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Figure 1: A Comprehensive Overview of the Spatial-DISE Framework, Generation Pipeline, and Benchmark
Statistics. a) Comparison of examples from existing benchmarks, which primarily test general static reasoning,
with cognition intrinsic-dynamic tasks from our Spatial-DISE benchmark. b) introduces the core DISE taxonomy,
showing the four quadrants of spatial reasoning and their distribution in the 559-pair evaluation bench. c) presents
evaluation results, showing a significant gap between model and human performance. d) details the synthetic
data generation pipeline implemented in Blender, and e) provides a statistical breakdown of the task categories
within both the Spatial-DISE Bench and the Spatial-DISE-12K.

ABSTRACT

Spatial reasoning ability is crucial for Vision Language Models (VLMs) to sup-
port real-world applications in diverse domains including robotics, augmented
reality, and autonomous navigation. Unfortunately, existing benchmarks are in-
adequate in assessing spatial reasoning ability, especially the intrinsic-dynamic
spatial reasoning which is a fundamental aspect of human spatial cognition. In
this paper, we propose a unified benchmark, Spatial-DISE, based on a cogni-
tively grounded taxonomy that categorizes tasks into four fundamental quadrants:
Intrinsic-Static, Intrinsic-Dynamic, Extrinsic-Static, and Extrinsic-Dynamic spatial
reasoning. Moreover, to address the issue of data scarcity, we develop a scal-
able and automated pipeline to generate diverse and verifiable spatial reasoning
questions, resulting in a new Spatial-DISE dataset that includes Spatial-DISE
Bench (559 evaluation VQA pairs) and Spatial-DISE-12K (12K+ training VQA
pairs). Our comprehensive evaluation across 33 state-of-the-art VLMs reveals that,
current VLMs have a large and consistent gap to human competence, especially on
multi-step multi-view spatial reasoning. Spatial-DISE offers a robust framework,
valuable dataset, and clear direction for future research toward human-like spatial
intelligence. Benchmark, dataset, and code will be publicly released.
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1 INTRODUCTION

Recent advances in vision language models (VLMs) have demonstrated impressive capabilities in
various tasks such as object detection (Li et al.,|2022; [Peng et al., 2023} |Anil et al., 2025)), scene
caption (Alayrac et al., 2022} |Chen et al., 2023} |Li et al., [2023)), and visual question answering (Wang
et al., [2023; |Anil et al.l 2025; |Alayrac et al.l 2022)). However, their capability for sophisticated
dynamic spatial reasoning, a cornerstone of human cognition and a critical requirement for appli-
cations in robotics, augmented reality, and autonomous navigation, remains a significant limitation
(Ramakrishnan et al., [2024)) and largely under-evaluated.

Existing benchmarks for evaluating the spatial reasoning of VLMs have three major limitations.
Firstly, current benchmarks lack a systematic cognitive framework for categorizing and evaluating
different types of spatial reasoning abilities, leading to fragmented, unbalanced tasks that typically
focus only on basic skills(Liu et al.| 2023} |Chen et al.| [2024; |Cheng et al, |2024). Consequently,
there is a notable scarcity of benchmarks designed to evaluate deeper cognitive abilities. Secondly,
current benchmarks are limited in scope, focusing predominantly on static spatial questions that do
not require multi-step dynamic reasoning (Wang et al.,[2024} Han et al.l |2020). Consequently, crucial
cognitive abilities like mental rotation and folding are significantly under-tested. Thirdly, the few
benchmarks that address dynamic tasks are insufficient in scale (Ray et al.,[2024; Ramakrishnan
et al.}2024), making them insufficient to robustly evaluate the capabilities of the model or to drive
further model development.

To bridge these gaps, we propose Spatial-DISE. Unlike previous benchmarks that focus on isolated
abilities or static scenes, Spatial-DISE introduces a unified 2x2 cognitive taxonomy (Maier}, |1996;
Uttal et al.| 2013)), as illustrated in Figure [1|(b), which covers both 2D and 3D aspects, and critically,
places a strong emphasis on dynamic spatial reasoning tasks. The first dimension distinguishes
between intrinsic information, which defines an object by its internal parts and their arrangement,
and extrinsic information, which pertains to the spatial relations among different objects; the second
dimension differentiates static tasks, which involve fixed and stationary information, from dynamic
tasks, which require mental transformation. Figure [I] provides an overview of the Spatial-DISE
framework, generation pipeline, and benchmark statistics.

Spatial-DISE contains more than 12K verified spatial reasoning Visual Question-Answer (VQA)
pairs. It is created through a combination of real-world data collection and synthetic generation using
Blendelﬂ Firstly, it has a set of 559 real-world and synthetic VQA pairs split into 10 different spatial
reasoning tasks, covering the four DISE quadrants. Secondly, it includes a set of over 12,000 verified
3D spatial reasoning VQA pairs that are generated through an automated pipeline. The synthetic
VQA pairs spread across five 3D Spatial Reasoning tasks.

We conducted a comprehensive evaluation across 33 state-of-the-art (SOTA) VLMs on Spatial-DISE.
These encompassed a range of advanced VLMs, featuring both proprietary and open-source models:
18 foundation models, 7 reasoning models, and 3 models post-trained with spatial-related datasets.
Our findings reveal a profound and universal weakness in current VLMs. Overall performance
remains low, with most models scoring only slightly above random chance and far below the human
baseline. Our in-depth error analysis further reveals that these failures stem not from simple visual
perception, but from fundamental deficits in cognitive processes like rule-based reasoning and mental
simulation.

Our key contributions include:

* A cognitively grounded Taxonomy: We introduce a cognitively grounded framework
that, unlike previous task-oriented benchmarks, provides a unified taxonomy to classify
any spatial task, revealing specific weaknesses like dynamic reasoning that are otherwise
obscured.

* A Scalable and Verifiable Data Generation Pipeline: We design and implement a novel,
automated pipeline using Blender to programmatically generate complex 3D spatial reason-
ing tasks. This methodology is a key contribution, offering a reusable tool for the community
to overcome the data scarcity that has limited previous dynamic reasoning research. The

"https://www.blender.org/
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pipeline ensures verifiability through seeded randomization and reproducible distractor
generation strategies.

* A Unified & Verifiable Cognitive Benchmark: Leveraging our pipeline, we introduce the
Spatial-DISE and the accompanying 12,000-VQA dataset, as a benchmark to systematically
and extensively evaluate complex cognitive spatial reasoning tasks at a scale sufficient for
robust evaluation and future model training.

* Exploring the Boundaries of Cognitive Spatial Reasoning in VLMs: By benchmarking
33 SOTA models, we define the current boundaries of VLM capabilities in cognitive spatial
reasoning. Our analysis reveals a universal performance ceiling, especially for multi-step
mental simulation, highlighting the significant gap between AI and human-level spatial
intelligence.

2 RELATED WORK

Table 1: Comparison of Existing Benchmarks under DISE Taxonomy. Abbreviations— I-S: Intrinsic-Static;
I-D: Intrinsic-Dynamic; E-S: Extrinsic-Static; E-D: Extrinsic-Dynamic.

Benchmark Data Scale Domain Source I-S I-D E-S E-D
SpatialRGPT |Cheng et al. (2024) 1k+ General Real-World X X v X
BLINK (Fu et al./[2024) Tk+ General Real-World X X v v
VSR (Liu et al. 2023) 10k General Real-World v X v X
What’s Up (Kamath et al.}[2023) 820 General Real-World X X v X
CV-Bench (Tong et al.}[2024) 2638 General Real-World X X v X
LEGO-Puzzles (Tang et al.)2025) 1100 Objects Syn. X v v v
COMFORT (Zhang et al.}2025) 1220 Objects Syn. v X v X
3DSRBench (Ma et al.}[2025] 2772 General Real-World X X v X
VSI-Bench (Yang et al.|[2024) 5k General Real-World X X X v
Spatial457 (Wang et al.|2025) 20k+ Objects Syn. 4 X v v
Q-SpatialBench (Liao et al.}|2024) 271 General Real-World X X v X
SAT (Ray et al.,[2024) 175k General Real-World+Syn. X X v v
SPARE3D (Han et al./[2020) 10k+ Cognition Syn. 4 X X X
SpatialEval (Wang et al.[2024) 13k+ Cognition Real-World v X v v
BSA (Xu et al.}[2025) 312 Cognition Real-World v v v v
SPACE (Ramakrishnan et al.}[2024) 5k+ Cognition Real-World v v X v
OmniSpatial (Jia et al.[2025) 1.5k General+Cognition Real-World v v v v
Spatial-DISE Bench 559 Cognition Real-World+Syn. v v v v
Spatial-DISE-12K 12k+ Cognition Real-World+Syn. v v v v

The evaluation of spatial reasoning ability in VLMs has been an active area of research, but prior work
suffers from critical gaps in scope, cognitive depth, and scale. Table[T|compares existing benchmarks
in coverage scope, number of instances, and data sources.

Previous benchmarks offer a fragmented evaluation, lacking a unified cognitive framework. Bench-
marks such as LEGO-Puzzles (Tang et al.l [2025), SAT (Ray et al., [2024) and VSI-Bench (Yang
et al.| [2024) are confined to narrow, specific tasks, preventing a holistic assessment of a model’s true
spatial abilities. Spatial-DISE overcomes this by introducing a unified 2x2 cognitive taxonomy. This
framework, rooted in cognitive science, enables a comprehensive and balanced evaluation, allowing
for the precise diagnosis of model weaknesses.

Furthermore, prior benchmark has a disproportionate focus on static reasoning. A vast number
of benchmarks—including SpatialRGPT (Cheng et al.,|2024), SPARE3D (Han et al., [2020), VSR
(Liu et al.,|2023), CV-Bench (Tong et al., [2024)), BLINK (Fu et al.,[2024), and What’sUp (Kamath
et al.,[2023), SpatialEval (Wang et al., 2024) primarily test a model’s ability to perceive fixed scenes
and relationships. They evaluate what models "see" but not how they can "reason" about potential
changes. Spatial-DISE targets this gap by focusing on intricate dynamic reasoning to thoroughly
assess cognitive tasks such as 3D rotation and folding.

