Under review as a conference paper at ICLR 2026

ACCURATE AND DIVERSE LLM MATHEMATI-
CAL REASONING VIA AUTOMATED PRM-GUIDED
GFLOWNETS

Anonymous authors
Paper under double-blind review

ABSTRACT

Achieving both accuracy and diverse reasoning remains challenging for Large
Language Models (LLMs) in complex domains like mathematics. A key bottle-
neck is evaluating intermediate reasoning steps to guide generation without costly
human annotations. To address this, we first introduce a novel Process Reward
Model (PRM) trained automatically using Monte Carlo Tree Search coupled with
a similarity-based data augmentation technique, effectively capturing step-level
reasoning quality. Leveraging this PRM, we then adapt Generative Flow Net-
works (GFlowNets) to operate at the reasoning step level. Unlike traditional rein-
forcement learning focused on maximizing a single reward, GFlowNets naturally
sample diverse, high-quality solutions proportional to their rewards, as measured
by our PRM. Empirical evaluation shows strong improvements in both accuracy
and solution diversity on challenging mathematical benchmarks (e.g., +2.59%
absolute accuracy on MATH Level 5 for Llama3.2-3B), with effective general-
ization to unseen datasets (+9.4% absolute on SAT MATH). Furthermore, we
benchmark our PRM against existing open-source reward models, demonstrat-
ing superior alignment with reasoning quality and more consistent guidance for
downstream generation. Our work demonstrates the potential of PRM-guided,
step-level GFlowNets for developing more robust and versatile mathematical rea-
soning in LLMs.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable progress in various natural lan-
guage tasks (Brown et al.|[2020; |Dubey et al., 2024)), yet achieving robust and reliable mathematical
reasoning remains a significant challenge (Lewkowycz et al., [2022; Hendrycks et al.,[2021). While
LLMs have shown increasing proficiency in solving mathematical problems (Cobbe et al., 2021}
Yuan et al., [2023), current approaches often prioritize accuracy on benchmark datasets (Hendrycks
et al.,[2021; [Wang et al.| [2022)), potentially overlooking other crucial aspects of intelligent reason-
ing, such as the ability to explore and generate diverse solution strategies (Naik et al., 2023). For
LLMs to truly excel in mathematical domains and move beyond pattern recognition towards genuine
understanding, they must not only arrive at correct answers but also exhibit the capacity to reason
through problems in multiple, varied, and insightful ways (Yu et al.,[2024} |Uesato et al., 2022).

Traditional reinforcement learning methods like Proximal Policy Optimization (PPO; [Schulman
et al.l 2017) have shown promise in improving LLM mathematical reasoning (Yao et al., [2023).
However, these methods inherently aim to maximize a single reward signal, often leading to the
exploitation of a narrow set of solution strategies (Ziegler et al., |2019; Naik et al. [2023)). This
limitation becomes particularly critical when considering the development of robust and generally
applicable problem-solving Al systems, where adaptability to novel situations and the exploration
of diverse solution spaces are paramount.

Addressing the need for diverse reasoning requires effective guidance at the level of intermediate
steps. However, obtaining reliable reward signals for these steps typically involves expensive human
annotation. We overcome this limitation by first developing an automatically trained Process Re-
ward Model (PRM; Uesato et al., [2022). Our approach uniquely employs Monte Carlo Tree Search
(MCTS; Luo et al., [2024) combined with a novel similarity-based data augmentation technique to

Under review as a conference paper at ICLR 2026

generate high-quality step-level reward signals without manual labeling. Given this automated and
nuanced step-level reward mechanism provided by the PRM, we then propose leveraging Generative
Flow Networks (GFlowNets; Bengio et al.,2021;|2023)) for fine-tuning. Unlike traditional reinforce-
ment learning methods that often collapse to a single strategy, GFlowNets are designed to sample
proportionally to rewards, naturally fostering solution diversity. Our key adaptation is operating
GFlowNets at the reasoning step level rather than the token level — each state represents a partial
solution, and actions generate complete reasoning steps — allowing the PRM reward to guide the
exploration of diverse, high-quality reasoning paths effectively. Prior work using GFlowNets for
LLM fine-tuning (Hu et al.l 2023} [Takase et al., 2024) often utilized variants of the Subtrajectory
Balance (SubTB) loss (Madan et al.| 2023)), which we adapt for our step-level framework.

Our main contributions are:

* Automated Process Reward Model: An efficient training methodology featuring an auto-
matically trained PRM using Monte Carlo Tree Search and novel similarity-based data aug-
mentation, eliminating the need for expensive human step-level annotations while achiev-
ing superior data efficiency through rollout reuse.

* Step-Level GFlowNet Framework: An adaptation of GFlowNets to operate at complete
reasoning steps rather than individual tokens, providing semantic coherence and enabling
fine-grained quality control through step-wise PRM evaluation. This addresses key limita-
tions of existing token-level approaches.

* Strong Empirical Validation: Demonstrated improvements in both accuracy and solu-
tion diversity across challenging benchmarks, with particularly impressive generalization
(+9.4% absolute on SAT MATH for 3B model), indicating that step-level diversity training
captures transferable reasoning patterns.

Empirically, we demonstrate that our approach not only improves accuracy on challenging mathe-
matical reasoning benchmarks but also generates more diverse solution strategies compared to both
baseline models and PPO-fine-tuned variants. This is particularly evident in our diversity analysis,
where GFlowNet-fine-tuned models show significantly lower semantic similarity between generated
solutions while maintaining correctness.

Our work points towards new directions for developing next-generation LLMs with enhanced rea-
soning capabilities. By demonstrating a method to improve both accuracy and diversity in a complex
domain like mathematical reasoning, we open possibilities for creating more robust, versatile, and
ultimately more intelligent LLM systems capable of tackling a wider range of challenging problems.

2 BACKGROUND AND RELATED WORK

Mathematical Reasoning in LLMs has seen significant progress through various approaches, in-
cluding chain-of-thought prompting (Wei et al.| 2022)), self-consistency (Wang et al.| 2022}, and
reward modeling (Lightman et al., 2023} |Zhang et al., [2024)). Process reward modeling, pioneered
by [Lightman et al.| (2023)), has evolved to include automated approaches: |[Zhang et al.| (2024) intro-
duced ReST-MCTS* for self-training via process reward guided tree search, while|Guan et al.|(2025)
demonstrated that small language models can achieve state-of-the-art mathematical reasoning using
MCTS-guided process rewards.

While these methods have improved accuracy, they often lack mechanisms for promoting solution
diversity. Recent work by Wang et al.|(2024b) highlights the importance of diverse reasoning paths
but focuses primarily on accuracy rather than explicitly encouraging diversity during training.

Chain-of-thought (CoT) approaches (Wei et al.l |2022) and their variants such as Tree-of-Thought
(Yao et al.| 2024) and Graph-of-Thought (Besta et al., |2024) have demonstrated substantial im-
provements by encouraging models to articulate intermediate steps in their problem-solving process.
However, the precise mechanisms underlying these improvements remain an active area of investi-
gation, with some researchers questioning whether the benefits derive specifically from human-like
task decomposition or simply from the additional computation afforded by generating more tokens
(Pfau et al., [2024). Several enhancements to CoT approaches have been proposed, including using
datasets of preference pairs of reasoning traces to finetune the CoT-generating model (Lahlou et al.,
2024).

Under review as a conference paper at ICLR 2026

Despite these advances, current approaches to mathematical reasoning predominantly emphasize
accuracy improvements rather than fostering diverse solution strategies. This limitation becomes
particularly relevant in educational contexts and mathematical exploration, where multiple valid
approaches can provide deeper insights into problem structures. This gap motivates our investigation
into leveraging generative flow networks to promote both accuracy and diversity in mathematical
reasoning.

Generative Flow Networks (GFlowNets) represent a novel framework for learning to sample from
a desired distribution, offering advantages over traditional reinforcement learning approaches (Ben-
gio et al.,[2021}2023)). GFlowNets operate on a directed acyclic graph (DAG) structure, where states
S represent partial constructions and actions .A represent transitions between states. This graph con-
tains a unique source state sy with no parents and a sink state sy with no children. States that connect
directly to sy are termed terminal states X, each associated with a positive reward R(x) > 0 for
rEeEX.

The core objective of GFlowNets is to learn policies that generate complete trajectories 7 =
(50,81, -+, Sn, Sf) such that terminal states are sampled with probabilities proportional to their re-
wards: P(z) o< R(z). This is achieved through flow conservation and reward matching constraints
that ensure the learned policy samples diverse, high-reward solutions rather than converging to a
single optimal path.

Unlike reinforcement learning methods that focus on maximizing expected cumulative rewards -
typically converging to deterministic policies that exploit highest-reward paths - GFlowNets learn
stochastic policies that maintain diversity while still favoring high-reward solutions. This balance
between exploration and exploitation makes GFlowNets particularly valuable for applications where
multiple viable solutions are preferable to a single optimal one.

Various training objectives have been proposed, including trajectory-balance (TB), detailed-balance
(DB), and Subtrajectory Balance (SubTB) methods. Our work builds on SubTB()\) (Madan et al.,
2023)), which enables learning from incomplete trajectories - particularly suitable for our step-level
framework.

