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Abstract

Hyperparameter optimization is a ubiquitous challenge in machine learning, and1

the performance of a trained model depends crucially upon their effective se-2

lection. While a rich set of tools exist for this purpose, there are currently no3

practical hyperparameter selection methods under the constraint of differential4

privacy (DP). We study honest hyperparameter selection for differentially private5

machine learning, in which the process of hyperparameter tuning is accounted for6

in the overall privacy budget. To this end, we i) show that standard composition7

tools outperform more advanced techniques in many settings, ii) empirically and8

theoretically demonstrate an intrinsic connection between the learning rate and9

clipping norm hyperparameters, iii) show that adaptive optimizers like DPAdam10

enjoy a significant advantage in the process of honest hyperparameter tuning, and11

iv) draw upon novel limiting behaviour of Adam in the DP setting to design a new12

and more efficient optimizer.13

1 Introduction14

Over the last several decades, the field of machine learning has flourished. However, training machine15

learning models frequently involves personal data, which leaves data contributors susceptible to16

privacy attacks. This isn’t purely hypothetical: recent results have shown that models are vulnerable17

to membership inference [SSSS17, CLE+19, NSH19] and model inversion attacks [FJR15, SRS17].18

The leading approaches for privacy-preserving machine learning are based on differential privacy19

(DP) [DMNS06]. Informally, DP rigorously limits and masks the contribution that an individual20

datapoint can have on an algorithm’s output. To address the aforementioned issues, DP training21

procedures have been developed [WM10, BST14, SCS13, ACG+16], which generally resemble non-22

private gradient-based methods, but with the incorporation of gradient clipping and noise injection.23

In both the private and non-private settings, hyperparameter selection is instrumental to achieving24

high accuracy. The most common methods are grid search or random search, both of which incur25

a computational overhead scaling with the number of hyperparameters under consideration. In26

the private setting, this issue is often magnified as most private training procedures introduce new27

hyperparameters. Regardless, and more importantly, hyperparameter tuning on a sensitive dataset28

also costs in terms of privacy, naively incurring a multiplicative cost which scales as the square root29

of the number of candidates (based on composition properties of differential privacy [KOV15]).30

Most prior works on private learning choose not to account for this cost [ACG+16, YLP+19, TB21],31

focusing instead on demonstrating the accuracy achievable by private learning under idealized condi-32

tions, that is, if the best hyperparameters were somehow known ahead of time. Some works assume33

the presence of supplementary public data resembling the sensitive dataset [AGD+20, RTM+20],34

which may be freely used for hyperparameter tuning. Naturally, such public data may be scarce or35

nonexistent in settings where privacy is a concern, leaving practitioners with little guidance on how36
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to choose hyperparameters in practice. As explored in our paper, poor hyperparameter selection with37

standard private optimizers can have catastrophic effects on model accuracy.38

Hope is afforded by the success of adaptive optimizers in the non-private setting. The canonical39

example is Adam [KB14], which exploits moments of the gradients to adaptively and dynamically40

determine the learning rate. It works out of the box in many cases, providing accuracy comparable41

with tuned SGD. We navigate the different options available to a practitioner to solve the honest42

private hyperparameter tuning problem and ask, are there optimizers which provide strong privacy,43

require minimal hyperparameter tuning, and perform competitively with tuned counterparts?44

Our Contributions45

1. We investigate techniques for private tuning of hyperparameters. We perform the first empirical46

evaluation of the proposed theoretical method of Liu and Talwar [LT19], and demonstrate that it can47

be relatively expensive. That is, in certain cases, one can tune over sufficiently many hyperparameters48

using standard composition tools such as moments accountant [ACG+16].49

2. We empirically and theoretically demonstrate that two hyperparameters, the learning rate and50

clipping threshold, are intrinsically coupled for non-adaptive optimizers. While other hyperparameters51

and the model architecture are restricted by the scope of the task, privacy and utility targets, and52

computational resources, the learning rate and clipping norm have no a priori bounds. Since the53

resulting hyperparameter grid adds up to the privacy cost while tuning to achieve the model with the54

best utility, we explore leveraging adaptive optimizers to reduce the hyperparameter space.55

