
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ACCURATE AND DIVERSE LLM MATHEMATI-
CAL REASONING VIA AUTOMATED PRM-GUIDED
GFLOWNETS

Anonymous authors
Paper under double-blind review

ABSTRACT

Achieving both accuracy and diverse reasoning remains challenging for Large
Language Models (LLMs) in complex domains like mathematics. A key bottle-
neck is evaluating intermediate reasoning steps to guide generation without costly
human annotations. To address this, we first introduce a novel Process Reward
Model (PRM) trained automatically using Monte Carlo Tree Search coupled with
a similarity-based data augmentation technique, effectively capturing step-level
reasoning quality. Leveraging this PRM, we then adapt Generative Flow Net-
works (GFlowNets) to operate at the reasoning step level. Unlike traditional rein-
forcement learning focused on maximizing a single reward, GFlowNets naturally
sample diverse, high-quality solutions proportional to their rewards, as measured
by our PRM. Empirical evaluation shows strong improvements in both accuracy
and solution diversity on challenging mathematical benchmarks (e.g., +2.59%
absolute accuracy on MATH Level 5 for Llama3.2-3B), with effective general-
ization to unseen datasets (+9.4% absolute on SAT MATH). Furthermore, we
benchmark our PRM against existing open-source reward models, demonstrat-
ing superior alignment with reasoning quality and more consistent guidance for
downstream generation. Our work demonstrates the potential of PRM-guided,
step-level GFlowNets for developing more robust and versatile mathematical rea-
soning in LLMs.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable progress in various natural lan-
guage tasks (Brown et al., 2020; Dubey et al., 2024), yet achieving robust and reliable mathematical
reasoning remains a significant challenge (Lewkowycz et al., 2022; Hendrycks et al., 2021). While
LLMs have shown increasing proficiency in solving mathematical problems (Cobbe et al., 2021;
Yuan et al., 2023), current approaches often prioritize accuracy on benchmark datasets (Hendrycks
et al., 2021; Wang et al., 2022), potentially overlooking other crucial aspects of intelligent reason-
ing, such as the ability to explore and generate diverse solution strategies (Naik et al., 2023). For
LLMs to truly excel in mathematical domains and move beyond pattern recognition towards genuine
understanding, they must not only arrive at correct answers but also exhibit the capacity to reason
through problems in multiple, varied, and insightful ways (Yu et al., 2024; Uesato et al., 2022).

Traditional reinforcement learning methods like Proximal Policy Optimization (PPO; Schulman
et al., 2017) have shown promise in improving LLM mathematical reasoning (Yao et al., 2023).
However, these methods inherently aim to maximize a single reward signal, often leading to the
exploitation of a narrow set of solution strategies (Ziegler et al., 2019; Naik et al., 2023). This
limitation becomes particularly critical when considering the development of robust and generally
applicable problem-solving AI systems, where adaptability to novel situations and the exploration
of diverse solution spaces are paramount.

Addressing the need for diverse reasoning requires effective guidance at the level of intermediate
steps. However, obtaining reliable reward signals for these steps typically involves expensive human
annotation. We overcome this limitation by first developing an automatically trained Process Re-
ward Model (PRM; Uesato et al., 2022). Our approach uniquely employs Monte Carlo Tree Search
(MCTS; Luo et al., 2024) combined with a novel similarity-based data augmentation technique to

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

generate high-quality step-level reward signals without manual labeling. Given this automated and
nuanced step-level reward mechanism provided by the PRM, we then propose leveraging Generative
Flow Networks (GFlowNets; Bengio et al., 2021; 2023) for fine-tuning. Unlike traditional reinforce-
ment learning methods that often collapse to a single strategy, GFlowNets are designed to sample
proportionally to rewards, naturally fostering solution diversity. Our key adaptation is operating
GFlowNets at the reasoning step level rather than the token level – each state represents a partial
solution, and actions generate complete reasoning steps – allowing the PRM reward to guide the
exploration of diverse, high-quality reasoning paths effectively. Prior work using GFlowNets for
LLM fine-tuning (Hu et al., 2023; Takase et al., 2024) often utilized variants of the Subtrajectory
Balance (SubTB) loss (Madan et al., 2023), which we adapt for our step-level framework.

Our main contributions are:

• Automated Process Reward Model: An efficient training methodology featuring an auto-
matically trained PRM using Monte Carlo Tree Search and novel similarity-based data aug-
mentation, eliminating the need for expensive human step-level annotations while achiev-
ing superior data efficiency through rollout reuse.

• Step-Level GFlowNet Framework: An adaptation of GFlowNets to operate at complete
reasoning steps rather than individual tokens, providing semantic coherence and enabling
fine-grained quality control through step-wise PRM evaluation. This addresses key limita-
tions of existing token-level approaches.

• Strong Empirical Validation: Demonstrated improvements in both accuracy and solu-
tion diversity across challenging benchmarks, with particularly impressive generalization
(+9.4% absolute on SAT MATH for 3B model), indicating that step-level diversity training
captures transferable reasoning patterns.

Empirically, we demonstrate that our approach not only improves accuracy on challenging mathe-
matical reasoning benchmarks but also generates more diverse solution strategies compared to both
baseline models and PPO-fine-tuned variants. This is particularly evident in our diversity analysis,
where GFlowNet-fine-tuned models show significantly lower semantic similarity between generated
solutions while maintaining correctness.

Our work points towards new directions for developing next-generation LLMs with enhanced rea-
soning capabilities. By demonstrating a method to improve both accuracy and diversity in a complex
domain like mathematical reasoning, we open possibilities for creating more robust, versatile, and
ultimately more intelligent LLM systems capable of tackling a wider range of challenging problems.