GFlowNets have demonstrated remarkable success across diverse domains. Their ability to gen-
erate diverse, high-quality samples addresses a fundamental challenge in scientific discovery tasks
involving astronomically large search spaces. By learning to sample diverse high-reward candi-
dates, GFlowNets can efficiently identify promising regions of the design space while maintaining
the variety needed to accommodate additional constraints not captured in the primary reward func-
tion, such as synthesis feasibility or absence of side effects. Recent work has explored GFlowNets
for language generation tasks (Hu et al., 2023 Takase et al., 2024; Ho et al.,|2024). Most notably,
Takase et al.| (2024) demonstrated that GFlowNet fine-tuning can generate diverse correct solutions
for mathematical reasoning tasks. However, their approach operates at the token level, with states
and actions defined over individual tokens: 7y(Y'|.X) = [], mo(v:|X, y1:i—1). In contrast, our work
operates at the reasoning step level, where each action corresponds to generating a complete rea-
soning step rather than individual tokens. This step-level granularity enables more semantically
meaningful control over solution generation while maintaining the diversity benefits of GFlowNets.

The step-level approach offers several advantages over token-level methods like Takase et al.|(2024):
(1) Semantic Coherence: Each action generates a complete, meaningful reasoning step rather than
individual tokens, avoiding the semantic fragmentation that can occur in token-level generation; (2)
Reward Alignment: Step-wise PRM evaluation provides more accurate reward signals than token-
level approaches, where individual tokens may not reflect reasoning quality; (3) Logical Structure:
Operating at the step level naturally captures the hierarchical structure of mathematical reasoning,
where each step represents a logically complete inference; (4) Quality Control: The step-level
granularity enables fine-grained control over reasoning quality while maintaining coherence within
each step. This is particularly important for mathematical reasoning, where partial steps or token
sequences may be mathematically meaningless, but complete reasoning steps represent verifiable
logical progressions.

We discuss other related work in Appendix[C| The relationship between our approach and Maximum
Entropy RL is discussed in Appendix D}

Under review as a conference paper at ICLR 2026

3 PROCESS REWARD MODEL FOR MATHEMATICAL REASONING STEPS

We train a PRM U (s’|s) that evaluates the quality of a proposed reasoning step s’ given its prede-
cessor s. The PRM outputs a score between 0 and 1, representing the probability that step s’ will
lead to a correct solution, assuming s is correct.

Relationship to Prior PRM Work: Process reward modeling has evolved significantly since Light-
man et al.| (2023)) introduced step-by-step verification with human annotations. Recent automated
approaches include [Zhang et al.| (2024}, who use MCTS to infer process rewards by estimating the
probability that each step leads to correct answers, and |Guan et al| (2025), who employ MCTS-
guided process reward models for small language models.

Our approach differs in several key aspects: (1) Data Augmentation: Unlike prior work that dis-
cards most generated rollouts, our similarity-based augmentation leverages nearly every rollout,
significantly increasing data efficiency; (2) Continuous Scoring: We use continuous scores rather
than binary labels (Luo et al., 2024; Lightman et al., 2023} Wang et al.,|2024b), enabling more nu-
anced evaluation of step quality; (3) Integration: Our PRM provides reward signals compatible with
various training methods such as PPO and GFlowNets. It is particularly well-suited for step-level
GFlowNet training, requiring calibrated probability scores rather than just binary scores.

3.1 AUTOMATED DATA GENERATION VIA MCTS

To train our PRM without human annotations, we adapt the MCTS-based data generation approach
of [Luo et al|(2024) with several key modifications. Following their framework, we perform Monte
Carlo rollouts to evaluate step quality, but critically extend their binary scoring (correct/incorrect) to
continuous values in [0, 1] to capture nuanced step quality gradations.

For each candidate step s, we estimate its Monte Carlo value M C(s) by performing k = 96
rollouts with temperature 0.6. Unlike binary evaluation schemes, our continuous scoring al-
lows the PRM to learn fine-grained quality distinctions between reasoning steps: MC(s) =
(successful rollouts from prefix ending at step s)/k.

We use binary search to efficiently identify the first incorrect step within candidate reasoning paths.
Only steps preceding the first error are included in the training dataset, as subsequent steps build
upon invalid reasoning. Therefore as illustrated in Figure [3} the PRM consistently assumes that all
preceding steps are correct when evaluating the current step. In other words, the PRM effectively
answers the question: tfo what extent can this step lead towards the correct solution, under the
assumption that all prior steps are valid? The key advantage of this approach is that, when the PRM
is employed to provide a reward signal during PPO or GFlowNets training, it assigns rewards solely
based on the quality of the step provided as input to the PRM. Consequently, earlier mistakes do not
propagate to unduly penalize the model throughout the trajectory.

We applied this methodology using Qwen2.5-Math on 70,000 problems from OpenMathInstruct2
(Toshniwal et al.,|2024)). Complete algorithmic details and implementation specifics are provided in

Algorithm [I| (Appendix [E.T).

3.2 DATASET AUGMENTATION VIA ROLLOUT REUSE AND SIMILARITY GROUPING

To improve the efficiency of our data generation and create a larger, more comprehensive dataset,
we implement a dataset augmentation strategy. This strategy leverages the rollouts generated during
the MCTS process and incorporates a step similarity grouping technique.

During MCTS, for each evaluated step, we store the k rollouts used to estimate its M C/(s) value.
Each rollout is stored as a tuple (r, z), where r is the generated reasoning path (rollout) and z is a
binary indicator (1 or 0) denoting whether the rollout led to a correct final answer. To augment our
dataset, we extract individual steps from these stored rollouts. For each rollout step, we create a new
data entry. The “prefix” for this new entry is constructed by concatenating the original prefix of the
step from which the rollouts were generated with the step itself. This process allows us to reuse steps
from successful and unsuccessful rollouts, significantly increasing the size of our dataset. Ideally,
for each step evaluated in MCTS, we could add up to k£ new step examples to our dataset through
this rollout reuse.

Under review as a conference paper at ICLR 2026

However, directly adding all rollout steps without further processing can introduce inconsistencies.
As illustrated in Table |1} steps that contribute equivalently to the reasoning process can receive
different M C(s) values if evaluated in isolation with a limited number of rollouts (k¢ = 1, which
would be the case if we directly evaluated each step in a rollout independently). This is because
evaluating with £ = 1 can lead to noisy and unreliable step value estimations.

To address this consistency issue and further refine our

dataset, we introduce a post-processing step based on Taple 1: Example of Similar Steps with
step similarity grouping. First, we define a Step Simi- Different Values

larity Function to quantify the similarity between two

steps of mathematical reasoning. This function evalu- Steps value
ates similarity based on two primary criteria: (1) Cal- Max attended 40 college 0
culation Consistency: If both steps contain mathemat- courses in 2 years

ical calculations, the function checks if the results of Within 2 years, Max en- 1

these calculations are identical. If the results differ, the rolled in 40 college courses.
steps are considered dissimilar, and the function returns
a similarity score of 0. (2) Textual Similarity: If the
calculation results are the same, or if neither step contains calculations, the function computes the
Levenshtein distance between the textual content of the two steps.

Similar steps

according to No similar
our function steps here
e 1 0
| mesvy=172 |} 1| mes+2)=1/2 || | me(s+3)=1 Correct
— .] i I '
Question, : : : :
prefix and ' MC(s+1)=1/2 b MC(s+2)=1/2 ! MC(s+3)=0 Wrong
step s with a L= ======== 4 LS=========== a
value MC(s+1)=0 Irrelevant Wrong
MC(s)=1/2
MC(s+1)=1 MC(s+2)=1 Correct

Figure 1: Data processing workflow for PRM training. Starting from a step s with M C(s) = 1/2,
the diagram shows how subsequent steps are processed based on their Monte Carlo values. Similar
steps (indicated by dashed boxes) share MC values. Steps following an incorrect step (M C = 0)
are excluded from the training dataset, as they would be built upon invalid reasoning. Gray boxes
indicate steps that become irrelevant to the training process.

If the similarity score computed by the Step Similarity Function exceeds a predefined threshold (set
to 0.85 in our experiments), the steps are grouped into the same similarity group. Within each group,
we then assign consistent step values. Specifically:

* If all steps within a group originated from rollouts that led to correct (resp. incorrect) final
answers, all steps in the group are assigned a value of 1 (resp. 0).

* If there is a mixture of correct and incorrect rollouts associated with the steps in a group,
all steps in the group are assigned the M C(s) value that was originally estimated for the
MCTS step from which these rollouts were generated, as a reasonable approximation of
the value for all similar steps in the group, assuming that steps similar to a step with a
known M C(s) are likely to have a similar probability of leading to a correct solution.

This combined dataset augmentation process ensures greater consistency and reliability in the step-
level labels. The initial MCTS generation yielded approximately 100k step examples from the input
problems described in Section[3.1] Applying rollout reuse and similarity grouping significantly ex-
panded this set to the final 2.1M entries used for PRM training, greatly enhancing dataset size and
diversity and improving the PRM’s generalization capability. This final dataset comprises approxi-
mately 30% false steps, 20% steps guaranteed correct (value 1), and 50% intermediate steps (value
between 0 and 1). The complete data processing workflow, including the handling of incorrect steps
during MCTS and the augmentation logic, is visually summarized in Figure[I]

Under review as a conference paper at ICLR 2026

3.3 PRM TRAINING

We fine-tuned Qwen2.5-Math (Qwen et al.| 2025) as our PRM. We train the PRM to predict the
probability of a step leading to a correct solution using Binary Cross-Entropy Loss (BCELoss)

_ 1
L =-x

f\il [yilog(3:) + (1 — y;) log(1l — 4;)], where y; is the true label for the i-th step

(i.e., the MC(s) value), and §; is the predicted probability for the i-th step, given by ¢§; =
PRM(question, solution_prefix, step).