3. We empirically demonstrate the DPAdam optimizer (with default values for most hyperparameters),56

can match the performance of tuned non-adaptive optimizers on a variety of datasets, thus enabling57

private learning with honest hyperparameter selection. This finding complements a prior claim58

of Papernot et al. [PCS+20], which suggests that a well-tuned DPSGD can outperform DPAdam.59

However, our findings show that this difference in performance is relatively insignificant. Furthermore,60

in the realistic setting where hyperparameter tuning must be accounted for in the privacy loss, we61

show that DPAdam is much more likely to produce non-catastrophic results.62

4. We show that the adaptive learning rate of DPAdam converges to a static value. To leverage this,63

we introduce a new private optimizer, DPAdamWOSM that matches the performance of DPAdam64

without computing the second moments.65

1.1 Related Work66

Hyperparameter tuning plays a vital role in machine learning practice. In the non-private setting,67

ML practitioners use grid search, random search, Bayesian optimization techniques [SSA13] or68

AutoML [HZC21] techniques to tune their models. However, there hasn’t been much research69

on private hyperparameter tuning procedures due to the significant associated privacy costs. Each70

set of hyperparameter configuration results in a privacy-utility tradeoff. This tradeoff for multiple71

configurations can be captured by Pareto frontiers using multivariate Bayesian optimization over72

parameter dimensions [AGD+20]. However, this method asks the model curator to query the73

dataset multiple times which requires non-private access to the dataset. There have been some74

end-to-end private tuning procedures [CMS11, CV13, KGGW15] which work for a selected number75

of hyperparameter sets. These results work either in restricted settings for few combinations of76

candidates or under relaxations of differential privacy. The most relevant work to ours is an approach77

for private selection from private candidates [LT19]. Their work provides two methods, one which78

outputs a candidate with accuracy greater than a given input threshold, and another which randomly79

stops and outputs the best candidate seen so far. The first approach is of limited utility in practice as80

it requires a prior accuracy bound for the dataset. The second variant incurs a considerable overhead81

in the privacy cost. We study this second approach and compare it with naive approaches based on82

Moments Accountant [ACG+16] which would scale as the square root of the number of candidates.83

2 Problem Setup and Overview84

Consider a sensitive dataset D which lies beyond a privacy firewall and has n points of the form85

(x1, y1), (x2, y2), . . . , (xn, yn) where xi ∈ X is the feature vector of the ith point and yi ∈ Y is its86

desired output. Though our experiments are carried out in the supervised setting, all results can be87
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translated to unsupervised setting as well. The dataset has been divided into two parts, the training set88

and the validation set. A trusted curator wants to train a machine learning model by making queries89

on the dataset with a total end-to-end training privacy budget of (εf , δf ) such that the model can90

perform with high accuracy on the validation set. The curator wants to try multiple hyperparameter91

candidates for the model to figure out which candidate gives the maximum accuracy. However, as the92

model is private, each candidate requires multiple queries made on the dataset and all of them need to93

be accounted in the total privacy budget of (εf , δf ).94

Note that any validation accuracy must also be measured privately. Since this accuracy is a low-95

sensitivity query with a scalar output, and must only be computed once per choice of hyperparameters,96

the cost of this procedure is generally a lower order term versus the main training procedure. Thus for97

simplicity, we do not noise these validation accuracy queries. As we will see later, some optimizers98

require more candidates to tune and hence would also require more privacy budget than others.99

To tackle private hyperparameter selection, we first compare the available private tuning procedures100

in Section 3. We show that the privacy cost for training a model depends on the hyperparameter101

grid size and standard composition theorems provide the best guarantees when the grid is small. In102

Section 4, we investigate different optimizers to see how many candidates are required to output103

a good solution. In Section 4.1 we provide theoretical and empirical evidence to demonstrate an104

intrinsic coupling between two hyperparameters – the learning rate and clipping norm in DPSGD.105