2 BACKGROUND AND RELATED WORK

Mathematical Reasoning in LLMs has seen significant progress through various approaches, in-
cluding chain-of-thought prompting (Wei et al., 2022), self-consistency (Wang et al., 2022), and
reward modeling (Lightman et al., 2023; Zhang et al., 2024). Process reward modeling, pioneered
by Lightman et al. (2023), has evolved to include automated approaches: Zhang et al. (2024) intro-
duced ReST-MCTS* for self-training via process reward guided tree search, while Guan et al. (2025)
demonstrated that small language models can achieve state-of-the-art mathematical reasoning using
MCTS-guided process rewards.

While these methods have improved accuracy, they often lack mechanisms for promoting solution
diversity. Recent work by Wang et al. (2024b) highlights the importance of diverse reasoning paths
but focuses primarily on accuracy rather than explicitly encouraging diversity during training.

Chain-of-thought (CoT) approaches (Wei et al., 2022) and their variants such as Tree-of-Thought
(Yao et al., 2024) and Graph-of-Thought (Besta et al., 2024) have demonstrated substantial im-
provements by encouraging models to articulate intermediate steps in their problem-solving process.
However, the precise mechanisms underlying these improvements remain an active area of investi-
gation, with some researchers questioning whether the benefits derive specifically from human-like
task decomposition or simply from the additional computation afforded by generating more tokens
(Pfau et al., 2024). Several enhancements to CoT approaches have been proposed, including using
datasets of preference pairs of reasoning traces to finetune the CoT-generating model (Lahlou et al.,
2024).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Despite these advances, current approaches to mathematical reasoning predominantly emphasize
accuracy improvements rather than fostering diverse solution strategies. This limitation becomes
particularly relevant in educational contexts and mathematical exploration, where multiple valid
approaches can provide deeper insights into problem structures. This gap motivates our investigation
into leveraging generative flow networks to promote both accuracy and diversity in mathematical
reasoning.

Generative Flow Networks (GFlowNets) represent a novel framework for learning to sample from
a desired distribution, offering advantages over traditional reinforcement learning approaches (Ben-
gio et al., 2021; 2023). GFlowNets operate on a directed acyclic graph (DAG) structure, where states
S represent partial constructions and actionsA represent transitions between states. This graph con-
tains a unique source state s0 with no parents and a sink state sf with no children. States that connect
directly to sf are termed terminal states X , each associated with a positive reward R(x) > 0 for
x ∈ X .

The core objective of GFlowNets is to learn policies that generate complete trajectories τ =
(s0, s1, ..., sn, sf) such that terminal states are sampled with probabilities proportional to their re-
wards: P (x) ∝ R(x). This is achieved through flow conservation and reward matching constraints
that ensure the learned policy samples diverse, high-reward solutions rather than converging to a
single optimal path.

Unlike reinforcement learning methods that focus on maximizing expected cumulative rewards -
typically converging to deterministic policies that exploit highest-reward paths - GFlowNets learn
stochastic policies that maintain diversity while still favoring high-reward solutions. This balance
between exploration and exploitation makes GFlowNets particularly valuable for applications where
multiple viable solutions are preferable to a single optimal one.

Various training objectives have been proposed, including trajectory-balance (TB), detailed-balance
(DB), and Subtrajectory Balance (SubTB) methods. Our work builds on SubTB(λ) (Madan et al.,
2023), which enables learning from incomplete trajectories - particularly suitable for our step-level
framework.

GFlowNets have demonstrated remarkable success across diverse domains. Their ability to gen-
erate diverse, high-quality samples addresses a fundamental challenge in scientific discovery tasks
involving astronomically large search spaces. By learning to sample diverse high-reward candi-
dates, GFlowNets can efficiently identify promising regions of the design space while maintaining
the variety needed to accommodate additional constraints not captured in the primary reward func-
tion, such as synthesis feasibility or absence of side effects. Recent work has explored GFlowNets
for language generation tasks (Hu et al., 2023; Takase et al., 2024; Ho et al., 2024). Most notably,
Takase et al. (2024) demonstrated that GFlowNet fine-tuning can generate diverse correct solutions
for mathematical reasoning tasks. However, their approach operates at the token level, with states
and actions defined over individual tokens: πθ(Y |X) =

∏
i πθ(yi|X, y1:i−1). In contrast, our work

operates at the reasoning step level, where each action corresponds to generating a complete rea-
soning step rather than individual tokens. This step-level granularity enables more semantically
meaningful control over solution generation while maintaining the diversity benefits of GFlowNets.

The step-level approach offers several advantages over token-level methods like Takase et al. (2024):
(1) Semantic Coherence: Each action generates a complete, meaningful reasoning step rather than
individual tokens, avoiding the semantic fragmentation that can occur in token-level generation; (2)
Reward Alignment: Step-wise PRM evaluation provides more accurate reward signals than token-
level approaches, where individual tokens may not reflect reasoning quality; (3) Logical Structure:
Operating at the step level naturally captures the hierarchical structure of mathematical reasoning,
where each step represents a logically complete inference; (4) Quality Control: The step-level
granularity enables fine-grained control over reasoning quality while maintaining coherence within
each step. This is particularly important for mathematical reasoning, where partial steps or token
sequences may be mathematically meaningless, but complete reasoning steps represent verifiable
logical progressions.

We discuss other related work in Appendix C. The relationship between our approach and Maximum
Entropy RL is discussed in Appendix D.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 PROCESS REWARD MODEL FOR MATHEMATICAL REASONING STEPS

We train a PRM U(s′|s) that evaluates the quality of a proposed reasoning step s′ given its prede-
cessor s. The PRM outputs a score between 0 and 1, representing the probability that step s′ will
lead to a correct solution, assuming s is correct.