3.4 PRM VALIDATION

We validate our PRM through
three complementary analyses.
First, we assess its ability to
detect step-level errors by cor-
rupting correct solution steps in
systematic ways (e.g., changing
numbers, or removing key rea-
soning components). The PRM
consistently assigns lower scores
to corrupted steps, demonstrating
its sensitivity to reasoning errors

(See Appendix [E.4).

Second, we evaluate its capability
to support diverse solution paths
by comparing scores assigned to
different valid approaches for the
same problem (using the GSMSK
dataset). The PRM assigns com-
parable scores to different valid
approaches, indicating its ability
to recognize multiple correct rea-

DFalconS guided by PRM: Ours vs Skywork-01-Open-PRM-Qwen-2.5-7B

&

NN oW ow o
a &

S

-
&

S

o

Accuracy on a subset of Math HARD (%)

—&— Falcon3-3b-base — Our PRM
~e— Falcon3-1b-base — Our PRM —:= Falcon3-10b-base Baseline

- @ Falcon3-3b-base — Open PRM (Skywork)

~e— Falcon3-7b-base — Our PRM
- @ - Falcon3-1b-base — Open PRM (Skywork)
- @+ Falcon3-7b-base — Open PRM (Skywork)

—:= Falcon3-7b-base Baseline
—:= Falcon3-3b-base Baseline

Figure 2: Accuracy of Falcon models on a subset of MATH
Hard using PRM-guided search with varying numbers of pro-
posed steps k. Horizontal lines indicate the baseline accuracy
of unguided Falcon3-3B, 7B, and 10B models using prompt-
based decoding. Solid (resp. dotted) curves represent the ac-
curacy of Falcon3-1B, 3B, and 7B guided by our PRM (resp.
Skywork-o01-Open-PRM-Qwen-2.5-7B).

soning paths (See Figure [3]in Ap-
pendix [E.3).

Thirdly, we implemented a guided search strategy to enhance the mathematical reasoning capabili-
ties of LLMs using our trained PRM, similar to the approach in|Snell et al.| (2024). At each step of
generation, the LLM proposes k candidate steps (generated with a temperature of 0.8 for diversity),
and the PRM selects the step with the highest score. This step is then appended to the prompt, and
the process is repeated until a complete solution is generated.

Figure 2| demonstrates the effectiveness of PRM-guided search on a subset of the MATH Hard
dataset. These results highlight the value of PRMs in guiding step-by-step reasoning. By selecting
the most promising steps according to the PRM’s evaluation, the guided search strategy substantially
enhances the accuracy of smaller models, in some cases enabling them to approach or even surpass
the performance of larger unguided models on challenging mathematical reasoning tasks. Similar
applications of PRMs can be found in |Wang et al.| (2024a;b), as well as in related “helper” models
such as the Preference Process Model in|Guan et al.|(2025)). Additional tests of the PRM are provided

in Appendix [E.4]

4 STEP-LEVEL GFLOWNET FINE-TUNING FOR DIVERSE SOLUTIONS

4.1 STEP-LEVEL GFLOWNET FRAMEWORK

Building on |Hu et al.| (2023), we adapt GFlowNets to operate at the reasoning step level rather than
the token level. Our key insight is that mathematical reasoning has a natural hierarchical structure
where complete reasoning steps represent semantically meaningful units.

State and Action Space: A state s represents a partial solution consisting of the question and all
generated reasoning steps up to that point. An action corresponds to generating a complete reasoning

Under review as a conference paper at ICLR 2026

step, transitioning from state s to state s’. This step-level granularity enables fine-grained control
over the reasoning process while maintaining semantic coherence within each step.

Reward Structure: The reward R(s,,) for a complete reasoning trajectory is computed using our
PRM scores R(s,) = [, U(si|si—1), where U(s;|s;_1) is the PRM score for step s; given the
previous partial solution s;_1. This multiplicative structure ensures that trajectories with any low-
quality steps receive low rewards, encouraging high-quality reasoning throughout. We propose in
Appendix [F]a Bayesian interpretation of our approach.

Policy Parameterization: The forward policy 7(s’|s) is parameterized by an LLM that generates
the next reasoning step. Following [Bengio et al.| (2023)), we incorporate a sink state sy to handle
variable-length solutions, with 7(s[s) representing the termination probability.

4.2 TRAINING OBJECTIVE AND IMPLEMENTATION

We adapt the Subtrajectory Balance (SubTB) loss (Madan et al., 2023)) for our step-level GFlowNet
framework, following |[Hu et al.| (2023) who were the first to use GFlowNets for LLM fine-tuning
and demonstrated the effectiveness of SubTB for language generation tasks.

Mathematical Formulation: The SubTB loss for our step-level framework is:

] 2
L= > N7 (10% R(Si)m—m”(sm1)7f<8f|8j)>)

0<i<j<n R(sj)m(sylss)

where A € [0,1] is a discount factor, R(s;) is the PRM-based reward for partial trajectory up to
step 4, and 7(s|s;) represents the termination probability. This formulation ensures that the learned
policy satisfies the detailed balance condition across all subtrajectories, leading to proper reward-
proportional sampling.

Our training procedure maintains a replay buffer 55 of size 1000 storing complete trajectories. The
replay buffer prioritizes trajectories with higher rewards to accelerate learning. For each question,
we (i) generate k candidate reasoning paths using current policy, (ii) evaluate rewards for terminating
states using PRM, (iii) Update policy using modified SubTB loss, (iv) Store successful trajectories
in B. Our approach is detailed in Algorithm [2]in Appendix We further implement a prioritized
replay buffer, temperature scheduling during trajectory generation, and gradient stabilization. We
detail these additions in Appendix [G.3]

5 EXPERIMENTS

For the main fine-tuning experiments, we used Llama3 models as the base architectures (specific
sizes detailed in Appendix[G.I)). These models were fine-tuned using either our step-level GFlowNet
approach or a PPO baseline. Both fine-tuning methods utilized reward signals from our Process
Reward Model (PRM), which was pre-trained using the methodology described in Section [3] (based
on the Qwen2.5-7B-math model (Qwen et al.} 2025)).

PPO Baseline Implementation: Our PPO implementation follows standard practices adapted for
sequential reasoning. For each training question, the LLM incrementally constructs its reasoning
trajectory by generating one step at a time. At every stage of this sequential process, only the
newly proposed step is subjected to evaluation: the PRM assesses this individual step and provides
a step-level reward signal. This localized feedback guides the model throughout the reasoning pro-
cess, ensuring that each successive step is informed by fine-grained evaluations rather than a single
outcome-level supervision. The PPO objective maximizes expected cumulative rewards using the
clipped surrogate objective with entropy regularization. We use identical model architectures, train-
ing data, and PRM evaluation as our GFlowNet approach to ensure fair comparison. PPO hyperpa-
rameters include: learning rate Se-6, batch size 144, PPO clip ratio 0.2, value function coefficient
0.5, and entropy coefficient 0.01.

The GFlowNet and PPO fine-tuning was conducted on a challenging subset of 10,000 questions
from the OpenMathInstruct2 dataset (Toshniwal et al.||2024) (“augmented math” category, aligning
with MATH Level 5 difficulty). We evaluated the performance of the fine-tuned models on the
MATH Hard benchmark (Hendrycks et al., 2021), the GSM8K benchmark (Cobbe et al.,|2021), and

Under review as a conference paper at ICLR 2026

the SAT MATH dataset (Zhong et al.| 2023)) to assess both in-domain accuracy and generalization
capabilities.

5.1 MAIN RESULTS

We evaluate our approach on three challenging mathematical reasoning benchmarks: MATH Level
5 (our training domain), GSM8K, and SAT MATH (generalization domains). Table [2] presents our
main results, comparing GFlowNet fine-tuning against PPO and baseline models:

The empirical results validate the ef-

fectiveness of step-level GFlowNet Taple 2: Performance comparison on mathematical reason-
fine-tuning across model scales and jng benchmarks. MATH Level 5 was used for training;
demonstrate strong generalization ca- GSM8K and SAT MATH evaluate generalization. Best re-

pabilities. The smaller Llama3.2-3B- gy]ts for each model size are bolded.
it model shows substantial improve-

ments with GFlowNet fine-tuning, Model MATH Level 5 SAT MATH GSMSK
achieving a 2.59 percentage point =y 135 3R 14.46% 65.6% 67.8%
gain over the baseline on MATH +PPO 15.32% 70.0% 68.4%
Level 5. + GFlowNet 17.05% 75.0% 68.5%
Generalization Analysis: The Llama3.1-8B-it 17.96% 81.2% 78.1%
most striking results appear on +PPO 18.44% 81.2% 79.1%
out-of-domain benchmarks. On + GFlowNet 18.67 % 84.4% 79.0%

SAT MATH, GFlowNet fine-tuning

achieves particularly impressive

gains: 9.4 percentage points improvement for the 3B model (75.0% vs 65.6% baseline) and 3.2
percentage points for the 8B model (84.4% vs 81.2% baseline). This strong generalization can
be attributed to three factors: (1) Diverse Reasoning Patterns: By training on multiple solution
approaches rather than converging to a single strategy, the model develops more robust reasoning
skills that transfer across problem types; (2) Step-Level Granularity: Operating at the reasoning
step level captures fundamental mathematical operations that generalize across different problem
formats; (3) PRM-Guided Quality: The PRM ensures that diverse solutions maintain high logical
quality, preventing the degradation often seen when optimizing for diversity alone.