We show that this coupling makes DPSGD sensitive to these parameter choices, which can drastically106

affect the validation accuracy. In Section 4.2 we demonstrate that an adaptive optimizer, DPAdam,107

translates well from the non-private setting and obviates tuning of the learning rate. In Section 5, we108

empirically compare DPAdam with DPSGD and DPMomentum to show that DPAdam performs at par109

with less hyperparameter tuning. Finally, in Section 6, we establish that DPAdam converges to a static110

learning rate in restricted settings, and unveil a new optimizer DPAdamWOSM which can leverage111

this converged value without computing the second moments. In the interest of space, we defer112

standard preliminaries such as DP definitions, hyperparameters, and optimizers to the appendix.113

3 The Cost of Privately Tuning DP Optimizers114

Effective hyperparameter tuning is crucial in extracting good utility from an optimizer. Unlike115

the non-private setting, DP optimizers typically i) have more hyperparameters to tune; ii) require116

additional privacy budget for tuning. Existing work on DP optimizers acknowledge this problem (e.g.,117

[ACG+16]), but do not address the privacy cost incurred during hyperparameter tuning [ACG+16,118

YLP+19, TB21]. There are two main prior general-purpose approaches for private hyperparameter119

selection. The first performs composition via Moments Accountant [ACG+16], and the second is120

the algorithm of Liu and Talwar (LT) [LT19]. The latter is a theoretical result, and to the best of our121

knowledge, has not been previously evaluated in practice. We investigate the privacy cost of these122

two techniques in practice and discuss situations in which each method is preferred.123

3.1 Hyperparameter Selection via [LT19]124

Liu and Talwar [LT19] propose a random stopping algorithm (LT) to output a ‘good’ hyperparameter125

candidate from a pool ofK candidates, {x1, . . . , xK}. They assume sampling access to a randomized126

mechanism Q(D) which samples i ∼ [K], and returns the i-th candidate xi, and a score qi for this127

candidate. It is a random stopping algorithm, in which at every iteration, a candidate is picked from128

Q i.i.d. with replacement and a γ-biased coin is flipped to randomly stop the algorithm. When the129

algorithm stops, the candidate with the maximum score seen so far is outputted. In the approximate130

DP version of this algorithm, an extra parameter Υ is set to limit the total of number of iterations.131

The pseudocode of this algorithm is deferred to the appendix.132

Theorem 1 ([LT19], Theorem 3.4). Fix any γ ∈ [0, 1], δ2 > 0 and let Υ = 1
γ log 1

δ2
. If Q is133

(ε1, δ1)-DP, then the LT algorithm is (εf , δf )-DP for εf = 3ε1 + 3
√

2δ1 and δf =
√

2δ1Υ + δ2.134

Theorem 1 expresses the privacy cost of the algorithm in terms of the privacy cost of individual135

learners, and parameters of the algorithm itself. The δ2 parameter does not significantly affect the136

final epsilon εf of the algorithm and in practice, one can set it to a very small value (10−20). Though137

a small value of δ2 has little effect on δf , it increases the hard stopping time of the algorithm, Υ.138
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To understand the LT algorithm, we will compare the privacy costs of training a single hyperparameter139

candidate with a final εf , δf budget via LT and compare it with the privacy cost ε1, δ1 of the underlying140

individual learner. This setting might seem unnatural for LT as it was designed to select from a pool141

of candidates but we choose this setting to show the minimum privacy cost overhead associated with142

LT and later show how the privacy cost changes for multiple candidates (varying γ). To use LT, one143

needs to figure out the ε1, δ1 via Theorem 1 using the final εf , δf values and in this case, γ = 1 (as144

we have just one candidate). The individual learner is then trained using ε1, δ1 budget.145

Figure 1: Comparing the privacy cost of LT versus Moments Accountant. The minimal privacy
overhead incurred by LT is at least ~5x, and increases with the dataset size (left). However, as
we allow LT to sample and test more candidate hyperparameters, the privacy cost barely increases
(middle). Moments Accountant is able to test a significant number of candidates at the same cost as
the minimal privacy overhead of LT (right).