Relationship to Prior PRM Work: Process reward modeling has evolved significantly since Light-
man et al. (2023) introduced step-by-step verification with human annotations. Recent automated
approaches include Zhang et al. (2024), who use MCTS to infer process rewards by estimating the
probability that each step leads to correct answers, and Guan et al. (2025), who employ MCTS-
guided process reward models for small language models.

Our approach differs in several key aspects: (1) Data Augmentation: Unlike prior work that dis-
cards most generated rollouts, our similarity-based augmentation leverages nearly every rollout,
significantly increasing data efficiency; (2) Continuous Scoring: We use continuous scores rather
than binary labels (Luo et al., 2024; Lightman et al., 2023; Wang et al., 2024b), enabling more nu-
anced evaluation of step quality; (3) Integration: Our PRM provides reward signals compatible with
various training methods such as PPO and GFlowNets. It is particularly well-suited for step-level
GFlowNet training, requiring calibrated probability scores rather than just binary scores.

3.1 AUTOMATED DATA GENERATION VIA MCTS

To train our PRM without human annotations, we adapt the MCTS-based data generation approach
of Luo et al. (2024) with several key modifications. Following their framework, we perform Monte
Carlo rollouts to evaluate step quality, but critically extend their binary scoring (correct/incorrect) to
continuous values in [0, 1] to capture nuanced step quality gradations.

For each candidate step s, we estimate its Monte Carlo value MC(s) by performing k = 96
rollouts with temperature 0.6. Unlike binary evaluation schemes, our continuous scoring al-
lows the PRM to learn fine-grained quality distinctions between reasoning steps: MC(s) =
(successful rollouts from prefix ending at step s)/k.

We use binary search to efficiently identify the first incorrect step within candidate reasoning paths.
Only steps preceding the first error are included in the training dataset, as subsequent steps build
upon invalid reasoning. Therefore as illustrated in Figure 3, the PRM consistently assumes that all
preceding steps are correct when evaluating the current step. In other words, the PRM effectively
answers the question: to what extent can this step lead towards the correct solution, under the
assumption that all prior steps are valid? The key advantage of this approach is that, when the PRM
is employed to provide a reward signal during PPO or GFlowNets training, it assigns rewards solely
based on the quality of the step provided as input to the PRM. Consequently, earlier mistakes do not
propagate to unduly penalize the model throughout the trajectory.

We applied this methodology using Qwen2.5-Math on 70,000 problems from OpenMathInstruct2
(Toshniwal et al., 2024). Complete algorithmic details and implementation specifics are provided in
Algorithm 1 (Appendix E.1).

3.2 DATASET AUGMENTATION VIA ROLLOUT REUSE AND SIMILARITY GROUPING

To improve the efficiency of our data generation and create a larger, more comprehensive dataset,
we implement a dataset augmentation strategy. This strategy leverages the rollouts generated during
the MCTS process and incorporates a step similarity grouping technique.

During MCTS, for each evaluated step, we store the k rollouts used to estimate its MC(s) value.
Each rollout is stored as a tuple (r, x), where r is the generated reasoning path (rollout) and x is a
binary indicator (1 or 0) denoting whether the rollout led to a correct final answer. To augment our
dataset, we extract individual steps from these stored rollouts. For each rollout step, we create a new
data entry. The “prefix” for this new entry is constructed by concatenating the original prefix of the
step from which the rollouts were generated with the step itself. This process allows us to reuse steps
from successful and unsuccessful rollouts, significantly increasing the size of our dataset. Ideally,
for each step evaluated in MCTS, we could add up to k new step examples to our dataset through
this rollout reuse.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

However, directly adding all rollout steps without further processing can introduce inconsistencies.
As illustrated in Table 1, steps that contribute equivalently to the reasoning process can receive
different MC(s) values if evaluated in isolation with a limited number of rollouts (k = 1, which
would be the case if we directly evaluated each step in a rollout independently). This is because
evaluating with k = 1 can lead to noisy and unreliable step value estimations.

Table 1: Example of Similar Steps with
Different Values

Steps value
Max attended 40 college
courses in 2 years

0

Within 2 years, Max en-
rolled in 40 college courses.

1

To address this consistency issue and further refine our
dataset, we introduce a post-processing step based on
step similarity grouping. First, we define a Step Simi-
larity Function to quantify the similarity between two
steps of mathematical reasoning. This function evalu-
ates similarity based on two primary criteria: (1) Cal-
culation Consistency: If both steps contain mathemat-
ical calculations, the function checks if the results of
these calculations are identical. If the results differ, the
steps are considered dissimilar, and the function returns
a similarity score of 0. (2) Textual Similarity: If the
calculation results are the same, or if neither step contains calculations, the function computes the
Levenshtein distance between the textual content of the two steps.

Figure 1: Data processing workflow for PRM training. Starting from a step s with MC(s) = 1/2,
the diagram shows how subsequent steps are processed based on their Monte Carlo values. Similar
steps (indicated by dashed boxes) share MC values. Steps following an incorrect step (MC = 0)
are excluded from the training dataset, as they would be built upon invalid reasoning. Gray boxes
indicate steps that become irrelevant to the training process.

If the similarity score computed by the Step Similarity Function exceeds a predefined threshold (set
to 0.85 in our experiments), the steps are grouped into the same similarity group. Within each group,
we then assign consistent step values. Specifically:

• If all steps within a group originated from rollouts that led to correct (resp. incorrect) final
answers, all steps in the group are assigned a value of 1 (resp. 0).

• If there is a mixture of correct and incorrect rollouts associated with the steps in a group,
all steps in the group are assigned the MC(s) value that was originally estimated for the
MCTS step from which these rollouts were generated, as a reasonable approximation of
the value for all similar steps in the group, assuming that steps similar to a step with a
known MC(s) are likely to have a similar probability of leading to a correct solution.