The consistent improvements across both model sizes indicate that our approach scales effectively,
while the superior generalization compared to PPO suggests that reward-proportional sampling cap-
tures more transferable mathematical reasoning patterns than reward maximization.

Importantly, while PRM training has a computational cost, our analysis, detailed in subsection [H.4]
shows that GFlowNet fine-tuning itself is surprisingly efficient, requiring less training time than
comparable PPO baselines.

To further demonstrate the effective-

ness of our data augmentation tech- Taple 3: Performance comparison on mathematical reason-

nique, we conducted an additional jng benchmarks between our PRM and Skywork-01-Open-
fine-tuning experiment, as shown in pPRM-Qwen-2.5-7B

Table 3] In this setup, we fine-

tune Llama3.2-3B-it with an open- Model SAT MATH GSMSK

g’urcepgﬁM’ namflg’ 7?31‘3’301”1"0]1' Llama3.2-3B-it + GFlowNet 65.6% 67.8%
pen- -Qwen-2.5- (He et al.} + Our finetuned Qwen2.5-7B-math 75.0% 68.5%

2024), and compare the outcomes + Open-PRM-Qwen-2.5-7B 68.8% 68.5%

with those obtained using our own

PRM.

5.2 SOLUTION DIVERSITY ANALYSIS

To quantitatively evaluate the diversity of solutions generated by GFlowNet fine-tuning, we used a
semantic similarity metric. We chose semantic embeddings over lexical measures for mathemati-
cal reasoning diversity assessment because: (1) lexical metrics like Levenshtein distance or Jaccard
similarity capture only surface-level textual differences, missing semantic equivalence in mathemat-

Under review as a conference paper at ICLR 2026

ical expressions (e.g., “z = 4” vs “z = 22”), and (2) mathematical reasoning diversity requires
understanding conceptual differences between solution approaches, not just word-level variations.

We measured the pairwise semantic similarity between the reasoning steps generated by each model
using the “paraphrase-MiniLM-L6-v2” model (Reimers & Gurevych,|2019), a pre-trained sentence
embedding model specifically designed to capture semantic relationships. Each step was encoded
into a high-dimensional space using the encoding function of the model, with the output stored as
tensors. The pairwise similarity between these embeddings was then computed using the cosine
similarity measure, a standard metric for assessing vector similarity in semantic spaces. This metric
provides a continuous score representing the semantic proximity between different reasoning steps,
where lower scores indicate greater dissimilarity and, consequently, higher solution diversity. The
average semantic similarity across multiple generated solutions for each model is presented in Ta-
ble[d] where lower scores indicate greater diversity, and results averaged across 1,000 problems from
MATH.

The semantic similarity scores presented in Table] pro-

vide compelling evidence that GFlowNet fine-tuning Table 4: Solution diversity analysis.
effectively enhances the diversity of generated mathe-

matical solutions. This consistent reduction in seman- Model Avg. Semantic Similarity
tic simi.larity indicates that GquwNet-ﬁne-tuned mod- Llama3.2-3B-it 0.80

els are indeed generating reasoning paths that are more +PPO 0.82
semantically distinct and varied compared to the other + GFlowNet 0.78

approaches. This result is consistent with the obser-
vations made during the finetuning of the LLM with
GFlowNets, as shown in Figure[dc] Specifically, we see that during training, the LLM progressively
generates steps whose probabilities become increasingly aligned with the rewards provided by the
PRM (i.e., the probabilities assigned by the LLM to the tokens of a step get closer to the PRM re-
wards for that step). Consequently, this enhanced diversity is a direct consequence of the GFlowNet
training objective, which, unlike reward-maximizing RL methods like PPO, is explicitly designed to
sample from a distribution proportional to the reward. A concrete example of this induced diversity
is provided in Appendix [[}

6 CONCLUSION

We have introduced a novel step-level GFlowNet framework for mathematical reasoning that
achieves two crucial objectives: improving accuracy and promoting solution diversity. Our ap-
proach demonstrates that operating at the reasoning step level, rather than the token level, enables
more effective control over the generation process while maintaining semantic coherence.

The empirical results show significant improvements over both baseline models and PPO fine-
tuning, particularly for smaller models. This suggests that our approach could be especially valuable
in resource-constrained settings where smaller models are preferred. Furthermore, the increased so-
lution diversity achieved by our method aligns well with educational applications, where exposure
to multiple valid solution strategies can enhance learning outcomes.

Limitations. Despite these promising results, several limitations warrant discussion. The com-
putational cost of initial PRM training through MCTS remains significant, though this is a one-time
expense that enables subsequent efficient fine-tuning. The approach requires careful tuning of re-
play buffer strategies and similarity threshold parameters. Additionally, while our similarity-based
augmentation partially addresses potential biases in automated PRM training, more sophisticated
bias detection and mitigation strategies remain important areas for development.

Future Work. Promising directions include exploring offline GFlowNet training to reduce com-
putational costs, developing more sophisticated semantic diversity metrics tailored for mathematical
reasoning, investigating the educational impact of diverse solution generation, and extending the
approach to other complex reasoning domains such as program synthesis and theorem proving.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure full reproducibility of our results, we provide comprehensive implementation details and
make all necessary resources publicly available. The complete source code for our methodology, in-
cluding PRM training via MCTS data generation, similarity-based data augmentation, and step-level
GFlowNet fine-tuning, is available at https://anonymous.4open.science/r/gfn-F329. Our implemen-
tation includes four main components: (1) seed dataset generation scripts for initial data collection,
(2) MCTS-based training data generation as detailed in Algorithm [1} (3) similarity-based data aug-
mentation procedures described in Section [3.2] and (4) GFlowNet fine-tuning implementation with
SubTB loss as presented in Algorithm[2] All hyperparameters, including learning rates, batch sizes
and Replay Buffer Size are explicitly documented in Section and provided as default values
in our code. The data processing pipeline, from initial seed generation through final PRM training
dataset creation, is fully automated and includes detailed logging for verification. Additionally, we
provide evaluation scripts for PRM-guided search validation and comprehensive testing procedures
that allow researchers to reproduce all experimental results reported in Section[5] The computational
requirements, hardware specifications, and expected training times are documented in Section
to facilitate resource planning for reproduction studies.

REFERENCES

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. Advances in
Neural Information Processing Systems, 34:27381-27394, 2021.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Emmanuel Bengio.
Gflownet foundations. The Journal of Machine Learning Research, 24(1):10006—10060, 2023.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gian-
inazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of
thoughts: Solving elaborate problems with large language models. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 17682—-17690, 2024.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, J. Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, T. Henighan, R. Child, A. Ramesh, Daniel M. Ziegler, Jeff
Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Ma teusz Litwin, Scott Gray,
B. Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, I. Sutskever, and
Dario Amodei. Language models are few-shot learners. Neural Information Processing Systems,
2020.

Flaviu Cipcigan, Jonathan Booth, Rodrigo Neumann Barros Ferreira, Carine Ribeiro dos Santos,
and Mathias Steiner. Discovery of novel reticular materials for carbon dioxide capture using
gflownets. Digital Discovery, 3:449-455, 2024. doi: 10.1039/D4DD00020J. URL http://
dx.doi.org/10.1039/D4DD00020J.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

T. Deleu, Ant’onio G’ois, Chris C. Emezue, M. Rankawat, Simon Lacoste-Julien, Stefan Bauer, and
Y. Bengio. Bayesian structure learning with generative flow networks. Conference on Uncertainty
in Artificial Intelligence, 2022.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Pouya M. Ghari, Alex M Tseng, Gokcen Eraslan, Romain Lopez, Tommaso Biancalani, Gabriele
Scalia, and Ehsan Hajiramezanali. GFlownet assisted biological sequence editing. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https://
openreview.net/forum?id=g0G8DQSBc .

10

https://anonymous.4open.science/r/gfn-F329
http://dx.doi.org/10.1039/D4DD00020J
http://dx.doi.org/10.1039/D4DD00020J
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://openreview.net/forum?id=g0G8DQSBcj
https://openreview.net/forum?id=g0G8DQSBcj

Under review as a conference paper at ICLR 2026

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang, Youran Sun, Yi Zhu, Fan Yang, and Mao Yang.
rstar-math: Small llms can master math reasoning with self-evolved deep thinking, 2025.