Finally, while SAT (Ray et al., 2024), SPACE (Ramakrishnan et al.|[2024), BSA (Xu et al[2025) and
OmniSpatial (Jia et al.l 2025) have begun to explore the dynamic domain, Spatial-DISE’s uniqueness
lies in its integration of a cognitively unified framework and a verifiable generation process. Our
work complements these existing efforts by providing a structured and reproducible approach to
understanding model failures. With the scalable and verifiable data generation pipeline, it provides a
valuable resource for both fine-grained evaluation and future model training.
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3 METHODOLOGY

Drawing from cognitive science research (Maier, |1996; [Uttal et al., [2013), we organize spatial
reasoning into two key dimensions: Intrinsic vs. Extrinsic and Static vs. Dynamic. The first
dimension differentiates between Intrinsic vs. Extrinsic information. Intrinsic information refers to
the essential characteristics and relationships that define an object. Extrinsic information refers to the
relation among objects in a group, relative to one another or to an overall framework. The second
dimension, Static vs. Dynamic, centers on movement. Movement can alter intrinsic information,
such as through folding, cutting, or rotation. It can also shift an object’s position relative to other
objects and the surrounding environment.

This framework comprehensively covers existing task classifications by placing them into four distinct
quadrants. This creates a 2x2 taxonomy that categorizes spatial reasoning into four distinct quadrants:
Intrinsic-Static (I-S) tasks involve analyzing the internal properties of a single, unchanged object;
Extrinsic-Static (E-S) tasks assess the relationships between multiple objects in a fixed scene;
Intrinsic-Dynamic (I-D) tasks require mentally simulating transformations on a single object; and
Extrinsic-Dynamic (E-D) tasks involve reasoning about the changing spatial relationships between
multiple objects.

3.1 TASKS DESIGN

We designed 10 cognitive science-based tasks to probe spatial reasoning. Figure 2] provides a visual
guide to this categorization, showing how various spatial tasks map onto our Spatial-DISE taxonomy.
The 10 task we designed not only fully map to the four quadrants of the DISE framework, but their
design inspiration also stems from classical psychometric tests. These tasks are specifically designed
to assess core spatial abilities such as mental rotation and spatial visualization (see Appendix A.1 for
detailed correspondence).
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Figure 2: 10 Tasks in Spatial-DISE Bench. Orange shows the Intrinsic-Dynamic Tasks, Green shows the
Intrinsic-Static Tasks, Pink shows the Extrinsic-Static Tasks and Blue shows the Extrinsic-Dynamic Tasks.

Intrinsic-Static Tasks. These tasks evaluate the understanding of an object’s fixed, internal spatial
properties without transformation. This is assessed through 2D/3D Shape Finding, which requires
identifying a hidden shape within a more complex figure or determining a cube’s missing face from
other views, thereby testing the static analysis of intrinsic part-whole relationships.

Intrinsic-Dynamic Tasks. These tasks test the ability to mentally manipulate the internal properties
of an object, requiring pure mental simulation. This includes 2D/3D Rotation, a classic test of mental
transformation that requires predicting an object’s appearance after rotation, and 2D/3D Folding &
Fold&Punch, which tests the outcome of folding a 2D net into a 3D shape or unfolding a punched

paper.
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Extrinsic-Static Tasks. These tasks investigate the understanding of fixed spatial relationships from
an external viewpoint. This is probed using 3D Projection, which requires identifying the correct 2D
orthographic projection of a 3D object from a specified external direction, a task dependent on the
extrinsic relationship between observer and object.

Extrinsic-Dynamic Tasks. These tasks assess the ability to reason about the changing relationships
between multiple objects or parts. The primary tasks here are 2D/3D Combination, which require
mentally assembling separate parts into a coherent whole and thus tests the ability to simulate how
components must move, orient, and connect.

3.2 BENCHMARK CURATION

To ensure the scientific rigor and validity of the dataset, a 3-stage curation pipeline was employed.
This process integrates wild data from real-world sources with a scalable synthetic data generation,
followed by human quality control.

Stage 1: Wild Data Collection. The initial phase aimed to establish a conceptual foundation and
a repository of templates for subsequent data synthesis. We collected a corpus of existing, high-
quality spatial reasoning problems from publicly available and validated sources, including academic
psychometric tests and professional aptitude assessments. This phase yielded an initial corpus of
1180 VQA pairs, providing a diverse set of concepts and structures that informed the automated
generation process. Detailed wild data collection is presented in Appendix A.3.

Stage 2: Scalable Synthetic Data Generation. As illustrated in Figure [I]d, this core stage was
designed to overcome the scale limitations of existing benchmarks, particularly for dynamic and
3D tasks. Leveraging the Blender engine, we transformed the concepts from the initial corpus into
a scalable, automated pipeline. This pipeline follows a general paradigm, customized for each of
the five 3D task types: 1) Initialization and Seeding: Each generation task begins with a unique
question_id, which is hashed to create a reproducible random seed, ensuring the uniqueness and
verifiability of every generated instance. 2) Core Asset Generation: We generate the core 3D
object for a given problem. This includes creating complex, irregular shapes for tasks like 3D
Rotation or generating cubes with unique face textures for 3D Folding and 3D Shape Finding. 3)
Question and Correct Answer Rendering: We render the question and correct answer images
from optimal camera perspectives. 4) Systematic Distractor Generation: To ensure the diagnostic
challenge of each item, the pipeline implements a suite of tiered strategies to create plausible, near-
miss distractors. These strategies include: - Geometric Variations: Introducing subtle alterations
to the core object’s geometry, such as adding or removing components. - Pattern/Orientation
Errors: Generating incorrect texture layouts or orientations on the faces of an object. - Incorrect
Views: Rendering a correct object from an incorrect orthographic perspective for projection tasks.
- Component Replacement: Swapping a correct part with a geometrically similar but incorrect one
in assembly tasks. 5) Controlled Rendering and Formatting: All question, correct answer, and
distractors are rendered in a controlled virtual environment with consistent lighting, materials, and
camera parameters. The final output is a standardized VQA data pair. Detailed illustration and
pseudocode of synthetic data generation is shown in Appendix A.4.

Stage 3: Rigorous Human Quality Control. Following generation, all synthetic instances underwent
a rigorous manual verification process to guarantee the benchmark’s integrity and reliability. The
review protocol assessed each instance against three quality criteria. 1) Solution Uniqueness: Each
problem must have a single, unambiguous correct answer. 2) Accuracy and Clarity: All images
must be free of rendering artifacts, and the corresponding questions must be clearly articulated. All
options must be valid according to the task’s criteria. 3) Redundancy Elimination: The instance
should not be logically or visually redundant with other items in the dataset. Instances failing to
meet these standards were removed from the final dataset. Combined with wild data, two sets of
Sptial-DISE are created:

* Spatial-DISE Bench: An evaluation set of 559 carefully selected VQA pairs, covering all
10 task types and four DISE dimensions, designed for model benchmarking.

» Spatial-DISE 12K: A large-scale dataset consisting of over 12,000 verifiable VQA pairs
cover five 3D tasks, intended as a valuable resource for the future training and fine-tuning of
spatial reasoning capabilities in VLMs.
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4 EVALUATION ON SPATIAL-DISE BENCH

4.1 EXPERIMENT SETTING

Benchmark Models. For the evaluation, we select a diverse set of 33 models across 10 model
families. Our selection includes both proprietary and open-source models, spanning general founda-
tion models, reasoning models, and spatial-specified models. For proprietary foundation models, we
evaluated Claude3.7-Sonnet, DoubaoVL (Guo et al.,|2025b)), GeminiFlash2.0, GPT-4.1-nano, GPT40
and GPT4o0-mini. For open-source foundation models, we evaluated InternVL-3-[8B/14B/38B] (Zhu
et al.,[2025)), Llama-3.2-11B-Vision (Grattafiori et al., [2024), Kimi-VL-A3B (Du et al.| [2025)), Ovis2-
[8B/16B] (Lu et al., [2024)), Cambrian-[8B/13B] (Tong et al., 2024) and Qwen2.5-VL-[3B/7B/32B]
(Bai et al., [2025). For reasoning models, we evaluated LLaVA-CoT (Xu et al.||2024), LMM-R1 (Peng
et al.| 2025), VLM-R1 (Shen et al., [2025)), VLAA-Thinker-[3B/7B] (Chen et al.,[2025)), Kimi-VL-
A3B-Thinking (Du et al.| 2025) and Doubao-1.5-thinking (Guo et al.,|2025b)). For spatial-specified
model, we evaluate SpaceThinker (Chen et al., [2024), SpaceOM (Chen et al., 2024) and SpaceR
(Ouyang et al.| [2025]).

Baseline. For comparison, we include two baselines: Random Guessing and Human Performance.
Random Guessing is the accuracy of randomly choosing a multiple-choice answer. To establish a
robust Human Performance baseline, we recruited 54 participants, including individuals from both
academic and non-academic backgrounds, with ages ranging from 15 to 55. To ensure the reliability
of the results, each question was answered by a minimum of three unique participants. The final
human performance is reported as the average accuracy across all collected responses. More details
of human performance in Appendix B.1.

Implementation Details. = We evaluate multiple-choice accuracy using exact match via the
VLMEvalKit (Duan et al.| 2025)). Deepseek-R1 (Guo et al.,[2025a) is used to parse answers from
malformed model outputs. Additional implementation details are provided in the Appendix B.2.

4.2 MAIN RESULTS

Our comprehensive evaluation reveals that spatial reasoning remains a significant and universal
challenge for current VLMs. Table 2] [3]present the main results of our evaluation. More results are
presented in Appendix B.3. We summarize the key findings as followed:

Spatial reasoning remains a universal challenge. The overall performance across all 33 tested
models was low, with average accuracy of 28.4%, only marginally above random chance (25%)
and falling drastically short of the human baseline (76.8%). Of all models evaluated, the reasoning-
enhanced Doubaol.5-VL-thinking achieved the highest overall accuracy at 42.0%. This widespread
underperformance indicates a critical weakness in tasks requiring genuine mental transformation,
highlighting a failure to move beyond pattern recognition to true spatial cognition.

Multi-Step transformations overwhelm VLMs reasoning. Models demonstrate a particular vulnerabil-
ity to tasks requiring a sequence of mental transformations. The Fold and Punch task, which requires
simulating a fold, a punch, and then an unfold, serves as a clear example of this failure. Even the
top-performing model, Doubao-1.5-thinking, only achieved 30.8% accuracy, while the average of
all models is only 25.4%, performed near random chance. This indicates that while a model might
handle a single transformation, its ability to maintain a coherent mental state breaks down across
multiple steps. This suggests a critical deficit in "spatial working memory," preventing models from
reliably tracking an object through a sequence of changes.