This combined dataset augmentation process ensures greater consistency and reliability in the step-
level labels. The initial MCTS generation yielded approximately 100k step examples from the input
problems described in Section 3.1. Applying rollout reuse and similarity grouping significantly ex-
panded this set to the final 2.1M entries used for PRM training, greatly enhancing dataset size and
diversity and improving the PRM’s generalization capability. This final dataset comprises approxi-
mately 30% false steps, 20% steps guaranteed correct (value 1), and 50% intermediate steps (value
between 0 and 1). The complete data processing workflow, including the handling of incorrect steps
during MCTS and the augmentation logic, is visually summarized in Figure 1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.3 PRM TRAINING

We fine-tuned Qwen2.5-Math (Qwen et al., 2025) as our PRM. We train the PRM to predict the
probability of a step leading to a correct solution using Binary Cross-Entropy Loss (BCELoss)
L = − 1

N

∑N
i=1 [yi log(ŷi) + (1− yi) log(1− ŷi)], where yi is the true label for the i-th step

(i.e., the MC(s) value), and ŷi is the predicted probability for the i-th step, given by ŷi =
PRM(question, solution prefix, step).

3.4 PRM VALIDATION

0 2 4 6 8 10 12 14 16
Steps

0

5

10

15

20

25

30

35

40

A
cc

ur
ac

y
on

 a
 s

ub
se

t
of

 M
at

h
H

A
R

D
 (

%
) Falcon3 guided by PRM: Ours vs Skywork-o1-Open-PRM-Qwen-2.5-7B

Falcon3-3b-base Our PRM
Falcon3-1b-base Our PRM
Falcon3-7b-base Our PRM
Falcon3-1b-base Open PRM (Skywork)
Falcon3-7b-base Open PRM (Skywork)

Falcon3-3b-base Open PRM (Skywork)
Falcon3-10b-base Baseline
Falcon3-7b-base Baseline
Falcon3-3b-base Baseline

Figure 2: Accuracy of Falcon models on a subset of MATH
Hard using PRM-guided search with varying numbers of pro-
posed steps k. Horizontal lines indicate the baseline accuracy
of unguided Falcon3-3B, 7B, and 10B models using prompt-
based decoding. Solid (resp. dotted) curves represent the ac-
curacy of Falcon3-1B, 3B, and 7B guided by our PRM (resp.
Skywork-o1-Open-PRM-Qwen-2.5-7B).

We validate our PRM through
three complementary analyses.
First, we assess its ability to
detect step-level errors by cor-
rupting correct solution steps in
systematic ways (e.g., changing
numbers, or removing key rea-
soning components). The PRM
consistently assigns lower scores
to corrupted steps, demonstrating
its sensitivity to reasoning errors
(See Appendix E.4).

Second, we evaluate its capability
to support diverse solution paths
by comparing scores assigned to
different valid approaches for the
same problem (using the GSM8K
dataset). The PRM assigns com-
parable scores to different valid
approaches, indicating its ability
to recognize multiple correct rea-
soning paths (See Figure 3 in Ap-
pendix E.5).

Thirdly, we implemented a guided search strategy to enhance the mathematical reasoning capabili-
ties of LLMs using our trained PRM, similar to the approach in Snell et al. (2024). At each step of
generation, the LLM proposes k candidate steps (generated with a temperature of 0.8 for diversity),
and the PRM selects the step with the highest score. This step is then appended to the prompt, and
the process is repeated until a complete solution is generated.

Figure 2 demonstrates the effectiveness of PRM-guided search on a subset of the MATH Hard
dataset. These results highlight the value of PRMs in guiding step-by-step reasoning. By selecting
the most promising steps according to the PRM’s evaluation, the guided search strategy substantially
enhances the accuracy of smaller models, in some cases enabling them to approach or even surpass
the performance of larger unguided models on challenging mathematical reasoning tasks. Similar
applications of PRMs can be found in Wang et al. (2024a;b), as well as in related “helper” models
such as the Preference Process Model in Guan et al. (2025). Additional tests of the PRM are provided
in Appendix E.4

4 STEP-LEVEL GFLOWNET FINE-TUNING FOR DIVERSE SOLUTIONS

4.1 STEP-LEVEL GFLOWNET FRAMEWORK

Building on Hu et al. (2023), we adapt GFlowNets to operate at the reasoning step level rather than
the token level. Our key insight is that mathematical reasoning has a natural hierarchical structure
where complete reasoning steps represent semantically meaningful units.

State and Action Space: A state s represents a partial solution consisting of the question and all
generated reasoning steps up to that point. An action corresponds to generating a complete reasoning

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

step, transitioning from state s to state s′. This step-level granularity enables fine-grained control
over the reasoning process while maintaining semantic coherence within each step.

Reward Structure: The reward R(sn) for a complete reasoning trajectory is computed using our
PRM scores R(sn) =

∏n
i=1 U(si|si−1), where U(si|si−1) is the PRM score for step si given the

previous partial solution si−1. This multiplicative structure ensures that trajectories with any low-
quality steps receive low rewards, encouraging high-quality reasoning throughout. We propose in
Appendix F a Bayesian interpretation of our approach.

Policy Parameterization: The forward policy π(s′|s) is parameterized by an LLM that generates
the next reasoning step. Following Bengio et al. (2023), we incorporate a sink state sf to handle
variable-length solutions, with π(sf |s) representing the termination probability.

4.2 TRAINING OBJECTIVE AND IMPLEMENTATION

We adapt the Subtrajectory Balance (SubTB) loss (Madan et al., 2023) for our step-level GFlowNet
framework, following Hu et al. (2023) who were the first to use GFlowNets for LLM fine-tuning
and demonstrated the effectiveness of SubTB for language generation tasks.