Due to the delicate balance of δf in Theorem 1, one can see the δ1 comes out to be much smaller than146

δf . This change in δ1 results in a blowup of ε1 and hence, the final privacy cost of the LT algorithm147

(3ε1 + 3
√

2δ1), is much larger than what it would have been for learning one candidate without LT.148

We call this increase the blowup of privacy. We measure this blowup in Figure 1(left), for the setting149

of σ = 4, L = 250, T = 10, 000 with varying dataset sizes (n). It can be seen that for n = 5, 000,150

the blowup is 4.8x whereas for for n = 950, 000, the blowup is almost 7.3x (note the log scale on151

y-axis). Qualitatively similar trends persist for other choices of noise multiplier, lot size and iterations.152

We add more experiments to compare LT vs MA with varying candidate sizes in the appendix.153

Furthermore, we show that although LT entails a privacy blowup, decreasing γ, which corresponds154

to training more individual learners with ε1, δ1, doesn’t result in a significant difference in the final155

epsilon guaranteed by LT. In Figure 1(middle), we show the final epsilon cost for different dataset156

size and varying values of γ ∈ [0.001, 0.01, 0.1, 1]. It is interesting to note here that with smaller157

γ values, one can train many candidates (in expectation, 1
γ ) for negligible additional privacy cost.158

The blowup to train 1 candidate (γ = 1) versus 1, 000 candidates (γ = 0.001) increases from 33159

to 39 for n = 5, 000 and increases from 0.49 to 0.69, for n = 950, 000. This increase is minimal160

in comparison to advanced composition, which grows proportional to O(
√
k). However, another161

resource at play is the total training time, which is proportional to 1/γ (i.e., the total number of162

candidates). In summary, the LT algorithm is effective if an analyst has the privacy budget to afford163

the initial blowup, as the privacy cost of testing additional hyperparameters is insignificant.164

3.2 Hyperparameter Selection via Moments Accountant165

We learnt from the previous section that, LT permits selection from a large pool of hyperparameters166

(depending on the γ value) but incurs a constant privacy blowup. We compare LT with tuning167

using Moments Accountant (MA). We notice using that with the same initial privacy blowup of168

the LT algorithm, MA is able to compose a considerable number of hyperparameter candidates. In169

Figure 1(right), we show the number of candidates that can be composed using MA for the minimum170

privacy cost for running the LT algorithm (γ = 1), for the setting of σ = 4, L = 250, T = 10, 000171

and varying dataset size (n) on the x-axis. As the T and L is set constant, bigger n values in this172

graph correspond to fewer epochs of training and hence, worse utility. Depending on dataset size,173

MA can compose 14 candidates for n = 5000 and up to 175 candidates when n = 100000. It is174

perhaps surprising how well a standard composition technique performs versus LT. This information175

can be highly valuable to a practitioner who has limited privacy budget. Qualitatively similar trends176

persist for other choices of batch size, noise multiplier, and iterations.177
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From our experiments for both these tuning procedures, we conclude that while tuning with LT entails178

an initial privacy blowup, and the additional privacy cost for trying more candidates (smaller γ) is179

minimal. Even though this has an additional computation cost, it can be appealing when an analyst180

wants to try numerous hyperparameters. On the other hand, for the same overall privacy cost, MA181

can be used to compose a significant number of hyperparameter candidates. Additionally, MA allows182

access to all intermediate learners, whereas LT allows access to only the final output parameters. In183

the sequel, this conclusion will be useful in making the naive MA approach a more appealing tool for184

some settings (e.g., tighter privacy budgets).185

4 Tuning DP Optimizers186

We detail aspects of tuning both non-adaptive and adaptive optimizers. We start with tuning non-187

adaptive optimizers (Section 4.1). We theoretically and empirically demonstrate a connection between188

the learning rate and clipping threshold. We also establish that non-adaptive optimizers inevitably189

require searching over a large LR-clip grid to extract performant models. Adaptive optimizers forego190

this problem as they do not need to tune the hyperparameter dimension of learning rate. However,191

they introduce other hyperparameters that have known good choices in the non-private setting, and192

we empirically show that they are good candidates in the private setting (Section 4.2).193