Jujie He, Tianwen Wei, Rui Yan, Jiacai Liu, Chaojie Wang, Yimeng Gan, Shiwen Tu, Chris Yuhao
Liu, Liang Zeng, Xiaokun Wang, Boyang Wang, Yongcong Li, Fuxiang Zhang, Jiacheng Xu,
Bo An, Yang Liu, and Yahui Zhou. Skywork-ol open series, November 2024. URL https:
//doi.org/10.5281/zenodo.16998085.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with
the MATH dataset. In Joaquin Vanschoren and Sai-Kit Yeung (eds.), Proceedings
of the Neural Information Processing Systems Track on Datasets and Benchmarks
1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual, 2021. URL
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/
hash/be83ab3ecd0db773eb2dclb0al7836al-Abstract-round2.htmll

Matthew Ho, Vincent Zhu, Xiaoyin Chen, Moksh Jain, Nikolay Malkin, and Edwin Zhang. Proof
flow: Preliminary study on generative flow network language model tuning for formal reasoning.
In The First Workshop on System-2 Reasoning at Scale, NeurIPS’24, 2024. URL https://
openreview.net/forum?id=gYzgAOEnRs.

Edward J Hu, Moksh Jain, Eric Elmoznino, Younesse Kaddar, Guillaume Lajoie, Yoshua Bengio,
and Nikolay Malkin. Amortizing intractable inference in large language models. arXiv preprint
arXiv:2310.04363, 2023.

Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Bonaventure F. P.
Dossou, Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, Lena
Simine, Payel Das, and Yoshua Bengio. Biological sequence design with gflownets. In Kama-
lika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.),
International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Mary-
land, USA, volume 162 of Proceedings of Machine Learning Research, pp. 9786-9801. PMLR,
2022. URLhttps://proceedings.mlr.press/v162/jain22a.html.

Marco Jiralerspong, Bilun Sun, Danilo Vucetic, Tianyu Zhang, Yoshua Bengio, Gauthier Gidel,
and Nikolay Malkin. Expected flow networks in stochastic environments and two-player zero-
sum games. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=uHOFGECSET.

Salem Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex
Hernandez-Garcia, Léna Néhale Ezzine, Yoshua Bengio, and Nikolay Malkin. A theory of con-
tinuous generative flow networks. In International Conference on Machine Learning, pp. 18269—
18300. PMLR, 2023.

Salem Lahlou, Abdalgader Abubaker, and Hakim Hacid. Port: Preference optimization on reasoning
traces. arXiv preprint arXiv:2406.16061, 2024.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam
Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems with lan-
guage models. arXiv preprint arXiv: 2206.14858, 2022.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Meiqi Guo, Harsh Lara, Yunxuan Li,
Lei Shu, Yun Zhu, Lei Meng, Jiao Sun, and Abhinav Rastogi. Improve mathematical reasoning
in language models by automated process supervision, 2024. URL https://arxiv.org/
abs/2406.06592.

Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain, An-
drei Cristian Nica, Tom Bosc, Yoshua Bengio, and Nikolay Malkin. Learning gflownets from

11

https://doi.org/10.5281/zenodo.16998085
https://doi.org/10.5281/zenodo.16998085
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://openreview.net/forum?id=gYzgA0EnRs
https://openreview.net/forum?id=gYzgA0EnRs
https://proceedings.mlr.press/v162/jain22a.html
https://openreview.net/forum?id=uH0FGECSEI
https://arxiv.org/abs/2406.06592
https://arxiv.org/abs/2406.06592

Under review as a conference paper at ICLR 2026

partial episodes for improved convergence and stability. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International
Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, vol-
ume 202 of Proceedings of Machine Learning Research, pp. 23467-23483. PMLR, 2023. URL
https://proceedings.mlr.press/v202/madan23a.htmll

Dragos Cristian Manta, Edward J Hu, and Yoshua Bengio. GFlownets for causal discovery: an
overview. In ICML 2023 Workshop: Sampling and Optimization in Discrete Space, 2023. URL
https://openreview.net/forum?id=25D2NyVVpr.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad
Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in large
language models, 2025. URL https://arxiv.org/abs/2410.05229,

Ranjita Naik, Varun Chandrasekaran, Mert Yuksekgonul, Hamid Palangi, and Besmira Nushi. Di-
versity of thought improves reasoning abilities of 1lms. arXiv preprint arXiv: 2310.07088, 2023.

Tri Minh Nguyen, Sherif Abdulkader Tawfik, Truyen Tran, Sunil Gupta, Santu Rana, and Svetha
Venkatesh. Hierarchical gflownet for crystal structure generation. In Al for Accelerated Materials
Design-NeurIPS 2023 Workshop, 2023.

Ling Pan, Dinghuai Zhang, Moksh Jain, Longbo Huang, and Yoshua Bengio. Stochastic generative
flow networks. In The 39th Conference on Uncertainty in Artificial Intelligence, 2023. URL
https://openreview.net/forum?id=U_MhWQ7vECt.

Mohit Pandey, Gopeshh Subbaraj, and Emmanuel Bengio. GFlownet pretraining with inexpensive
rewards. In NeurIPS 2024 Workshop on Al for New Drug Modalities, 2024.

Shuai Peng, Di Fu, Liangcai Gao, Xiuqin Zhong, Hongguang Fu, and Zhi Tang. Multimath:
Bridging visual and mathematical reasoning for large language models, 2024. URL https:
//arxiv.org/abs/2409.00147.

Jacob Pfau, William Merrill, and Samuel R. Bowman. Let’s think dot by dot: Hidden computation
in transformer language models. arXiv preprint arXiv: 2404.15758, 2024. URL https://
arxiv.org/abs/2404.15758v1l

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL https://arxiv.org/abs/2412.15115.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 11 2019. URL http://arxiv.org/
abs/1908.10084.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv: 1707.06347, 2017.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters, 2024. URL https://arxiv.org/
abs/2408.03314.

Ryoichi Takase, Masaya Tsunokake, Yuta Tsuchiya, and Shota Inuzuka. Gflownet fine-tuning for di-
verse correct solutions in mathematical reasoning tasks. arXiv preprint arXiv:2410.20147, 2024.

Daniil Tiapkin, Nikita Morozov, Alexey Naumov, and Dmitry Vetrov. Generative flow networks as
entropy-regularized 11, 2024. URL https://arxiv.org/abs/2310.12934,

12

https://proceedings.mlr.press/v202/madan23a.html
https://openreview.net/forum?id=25D2NyVVpr
https://arxiv.org/abs/2410.05229
https://openreview.net/forum?id=U_MhWQ7vECt
https://arxiv.org/abs/2409.00147
https://arxiv.org/abs/2409.00147
https://arxiv.org/abs/2404.15758v1
https://arxiv.org/abs/2404.15758v1
https://arxiv.org/abs/2412.15115
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2310.12934

Under review as a conference paper at ICLR 2026

Shubham Toshniwal, Wei Du, Ivan Moshkov, Branislav Kisacanin, Alexan Ayrapetyan, and Igor
Gitman. Openmathinstruct-2: Accelerating ai for math with massive open-source instruction
data. arXiv preprint arXiv: 2410.01560, 2024.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process- and
outcome-based feedback. arXiv preprint arXiv: 2211.14275, 2022.

Jun Wang, Meng Fang, Ziyu Wan, Muning Wen, Jiachen Zhu, Anjie Liu, Zigin Gong, Yan Song,
Lei Chen, Lionel M. Ni, Linyi Yang, Ying Wen, and Weinan Zhang. Openr: An open source
framework for advanced reasoning with large language models, 2024a. URL https://arxiv.
org/abs/2410.09671.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhi-
fang Sui. Math-shepherd: Verify and reinforce LLMs step-by-step without human annotations. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 9426-9439,
Bangkok, Thailand, August 2024b. Association for Computational Linguistics. doi: 10.18653/
v1/2024.acl-long.510. URL https://aclanthology.org/2024.acl-1long.510/.

Xuezhi Wang, Jason Wei, D. Schuurmans, Quoc Le, Ed H. Chi, and Denny Zhou. Self-consistency
improves chain of thought reasoning in language models. International Conference on Learning
Representations, 2022. doi: 10.48550/arXiv.2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.
arXiv preprint arXiv: 2201.11903, 2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in Neural Information Processing Systems, 36, 2024.

Zhewei Yao, Reza Yazdani Aminabadi, Olatunji Ruwase, Samyam Rajbhandari, Xiaoxia Wu, Am-
mar Ahmad Awan, Jeff Rasley, Minjia Zhang, Conglong Li, Connor Holmes, Zhongzhu Zhou,
Michael Wyatt, Molly Smith, Lev Kurilenko, Heyang Qin, Masahiro Tanaka, Shuai Che, Shuai-
wen Leon Song, and Yuxiong He. Deepspeed-chat: Easy, fast and affordable rlhf training of
chatgpt-like models at all scales. arXiv preprint arXiv: 2308.01320, 2023.

Fangxu Yu, Lai Jiang, Haoqiang Kang, Shibo Hao, and Lianhui Qin. Flow of reasoning:training
llms for divergent problem solving with minimal examples. arXiv preprint arXiv: 2406.05673,
2024.

Fangxu Yu, Lai Jiang, Haoqiang Kang, Shibo Hao, and Lianhui Qin. Flow of reasoning: Training
llms for divergent reasoning with minimal examples, 2025. URL https://arxiv.org/
abs/2406.05673l

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuangi Tan, Chang Zhou,
and Jingren Zhou. Scaling relationship on learning mathematical reasoning with large language
models. arXiv preprint arXiv: 2308.01825, 2023.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm
self-training via process reward guided tree search, 2024. URL https://arxiv.org/abs/
2406.03816.