Mathematical Formulation: The SubTB loss for our step-level framework is:

L =
∑

0≤i<j≤n

λj−i

(
log

R(si)
∏j

k=i+1 π(sk|sk−1)π(sf |sj)
R(sj)π(sf |si)

)2

(1)

where λ ∈ [0, 1] is a discount factor, R(si) is the PRM-based reward for partial trajectory up to
step i, and π(sf |si) represents the termination probability. This formulation ensures that the learned
policy satisfies the detailed balance condition across all subtrajectories, leading to proper reward-
proportional sampling.

Our training procedure maintains a replay buffer B of size 1000 storing complete trajectories. The
replay buffer prioritizes trajectories with higher rewards to accelerate learning. For each question,
we (i) generate k candidate reasoning paths using current policy, (ii) evaluate rewards for terminating
states using PRM, (iii) Update policy using modified SubTB loss, (iv) Store successful trajectories
in B. Our approach is detailed in Algorithm 2 in Appendix G.2. We further implement a prioritized
replay buffer, temperature scheduling during trajectory generation, and gradient stabilization. We
detail these additions in Appendix G.3.

5 EXPERIMENTS

For the main fine-tuning experiments, we used Llama3 models as the base architectures (specific
sizes detailed in Appendix G.1). These models were fine-tuned using either our step-level GFlowNet
approach or a PPO baseline. Both fine-tuning methods utilized reward signals from our Process
Reward Model (PRM), which was pre-trained using the methodology described in Section 3 (based
on the Qwen2.5-7B-math model (Qwen et al., 2025)).

PPO Baseline Implementation: Our PPO implementation follows standard practices adapted for
sequential reasoning. For each training question, the LLM incrementally constructs its reasoning
trajectory by generating one step at a time. At every stage of this sequential process, only the
newly proposed step is subjected to evaluation: the PRM assesses this individual step and provides
a step-level reward signal. This localized feedback guides the model throughout the reasoning pro-
cess, ensuring that each successive step is informed by fine-grained evaluations rather than a single
outcome-level supervision. The PPO objective maximizes expected cumulative rewards using the
clipped surrogate objective with entropy regularization. We use identical model architectures, train-
ing data, and PRM evaluation as our GFlowNet approach to ensure fair comparison. PPO hyperpa-
rameters include: learning rate 5e-6, batch size 144, PPO clip ratio 0.2, value function coefficient
0.5, and entropy coefficient 0.01.

The GFlowNet and PPO fine-tuning was conducted on a challenging subset of 10,000 questions
from the OpenMathInstruct2 dataset (Toshniwal et al., 2024) (“augmented math” category, aligning
with MATH Level 5 difficulty). We evaluated the performance of the fine-tuned models on the
MATH Hard benchmark (Hendrycks et al., 2021), the GSM8K benchmark (Cobbe et al., 2021), and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

the SAT MATH dataset (Zhong et al., 2023) to assess both in-domain accuracy and generalization
capabilities.

5.1 MAIN RESULTS

We evaluate our approach on three challenging mathematical reasoning benchmarks: MATH Level
5 (our training domain), GSM8K, and SAT MATH (generalization domains). Table 2 presents our
main results, comparing GFlowNet fine-tuning against PPO and baseline models:

Table 2: Performance comparison on mathematical reason-
ing benchmarks. MATH Level 5 was used for training;
GSM8K and SAT MATH evaluate generalization. Best re-
sults for each model size are bolded.

Model MATH Level 5 SAT MATH GSM8K

Llama3.2-3B-it 14.46% 65.6% 67.8%
+ PPO 15.32% 70.0% 68.4%
+ GFlowNet 17.05% 75.0% 68.5%

Llama3.1-8B-it 17.96% 81.2% 78.1%
+ PPO 18.44% 81.2% 79.1%
+ GFlowNet 18.67% 84.4% 79.0%

The empirical results validate the ef-
fectiveness of step-level GFlowNet
fine-tuning across model scales and
demonstrate strong generalization ca-
pabilities. The smaller Llama3.2-3B-
it model shows substantial improve-
ments with GFlowNet fine-tuning,
achieving a 2.59 percentage point
gain over the baseline on MATH
Level 5.

Generalization Analysis: The
most striking results appear on
out-of-domain benchmarks. On
SAT MATH, GFlowNet fine-tuning
achieves particularly impressive
gains: 9.4 percentage points improvement for the 3B model (75.0% vs 65.6% baseline) and 3.2
percentage points for the 8B model (84.4% vs 81.2% baseline). This strong generalization can
be attributed to three factors: (1) Diverse Reasoning Patterns: By training on multiple solution
approaches rather than converging to a single strategy, the model develops more robust reasoning
skills that transfer across problem types; (2) Step-Level Granularity: Operating at the reasoning
step level captures fundamental mathematical operations that generalize across different problem
formats; (3) PRM-Guided Quality: The PRM ensures that diverse solutions maintain high logical
quality, preventing the degradation often seen when optimizing for diversity alone.

The consistent improvements across both model sizes indicate that our approach scales effectively,
while the superior generalization compared to PPO suggests that reward-proportional sampling cap-
tures more transferable mathematical reasoning patterns than reward maximization.

Importantly, while PRM training has a computational cost, our analysis, detailed in subsection H.4,
shows that GFlowNet fine-tuning itself is surprisingly efficient, requiring less training time than
comparable PPO baselines.

Table 3: Performance comparison on mathematical reason-
ing benchmarks between our PRM and Skywork-o1-Open-
PRM-Qwen-2.5-7B

Model SAT MATH GSM8K

Llama3.2-3B-it + GFlowNet 65.6% 67.8%
+ Our finetuned Qwen2.5-7B-math 75.0% 68.5%
+ Open-PRM-Qwen-2.5-7B 68.8% 68.5%

To further demonstrate the effective-
ness of our data augmentation tech-
nique, we conducted an additional
fine-tuning experiment, as shown in
Table 3. In this setup, we fine-
tune Llama3.2-3B-it with an open-
source PRM, namely Skywork-o1-
Open-PRM-Qwen-2.5-7B (He et al.,
2024), and compare the outcomes
with those obtained using our own
PRM.