4.1 Tuning DP non-adaptive optimizers194

While many hyperparameters are restricted due to computational and privacy/utility targets, the195

learning rate α and the clipping threshold C have no a priori bounds. In what follows, we show196

an interplay between these parameters by first theoretically analyzing the convergence of DPSGD.197

We then explore an illustrative experiment which demonstrates their entanglement. In the following198

theorem, we derive a bound on the expected excess risk of DPSGD and while doing so, show that the199

optimal learning rate, αopt, is proportional to the inverse of C. The proof appears in Appendix D.200

Theorem 2. Let f be a convex and β-smooth function, and let x∗ = arg min
x∈S

f(x). Let x0 be201

an arbitrary point in S, and xt+1 = ΠS(xt − α(gt + zt)), where gt = min(1, C
‖∇f(x)‖2 )∇f(x)202

and zt ∼ N (0, σ2C2) is the noise due to privacy. After T iterations, the optimal learning rate is203

αopt = R
CT
√
1+σ2

, where E[f( 1
T

∑T
i xt)− f(x∗)] ≤ RC

√
1+σ2
√
T

and R = E[‖x0 − x∗‖].204

Figure 2: Log of training loss for sim-
ulation experiment at σ = 4 on a syn-
thetic dataset. The black pixels corre-
spond to lowest training loss. Note that
most best loss values lie on a diagonal
expressing the inverse connection be-
tween α and C.

Though Theorem 2 gives a closed-form expression for the205

optimum learning rate, it is a function of the parameter R,206

which is unknown a priori to the analyst. Given constant207

T and σ, the optimal learning rate αopt is inversely propor-208

tional to the clipping normC. This is crucial information in209

practice because these parameters vary among datasets and210

are unbounded. This unboundedness property thus requires211

us to search over very large ranges of C and α when we212

have no prior knowledge of the dataset. It is natural to ask213

whether one can fix the clipping norm C and search only214

over a wide range for the learning rate α (or vice versa).215

We explore this relationship experimentally, showing that216

fixing one of these two hyperparameters may often but not217

always result in an optimal model.218

In this experiment, we train a linear regression model on a219

10-dimensional synthetic dataset of input-label pairs (x, y)220

sampled from a distribution D as follows: x1, . . . , xd ∼221

U(0, 1), y = x ·w∗, w∗ = 10 ·1d. We use the initialization222

w0 = 0d and train for 100 iterations. In the non-private223

setting, this model converges quickly with any reasonable224

learning rate, but in the private setting, we notice that the225

training loss depends heavily on the choice of α and C. Figure 2 shows a heat map for the log226

training loss when trained on (α,C) pairs taken from a large grid consisting of [1, 2, 4, 5, 8] at scales227

of [10−4, 10−3, 10−2, 10−1, 100, 101]. The best training is observed when the loss is 0 (black pixels).228
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(a) σ = 2 (b) σ = 4 (c) σ = 8

Figure 3: Ranking hyperparameter candidates across datasets. The black points correspond to
the candidates with α = 0.001 (with all permutations of β1, β2 from our searchgrid); the gold
corresponds to the candidate with α = 0.001, β1 = 0.9, β2 = 0.999

We observe two fundamental phenomena from this figure. First, to achieve the best accuracy, α and229

C need to be tuned on a large grid spanning several orders of magnitude for each of these parameters.230

Second, multiple (α,C) pairs achieve the best accuracy and all lie on the same diagonal, validating231

our theory for an inverse relation between learning rate and clipping norm. As mentioned earlier, one232

might hypothesize that by setting the clipping norm C constant and tuning α (corresponding to a233

vertical line in Figure 2) or vice versa, one could eliminate tuning a hyperparameter. However, note234

that not all C and α values correspond to the lowest loss. This phenomenon is evident by noticing235

that not all vertical or horizontal lines on this figure have black pixels. This happens, for example,236

at the extremes (e.g., at the top-right corner), but also for several intermediate and standard choices237

(e.g., C = 0.1 or 0.2). Again, the analyst has no way of knowing this a priori. We conclude that to238

privately tune non-adaptive optimizers, we require a large grid of hyperparameter options.239