David W Zhang, Corrado Rainone, Markus Peschl, and Roberto Bondesan. Robust scheduling with
GFlownets. In The Eleventh International Conference on Learning Representations, 2023a. URL
https://openreview.net/forum?id=72BUthIo6owK9h.

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron Courville, Yoshua Bengio, and Ling Pan.
Let the flows tell: Solving graph combinatorial problems with GFlownets. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023b. URL|https://openreview.
net/forum?id=sTjW3JHs2V.

13

https://arxiv.org/abs/2410.09671
https://arxiv.org/abs/2410.09671
https://aclanthology.org/2024.acl-long.510/
https://arxiv.org/abs/2406.05673
https://arxiv.org/abs/2406.05673
https://arxiv.org/abs/2406.03816
https://arxiv.org/abs/2406.03816
https://openreview.net/forum?id=ZBUthI6wK9h
https://openreview.net/forum?id=sTjW3JHs2V
https://openreview.net/forum?id=sTjW3JHs2V

Under review as a conference paper at ICLR 2026

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied,
Weizhu Chen, and Nan Duan. Agieval: A human-centric benchmark for evaluating foundation
models, 2023. URL https://arxiv.org/abs/2304.06364.

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv: 1909.08593, 2019.

14

https://arxiv.org/abs/2304.06364

Under review as a conference paper at ICLR 2026

A LLM USAGE

We used LLMs to aid and polish writing throughout this manuscript. Specifically, we employed
large language models for grammatical refinement, clarity improvements, and ensuring consistency
in technical terminology across sections. All scientific content, experimental design, results, and
interpretations represent original work by the authors, with LLMs serving solely as writing assistants
for language enhancement.

B BROADER IMPACT AND APPLICATIONS

Our diversity-aware approach has significant implications beyond mathematical reasoning. In ed-
ucational contexts, systems using our method could better evaluate student work that differs from
canonical solutions but remains mathematically sound. The step-level GFlowNet principles could
generalize to other sequential reasoning domains, such as coding tasks where lines of code could
be treated analogously to reasoning steps, or logical proofs where intermediate deductions follow
similar hierarchical structures.

C EXTENDED RELATED WORK

Mathematical Reasoning in LLMs. Recent 2024 developments include multimodal approaches
like MultiMath (Peng et al.;,2024), and advanced training methods like Flow of Reasoning (Yu et al.,
2025)), which enables diverse solution generation with minimal training examples. However, critical
studies like GSM-Symbolic (Mirzadeh et al.,|2025) reveal fundamental limitations in current LLMs,
showing performance degradation when numerical values or problem structure vary, indicating re-
liance on pattern matching rather than genuine reasoning.

Generative Flow Networks. GFlowNets have been successfully applied to molecule generation
(Jain et al., [2022), Bayesian structure learning (Deleu et al. [2022), causal discovery (Manta et al.,
2023;|Deleu et al | 2022), material design (Cipcigan et al.,2024; Nguyen et al.,|2023)), drug discovery
(Pandey et al., [2024), biological sequence design and editing (Jain et al., 2022} |Ghari et al |2024),
scheduling (Zhang et al.| [2023a)), and combinatorial optimization problems (Zhang et al.,|2023b).
Recent theoretical extensions have expanded GFlowNets to continuous spaces (Lahlou et al.||2023)),
stochastic environments (Pan et al., [2023), and adversarial settings (Jiralerspong et al., [2024)).

D RELATIONSHIP TO MAXIMUM ENTROPY RL

Recent theoretical work (Tiapkin et al., |2024)) establishes that GFlowNets are equivalent to max-
imum entropy RL when the underlying DAG forms a tree structure. In sequential mathematical
reasoning, this raises the question of why our approach outperforms standard PPO.

We note that the theoretical equivalence holds for maximum entropy RL (where entropy maximiza-
tion is the primary objective), not standard PPO with entropy regularization. While our PPO base-
line includes entropy regularization (coefficient 0.01), this serves primarily as an exploration bonus
rather than implementing the full maximum entropy framework where entropy is co-optimized with
reward.

The key differences are: (1) Entropy Treatment: GFlowNets naturally sample proportionally to
rewards (maximum entropy principle), while our PPO uses entropy as a small regularization term;
(2) Training Objective: GFlowNets directly optimize for reward-proportional sampling, while PPO
maximizes expected return with entropy bonus; (3) Exploration Dynamics: The SubTB loss pro-
vides different exploration dynamics than clipped PPO objectives.

This distinction explains our empirical improvements: even when theoretically related, the imple-
mentation details and training dynamics create meaningful practical differences.

15

Under review as a conference paper at ICLR 2026

E PROCESS REWARD MODEL TRAINING

E.1 MCTS DATA GENERATION PROCESS

Our MCTS-based data generation extends beyond the binary evaluation framework of [Luo et al.
(2024) to generate rich step-level training data with continuous quality scores. This section details
the technical implementation and algorithmic components.

E.1.1 STEP IDENTIFICATION AND PREPROCESSING

Mathematical reasoning solutions are decomposed into individual steps using line breaks as delim-
iters. The data generation model (Qwen2.5-Math) is instructed through 4-shot prompting to structure
its reasoning with clear step separations, ensuring consistent parsing across the dataset.

E.1.2 MONTE CARLO EVALUATION PROTOCOL

The core evaluation mechanism assesses each step s through multiple completion attempts. Starting
from the solution prefix that includes all steps up to s, we generate k = 96 independent rollouts
using temperature sampling (T=0.6) to promote diversity. Each rollout produces a complete solution
attempt, and success is determined by final answer correctness:

successful rollouts from prefix ending at step s
k
This continuous scoring scheme provides granular quality assessment, distinguishing between steps

that consistently lead to success (MC = 1.0), those with moderate reliability (MC € (0, 1)), and
unreliable steps (MC = 0.0).

MC(s) =

E.1.3 TREE SEARCH AND ROLLOUT MANAGEMENT

Generated rollouts are organized within an MCTS tree structure, with each node maintaining three
key statistics:

1. N(s): Visit count for state s
2. MC(s): Monte Carlo evaluation score
3. Q(s,r): State-rollout value function incorporating both quality and length considerations:

Q(S, 7“) — al—]MC(s)B%
where hyperparameters «, 5 € (0, 1] balance quality preference against rollout length, and L > 0

normalizes length effects.

E.1.4 SELECTION STRATEGY AND EXPLORATION

Rollout selection follows an adapted PUCT mechanism that balances exploitation of high-quality
paths with exploration of under-visited regions:

(s,7) = ar%r m)aX[Q(s7 r) 4+ U(s)]

The exploration term U (s) encourages diverse tree construction:

U(s) = cpuct 2. N(si)

1+ N(s)

where ¢+ controls exploration intensity. This strategy initially favors rollouts with low visit counts
but gradually shifts preference towards those with high rollout values. By prioritizing high-quality
reasoning steps (higher M C(s) values), we create more effective training data for the PRM com-
pared to uniform sampling of potentially poor-quality steps.

16

Under review as a conference paper at ICLR 2026

E.1.5 DATASET CONSTRUCTION AND TERMINATION

The algorithm [I] constructs training examples by exploring reasoning trees until error detection
through binary search. When a step receives M C(s) = 0 (no successful rollouts), it marks the
first reasoning error, and tree exploration for that path terminates. All valid steps preceding this
error point are included in the final training dataset with their computed MC scores.

The complete process terminates when the rollout pool is exhausted or computational limits are
reached, yielding a comprehensive dataset of step-quality pairs for PRM training.

Algorithm 1: MCTS-based data generation

Require: Question ¢, Language Model LM, Number of completions & = 96, Temperature 7" = 0.6
Ensure: Dataset of training examples
1: Initialize root state 740 <— ¢
Initialize tree with root node s;or cONtaining oo
Initialize visit count N (Syo0r) < 0
Initialize Monte Carlo estimation M C (S;00) < 0
Initialize state-rollout value function Q(Seot, 7) <— 0
while not converged do
Select a trajectory using PUCT algorithm based on Q(s,r) and U(s)
Perform binary search to locate the first incorrect step in the selected trajectory, the step
currently sampled 1S Scandidate
9: Generate k completions using temperature sampling from LM(c¢|Scandidate)
10: Initialize correct_count < 0

11: for each completion c; do

12: if rollout is correct then

13: correct_count < correct_count + 1
14: end if

15: end for

16: MC(Scandidate) — correc}i,count
17: if correct_count = 0 then

18: Add Scandidate to the dataset with value 0

19: This step is considered to be incorrect

20: Break

21: else

22: Update tree by adding Scandidate With value M C'(Scandidae) and add all the generated

rollouts to the tree as well as the number of visits of the node N (Scandidate) and
Q(Scandidat67 T)

23: end if

24: end while

25: Dataset Collection Phase:

26: for each node s in the tree do

27: Add s to the dataset with its evaluated step, value and all the rollouts generated from this

step.
28: end for
Ensure: Dataset of training examples

E.2 HYPERPARAMETERS

Training was conducted for 1 epoch with a learning rate of 8e-6, batch size 144, and weight decay
0.01 on 8 A100 GPUs.

E.3 TRAINING DATASET SAMPLES
Table [5illustrates representative examples from our PRM training dataset, showcasing the diversity

of mathematical reasoning problems and the range of step quality scores generated through our
MCTS-based approach and similarity-based augmentation.