5.2 SOLUTION DIVERSITY ANALYSIS

To quantitatively evaluate the diversity of solutions generated by GFlowNet fine-tuning, we used a
semantic similarity metric. We chose semantic embeddings over lexical measures for mathemati-
cal reasoning diversity assessment because: (1) lexical metrics like Levenshtein distance or Jaccard
similarity capture only surface-level textual differences, missing semantic equivalence in mathemat-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

ical expressions (e.g., “x = 4” vs “x = 22”), and (2) mathematical reasoning diversity requires
understanding conceptual differences between solution approaches, not just word-level variations.

We measured the pairwise semantic similarity between the reasoning steps generated by each model
using the “paraphrase-MiniLM-L6-v2” model (Reimers & Gurevych, 2019), a pre-trained sentence
embedding model specifically designed to capture semantic relationships. Each step was encoded
into a high-dimensional space using the encoding function of the model, with the output stored as
tensors. The pairwise similarity between these embeddings was then computed using the cosine
similarity measure, a standard metric for assessing vector similarity in semantic spaces. This metric
provides a continuous score representing the semantic proximity between different reasoning steps,
where lower scores indicate greater dissimilarity and, consequently, higher solution diversity. The
average semantic similarity across multiple generated solutions for each model is presented in Ta-
ble 4, where lower scores indicate greater diversity, and results averaged across 1,000 problems from
MATH.

Table 4: Solution diversity analysis.

Model Avg. Semantic Similarity

Llama3.2-3B-it 0.80
+ PPO 0.82
+ GFlowNet 0.78

The semantic similarity scores presented in Table 4 pro-
vide compelling evidence that GFlowNet fine-tuning
effectively enhances the diversity of generated mathe-
matical solutions. This consistent reduction in seman-
tic similarity indicates that GFlowNet-fine-tuned mod-
els are indeed generating reasoning paths that are more
semantically distinct and varied compared to the other
approaches. This result is consistent with the obser-
vations made during the finetuning of the LLM with
GFlowNets, as shown in Figure 4c. Specifically, we see that during training, the LLM progressively
generates steps whose probabilities become increasingly aligned with the rewards provided by the
PRM (i.e., the probabilities assigned by the LLM to the tokens of a step get closer to the PRM re-
wards for that step). Consequently, this enhanced diversity is a direct consequence of the GFlowNet
training objective, which, unlike reward-maximizing RL methods like PPO, is explicitly designed to
sample from a distribution proportional to the reward. A concrete example of this induced diversity
is provided in Appendix I.

6 CONCLUSION

We have introduced a novel step-level GFlowNet framework for mathematical reasoning that
achieves two crucial objectives: improving accuracy and promoting solution diversity. Our ap-
proach demonstrates that operating at the reasoning step level, rather than the token level, enables
more effective control over the generation process while maintaining semantic coherence.

The empirical results show significant improvements over both baseline models and PPO fine-
tuning, particularly for smaller models. This suggests that our approach could be especially valuable
in resource-constrained settings where smaller models are preferred. Furthermore, the increased so-
lution diversity achieved by our method aligns well with educational applications, where exposure
to multiple valid solution strategies can enhance learning outcomes.

Limitations. Despite these promising results, several limitations warrant discussion. The com-
putational cost of initial PRM training through MCTS remains significant, though this is a one-time
expense that enables subsequent efficient fine-tuning. The approach requires careful tuning of re-
play buffer strategies and similarity threshold parameters. Additionally, while our similarity-based
augmentation partially addresses potential biases in automated PRM training, more sophisticated
bias detection and mitigation strategies remain important areas for development.

Future Work. Promising directions include exploring offline GFlowNet training to reduce com-
putational costs, developing more sophisticated semantic diversity metrics tailored for mathematical
reasoning, investigating the educational impact of diverse solution generation, and extending the
approach to other complex reasoning domains such as program synthesis and theorem proving.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure full reproducibility of our results, we provide comprehensive implementation details and
make all necessary resources publicly available. The complete source code for our methodology, in-
cluding PRM training via MCTS data generation, similarity-based data augmentation, and step-level
GFlowNet fine-tuning, is available at https://anonymous.4open.science/r/gfn-F329. Our implemen-
tation includes four main components: (1) seed dataset generation scripts for initial data collection,
(2) MCTS-based training data generation as detailed in Algorithm 1, (3) similarity-based data aug-
mentation procedures described in Section 3.2, and (4) GFlowNet fine-tuning implementation with
SubTB loss as presented in Algorithm 2. All hyperparameters, including learning rates, batch sizes
and Replay Buffer Size are explicitly documented in Section G.1 and provided as default values
in our code. The data processing pipeline, from initial seed generation through final PRM training
dataset creation, is fully automated and includes detailed logging for verification. Additionally, we
provide evaluation scripts for PRM-guided search validation and comprehensive testing procedures
that allow researchers to reproduce all experimental results reported in Section 5. The computational
requirements, hardware specifications, and expected training times are documented in Section H.4
to facilitate resource planning for reproduction studies.

REFERENCES

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. Advances in
Neural Information Processing Systems, 34:27381–27394, 2021.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Emmanuel Bengio.
Gflownet foundations. The Journal of Machine Learning Research, 24(1):10006–10060, 2023.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gian-
inazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of
thoughts: Solving elaborate problems with large language models. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 17682–17690, 2024.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, J. Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, T. Henighan, R. Child, A. Ramesh, Daniel M. Ziegler, Jeff
Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Ma teusz Litwin, Scott Gray,
B. Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, I. Sutskever, and
Dario Amodei. Language models are few-shot learners. Neural Information Processing Systems,
2020.