Post-training shows improvement but not enough. The results reveal that post-training with rein-
forcement learning or fine-tuning on spatial datasets offers limited improvements. While models like
Doubao-1.5-thinking and SpaceThinker showed performance gains, their absolute accuracies remain
low and far from the human baseline.

Static comprehension is not a solved precursor to dynamic reasoning. Counter-intuitively, the results
show that proficiency in static reasoning is not a prerequisite for dynamic reasoning. Several top
models perform better on dynamic tasks than static ones. For example, Gemini2.0-Flash scored
significantly higher on dynamic tasks (38.3%) than on static tasks (23.6%). Doubao-1.5-thinking
even outperform human performance in Extrinsic-Dynamic questions. This suggests that models are
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Table 2: Evaluation results of 28 SOTA models and 2 models SFT on Spatial-DISE. Row colors: Base,
A vs base, Reasoning, Spatial, SFT on Spatial-DISE-12k . A A row shows the absolute change in percent-
age points (pp) relative to its base model and is placed between the parent and the derived model. Values
are accuracy (%); brackets use [lower, upper] for the 95% CI. Bold indicates the highest accuracy; Underline
indicates the second highest.

Model Tree Acc. [95% CI] E-D [95% CI] E-S[95% CI] 1-D [95% CI] 1-S[95% CI]
Proprietary Bases
Claude 3.7 Sonnet Base 30.6% [26.8,34.3] 22.6% [14.3,32.1] 31.4% [21.4,429] 32.4% [27.4,37.7] 31.0% [21.8,41.4]
Doubaol.5VL Base 33.8%[29.9,37.7] 31.0% [21.4,40.5] 37.1% [25.7,48.6] 33.6% [28.6,39.0] 34.5% [25.3,44.8]
[ (18.2) (130.9) (57 (17.3) (11
| = Doubaol.5VL-thinking RLHF+RLVF  42.0% [37.9,46.2] 61.9% [51.2,72.6] 31.4% [21.4,42.9] 40.9% [35.5,46.2] 35.6% [25.3, 46.0]
Gemini 2.0 Flash Base 34.2% [30.4,37.9] 25.0% [15.5,34.5] 31.4% [21.4,429] 41.8% [36.5,47.2] 17.2%[9.2,25.3]
Gemini 2.5 Flash Base 31.5% [27.7,35.2] 16.7% [9.5,25.0] 27.1% [17.1,37.1] 39.3% [33.9,44.7] 20.7% [12.6,29.9]
Gemini 2.5 Flash w/o thinking Base 32.0% [28.3,35.8] 15.5% [8.3,23.8] 28.6% [18.6,38.6] 39.6% [34.3,45.0] 23.0% [14.9,32.2]
GPT-4.1 nano Base 29.3% [25.6,33.1] 29.8% [20.2,40.5] 35.7% [25.7,47.11 31.1% [26.1,36.2] 17.2% [9.2,25.3]
GPT-40 Base 28.1% [24.5,31.8] 26.2% [16.7,35.7] 22.9% [12.9,32.9] 29.9% [24.8,34.9] 27.6% [18.4,36.8]
GPT-40-mini Base 25.6% [22.0,29.2] 16.7%[9.5,25.0] 21.4%[12.8,31.4] 28.0% [23.0,33.0] 28.7% [19.5,37.9]
GPT-5 Base 30.1% [26.3,34.0] 23.8% [15.5,33.3] 25.7% [15.7,35.7] 33.6% [28.6,39.0] 26.4% [17.2,35.6]
04-mini Base 333%[29.5,37.2] 16.7%[9.5,25.0] 25.7% [15.7,35.7] 36.8% [31.8,42.1] 42.5% [32.2,52.9]
Proprietary Average 31.9% [29.0, 34.7] 26.0% [17.2, 34.8] 28.9% [25.6, 32.3] 35.2% [32.0, 38.4] 27.7% [22.3, 33.0]
Open-source Bases
Llama3V-11B Base 24.5% [20.9,28.1] 29.8% [20.2,39.3] 14.3%[7.1,22.9] 25.5% [20.8,30.5] 24.1% [14.9, 33.3]
| 1.0.5) ) (18.6) (1.0 (6.9
| - LLaVA-CoT CoT 24.0% [20.6,27.5] 29.8% [20.2,39.3] 22.9%[12.9,32.9] 24.5%[19.8,29.2] 17.2% [10.3, 25.3]
Cambrian-13B Base 26.7% [23.1,30.4] 25.0% [16.7,34.5] 32.9% [21.4,44.3] 25.8% [21.1,30.8] 26.4% [17.2,35.6]
Cambrian-8B Base 22.9% [19.5,26.3] 19.0% [10.7,27.4] 15.7%[7.1,24.3] 23.9% [19.2,28.6] 28.7% [19.5,37.9]
InternVL3-38B Base 32.4% [28.6,36.3] 27.4%[17.9,36.9] 30.0% [20.0,41.4] 35.8% [30.8,41.2] 26.4% [17.2,35.6]
InternVL3-14B Base 31.1% [27.4,34.9] 21.4%[13.1,29.8] 31.4% [20.0,42.9] 37.1% [31.8,42.5] 18.4% [10.3,26.4]
InternVL3-8B Base 26.3% [22.7,29.9] 23.8%[15.5,33.3] 28.6% [18.6,40.0] 30.8% [25.8,35.8] 10.3% [4.6,17.2]
Kimi-VL-A3B Base 24.3% [20.8,279] 17.9%[9.5,262] 27.1%[17.1,37.1] 27.7% [22.6,32.7] 16.1% [9.2,24.1]
I (10.4) (19.5) (T15) ((3.8) 15.7)
| = Kimi-VL-Thinking CoT+RL 24.7% [21.1,28.3] 27.4%[17.9,36.9] 28.6% [18.6,38.6] 23.9% [19.2,28.6] 21.8% [13.8,31.0]
Ovis2-16B Base 26.3% [22.7,29.9] 20.2%[11.9,28.6] 27.1%[17.1,38.6] 31.4% [26.4,36.8] 12.6% [5.7,19.5]
Ovis2-8B Base 23.8% [20.4,27.4] 15.5%[8.3,23.8] 21.4%[12.9,31.4] 29.6% [24.5,34.6] 12.6% [5.7,20.7]
Qwen2.5-VL-32B Base 27.2% [23.4,30.9] 21.4% [13.1,29.8] 31.4% [21.4,42.9] 27.7% [23.0,32.7] 27.6% [18.4,37.9]
Qwen2.5-VL-7B Base 26.1% [22.5,29.9] 32.1% [22.6,42.9] 24.3% [14.3,34.3] 27.7% [22.6,32.7] 16.1% [9.2,24.1]
| (T1.8) 4.7 (12.8) (10.9) (110.3)
| = VLAA-Thinker-7B GRPO 27.9% [24.3,31.7] 27.4% [17.9,36.9] 27.1% [17.1,37.1] 28.6% [23.9,33.6] 26.4% [17.2,35.6]
| (120.9) (134.6) (111.4) (115.4) (135.6)
| - Qwen2.5-VL-7B-sft SFT (SD-12k) 47.0% [42.9,51.2] 66.7% [56.0,76.2] 35.7% [24.3,47.1] 43.1% [37.7,48.7] 51.7% [41.4, 62.1]
I (10.9) (2.3) {72) 119 (16.9)
| - SpaceR SG-RLVR 27.0% (23.4,30.8] 29.8% [20.2,39.3] 17.1% [8.6,27.1] 29.6% [24.5,34.6] 23.0% [14.9, 32.2]
Qwen2.5-VL-3B Base 22.9% [19.5,26.5] 25.0% [15.5,34.5] 17.1% [8.6,25.7] 26.4% [21.7,31.4] 12.6% [5.7,20.7]
| (13.2) (14.8) (12.9) - (113.8)
| - LMM-R1 PPO 26.1% [22.5,29.9] 29.8% [20.2,39.3] 20.0% [11.4,30.0] 26.4% [21.7,31.4] 26.4% [17.2,35.6]
| 9) 8.3) 5) 7.2) (115.0)
|- VLM-R1 GRPO 30.8% [27.0,34.7] 33.3% [23.8,44.0] 18.6% [10.0,28.6] 33.6% [28.6,39.0] 27.6% [18.4,36.8]
| (13.0) (43.6) (112.9) (4 1.3) (11.2)
| = VLAA-Thinker-3B GRPO 25.9% [22.4,29.5] 28.6% [19.0,38.1] 30.0% [20.0,41.4] 27.7% [23.0,32.7] 13.8% [6.9, 21.8]

| (16.7) (110.7) (7.1 17.2) (111.5)

| - SpaceThinker SFT 32.6% [25.4,32.9] 39.3% [20.2,40.5] 22.9% [15.7,35.7] 34.9% (27.7,37.7] 25.3% [10.3,26.4]

| - (12.4) (57 (L 1.0) (15.7)

| = SpaceOM SEL 25.9% [22.4,29.5] 31.0% [20.2,39.3] 24.3% [14.3,34.3] 26.7% [22.0,31.8] 19.5% [11.5,28.7]

| (115.4) (121.4) (12.8) (111.0) (135.7)
| - SpaceOM-sft SFT (SD-12k) 41.3% [37.4,45.4] 52.4% [41.7,63.1] 27.1% [17.1,37.1] 37.7% [32.4,43.1] 55.2% [44.8, 65.5]

Open-source Average 26.2% [25.2,27.3] 23.2% [20.7, 25.8] 25.1% [22.2, 28.0] 29.1% [27.7, 30.6] 19.3% [17.0, 21.7]
Human Level 76.8% [74.8,78.9] 61.1% [56.6, 65.5] 81.1% [76.7,85.5] 80.2% [78.2,82.3] 76.8% [72.9, 80.7]
Random Guessing 24.8% 25.4% 26.3% 24.3% 24.7%

Table 3: Accuracy datasets for Qwen2.5-VL (Base vs SFT) and SpaceOm (Base vs SFT). A is SFT-Base in
percentage points (pp).

Spatial-DISE  CVBench SAT SPACE OmniSpatial VSIBench_MCQ

SpaceOm 25.9% 68.8% 46.67%  27.22% 27.91% 31.05%
+DISE SFT 41.3% 70.33%  49.33% 32.6% 34.28% 33.7%
A (+154%)  (11.53%)  (12.66%) (15.38%)  (16.37%) (+2.65%)
Qwen2.5-VL-7B 26.1% 75.9% 65.3% 28.7% 21.8% 19.3%
+DISE SFT 47.0% 77.4% 69.3% 32.2% 34.0% 22.6%
A (+20.9%) (T1.5%)  (14.0%)  (13.5%) (+12.2%) (+3.3%)

not learning spatial reasoning in a human-like, scaffolded manner. Instead of building dynamic capa-
bilities upon a solid foundation of static scene understanding, they appear to be learning fragmented
strategies, recognizing patterns of "change" without a robust, underlying model of the static world.