4.2 Tuning DP adaptive optimizers240

In the interest of reducing this space of tuning we turn to adaptive optimizers, where we can at least241

reduce one dimension of this search space. These approaches automatically adapt over the learning242

rate α, requiring us to tune only over the clipping norm C. But recall our key question: can we train243

models that perform competitively with the fine-tuned counterparts from DPSGD?244

Adam [KB14], the canonical adaptive optimizer introduces two new hyperparameters, which are the245

first and second moment exponential decay parameters (β1 and β2). In the non-private setting, these246

parameters are relatively insensitive, and default values of α = 0.001, β1 = 0.9, and β2 = 0.999 are247

recommended based on empirical findings, requiring no additional tuning for this hyperparameter248

triple. Hence before we compare DPAdam and DPSGD, we first find and establish such recommended249

values for this hyperparameter triple in the DP setting next, and then show that DPAdam with a small250

hyperparameter space performs competitively with DPSGD in Section 5.251

To establish default choices of α, β1, and β2 for DPAdam, we evaluate this private optimizer over four252

diverse datasets (details in Appendix B, Table 2) and two learning models including logistic regression253

and a neural network with one 100 neurons hidden layer (TLNN). These selected datasets include254

both low-dimensional data (where the number of samples greatly outnumbers the dimensionality) and255

high-dimensional data (where the number of samples and dimensionality are at same scale). Since256

we still have a large hyperparameter space to tune over, for the rest of this work, we fix a constant lot257

size (L = 250), and consider tuning over three different noise levels, σ ∈ [2, 4, 8], so that we can258

study the effects of tuning the other hyperparameters more thoroughly. All experiments are repeated259

three times and averaged before reporting. Additionally, in this particular experiment since we focus260

on α, β1, and β2, we also fix the clipping threshold C = 0.5, and T = 2500 iterations of training.261

For each dataset and model, we run DPAdam three times with hyperparameters (α, β1, β2) from the262

grids, α ∈ [0.001, 0.05, 0.01, 0.2, 0.5], β1, β2 ∈ [0.8, 0.85, 0.9, 0.95, 0.99.0.999].263

We show that the default hyperparameter choice (α, β1, β2) of Adam in the non-private setting also264

works well for DPAdam. Figure 3 shows the boxplots of testing accuracies of DPAdam over the265

different hyperparameter choices. When α is 0.001 (same as in the non-private setting), all the266

datasets and models have final testing accuracies (marked in black) close to the best possible (and267

in most cases it is in fact the best) accuracy. Furthermore, we also highlight the accuracy of the268
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Figure 4: Comparing the testing accuracy curves of DPAdam, DPSGD and DPMomentum models
across their hyperparameter tuning grids with σ = 4. The limits for y-axis are adjusted based on the
dataset while maintaining a 15% range for all.

suggested default choice (α = 0.001, β1 = 0.9, β2 = 0.999) using gold dots. Hence, for the ease of269

using DPAdam, we suggest the non-private default values for these parameters in the private setting270

as well and hence in all our subsequent experiments.271

5 Advantages of tuning using DPAdam272

In the non-private setting, adaptive optimizers like Adam enjoy a smaller hyperparameter tuning273

space than SGD. We ask two questions in this section. First, can DPAdam (with little tuning) achieve274

accuracy comparable to a well-tuned DPSGD? Second, what is the privacy-accuracy tradeoff one275

incurs when using either of the two methods we detail in Section 3 for hyperparameter selection.276

To answer both questions, we compare DPAdam and DPSGD over the same set of datasets and277

models from the previous section. We report the accuracy of DPSGD with a range of learning rates278

and clipping values shown in Table 3 (Appendix C), and the testing accuracy of DPAdam with default279

parameter choice from Section 4.2 (α = 0.001, β1 = 0.9, β2 = 0.999) and a range of clipping values280