Flaviu Cipcigan, Jonathan Booth, Rodrigo Neumann Barros Ferreira, Carine Ribeiro dos Santos,
and Mathias Steiner. Discovery of novel reticular materials for carbon dioxide capture using
gflownets. Digital Discovery, 3:449–455, 2024. doi: 10.1039/D4DD00020J. URL http://
dx.doi.org/10.1039/D4DD00020J.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

T. Deleu, Ant’onio G’ois, Chris C. Emezue, M. Rankawat, Simon Lacoste-Julien, Stefan Bauer, and
Y. Bengio. Bayesian structure learning with generative flow networks. Conference on Uncertainty
in Artificial Intelligence, 2022.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Pouya M. Ghari, Alex M Tseng, Gökcen Eraslan, Romain Lopez, Tommaso Biancalani, Gabriele
Scalia, and Ehsan Hajiramezanali. GFlownet assisted biological sequence editing. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https://
openreview.net/forum?id=g0G8DQSBcj.

10

https://anonymous.4open.science/r/gfn-F329
http://dx.doi.org/10.1039/D4DD00020J
http://dx.doi.org/10.1039/D4DD00020J
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://openreview.net/forum?id=g0G8DQSBcj
https://openreview.net/forum?id=g0G8DQSBcj

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang, Youran Sun, Yi Zhu, Fan Yang, and Mao Yang.
rstar-math: Small llms can master math reasoning with self-evolved deep thinking, 2025.

Jujie He, Tianwen Wei, Rui Yan, Jiacai Liu, Chaojie Wang, Yimeng Gan, Shiwen Tu, Chris Yuhao
Liu, Liang Zeng, Xiaokun Wang, Boyang Wang, Yongcong Li, Fuxiang Zhang, Jiacheng Xu,
Bo An, Yang Liu, and Yahui Zhou. Skywork-o1 open series, November 2024. URL https:
//doi.org/10.5281/zenodo.16998085.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with
the MATH dataset. In Joaquin Vanschoren and Sai-Kit Yeung (eds.), Proceedings
of the Neural Information Processing Systems Track on Datasets and Benchmarks
1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual, 2021. URL
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/
hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html.

Matthew Ho, Vincent Zhu, Xiaoyin Chen, Moksh Jain, Nikolay Malkin, and Edwin Zhang. Proof
flow: Preliminary study on generative flow network language model tuning for formal reasoning.
In The First Workshop on System-2 Reasoning at Scale, NeurIPS’24, 2024. URL https://
openreview.net/forum?id=gYzgA0EnRs.

Edward J Hu, Moksh Jain, Eric Elmoznino, Younesse Kaddar, Guillaume Lajoie, Yoshua Bengio,
and Nikolay Malkin. Amortizing intractable inference in large language models. arXiv preprint
arXiv:2310.04363, 2023.

Moksh Jain, Emmanuel Bengio, Alex Hernández-Garcı́a, Jarrid Rector-Brooks, Bonaventure F. P.
Dossou, Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, Lena
Simine, Payel Das, and Yoshua Bengio. Biological sequence design with gflownets. In Kama-
lika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.),
International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Mary-
land, USA, volume 162 of Proceedings of Machine Learning Research, pp. 9786–9801. PMLR,
2022. URL https://proceedings.mlr.press/v162/jain22a.html.

Marco Jiralerspong, Bilun Sun, Danilo Vucetic, Tianyu Zhang, Yoshua Bengio, Gauthier Gidel,
and Nikolay Malkin. Expected flow networks in stochastic environments and two-player zero-
sum games. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=uH0FGECSEI.

Salem Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex
Hernández-Garcıa, Léna Néhale Ezzine, Yoshua Bengio, and Nikolay Malkin. A theory of con-
tinuous generative flow networks. In International Conference on Machine Learning, pp. 18269–
18300. PMLR, 2023.

Salem Lahlou, Abdalgader Abubaker, and Hakim Hacid. Port: Preference optimization on reasoning
traces. arXiv preprint arXiv:2406.16061, 2024.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam
Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems with lan-
guage models. arXiv preprint arXiv: 2206.14858, 2022.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Meiqi Guo, Harsh Lara, Yunxuan Li,
Lei Shu, Yun Zhu, Lei Meng, Jiao Sun, and Abhinav Rastogi. Improve mathematical reasoning
in language models by automated process supervision, 2024. URL https://arxiv.org/
abs/2406.06592.

Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain, An-
drei Cristian Nica, Tom Bosc, Yoshua Bengio, and Nikolay Malkin. Learning gflownets from

11

https://doi.org/10.5281/zenodo.16998085
https://doi.org/10.5281/zenodo.16998085
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://openreview.net/forum?id=gYzgA0EnRs
https://openreview.net/forum?id=gYzgA0EnRs
https://proceedings.mlr.press/v162/jain22a.html
https://openreview.net/forum?id=uH0FGECSEI
https://arxiv.org/abs/2406.06592
https://arxiv.org/abs/2406.06592

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

partial episodes for improved convergence and stability. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International
Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, vol-
ume 202 of Proceedings of Machine Learning Research, pp. 23467–23483. PMLR, 2023. URL
https://proceedings.mlr.press/v202/madan23a.html.

Dragos Cristian Manta, Edward J Hu, and Yoshua Bengio. GFlownets for causal discovery: an
overview. In ICML 2023 Workshop: Sampling and Optimization in Discrete Space, 2023. URL
https://openreview.net/forum?id=25D2NyVVpr.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad
Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in large
language models, 2025. URL https://arxiv.org/abs/2410.05229.

Ranjita Naik, Varun Chandrasekaran, Mert Yuksekgonul, Hamid Palangi, and Besmira Nushi. Di-
versity of thought improves reasoning abilities of llms. arXiv preprint arXiv: 2310.07088, 2023.