Computational rigor can outperform fallible human simulation. This is evident in Doubao-1.5-
thinking model, which surpassed the human baseline on E-D tasks. This superior performance can
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Figure 3: Transfer heatmap by fine-tuning Qwen2.5-VL-7B on Spatial-DISE quadrant-wise.

likely be attributed to the nature of 2D/3D combination. As confirmed by our human performance
analysis (Appendix, Table[8), these tasks are particularly arduous and cognitively demanding for
humans. 3D Combination commanding the longest mean response time (59.2s) among all tasks—who
must rely on fallible mental simulation. In contrast, we observed that the Doubao model transforms
these challenges into computational problems by employing a more algorithmic strategy to compute
and compare geometric features of components—such as edges, angles, and connection points.
Essentially, the model excels by converting a cognitively exhausting simulation task into a precise
computational problem, a domain where it holds a distinct advantage over human intuition.

4.3 FINE-TUNING ON SPATIAL-DISE-12K

We next ask whether Spatial-DISE-12K can shape models’ spatial reasoning, and how such training
interacts with other tasks and benchmarks. We fine-tune two representative open-source VLMs,
Qwen2.5-VL-7B and SpaceOm, using LoRA on all linear layers and training on the Spatial-DISE-
12K split (details in Appendix B.4). We then evaluate on Spatial-DISE Bench and five external
benchmarks: CVBench, SAT, SPACE, OmniSpatial, VSIBench_MCQ.

In-domain: 3D training improves a broad but structured set of skills. Fine-tuning on Spatial-DISE-
12K yields large gains on Spatial-DISE Bench: Qwen2.5-VL-7B improves from 26.1% to 47.0%,
and SpaceOm from 25.9% to 41.3%. The largest jumps occur on Intrinsic-Dynamic and Extrinsic-
Dynamic tasks, with Qwen2.5-VL-7B also showing a substantial improvement on Intrinsic-Static
(16.1% — 51.7%).

To understand which spatial abilities drive these gains, we train Qwen2.5-VL-7B on each DISE
quadrant and visualize the change in accuracy on all quadrants (Figure [3a). The heatmap shows a
strong diagonal pattern: training on I-S, I-D, E-S, or E-D items primarily boosts the same quadrant in
evaluation, while many off-diagonal effects are negative. Only a few cross-quadrant paths, such as
3D E-D — I-S (+3.9 pp), show mild positive transfer. This suggests that the four DISE quadrants
correspond to relatively distinct families of spatial skills: strengthening one family (e.g., dynamic
extrinsic reasoning) does not automatically improve others, and gains on Spatial-DISE Bench come
from covering multiple 3D quadrants in training, not from a single “universal” spatial skill.

Cross-quadrant transfer. Figure 32 shows strong quadrant-specific specialization: fine-tuning on a
given DISE quadrant mainly improves that quadrant (large diagonal gains), while most off-diagonal
entries are small or even negative. Rather than clean, factorized transfer along the Intrinsic/Extrinsic
or Static/Dynamic axes, we observe interference and asymmetry between quadrants (e.g., E-D —
I-S is mildly positive, whereas I-S — E-D is strongly negative). This suggests that current VLMs
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do not learn neatly independent DISE dimensions, but instead form entangled, quadrant-specific
representations.

3D — 2D transfer. Figure[3b]probes how 3D DISE training influences 2D performance. Here we fine-
tune tasks from a single quadrant and evaluate on all 2D DISE tasks. Training on extrinsic—dynamic
3D tasks leads to broadly positive transfer across 2D settings, indicating that scene-centric dynamic
reasoning supports a reusable representation for projection, combination, occlusion, and related
2D problems. In contrast, training on intrinsic—static or extrinsic—static 3D tasks often leads to
narrow or even negative transfer, and intrinsic—dynamic training mainly benefits 2D rotation while
degrading simpler 2D tasks. These patterns show that DISE is not just a larger or more finely labelled
benchmark: it exposes qualitatively different reasoning regimes. Scene-centric dynamic reasoning
tends to induce representations that are widely reusable across formats and dimensionalities, whereas
object-centric static reasoning is more specialized and can interfere with tasks that rely on relative or
dynamic frames.

Out-of-domain effects. In external benchmarks (Table [3), Spatial-DISE fine-tuning produces con-
sistent but selective gains. Improvements are most pronounced on SPACE and OmniSpatial, which
also emphasize viewpoint changes and 3D-consistent reasoning, while benchmarks that mix spatial
reasoning with broader language or diagram understanding benefit more modestly. This selective
pattern is consistent with the above analyzes: Spatial-DISE-12K acts as a targeted spatial curricu-
lum, enriching specific spatial reasoning capabilities that are then partially reused in other spatial
benchmarks.

Even after fine-tuning, the best model (Qwen2.5-VL-7B-sft) remains far below the human baseline
on Spatial-DISE Bench, indicating substantial remaining headroom. Taken together, the quadrant-
wise and 3D—2D transfer results suggest that current VLMs still lack robust, human-like spatial
schemas, but that carefully structured 3D training on Spatial-DISE-12K can systematically strengthen
distinct spatial skill families and induce meaningful, though selective, cross-task and cross-benchmark
transfer.

5 ERROR ANALYSIS

To move beyond simply measuring what models ' )
fail at, this section provides a cognitive diagnosis Table 4: Error Types and Their Frequencies.
to understand why they fail. We use Doubao-1.6-

. . . . . Major Error Sub-category Num.
thinking as a judge, and combined with human anal- Failure in Rule Application 65

: 3 Reasoning Err. Failure in Mental Simulation 58
ysis, analyzes on a sample of 200 1ncorre-ct.resp0nses Failure in Holistio-Local Processing 22
from four representative models: GeminiFlash2-0, Perceptual Er, — 35
Qwen2.5-VL-3B, Doubao-1.5-thinking, and Space- -—omprehension Frr — 2

Thinker, with 50 samples drawn from each.

We established a high-level error taxonomy to systematically diagnose failures by deconstructing
the model mistakes into three errors: Perceptual Error, Comprehension Error and Reasoning
Error. The analysis reveals that Reasoning errors are the predominant failure category, accounting
for an overwhelming 72.5% of all analyzed failure responses. Perceptual errors constituted 17.5%
of the total, while comprehension errors were the least common at 10%. This distribution strongly
suggests that the primary bottleneck for current VLLMs is not in visual perception but in complex
spatial-logical inference. The predominance of reasoning errors (145) prompted a deeper analysis,
which identified three fundamental cognitive deficits.

The most significant issue was a Failure in Rule Application (44.8%), where models disregard basic
geometric axioms, such as the spatial relationship between adjacent and opposite faces on a cube.
This suggests an inability to link visual data with abstract principles. The second major deficit was
a Failure in Mental Simulation (40.0%), indicating a lack of "spatial working memory" to track
objects through transformations, as seen in Fold and Punch where state changes are consistently
miscalculated. Finally, a Failure in Holistic-Local Processing (15.2%) was observed, where models
cannot appropriately shift attention between an object’s overall structure and its local details, often
being misled by superficial similarities while ignoring critical flaws. Detailed error analysis pipeline,
definition of error categories and more discussion is presented in Appendix C.
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6 CONCLUSION AND LIMITATIONS

Conclusion and future direction. We introduced

. . ilure in Rul e e s
Spatial-DISE, a comprehensive benchmark for eval- it Dnﬂo :ga} .]DD
uating VLMs spatial reasoning, supported by Spatial- 4 =

. . . 3D Sh Findif " °
DISE-12K created via a synthetic data generation e | |:| 20-
. . . . emini-2.0-

pipeline. Our evaluation and error analysis reveal Flash o DD N o
that VLMS unlversally have Spatlal COgnlthe deﬁCltS’ Model Ans.: The correct answer is D. The top face of all the cubes

1 1 ili 1 has the sun symbol. The third cube has the sun symbol on the top face
SpeClﬁCﬁHy an lna,blhty t'O apply geometﬂc rules and and a blue face. Therefore, the blue face is most likely to have the sun
perform mental simulations. This research offers a  symbol.
framework, dataslet’ and dlag.nOSIS to dlreC.t f]'.lture Error Reason: The model incorrectly assumed that a "sun symbol"
efforts 1n developlng VLMs W]th robust spatlal lntel- visible on the top face of the cube would also appear on a side face.

This violates the fundamental rule that each face of the cube is unique

hgence- and that a symbol on the top face cannot simultaneously be on an
adjacent side face. The model failed fo apply this basic geometric

For advancing spatial intelligence, future work should ~ onstreinf. leading fo a high-severify reasoning error.

aim to impart human-like cognitive abilities, shifting

from mere perception to active reasoning. A major Figure 4: Error example of Failure in Rule Appli-
focus should be on closing the sim-to-real gap by cation.

transferring abstract cognitive concepts, such as ob-

ject permanence and causal geometry, derived from synthetic settings, avoiding reliance on basic
visual generalization. Evaluation should progress from isolated puzzles to interactive tasks like
navigation and robot manipulation, which test an agent’s capability in spatial planning and execution.
Importantly, assessments should become process-oriented, requiring outputs like textual justifica-
tions or action plans, enabling a more nuanced examination of the VLA’s cognitive architecture,
distinguishing true mental simulation from fragile heuristic matching.

Limitations. Our error analysis relies on a hybrid LLM-+human pipeline: Doubao-1.6-thinking
first proposes an explanation and error type for each sampled failure, and a human annotator then
verifies and, if needed, corrects this label. While this substantially reduces manual effort, it also
introduces two limitations. First, the LLM’s initial explanation may bias the annotator and thus induce
systematic blind spots or misclassifications. Second, we analyse only 200 errors from four models,
so the counts in Table 4 should be interpreted as qualitative trends rather than precise population
estimates.
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Appendices

LLM Usage Statement. We declare that large language models (LLMs) were used exclusively
for language editing and stylistic improvements in this manuscript. They did not contribute to the
conceptual, methodological, or experimental aspects of the work.

