmetric transformations of an object through a multi-step process.

**Figure 13:** Error example of Failure in Mental Simulation

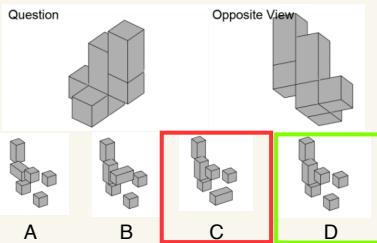
1620  
1621  
1622  
1623  
1624  
1625  
1626  
1627  
1628  
1629  
1630  
1631  
1632  
1633  
1634

**Failure in Holistic-Local Processing**

**3D Combination**



SpaceThinker



**Model Ans.:**

<think>

To determine the correct answer, we need to analyze the two perspectives and find a combination that matches both views without rotation or overlaps.

1. **\*\*Question View\*\*:** The structure in the question view shows a central column with smaller blocks around it.

2. **\*\*Opposite View\*\*:** The structure in the opposite view shows a similar central column but with additional blocks on the sides.

Looking at the options:

- **\*\*Option A\*\*:** This arrangement does not match the central column structure in both views.
- **\*\*Option B\*\*:** This arrangement also does not match the central column structure in both views.
- **\*\*Option C\*\*:** This arrangement matches the central column structure in both views.
- **\*\*Option D\*\*:** This arrangement does not match the central column structure in both views.

Given that Option C matches the central column structure in both views without any overlaps or rotations, it is the most likely correct answer.

</think>

<answer>C</answer>

**Error Reason:** Although the model correctly identified the "central pillar structure" in both views, it failed to analyze the detailed spatial configuration of the surrounding blocks, such as their exact positions and quantities. As a result, it could not accurately determine whether an option satisfied the requirements of "no rotation" and "no overlap." Specifically, Option C's surrounding block layout contradicts the details in one of the views (e.g., the block distribution is inconsistent with the perspective), whereas the correct Option D matches the spatial details in both views. However, due to imprecise spatial reasoning, the model incorrectly judged C as valid.

1666  
1667  
1668  
1669  
1670  
1671  
1672  
1673

**Figure 14:** Error example of Failure in Holistic-Local Processing