17

Under review as a conference paper at ICLR 2026

Table 5: Sample entries from our PRM training dataset generated via MCTS and similarity-based
augmentation. Each entry contains a mathematical problem, partial solution context, candidate next
step, and ground truth step quality score derived from Monte Carlo evaluations.

Question Solution Context Candidate Step MC Score
The product of two We are given that ab = 8(a+b) and a = So the value of a is . 1.00
whole numbers a and b + 3. Substituting the second equation
b is equal to 8 times into the first, we get (b + 3)b = 8(b +
their sum. If a is 3 3 + b). Simplifying, we get b* + 3b =
more than b, what is 8(2b -+ 3). Expanding, we get b* 4 3b =
the value of a? 16b+24. Rearranging, we get b> — 13b—
24 = 0. Factoring, we get (b — 16)(b +
1) = 0. Therefore, b = 16 or b = —1.
Since b is a whole number, b = 16. Then
a=b+3=16+3=19.
In a certain coun- The number of ways to choose the first Therefore, the total number 0.89
try, the postal system letter is n. The number of ways to choose of different codes is n(n —
uses a unique three- the second letter is n— 1, since we cannot ~ 1)(n — 2).
letter code for each repeat the first letter. The number of ways
city. The code con- to choose the third letter is n — 2, since
sists of three differ- we cannot repeat the first two letters.
ent letters, and the let-
ters are chosen from a
set of n letters, where
n is a positive inte-
ger. Given that there
are exactly 120 differ-
ent codes that can be
formed using these n
letters, find the value
of n.
A triangle ABC has The distance between A and B is AB = Therefore, the perimeter is 0.00

vertices A(1,-2), 8. The distance between A and C'is P = 8 4+ /(32 +2)2 +
B(9,-2), and AC = /(z —1)2+ (y +2)? and the 282 = 8+ 42+
C(z,y). The point C distance between B and C' is BC' = 24 y? — 8 = 22

lies on the parabola
z = y?> + 1. Find
the minimum possible
perimeter of triangle
ABC.

V(x—9)2+ (y +2)2. The perimeter
of triangle ABC'is P = AB + AC +
BC = 8+ /(z—1)2+ (y+2)2 +
V/(z —9)2 + (y + 2)2. Since C lies on
the parabola z = 3> + 1, we can sub-
stitute z = y? 4 1 into the expression
for Ptoget P =84 \/y* +4y? +4 +
v/ y* — 16y? + 64. We can simplify this
expression by noticing that y* + 4y +
4 = (y®> +2)% and y* — 16y> + 64 =
(y* - 8)%

Note: Monte Carlo (MC) scores represent ground truth labels derived from MCTS rollout evaluations,

ranging from 0.00 (steps leading to incorrect solutions) to 1.00 (steps leading to correct solutions). These
scores serve as training targets for the PRM. The similarity-based augmentation process ensures consistent
labeling across semantically equivalent reasoning steps.

E.4 ERROR DETECTION VALIDATION
We systematically corrupted correct solution steps in two ways and evaluated PRM responses:
Number Manipulation: For the step “Calculate: 24 — 6 = 18”, corrupting to “24 — 6 = 16”

reduced PRM score from 0.84 to 0.05, demonstrating sensitivity to arithmetic errors.

18

Under review as a conference paper at ICLR 2026

Logic Corruption: For the step “Since 22 = 16, we have z = 4 or ¥ = —4”, removing the negative
solution (“z = —4”) reduced PRM score from 0.89 to 0.34, showing detection of incomplete logical
reasoning.

E.5 PRM MULTIMODALITY VALIDATION

To validate our PRM’s capability to recognize multiple valid reasoning approaches, we evaluated
its performance on problems with diverse solution strategies. Our trained PRM assigns comparable
high scores to different valid reasoning steps while correctly identifying and penalizing incorrect

steps with low scores, as illustrated in Figure@

Prompt
example

Boris has 24 books and he donates a fourth of his books to the library. Cameron
has 30 books and he donates a third of his books to the library. After donating
their books, how many books in total do Boris and Cameron have together?

Reward | Sentence

Valid versions

Average
reward
0.92

Average
reward
0.83

Boris donates 24 / 4 = <<24/4=6>>6

0.84 | Then Boris has a total of 24 - 6 =

0.91

0.99

Altogether, Boris and Cameron have

books.

<<24-6=18>>18 books.

18 + 20 = <<18+20=38>>38 books.

0.54

0.73

Boris donates 24 / 4 = <<24/4=6>>6

98 | Then Boris has a total of 24 - 6 =

Altogether, Boris and Cameron have

books.

<<24-6=18>>18 books.

18 + 20 = <<18+20=38>>38 books.

Corrupted versions

Average
reward
0.73

Average
reward
0.71

Boris donates 24 / 4 = <<24/4=6>>6
Then Boris has a total of 24 - 6 =

0.75

0.98

Altogether, Boris and Cameron have

books.

<<24-6=16>>16 books.

16 + 20 = <<16+20=36>>36 books.

0.54

0.73

Boris donates 24 / 4 = <<24/4=6>>6

0.35 | Then Boris has a total of 24 - 6 =

0.99 | Altogether, Boris and Cameron have

books.

<<24-6=16>>16 books.

16 + 20 = <<16+20=36>>36 books.

Figure 3: Reasoning steps and corresponding PRM scores. Valid steps from different approaches

receive high, comparable scores, while corrupted steps receive lower scores.

19

Under review as a conference paper at ICLR 2026

E.6 PRM LIMITATIONS AND B1AS CONSIDERATIONS

While our automated PRM training eliminates human annotation costs, it may introduce certain bi-
ases. The MCTS-based data generation could favor certain reasoning patterns over others, and the
similarity-based augmentation might propagate systematic errors. To partially mitigate these con-
cerns, our similarity grouping approach creates more diverse training examples and helps identify
inconsistencies in step valuations. However, we acknowledge that more sophisticated bias detection
and mitigation strategies, such as consensus filtering or adversarial validation, remain important
areas for future work.

F BAYESIAN POSTERIOR SAMPLING FRAMEWORK

Our approach can be viewed as performing Bayesian posterior sampling over reasoning paths, fol-
lowing the framework established by Deleu et al.| (2022) for Bayesian structure learning. In this
interpretation, we seek to sample diverse reasoning trajectories from a posterior distribution that
combines a prior over reasoning paths with evidence from our PRM.

Formally, let 7 = (so, s1, ..., S,,) represent a reasoning trajectory, where sq is the initial question
and s,, is the complete solution. We define:

* Prior: P(7) represents the pretrained LLM’s distribution over reasoning paths, encoding
learned mathematical reasoning patterns

* Likelihood: L(7|PRM) = [[._, U(s;|s;—1) represents the evidence from our PRM about
each reasoning step

* Posterior: P(t|PRM) « P(r)- L(7|PRM) combines pretrained knowledge with PRM
evidence

Justification for PRM as Likelihood: The PRM scores U (s;|s;—1) naturally function as likeli-
hood terms because they represent the probability of observing a “correct” reasoning step given
the context. In Bayesian terms, we can interpret this as P(step is correct|s;, s,—1, PRM). Since
our PRM is trained to predict the probability that a step leads to a correct solution (using MCTS-
derived ground truth), these scores directly quantify the evidence that each step provides toward the
trajectory being correct. The multiplicative structure [}, U(s;|s;—1) reflects the conditional inde-
pendence assumption that step correctness depends primarily on local context, which is reasonable
for mathematical reasoning where each step builds incrementally on previous work.

The GFlowNet framework naturally implements this Bayesian updating by learning to sample tra-
jectories with probabilities proportional to the reward R(7) = P(7) - L(7|PRM). This formulation
provides a principled foundation for diverse reasoning: rather than seeking a single optimal solution
(as in traditional RL), we sample from the full posterior distribution, naturally capturing multiple
high-quality reasoning strategies.

G GFLOWNET TRAINING IMPLEMENTATION

G.1 EXPERIMENTAL CONFIGURATION

We conduct experiments on Llama3 (Dubey et al., [2024) using two model sizes:
e Llama3.2-3B-it: A smaller model to demonstrate efficiency
e Llama3.1-8B-it: A medium-sized model for performance comparison
Hyperparameters:

* Learning Rate: We used a learning rate of Se-6 for the Adam optimizer during GFlowNet
fine-tuning. To optimize the learning rate schedule, we used a cosine scheduler, which
gradually decreases the learning rate over the course of the training epoch.

* Batch Size: A batch size of 144 trajectories was used for each training iteration. This batch
size was chosen to balance computational efficiency and the stability of gradient updates.

20

Under review as a conference paper at ICLR 2026

* Gradient Clipping: To prevent exploding gradients during training, we applied gradient
clipping with a maximum norm of 1.0. This technique helps to stabilize the training pro-
cess, particularly in the context of recurrent neural networks like the LLMs used in our
GFlowNet policy.

*)\ Value for SubTB Loss: The A hyperparameter in the Subtrajectory Balance (SubTB)
loss function controls the discount factor for subtrajectory rewards. We set A = 1.0 in our
experiments. This value implies no discounting, giving equal weight to all subtrajectory
balance terms in the loss.

* Replay Buffer Size: To stabilize training and improve sample efficiency, we utilized a
replay buffer of size 1000. This buffer stores previously generated complete trajectories,
allowing the GFlowNet policy to learn from a diverse set of high-reward experiences.