Ethics Statement. This work adheres to ethical research practices. The "wild data" portion of
our benchmark was collected from publicly available and validated sources, such as academic
psychometric tests and professional aptitude assessments, intended for research and educational use.
Human performance data was gathered from 54 consenting participants, with procedures conducted
in accordance with relevant ethical guidelines. Our research aims to advance the evaluation of
Al systems, and we commit to the public release of our benchmark, dataset, and code to foster
transparency and further research in the community. The work does not involve sensitive personal
data or foreseeable negative societal impacts.

Reproducibility Statement. We provide comprehensive details to ensure full reproducibility. The
complete dataset curation process, including the synthetic data generation pipeline, is detailed in
Section 3.2 and Appendix A.4. This includes procedural algorithms (pseudocode) and specific
implementation details for the five core 3D tasks. All evaluation settings, including benchmark
models, baselines, and implementation details, are described in Section 4.1. Our human performance
assessment methodology is thoroughly documented in Appendix B.1. The benchmark, dataset, and
code will be made publicly available to facilitate direct comparison with our results.

A DATASET DETAILS

A.1 TASKS DESIGN DETAILS

This subsection describes the task design details, aligning the original cognitive science psychometric
test with the spatial abilities defined by |Linn & Petersen|(1985), and its classification within the
Spatial-DISE taxonomy.

Table 5: Each spatial task used in our study and its canonical source test. Spatial Perception (SP), Spatial
Relation (SR), Spatial Orientation (SO), Mental Rotation (MR), and Spatial Visualization (SV)

Task Original Test DISE Taxonomy Spatial Ability
3D Combination Differential Aptitude Tests (Bennett et al.||1947} Extrinsic-Dynamic SV
2D Combination Minnesota Paper Form Board Test (Peter][1974) Extrinsic-Dynamic SV
3D Projection Purdue Spatial Visualization Test — Views (BODNER & GUAY!|1997) Extrinsic-Static SP, SV
Fold and Punch ~ Paper Folding Test (VZ-2) (Pallrand & Seeber||1984{|Ekstrom & Harman/|{1976) Intrinsic-Dynamic SV, SR
3D Folding Paper Folding Test (VZ-3) (Ekstrom & Harman||1976) Intrinsic-Dynamic SV, SR, SO
2D Folding Paper Folding Test (VZ-2) (Ekstrom & Harman!|1976) Intrinsic-Dynamic SV, SR, SO
3D Rotation Mental Rotations Test (Shepard & Metzler![1971) Intrinsic-Dynamic SV, MR, SO
2D Rotation Card Rotations Test (S-1) (Ekstrom & Harman!|1976) Intrinsic-Dynamic SV, MR, SO
3D Shape Finding Cube Comparisons Test (Ekstrom & Harman|[1976) Intrinsic-Static SV, SR
2D Shape Finding Embedded Figures Test (Witkin||1950) Intrinsic-Static SV, SR

A.2 DATASET SPLIT DETAILS

Subset Q&A Pairs  Source Mix (RWD /SD) Tasks
Spatial-DISE-Bench 559 53%  47% 2D + 3D
Spatial-DISE-12K 12355 5% 195% 3D
-Train 8648 5.1% 194.9% 3D
-Val 1853 5.5% 1 94.5% 3D
-Test 1854 4.5% 195.5% 3D

Table 6: Description of Spatial-DISE Subsets. RWD: Real-World Data, SD: Synthetic Data. Note that Spatial-
DISE Bench includes 2D questions absent from training splits, enabling zero-shot 2D evaluation.

A.3 WILD DATA COLLECTION DETAILS

Wild data are collected from open source online resources, mainly from the following resources:
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1. Open-Source Spatial Reasoning Tests: Psychometric test materials published by academic
research entities for evaluating spatial abilities.

2. CEM 11+ Non-verbal Reasoning Tests: Validated spatial reasoning items from authoritative
aptitude tests used for secondary school admissions in the UK.

3. Online Employment Aptitude Tests: High-quality spatial and logical problems administered
by corporations during recruitment.

A.4 SYNTHETIC DATA GENERATION DETAILS
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Figure 5: Synthetic Data Generation and Quality Control.

This section provides detailed procedural algorithms (pseudocode) and visual examples for the
automated generation of our five core 3D spatial reasoning tasks. Each algorithm is designed

for verifiability and incorporates sophisticated, task-specific strategies for generating plausible
distractors.

Synthetic data generation employs Blender 4.4.0 on Apple Silicon M4. Some texture icons © Icons8
— under Universal Multimedia License. Task details, pseudocodeﬂ and examples for synthetic data
generation are outlined below:

Question

Figure 6: Synthetic 3D Rotation Data Example.

2All functions referenced in the code listings are project-specific utility routines; their full implementations
will be provided in the accompanying public code repository.
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Algorithm 1: GENERATE3DROTATIONQUESTION

1: Input: question id g_1id, list of isometric camera presets so_views, number of distractors n
2: seed + Hash(g_id)

3. SetRandomSeed(seed); ClearScene()

4: orig + CreateCombinationShape(cells € [5, 15], rectangularPrisms=True, seed)
5. qView < FindBestView(orig, iso_views)

6: SetCamera(qView, jitter=True)

7: RenderImage(q_id_Q)

8: ansView < ChooseDifferentView(iso_views, exclude=qView)

9: SetCamera(ansView, jitter=True)
10: RenderImage(q_1id_A0)
11: for¢ < 1tondo
12:  dif ficulty < i/n {Higher i = harder}
13:  dShape < GenerateDistractor(orig, di f ficulty, seed + )
14:  dView < RandomChoice(iso_views)

15:  SetCamera(dView, jitter=True)

16:  Renderlmage(q_id_A{i})

17: end for

18: SaveMetadata({q_1id, gView, ansView, seed})

3D Rotation The 3D rotation matching task is designed to assess the ability to mentally rotate a
three-dimensional object and recognize it from a different angle.

The process begins by generating a complex 3D shape composed of multiple cubes or rectangular
prisms. This shape is then rendered from an optimal viewpoint to create the "question" image. This
viewpoint is chosen to maximize the number of visible parts, ensuring a clear presentation of the
object.

Next, a set of "answer" options is generated:

The Correct Answer: This is created by rendering the original shape from a new viewpoint, different
from the one used for the question image. This requires the participant to recognize that it is the same
object, despite the change in perspective.

Distractors: These are generated by creating new shapes that are slightly different from the original
one. Each distractor is then rendered from a different viewpoint. These are designed to confuse the
participant by presenting options that are visually similar but structurally incorrect. The final output
consists of the question image, one correct answer image, and several distractor images, along with a
metadata file containing all the generation parameters to ensure reproducibility.

Question
Q

L

Figure 7: Synthetic 3D Projection Data Example.

3D Projection The 3D projection task evaluates a person’s ability to interpret a 3D object from an
isometric perspective and then identify its correct 2D orthographic projection from a set of options.

The process starts by generating a complex 3D shape. A "question" image is then created by rendering
this 3D shape from an optimal isometric viewpoint. A visual cue, typically an arrow, is included
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Algorithm 2: GENERATE3DPROJECTIONQUESTION

1: Input: g_id, ortho_views = {top, front, right, left, bottom, back}, iso_views, number of
distractors n

2: seed < Hash(g_id)

3: SetRandomSeed(seed); ClearScene()

4: shape < CreateCombinationShape(seed=seed)

5: qView < FindBestView(shape, iso_views)

6. targetView < RandomChoice(ortho_views)

7: indicator < CreateViewIndicator(direction=targetView)
8: SetCamera(qView)

9: RenderImage(q_id_Q); Delete(indicator)

10: SetCameraOrtho(targetView)
11: Renderlmage(q_1id_A0)
12: for¢ < 1tondo
13:  if Random() < 0.7 then

14: dShape < GenerateDistractor(shape, difficulty=0.3 4+ 0.7 - i/n, seed+i)
15: dView < targetView

16: else

17: dShape <+ shape

18: dView <— ChooseDifferentView(ortho_views, exclude=targetView)
19:  endif

20:  ApplyScene(dShape)

21:  SetCameraOrtho(dV iew)

22:  Renderlmage(q_id_A{i})

23: end for

24: SaveMetadata({q_id, seed, qView, targetView})

in the question image to indicate the direction from which the orthographic projection should be
imagined (e.g., "top-down," "front," or "side" view).

A set of options is then generated:

The Correct Answer: This is the true 2D orthographic projection of the 3D shape as seen from the
direction indicated by the arrow in the question image.

Distractors: These are incorrect 2D projections. They are generated in a few ways:

Incorrect Projections: These are valid orthographic projections but from the wrong viewpoint (e.g., a
"side" view when the "top-down" view was asked for).

Slightly Altered Shapes: These are 2D projections of shapes that are subtly different from the original
3D shape, testing attention to detail. The participant must select the 2D image that accurately
represents the specified orthographic projection of the 3D object shown in the question.

Question Opposite View
A B (o} D
@ @ @ @
U g@ ¢ % ® g@ @gﬁi

Figure 8: Synthetic 3D Combination Data Example.
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Algorithm 3: GENERATE3DCOMBINATIONQUESTION

1: Input: g_1id, iso_views, number of distractors n
2: seed + Hash(g_id)
3. SetRandomSeed(seed); ClearScene()
4: master < CreateCombinationShape(seed=seed, complexity=medium)
5. qView < FindBestView(master, iso_views); SetCamera(qView)
6: RenderImage(q_1d_Q)
7: oppView < OppositeView(qV iew); SetCamera(oppV iew)
8: RenderImage(q_1id_Q_opp)
9: components < DeconstructShape(master)
10: ArrangeComponentsGrid(components, gap=2)
11: SetCamera(GlobalOverview)
12: RenderImage(q_1id_AO0)
13: fori < 1ton do
14:  comp < RandomChoice(components)
15:  dComp <+ CreateDistractorComponent(comp, variation=i/n, seed+i)
16:  ReplaceComponent(comp, dComp)
17:  Renderlmage(q_id_A{i})
18:  RestoreComponent(comp)
19: end for
20: SaveMetadata({g_1id, seed, mainView:qV iew, oppView:oppView})

3D Combination The 3D combination task, evaluates the ability to mentally deconstruct a complex
3D object into its constituent parts and then identify which of those parts could be used to build a
different target shape.

The task generation proceeds as follows: Shape Generation: A complex 3D shape is created, which
serves as the "source" object. This source object is rendered from two opposite isometric viewpoints
to give the user a complete understanding of its structure. Component Segmentation: The source
object is programmatically broken down into a set of smaller, non-overlapping 3D components. These
components are the basic building blocks that could theoretically form the original shape. Question
Formulation: The "question" is presented as a new, different "target" 3D shape. Option Generation:
The options provided to the user are the individual 3D components that were segmented from the
original source object. These components are laid out individually for clear inspection.