C in Table 3. In total, DPSGD has 40 candidates to tune over, and DPAdam has 4. This is because281

we have shown in Section 4.1 that DPSGD needs a wide grid to obtain the best accuracy when data282

distributions are unknown. Additionally, we also consider the DPMomentum optimizer. Similar to283

how we searched for default tuning choices for DPAdam in Section 4.2, we investigate if there exists284

a qualitatively good choice for the momentum hyperparameter, and unfortunately our results show285

that there is no such choice. We detail this process in the supplement.286

In order to show the comparison from both sides of the privacy-accuracy tradeoff, we compare the287

three optimizers through i) the privacy cost when extracting the best accuracy from these optimizers,288

and ii) the accuracy one would obtain from them under the tight privacy constraints.289

5.1 Prioritizing Accuracy290

For brevity, we show experiments for σ = 4 in Figure 4, results for other values of σ are displayed in291

the supplement. For each dataset and model, we train three times for each hyperparameter candidate292

and report the max every 100 iterations, corresponding to the dark lines for each optimizer. We note293

that their maxima are extremely similar. However, Table 1 shows the final privacy costs incurred294

by each of these max accuracy lines, and reflects our claims from Section 3.1 that using fewer295

hyperparameter candidates and composing privacy via MA gives a much tighter privacy guarantee.296

5.2 Prioritizing Privacy297

Additionally in Figure 4, DPSGD and DPMomentum have pastel dotted lines corresponding to their298

mean accuracy attained using the MA composition that provides the tightest privacy guarantees for299
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Dataset DPSGD (LT) DPMomentum (LT) DPAdam (MA)
Adult 5.01 5.23 1.91
ENRON 30.86 32.31 12.80
Gisette 26.40 27.64 10.76
MNIST 3.01 3.14 1.14

Table 1: Final ε (at δ = 10−6)
for optimizers for the LR Mod-
els (Figure 4). DPSGD and DP-
Momentum use LT for privacy ac-
counting; DPAdam uses MA.

DPAdam. These pastel lines are the mean accuracies (with 95% CI) from 100 repetitions of this300

experiment. Since DPAdam has only 4 hyperparameter candidates, for this experiment, we sample 4301

of the candidates at random for DPSGD and DPMomentum so that they all incur the same privacy302

cost. Since the candidate pool is significantly larger for DPSGD and DPMomentum, we additionally303

scrutinize the parameter grid for them and prune the learning rates that perform poorly. Our pruning304

process (detailed in the supplement) is quite generous, and favours minimizing the hyperparameter305

space of DPSGD and DPMomentum as much possible. 1 Despite the pruning advantage we see that306

these optimizers perform subpar than DPAdam when constrained with tight privacy requirements.307

6 DPAdam without second moment: DPAdamWOSM308

As illustrated in the previous section, adaptivity can indeed be a boon, enabling DPAdam to match309

the performance of tuned DPSGD while consuming roughly a third of the privacy budget as seen310

in Table 1. However, in addition to a decaying average of the past gradient updates, DPAdam311

also requires maintaining a decaying average of their second moments. In this section, we design312

DPAdamWOSM, a new DP optimizer that operates only using a decaying average of past gradients,313

as well as eliminates the need to tune the learning rate parameter. We achieve this by analyzing the314

convergence behavior of the second-moment decaying average in DPAdam in regimes where the scale315

of noise added is much higher than the scale of the clipped gradients. Setting the effective step size316

(ESS) of DPAdam to the converged constant, and removing all computations related to the second-317

moment updates, results in DPAdamWOSM. We empirically demonstrate that DPAdamWOSM318

matches the utility of DPAdam, while requiring less computation than DPAdam.319

Observe that removing the second-moment updates from DPAdam reduces it to DPMomentum with320

one additional feature: bias-correction to the first-moment decaying average, which DPAdam does321

to account for its initialization at the origin. While the resultant optimizer still requires tuning the322

learning rate (in addition to other hyperparameters like the clipping threshold), DPAdamWOSM can323

be viewed as self-tuning the learning rate by fixing it to the converged effective step size in DPAdam.324

6.1 Effective step size (ESS) in DPAdam325

DPAdam produces results with a smaller variance than DPSGD due to its adaptive learning rate.326