G.2 STEP-LEVEL GFLOWNET ALGORITHM

Our step-level GFlowNet fine-tuning procedure leverages the trained PRM for reward evaluation
and employs a prioritized replay buffer to enhance training efficiency and solution diversity.

Algorithm 2: GFlowNet Fine-tuning

Require: Question g, Policy Model 7wy (LLM), PRM U, Replay Buffer B, Generations per
question k, Temperature 7', Batch Size B

1: for each batch of questions in the training dataset do

2: for each question ¢ in the batch do

3: Generate k responses for question ¢ using my with temperature T’

4 Split each response into steps and evaluate reward R(s;.;s5) for each trajectory using the
PRM, storing trajectories in 3
Sample a batch of size B from the replay buffer B
for each trajectory in the batch do

Compute the loss £ based on the reward function R and policy model 7y

end for
Perform one step of optimization to minimize the loss £ with respect to the parameters 6
of 9
10: end for
11: end for
Ensure: Trained policy model 7y with GFlowNets

LeRUm

G.3 TRAINING DYNAMICS AND OPTIMIZATION

Our step-level GFlowNet training incorporates several key optimizations to improve convergence
and sample efficiency:

Prioritized Replay Buffer: Instead of uniform sampling, we implement a prioritized replay mech-
anism that favors trajectories with higher PRM-evaluated rewards. This prioritization accelerates
learning by focusing on high-quality reasoning experiences, similar to prioritized experience replay
in deep RL but adapted for our reward-proportional sampling objective.

Temperature Scheduling: We use temperature sampling (7" = 0.6) during trajectory generation to
balance exploration and exploitation. This temperature is carefully tuned: higher values (7" > 0.8)
lead to excessive exploration and incoherent steps, while lower values (1" < 0.4) result in mode
collapse, reducing solution diversity.

Gradient Stabilization: The SubTB loss can exhibit high variance due to the multiplicative reward
structure. We apply gradient clipping (max norm 1.0) and use a learning rate schedule that reduces
volatility while maintaining effective parameter updates. The discount factor A = 1.0 gives equal
weight to all subtrajectories, ensuring comprehensive coverage of the reasoning space.

21

Under review as a conference paper at ICLR 2026

H TRAINING DYNAMICS ANALYSIS

This section presents a comprehensive analysis of the training dynamics during GFlowNet fine-
tuning of our language model. We monitor three key metrics throughout the training process to
assess convergence behavior and validate the effectiveness of our Sub-TB learning approach.

H.1 MONITORED METRICS

We track the following metrics during training to provide insights into the learning dynamics:

* Sub-TB Loss: The Sub-Trajectory Balance (Sub-TB) loss function used to train the
GFlowNet policy. This loss ensures that the flow conservation constraint is satisfied at
each step of the trajectory, enabling the model to learn proper sampling probabilities pro-
portional to rewards.

» Average Reward: The mean reward signal obtained from the PRM across sampled trajec-
tories during training. This metric reflects the quality of reasoning steps generated by the
model.

* Proportionality Gap: A critical alignment metric measuring the absolute deviation be-
tween token selection probabilities and their corresponding PRM rewards.

H.2 PROPORTIONALITY GAP: A KEY ALIGNMENT METRIC

The proportionality gap directly measures how well the model achieves the fundamental GFlowNet
objective of sampling trajectories with probabilities proportional to their rewards. Following our
implementation, this metric is computed as:

Proportionality Gap = B, [|p: — 7¢|] 2

where p; represents the probability assigned by the model to selecting the token at step ¢, and 7 is
the corresponding reward from the PRM for that step.

This metric is fundamental to validating GFlowNet training effectiveness. The core principle of
GFlowNets requires that sampling probabilities should be proportional to rewards. Therefore, a
decreasing proportionality gap indicates successful learning of this alignment. When this gap ap-
proaches zero, it signifies that the model has learned to assign higher probabilities to reasoning steps
that receive higher rewards from the PRM, which is precisely the desired behavior for effective
mathematical reasoning.

The reduction of this gap throughout training provides direct evidence that our Sub-TB loss success-
fully guides the model toward the optimal sampling distribution, where high-quality reasoning paths
are preferentially explored.

H.3 TRAINING PROGRESSION ANALYSIS

Figure[]illustrates the evolution of these three critical metrics throughout the GFlowNet fine-tuning
process. The training dynamics reveal several important characteristics that validate our approach.

H.4 COMPUTATIONAL EFFICIENCY ANALYSIS

To assess the computational efficiency of our GFlowNet fine-tuning approach, we conducted a
comparative analysis of the training time and computational resources required for PRM training,
GFlowNet fine-tuning, and PPO baseline training. These experiments were performed using con-
sistent hardware and training data settings to ensure a fair comparison. The results of this training
efficiency comparison are summarized below:

Computational Resources: All training experiments were conducted on a cluster of machines
equipped with NVIDIA A100 GPUs. For PRM training, we utilized 8 A100 GPUs in parallel to
accelerate the data generation and model fine-tuning process. GFlowNet and PPO fine-tuning ex-
periments were conducted using the same hardware setup for consistent resource allocation.

22

Under review as a conference paper at ICLR 2026

Training Loss Average Reward Proportionality Gap

°
3
I

4500 —

°
>
[

)

2

€ 3000 - g

= 1)
-4

Proportionality Gap
e
5
I

1500 — 0.81 —

e

o

2
[

| ! ! 1 0.78 =1 1 ! ! ! ! 1
0 2000 4000 6000 0 2000 4000 6000 2000 4000 6000

Training Step Training Step Training Step

ok

(a) Sub-TB Loss Evolution (b) Average Reward Progression (c) Proportionality Gap Reduction

Figure 4: Training dynamics during GFlowNet fine-tuning of Llama3.2-3B-it showing (a) Sub-TB
loss convergence, (b) average reward improvement, and (c) proportionality gap reduction. The con-
sistent decrease in proportionality gap demonstrates successful alignment between token selection
probabilities and PRM rewards, validating the effectiveness of our Sub-TB learning approach.

Training Time Comparison:

e PRM Training: Training the Process Reward Model (PRM), including the automated data
generation phase using MCTS and the subsequent PRM fine-tuning, required approxi-
mately 4 hours of training time using 8 A100 GPUs. The data generation phase using
MCTS constitutes a significant portion of this training time.

* GFlowNet Fine-tuning: Fine-tuning a GFlowNet policy for a specific LLM (e.g.,
Llama3.2-3B-it or Llama3.1-8B-it) using our step-level approach typically required around
1 hour of training time on the allocated hardware for 10,000 questions from the OpenMath-
Instruct2 dataset (Toshniwal et al.| [2024).

* PPO Baseline Training: Training the PPO baseline models, using the same PRM for
reward guidance and with comparable hyperparameter settings, generally required approx-
imately 2 hours of training time for 10,000 questions from the OpenMathInstruct2 dataset
(Toshniwal et al.| [2024). This is longer than the GFlowNet fine-tuning time, potentially in-
dicating a greater sample efficiency or faster convergence of the GFlowNet training process
in our setup.

I DIVERSITY EXAMPLE

To illustrate the diversity induced by GFlowNet fine-tuning concretely, we evaluate both approaches
under identical generation conditions. Using consistent sampling parameters, consider solving “Find
the value of x if 2z + 3 = 11™:

PPO Solutions (consistent trajectory, lexical variations):

* “Subtract 3 from both sides: 2x = 8. Divide by 2: z = 4.”

* “First subtract 3 from each side: 2x = 8. Then divide both sides by 2: z = 4.”
GFlowNet Solutions (distinct valid trajectories):

* “Subtract 3 from both sides: 2z = 8. Divide by 2: z = 4.7

* “Divide the entire equation by 2: = + 1.5 = 5.5. Subtract 1.5: x =4

While PPO converges to a single approach with minor linguistic variations, GFlowNet generates
genuinely distinct mathematical pathways, demonstrating exploration of diverse solution strategies
rather than exploitation of a single optimal path.

23

	Introduction
	Background and Related Work
	Process Reward Model for Mathematical Reasoning Steps
	Automated Data Generation via MCTS
	Dataset Augmentation via Rollout Reuse and Similarity Grouping
	PRM Training
	PRM Validation

	Step-Level GFlowNet Fine-tuning for Diverse Solutions
	Step-Level GFlowNet Framework
	Training Objective and Implementation

	Experiments
	Main Results
	Solution Diversity Analysis

	Conclusion
	LLM Usage
	Broader Impact and Applications
	Extended Related Work
	Relationship to Maximum Entropy RL
	Process Reward Model Training
	MCTS Data Generation Process
	Step Identification and Preprocessing
	Monte Carlo Evaluation Protocol
	Tree Search and Rollout Management
	Selection Strategy and Exploration
	Dataset Construction and Termination

	Hyperparameters
	Training Dataset Samples
	Error Detection Validation
	PRM Multimodality Validation
	PRM Limitations and Bias Considerations

	Bayesian Posterior Sampling Framework
	GFlowNet Training Implementation
	Experimental Configuration
	Step-Level GFlowNet Algorithm
	Training Dynamics and Optimization

	Training Dynamics Analysis
	Monitored Metrics
	Proportionality Gap: A Key Alignment Metric
	Training Progression Analysis
	Computational Efficiency Analysis

	Diversity Example