Algorithm 4: GENERATE3DFOLDINGQUESTION

Input: g_id, difficulty tier list {easy, medium, hard}, number of distractors n
seed < Hash(g_1id)

SetRandomSeed(seed); ClearScene()

cube, faceM ap < CreateCubeWithTextures(seed=seed)
layout < RandomChoice({cross,T})

net <— Un foldCube(cube,layout)

SetCamera(Top); RenderImage(q_id_Q)

bestView < Best3DView(cube)

9: SetCamera(bestView)

10: RenderImage(q_1id_AQ)

11: for i < 1 ton do

12:  tier < SelectTier(z, n)

13:  dCube + CreateCubeDistractor(cube,tier=tier, seed+i)
14:  SetCamera(bestView)

15:  Renderlmage(q_id_A{i})

16: end for

17: SaveMetadata({g_1id, seed, layout, faceMap})

PRI D ALY

3D Folding The 3D box folding task evaluates a person’s spatial reasoning ability, specifically their
capacity to visualize how a 2D pattern (a "net") will fold into a 3D cube. The process for generating
a question is as follows:
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Question

Figure 9: Synthetic 3D Folding Data Example.

Cube and Texture Generation: A standard 3D cube is created. Each of its six faces is assigned a
unique texture or color. This is the "target" cube.

Unfolding: The textured 3D cube is computationally "unfolded" into a 2D net. The net is a flat
pattern that shows all six faces of the cube connected in a way that it could be folded back up into the
cube. Common net patterns like a "cross" or "T-shape" are used. This 2D net serves as the "question"
image.

Option Generation: A set of 3D cubes is then presented as the answer options.

The Correct Answer: This is a 3D rendering of the original, correctly folded cube, showing how the
face textures are oriented in relation to each other.

Distractors: These are 3D cubes that are almost correct but have one or more faces manipulated in a
way that makes the folded result incorrect. These manipulations can include:

Face Rotation: One or more faces on the cube are rotated from their correct orientation. Face
Swapping: The positions of two or more faces are swapped. Texture/Color Replacement: The texture
or color of one face is replaced with that of another.

Algorithm 5: GENERATESHAPEFINDINGQUESTION

Input: question id g_id, difficulty € {easy, medium, hard}, options m = 4
seed < Hash(q_1id)
SetRandomSeed(seed); ClearScene()
cube « CreateCubeWithTextures(seed)
(Vo, Vi, Va) <~ ChooseDistinctViews(cube, 3,120°)
for ) + 0to1do
SetCamera(V;), Renderlmage(q_1id_v{i})
end for
vis < VisibleFaces(cube, Va)
f* < SampleFace(vis, strategy=di f ficulty)
: Matorig ¢ GetMaterial(cube, f*)
: SetMaterial(cube, f*, Blue), SetCamera(V3), RenderImage(q_id_V?2)
: SetMaterial(cube, f*, matorig)
: opts < {f*} U Sample(Other Faces(cube, f*), m — 1)
: opts < Shuf fle(opts)
: for k&, f in Enumerate(opts) do
SetCamera(FaceNormal View(cube,f))
RenderImage(g_id_0{%})
: end for
: SaveMetadata{id:q_1id, seed, views:[Vy, V1, Vo], replaced: f*, correctldx: IndexO f (f*, opts)}

PRI R
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3D Shape Finding The 3D Shape Finding task is a visual memory and attention task that tests the
ability to track a specific face of a 3D object as the object is rotated in space. Here is how a typical
question is generated: Cube Generation: A 3D cube is created with a unique, distinct texture applied
to each of its six faces. View Sequence: The participant is shown a sequence of images (typically two)
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Question

Figure 10: Synthetic 3D Sh:

ape Folding Data Example.

of the cube from different viewpoints. This allows them to see the cube and the arrangement of its
face textures from multiple angles. The "Change" Event: A third image of the cube is then presented.
In this view, one of the visible faces of the cube has its texture replaced with a solid color (e.g., blue).
This is the key event in the task. The Question: The participant is implicitly asked: "Which of the
original face textures was replaced by the solid color?" Option Generation: The answer options are a

set of images, each showing one of the original, in
Answer: This is the image of the face texture that

dividual face textures from the cube. The Correct
was replaced by the solid color in the third view.

Distractors: These are the other original face textures from the cube.

Task Name Distractor Generation Logic

Specific Implementation Details

3D Rotation A new 3D shape is created that
is structurally different from the
original, yet visually similar,
testing the ability to spot sub-
tle structural changes despite

viewing-angle differences.

3D Projection An incorrect 2D orthographic
projection is generated, testing
the ability to accurately project

a 3D object onto a 2D plane.

3D Combination A valid component from the
original shape is structurally
modified, testing detailed anal-

ysis of part geometry.

The 2D net is “folded” into an in-
correct 3D cube, testing the abil-
ity to track face orientation and
adjacency during folding.

3D Folding

3D Shape Finding The options presented are the
other, non-target faces of the
cube, testing visual working

memory and attention.

A new shape is generated by altering the “growth his-
tory” of the original object (e.g. adding or removing a
block in a different location), producing a plausible but
incorrect alternative.

Generating a projection from an incorrect viewpoint
(e.g. providing a side view when the fop view was re-
quested). Generating a projection of a slightly modified
(distractor) 3D shape.

A single authentic component is duplicated and
then altered—typically by adding or removing a
block—yielding a visually similar part that would not
fit correctly into the complete assembly.

Rotation: A face’s texture is rotated by 90°, 180°,
or 270°. Swapping: Textures between two faces are
swapped. Flipping: A texture is flipped horizontally or
vertically.

The task is to identify the original texture of a face
that was replaced by a solid colour; distractors are the
original textures of the other cube faces that were not
the replacement target.

Table 7: Summary of Dis

tractor Generation Logic
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B EVALUATION DETAILS

B.1 HUMAN PERFORMANCE ASSESSMENT DETAILS

To establish a robust human baseline, we recruited 54 participants through a custom online platform.
The process yielded 1,684 valid responses, with each of the 559 benchmark items being answered by
an average of 3 participants.

The median response time across all human responses was 26.9 seconds, with a mean of 40.3 seconds.
The difference suggests that a subset of questions required substantially longer deliberation, skewing
the mean. A detailed breakdown of performance by task category, presented in Table[§] reveals a
clear inverse relationship between response time and accuracy. The analysis highlights that the two

Table 8: Human Performance by Task: Accuracy and Response Time.

Task DISE Category Accuracy (%) Mean Time (s) Median Time (s)
3D Combination E-D 56.4 59.2 34.8
2D Shape Finding I-S 61.5 58.5 46.4
2D Combination E-D 75.2 36.8 32.0
2D Folding I-D 76.5 25.6 17.0
Fold and Punch I-D 76.8 55.4 44 .4
2D Rotation I-D 78.1 40.4 31.5
3D Projection E-S 81.1 28.0 20.8
3D Shape Finding I-S 81.8 314 233
3D Rotation I-D 82.0 29.8 21.8
3D Folding I-D 86.6 44 .4 33.6

tasks with the lowest human accuracy, 3D Combination (56.4%) and 2D Shape Finding (61.5%),
are also the tasks that commanded the longest mean response times (59.2s and 58.5s, respectively).
This empirically confirms that these tasks impose the highest cognitive load. The mental simulation
required to assemble complex parts in 3D Combination (Extrinsic-Dynamic) and the demanding
visual search needed to disentangle embedded figures in 2D Shape Finding (Intrinsic-Static) are
inherently time-consuming and error-prone for humans, providing a quantitative justification for their
difficulty. Conversely, tasks with high accuracy, such as 3D Folding and 3D Rotation, generally
required less time, indicating a lower cognitive barrier.

In order to obtain an unbiased estimate of human baseline performance over the full item pool, we
employ a matrix-sampling design in which each participant completes only a single booklet of K
items out of the total pool of I items. Adjacent booklets share a small set of a anchor items (=10
We recruited 54 participants for the study. Prior to participation, all individuals provided informed
consent, and all procedures were conducted in accordance with relevant ethical guidelines. The data
collection process yielded a total of 1679 valid responses across all items. Each item was answered
by an average of 3 participants. The main paper reports human performance with Classical Test
Theory (CTT) results, while Item Response Theory (IRT) is used for cross-validation.

Analysis Methodology The collected response data were analyzed using two psychometric frame-
works:

CLASSICAL TEST THEORY (CTT) For each item booklet and for the anchor-linked “overall” pool,
the proportion-correct statistic was computed as

p=2 ()

where x is the number of correct responses and N is the total number of responses to that booklet or
pool. Sampling variability was quantified with the Wald standard error

p(1-p)

SEcrr = N

@
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yielding a two-sided 95% confidence interval (CI)
p £ 1.96 SEcrr - 3)

ITEM RESPONSE THEORY (IRT) To cross-validate the CTT findings and place all items on a
common latent-ability scale, we fitted a two-parameter logistic (2PL) model to the entire response
matrix,

1

4
1+ exp[—a;(0; — b;)]’ @

Pij = ofai (6; - b;)] =

where P;; is the probability that participant j (ability 6;) answers item i (discrimination a;, difficulty
b;) correctly.

For a designated item subset (e.g., a DISE category) containing I items, the model yields an item-level
expected probability of success P;. The category-level expected accuracy is then

. 1 ) =
prr = ) i=1'P; )
Between-item variability was captured via the sample variance
I
Z pIRT (6)
leading to the standard error
S
SErr = i )
and the 95% CI
Prr £ 1.96 SEkr . (8)

Results To provide a comprehensive view, we compare the results from both CTT and IRT analyses.
Figure[T1] Table[I0]juxtaposes the observed accuracy from CTT with the model-based predictions and
item parameters from IRT for each DISE category. This comparison highlights the synergy between
the two methodologies. The CTT accuracy provides a direct, empirical measure of performance,
while the IRT parameters offer an explanation for these results.