To understand this phenomenon better, we look closely into the update step of DPAdam [KB14].327

DPAdam being an adaptive optimizer picks per-parameter ESS as α√
v̂t+ξ

, which is the base learning328

rate α scaled by the second moment of the individual parameter gradients. We notice that when329

g → 0, the ESS for DPAdam converges for the first moment gradient, which innately accounts for330

the clip bound one is training with. This may happen at later iterations, when the model is close to its331

minima and the gradients get close to zero.332

Theorem 3. The effective step size (ESS) for DPAdam with g → 0 converges to ESS∗ = α
(σC/L)+ξ .333

Proof. Recall that the average noisy gradient over a lot is g̃ = g +N (0, σ2C2)/L. We now look at334

the effect of this noisy gradient on the effective step size (ESS) of DPAdam. As g → 0, the second335

moment of DPAdam converges to σ2C2

L2 . This gives us the converging value for ESS:336

ESS∗ =
α√
v̂t + ξ

=
α√

σ2C2

L2 + ξ
=

α

(σC/L) + ξ

1Note, pruning itself is of course unfair; the intent was to design a DP optimizer that can be used on any
data distributions that we have no prior knowledge of. To do so with DPSGD one would have to consider a
significantly wide range of (α,C) pairs to cover ‘good’ candidates as we illustrated in Section 4.1
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Figure 5: Comparing the testing accuracy curves of DPAdam, ADADP and DPAdamWOSM models
across hyperparameter tuning grid from Table 3 with σ = 4. The limits for the y-axes are adjusted
based on the dataset while maintaining a 15% range for all.

Theorem 3 gives a closed form expression that ESS converges to. We can use this value in place337

of α√
v̂t+ξ

in the update step from the inception of the learning process. Since the second-moment338

updates (e.g., v̂t) are not used anymore, removing them results in our new optimizer DPAdamWOSM.339

We provide a pseudo-code for DPAdamWOSM in the appendix.340

6.2 Comparing Adaptive Optimizers341

We evaluate DPAdamWOSM by running it alongside DPAdam and ADADP with the same hyperpa-342

rameter grid in the appendix. For brevity, we show experiments on σ = 4 and others appear in the343

supplement. In Figure 5, we show the maximum and median accuracy curves for all the optimizers.344

We display the median accuracy curves (shown in dotted), as an indicator of the quality of the entire345

pool of hyperparameter candidates for a given optimizer; which in this case is strictly over the choices346

of clip. The max lines for ADADP lies beneath DPAdam and DPAdamWOSM for all dataset except347

Adult. Also, the max accuracy line for DPAdamWOSM runs alongside DPAdam which means that348

it can perform as good as DPAdam throughout training. The median line for DPAdamWOSM also349

performs alongside DPAdam and in some cases is able to beat it (e.g, the median for DPAdamWOSM350

for MNIST-LR and MNIST-TLNN lies above the median line of DPAdam). This occurrence is seen351

because DPAdamWOSM uses the converged ESS from the first iteration of training.352

7 Conclusion353

In this paper, we performed a thorough investigation of honest hyperparameter selection for DP354

Optimizers. We compared two existing private methods, LT and MA to search for hyperparameter355

candidates and showed that, the former incurs a significant privacy cost but can compose a great many356

candidates, while the latter is helpful when the number of candidates is small. Next, we explored357

connections between the clipping norm and the step size hyperparameter to show an inverse relation-358

ship between them. Additionally, we compared non-adaptive and adaptive optimizers, demonstrating359

that the latter typically achieves more consistent performance over a variety of hyperparameter360

settings. This can be vital for applications where public data is scarce, resulting in difficulties when361

tuning hyperparameters. Finally, we brought to light that DPAdam converges to a static learning rate362

when the noise starts dominating the gradients. This insight allowed us to derive a novel optimizer363

DPAdamWOSM, a variant of DPAdam which avoids the second-moment computation and enjoys364

better accuracy especially at earlier iterations. Future work remains to investigate further implications365

of these results to provide tuning-free end-to-end private ML optimizers.366
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