Table 9: Parameters of the Human Assessment Table 10: Human Accuracy by DISE Category
Par ameters Num. DISE Category CTT Accuracy (95% CI) IRT Accuracy (95% CI)

Extrinsic-Dynamic 61.05% + 4.46% 57.22% + 8.67%

sy Extrinsic—Static 81.12% + 4.38% 82.09% + 7.02%

Number of Participants 54 Intrinsic-Dynamic 80.25% + 2.05% 81.09% + 3.42%

Total Number of Items / 559 Intrinsic-Static 76.80% + 3.90% 77.29% + 7.49%

Overall 76.84% + 2.02% 76.92% + 3.79%

Total Responses N 1679
Number of Booklets 19
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B.2 EVALUATION IMPLEMENTATION DETAILS

All evaluations were implemented on 3 NVIDIA A100-40G with VLMEvalKit v0.2. Following the
idea of |[Duan et al.|(2025), all the models used very low temperatures or temperatures equal to 0 and
set do_sample = False to ensure reproducibility and certainty of the results. The API checkpoints
for proprietary models are listed in Table

Table 11: Proprietary APIs evaluated in this paper

Proprietary Model & provider API endpoint

Claude 3.7 Sonnet (Anthropic) claude—-3-7-sonnet-20250610

Doubao 1.5 VL (volcengine) doubao-1-5-vision-pro-32k-250115
Doubao 1.5 VL-thinking (volcengine) doubao-1-5-thinking-vision-pro-250428
Gemini 2.0 Flash (Google) gemini-2.0-flash

GPT-4.1 nano (OpenAl) gpt—-4.1-nano-2025-04-14

GPT-40 (OpenAl) gpt-40-2024-08-06

GPT-40-mini (OpenAl) gpt-40-mini-2025-06-10

The prompt templates used in the evaluation for different models are shown below:

Listing 1: Prompt Templates used for Proprietary Models in VLMEvalKit

PROMPT_TEMPLATES = {
"SYSTEM": "You are a helpful assistant.",

"USER": """<image>

Question: The two images above show a 3D structure from
different angles. Which one of the options below could be
constructed to appear the same as both given views when observed
from the corresponding perspectives without rotation and overlaps?
Select the most likely one.

Options:

A. A

B. B

€. €

D. D

Answer with the option’s letter from the given choices
directly."""

Listing 2: Prompt Templates used for Llama Serie Models in VLMEvalKit

PROMPT_TEMPLATES = {
"SYSTEM" . " ll,

"USER": """<|begin_of_text|><|start_header_id|>user<|end_header_id|>

<im_start><image><im_end>
Question: The two images above show a 3D structure from
different angles. Which one of the options below could be
constructed to appear the same as both given views when observed
from the corresponding perspectives without rotation and overlaps?
Select the most likely one.

Options:
A. A
B. B
c. C
D. D

Answer with the option’s letter from the given choices
directly.<|eot_id|>"""

24




Under review as a conference paper at ICLR 2026

Listing 3: Prompt Templates used for QwenVL, InternVL, Ovis2 Serie Models in VLMEvalKit

PROMPT_TEMPLATES = {
"USER": """<image>
Question: The two images above show a 3D structure from
different angles. Which one of the options below could be
constructed to appear the same as both given views when observed
from the corresponding perspectives without rotation and overlaps?
Select the most likely one.

Options:
A. A
B. B
€. €
D. D

Please select the correct answer from the options above."""

Listing 4: Prompt Templates used for VLM-R1 and LMM-R1 in VLMEvalKit

PROMPT_TEMPLATES = {
"USER": """<image>
Question: The two images above show a 3D structure from
different angles. Which one of the options below could be
constructed to appear the same as both given views when observed
from the corresponding perspectives without rotation and overlaps?
Select the most likely one.

Options:
A. A
B. B
c. C
D. D

Please select the correct answer from the options above. Output
the thinking process in <think> </think> and final answer in
<answer> </answer> tags."""

Listing 5: Prompt Templates used for VLAA_Thinker Serie Models in VLMEvalKit

PROMPT_TEMPLATES = {
"SYSTEM": "You are VL-Thinking, a helpful assistant with excellent
reasoning ability. You should first think about the reasoning
process and then provide the answer. Use <think>...</think> and
<answer>...</answer> tags."

"USER": """<image>

Question: The two images above show a 3D structure from
different angles. Which one of the options below could be
constructed to appear the same as both given views when observed
from the corresponding perspectives without rotation and overlaps?
Select the most 1likely one.

Options:
A. A
B. B
€. C
D. D

Please select the correct answer from the options above."""
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B.3 MORE EVALUATION RESULTS

Table 12: Different-task accuracies on Spatial-DISE Bench. Abbreviations—2D Comb.: 2D Combination; 2D
Fold.: 2D Folding; 2D Rot.: 2D Rotation; 2D S.F.: 2D Shape Finding; 3D Comb.: 3D Combination; 3D Fold.:
3D Folding; 3D Proj.: 3D Projection; 3D Rot.: 3D Rotation; 3D S.F.: 3D Shape Finding; F&P: Fold and Punch.
Bold indicates the highest accuracy; Underline indicates the second highest.

Model Acc. 2D Comb. 2D Fold. 2D Rot. 2DS.F. 3D Comb. 3D Fold. 3D Proj. 3DRot. 3DSF. F&P
Proprietary

Claude 3.7 Sonnet 30.6% 29.2% 25.6% 304% 38.1% 20.0% 50.7% 31.4% 314%  288% 24.4%
Doubaol.5 VL 33.8% 41.7% 25.6% 43.5% 33.3% 26.7% 44.9% 37.1% 37.1% 348% 25.6%
Gemini 2.0 Flash 34.2% 20.8% 41.0% 304%  23.8% 26.7% 56.5% 31.4% 51.4% 152%  24.4%
GPT4.1 nano 29.3% 29.2% 35.9% 30.4% 14.3% 30.0% 36.2% 35.7% 30.0% 182%  23.1%
GPT4o0 28.1% 29.2% 26.9% 17.4% 33.3% 25.0% 30.4% 22.9% 32.9% 258% 33.3%
GPT40-mini 25.6% 20.8% 28.2% 30.4% 28.6% 15.0% 37.7% 21.4% 22.9% 288%  23.1%
Gemini 2.5 Flash 31.5% 12.5% 33.3% 174%  33.3% 18.3% 69.6% 27.1% 40.0% 16.7%  24.4%
Gemini 2.5 Flash w/o thinking ~ 32.0% 12.5% 33.3% 174%  333% 16.7% 69.6% 28.6% 40.0% 19.7%  25.6%
GPT-5 30.1% 20.8% 30.8% 43.5% 14.3% 25.0% 31.9% 25.7% 45.7% 303% 24.4%
04-mini 33.3% 33.3% 30.8% 522%  23.8% 10.0% 47.8% 25.7% 38.6%  485% 269%
Proprietary Average 30.9% 25.0% 31.1% 31.3%  27.6% 21.3% 47.5% 28.7% 37.0%  26.7% 25.5%
Open-source

Llama-3V-11B 24.5% 29.2% 24.4% 21.7% 19.0% 30.0% 31.9% 14.3% 24.3% 258%  23.1%
Cambrian-13b 26.7% 20.8% 30.8% 304%  23.8% 26.7% 21.7% 32.9% 257%  213%  23.1%
Cambrian-8b 22.9% 25.0% 26.9% 304%  33.3% 16.7% 33.3% 15.7% 157%  213% 17.9%
InternVL3-38B 32.4% 29.2% 28.2% 47.8%  23.8% 26.7% 42.0% 30.0% 40.0%  273% 30.8%
InternVL3-14B 31.1% 25.0% 24.4% 21.7% 14.3% 20.0% 53.6% 31.4% 42.9% 19.7%  34.6%
InternVL3-8B 26.3% 33.3% 35.9% 30.4% 14.3% 20.0% 29.0% 28.6% 32.9% 91%  25.6%
Kimi-VL-A3B 24.3% 12.5% 29.5% 26.1%  33.3% 20.0% 26.1% 27.1% 35.7% 10.6%  20.5%
Ovis2-16B 26.3% 20.8% 16.7% 13.0% 19.0% 20.0% 52.2% 27.1% 42.9% 10.6%  23.1%
Ovis2-8B 23.8% 25.0% 28.2% 17.4% 28.6% 11.7% 36.2% 21.4% 34.3% 7.6% 24.4%
Qwen2.5-VL-32B 27.2% 20.8% 19.2% 21.7%  23.8% 21.7% 34.8% 31.4% 357%  288% 24.4%
Qwen2.5-VL-7B 26.1% 33.3% 26.9% 39.1%  33.3% 31.7% 30.4% 24.3% 32.9% 10.6% 17.9%
Qwen2.5-VL-3B 22.9% 29.2% 28.2% 17.4% 14.3% 23.3% 36.2% 17.1% 22.9% 12.1%  21.8%
Open-source Average 26.2% 25.3% 26.6% 26.4% 23.4% 22.4% 35.6% 25.1% 32.2% 181%  23.9%
Reasoning & Spatial-Specified Models

LLaVA-CoT 24.0% 29.2% 34.6% 13.0% 9.5% 30.0% 17.4% 22.9% 22.9% 197%  25.6%
LMM-R1 26.1% 29.2% 28.2% 21.7% 38.1% 30.0% 36.2% 20.0% 24.3% 22.7% 19.2%
VLM-RI 30.8% 25.0% 26.9% 39.1%  38.1% 36.7% 47.8% 18.6% 300%  242% 29.5%
Kimi-VL-A3B-Thinking 24.7% 16.7% 26.9% 26.1%  42.9% 31.7% 26.1% 28.6% 22.9% 152%  19.2%
Doubaol.5-VL-thinking 42.0% 62.5% 28.2% 43.5%  23.8% 61.7% 56.5% 31.4% 500% 39.4% 30.8%
VLAA-Thinker-3B 25.9% 37.5% 20.5% 26.1% 28.6% 25.0% 36.2% 30.0% 27.1% 9.1% 28.2%
VLAA-Thinker-7B 27.9% 25.0% 25.6% 26.1%  38.1% 28.3% 31.9% 27.1% 357%  227%  23.1%
SpaceThinker 32.6% 29.2% 20.5% 43.5%  333% 43.3% 49.3% 22.9% 357%  227% 33.3%
SpaceOm 25.9% 25.0% 14.1% 43.5%  33.3% 36.7% 49.3% 24.3% 329%  242% 372%
SpaceR 27.0% 37.5% 32.1% 34.8% 28.6% 26.7% 29.0% 17.1% 37.1% 21.2% 19.2%
Reasoning & Spatial Average  27.6% 27.8% 25.9% 28.6%  27.0% 28.2% 37.1% 25.1% 31.8% 19.8%  25.4%
Overall Average 28.4% 27.2% 27.8% 29.6% 27.2% 26.0% 40.1% 26.0% 33.6%  22.0% 25.2%
SpaceOm-sft 33.8% 25.0% 25.6% 26.1% 23.8% 45.0% 46.4% 31.4% 50.0% 303%  20.5%
Qwen2.5-VL-7B-sft 49.7% 33.3% 34.6% 34.8% 9.5% 78.3% 69.6% 41.4% 65.7%  69.7%  21.8%
Human 76.8% 75.2% 76.5% 781%  61.5% 55.4% 86.6% 81.1% 82.0%  81.8% 76.8%

B.4 SUPERVISED FINE-TUNING HYPERPARAMETERS

The Supervised Fine-Tuning (SFT) experiments were conducted using the Swift framework. We
employed the Low-Rank Adaptation (LoRA) technique to efficiently fine-tune both the Qwen2.5-VL-
7B and SpaceOm models on the Spatial-DISE-12K training set. All linear layers of the models were
targeted for LoRA adaptation. The key hyperparameters used for the fine-tuning process are detailed
in Table 13.

Table 13: Hyperparameters for SFT Training

Hyperparameter Value
Framework Swift
Fine-Tuning Method LoRA
Target Modules all-linear

LoRA Rank (lora_rank) 8
LoRA Alpha (lora_alpha) 32

Batch Size 48
Precision (torch_dtype) bfloat16
Learning Rate 1.5e-4
Warmup Ratio 0.05
Number of Epochs 2

Max Sequence Length 4096
Deepspeed zero3
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C ERROR ANALYSIS DETAILS

This section provides a detailed quantitative and qualitative breakdown of the error analysis conducted
to understand the failure modes of VLMs on Spatial-DISE Bench.

C.1 DEFINITION OF HIGH-LEVEL ERROR

We established a high-level error taxonomy to systematically diagnose failures by deconstructing the
model mistakes into three errors:

* Perceptual Error, which the model fails to accurately interpret basic visual information,
such as the shape, count, or spatial relationship of objects.

* Comprehension Error, which the model misinterprets the natural language prompt or the
objective of the task, indicating a failure to understand the question.

* Reasoning Error, which the model correctly perceives the visual scene and understands the
prompt but fails in the logical deduction required to reach the correct answer. This includes
errors in mental rotation, folding, or spatial manipulation.

C.2 VLM-AS-JUDGE IN ERROR ANALYSIS

Inspired by [Yang et al.|(2025), we adopted an automated error analysis pipeline. As shown in Figure
[I2] we use Doubao-1.6-thinking as a judge, combined with human inspection. Table [T4]lists the
distribution of the wrong responses sampled in error analysis.

Question @ C\ Table 14: Error Distribution by DISE category

VLM-as-judge

Model Dotbec DISE Category Count
Response ® ° Tnirinsic-Static (I-S) 34
Image Hum-an s - Intrinsic-Dynamic (I-D) 107
Correct E V4 Extrinsic-Static (E-S) 34
Answer Extrinsic-Dynamic (E-D) 25
Total 200

Figure 12: Error Analysis Pipeline

The prompt template used for error analysis:

Listing 6: Prompt Templates used for Error Analysis

ERROR_ANALYSIS_PROMPTS = {
"detailed_analysis": """

Please provide a detailed analysis of the visual-language model’s
incorrect answer:

Question Category: {category}
Question: {gquestion}

Options:
{options}

Correct Answer: {correct_answer}
Model’s Predicted Answer: {predicted_answer}
Model’s Full Response: {model_prediction}

Please analyze in depth from the following perspectives:

1. Error Type Classification:
— Perception Error: The model failed to correctly identify visual
elements in the image.
— Comprehension Error: The model recognized visual elements but
misunderstood their meaning.
- Reasoning Error: The model understood the content but made a
mistake in reasoning.
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Specific Cause of the Error

Severity Assessment (Low / Medium / High)
Possible Directions for Improvement
Suggestions to Prevent Similar Errors

s W N

Please return the analysis in JSON format:

{{

"Error Type": "Specific type of error",

"Error Subtype": "More detailed category of the error",
"Cause of Error": "Detailed explanation of the cause",
"Severity": "Low/Medium/High",

"Summary": "Brief summary of the error"

H}

nwn
’

"category_analysis": """

Please analyze the error patterns of the visual-language model in the
following {category} category questions:

{error_examples}

Analyze from the following perspectives:

1. Most common error types in this category
2. Common features and patterns of errors
3. Category-specific challenges

Please provide a structured response.
mnn
r

"comparison_analysis": """

Please compare the error performance of the following models on the same
question:

{model_comparisons}

Analyze:

1. Differences in error types across models
2. Strengths and weaknesses of each model
3. Comparison of error severity

Please provide a detailed comparative analysis.
mnn

}

Our analysis reveals a clear and consistent pattern: Reasoning Error is the predominant failure
category, accounting for an overwhelming 72.5% (145 out of 200) of all analyzed mistakes. Perceptual
errors constituted 17.5% of the total, while comprehension errors were the least common at 10%.
This distribution strongly suggests that the primary bottleneck for current VLMs is not in visual
perception but in complex spatial-logical inference. While this initial classification identifies where
the models fail, a more granular analysis is required to understand why they fail.

C.3 A DEEP DIVE INTO REASONING FAILURES

To move from symptom to cause, we performed a deeper analysis of the 145 reasoning errors,
re-categorizing them based on the underlying cognitive abilities that are deficient. This approach,
inspired by cognitive science, reveals that the models’ failures stem from a lack of fundamental
cognitive mechanisms for spatial intelligence. We identified three primary root causes.

Failure in Rule Application (44.8%) This was the most critical category of failure. Models
demonstrate an ignorance of the fundamental axioms, constraints, and invariances of the geometric
world. The errors are not in complex derivations but in the application of basic, non-negotiable
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rules. The root cause appears to be a failure to link visual percepts to an abstract library of geometric
principles; the models see pixels, not entities governed by rules.

A frequent failure was confusing adjacent and opposite faces in 3D cube problems. For instance, a
model might correctly identify the symbols on a cube’s faces but fail to apply the simple rule that
adjacent faces cannot be opposite one another.

Failure in Mental Simulation (40.0%) The second most significant failure was the inability to
construct a dynamic, operable internal representation to simulate a continuous spatial transformation.
Models lack a reliable "spatial working memory" to track an object’s state through a sequence of
operations. They cannot robustly answer the question, "what happens next?"

This was most evident in "Fold and Punch" tasks. Models consistently failed to track the number of
layers created by folds and, consequently, could not predict the symmetric replication of holes upon
unfolding. For example, after simulating a two-fold process (creating four layers), a model might
incorrectly predict only two holes in the unfolded paper, demonstrating a breakdown in state tracking.

Failure in Holistic-Local Processing (15.2%) Finally, models exhibited an imbalance in processing
visual information, struggling to shift between holistic understanding and local detail analysis. Their
attention mechanisms appear unable to dynamically allocate cognitive resources to the most salient
features required by the task.

Models were often misled by superficial similarity. In rotation tasks, a model might identify an option
as correct simply because it "looks similar" to the target, while ignoring a fatal flaw in the local
arrangement of its components, such as an incorrect orientation of a key part.

In summary, the failures of current VLMs in spatial reasoning are systemic and deeply rooted in
cognitive deficiencies. They lack an internal "world model" that is constrained by geometric rules,
can be manipulated through dynamic simulation in a spatial working memory, and is guided by a
flexible attentional mechanism. This points to a clear direction for future research: efforts must
transcend simple pattern matching and focus on imbuing models with the foundational capabilities
for genuine spatial cognition.

Table 15: Error Analysis Across Different Models

Err.\ Models Qwen2.5-VL.  GeminiFlash Doubao-1.5 SpaceThinker

Reasoning Err. 31 31 37 46
Perceptual Err. 12 12 8 3
Comprehension Err. 7 7 5 1
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Failure in Mental :] E [:] |
Simulation - I 3 5

A\ Doubao-1.5-
(, Thinking a b ¢ d

Model Ans.: To solve this problem, we analyze the folding and
punching process:

1. Folding Steps: The square is folded twice. First, a horizontal fold
(reducing height), then a vertical fold (reducing width). This creates 4
layers of the square.

2. Punching a Hole: When a hole is punched through 4 layers, the
unfolded square will have 4 holes (one in each layer).

3. Position of Holes: The hole in the folded square is symmetric across
both folds. When unfolded, the holes must be evenly distributed in a
symmetric pattern.

Among the options:

- aand d have only 2 holes (insufficient, as 4 layers mean 4 holes).

- b has 4 holes but their placement is not symmetric with the folding
logic.

- ¢ has 4 holes arranged symmetrically, matching the result of two
folds and a single punch.

Thus, the correct answer is c.

Error Reason: The model correctly identified that the process would
result in four holes. However, it failed to accurately simulate the
unfolding process. It incorrectly calculated the reflective positions of
the holes, placing them on the middle and bottom edges instead of in
the middle. This demonstrates a breakdown in its ability to track the
state and symmetric transformations of an object through a multi-
step process.

Figure 13: Error example of Failure in Mental Simulation
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Question Opposite Vi

Failure in Holistic-
Local Processing
@
B

b blE

o SpaceThinker ® ®
A © D
Model Ans.:
<think>

To determine the correct answer, we need to analyze the two
perspectives and find a combination that matches both views without
rotation or overlaps.

1. **Question View**: The structure in the question view shows a
central column with smaller blocks around it.

2. **Opposite View**: The structure in the opposite view shows a
similar central column but with additional blocks on the sides.

Looking at the options:

- **QOption A**: This arrangement does not match the central column
structure in both views.

- **QOption B**: This arrangement also does not match the central
column structure in both views.

- **Option C**: This arrangement matches the central column structure
in both views.

- **QOption D**: This arrangement does not match the central column
structure in both views.

Given that Option C matches the central column structure in both views
without any overlaps or rotations, it is the most likely correct answer.
</think>

<answer>C</answer>

Error Reason: Although the model correctly identified the “central
pillar structure” in both views, it failed to analyze the detailed spatial
configuration of the surrounding blocks, such as their exact positions
and quantities. As a result, it could not accurately determine whether
an option satisfied the requirements of “no rotation” and "no overlap.”
Specifically, Option C's surrounding block layout contradicts the details
in one of the views (e.g., the block distribution is inconsistent with the
perspective), whereas the correct Option D matches the spatial details
in both views. However, due to imprecise spatial reasoning, the model
incorrectly judged C as valid.

Figure 14: Error example of Failure in Holistic-Local Processing
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