Tri Minh Nguyen, Sherif Abdulkader Tawfik, Truyen Tran, Sunil Gupta, Santu Rana, and Svetha
Venkatesh. Hierarchical gflownet for crystal structure generation. In AI for Accelerated Materials
Design-NeurIPS 2023 Workshop, 2023.

Ling Pan, Dinghuai Zhang, Moksh Jain, Longbo Huang, and Yoshua Bengio. Stochastic generative
flow networks. In The 39th Conference on Uncertainty in Artificial Intelligence, 2023. URL
https://openreview.net/forum?id=U_MhWQ7vECt.

Mohit Pandey, Gopeshh Subbaraj, and Emmanuel Bengio. GFlownet pretraining with inexpensive
rewards. In NeurIPS 2024 Workshop on AI for New Drug Modalities, 2024.

Shuai Peng, Di Fu, Liangcai Gao, Xiuqin Zhong, Hongguang Fu, and Zhi Tang. Multimath:
Bridging visual and mathematical reasoning for large language models, 2024. URL https:
//arxiv.org/abs/2409.00147.

Jacob Pfau, William Merrill, and Samuel R. Bowman. Let’s think dot by dot: Hidden computation
in transformer language models. arXiv preprint arXiv: 2404.15758, 2024. URL https://
arxiv.org/abs/2404.15758v1.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL https://arxiv.org/abs/2412.15115.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 11 2019. URL http://arxiv.org/
abs/1908.10084.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv: 1707.06347, 2017.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters, 2024. URL https://arxiv.org/
abs/2408.03314.

Ryoichi Takase, Masaya Tsunokake, Yuta Tsuchiya, and Shota Inuzuka. Gflownet fine-tuning for di-
verse correct solutions in mathematical reasoning tasks. arXiv preprint arXiv:2410.20147, 2024.

Daniil Tiapkin, Nikita Morozov, Alexey Naumov, and Dmitry Vetrov. Generative flow networks as
entropy-regularized rl, 2024. URL https://arxiv.org/abs/2310.12934.

12

https://proceedings.mlr.press/v202/madan23a.html
https://openreview.net/forum?id=25D2NyVVpr
https://arxiv.org/abs/2410.05229
https://openreview.net/forum?id=U_MhWQ7vECt
https://arxiv.org/abs/2409.00147
https://arxiv.org/abs/2409.00147
https://arxiv.org/abs/2404.15758v1
https://arxiv.org/abs/2404.15758v1
https://arxiv.org/abs/2412.15115
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2310.12934

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Shubham Toshniwal, Wei Du, Ivan Moshkov, Branislav Kisacanin, Alexan Ayrapetyan, and Igor
Gitman. Openmathinstruct-2: Accelerating ai for math with massive open-source instruction
data. arXiv preprint arXiv: 2410.01560, 2024.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process- and
outcome-based feedback. arXiv preprint arXiv: 2211.14275, 2022.

Jun Wang, Meng Fang, Ziyu Wan, Muning Wen, Jiachen Zhu, Anjie Liu, Ziqin Gong, Yan Song,
Lei Chen, Lionel M. Ni, Linyi Yang, Ying Wen, and Weinan Zhang. Openr: An open source
framework for advanced reasoning with large language models, 2024a. URL https://arxiv.
org/abs/2410.09671.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhi-
fang Sui. Math-shepherd: Verify and reinforce LLMs step-by-step without human annotations. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 9426–9439,
Bangkok, Thailand, August 2024b. Association for Computational Linguistics. doi: 10.18653/
v1/2024.acl-long.510. URL https://aclanthology.org/2024.acl-long.510/.

Xuezhi Wang, Jason Wei, D. Schuurmans, Quoc Le, Ed H. Chi, and Denny Zhou. Self-consistency
improves chain of thought reasoning in language models. International Conference on Learning
Representations, 2022. doi: 10.48550/arXiv.2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.
arXiv preprint arXiv: 2201.11903, 2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in Neural Information Processing Systems, 36, 2024.

Zhewei Yao, Reza Yazdani Aminabadi, Olatunji Ruwase, Samyam Rajbhandari, Xiaoxia Wu, Am-
mar Ahmad Awan, Jeff Rasley, Minjia Zhang, Conglong Li, Connor Holmes, Zhongzhu Zhou,
Michael Wyatt, Molly Smith, Lev Kurilenko, Heyang Qin, Masahiro Tanaka, Shuai Che, Shuai-
wen Leon Song, and Yuxiong He. Deepspeed-chat: Easy, fast and affordable rlhf training of
chatgpt-like models at all scales. arXiv preprint arXiv: 2308.01320, 2023.

Fangxu Yu, Lai Jiang, Haoqiang Kang, Shibo Hao, and Lianhui Qin. Flow of reasoning:training
llms for divergent problem solving with minimal examples. arXiv preprint arXiv: 2406.05673,
2024.

Fangxu Yu, Lai Jiang, Haoqiang Kang, Shibo Hao, and Lianhui Qin. Flow of reasoning: Training
llms for divergent reasoning with minimal examples, 2025. URL https://arxiv.org/
abs/2406.05673.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqi Tan, Chang Zhou,
and Jingren Zhou. Scaling relationship on learning mathematical reasoning with large language
models. arXiv preprint arXiv: 2308.01825, 2023.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm
self-training via process reward guided tree search, 2024. URL https://arxiv.org/abs/
2406.03816.

David W Zhang, Corrado Rainone, Markus Peschl, and Roberto Bondesan. Robust scheduling with
GFlownets. In The Eleventh International Conference on Learning Representations, 2023a. URL
https://openreview.net/forum?id=ZBUthI6wK9h.

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron Courville, Yoshua Bengio, and Ling Pan.
Let the flows tell: Solving graph combinatorial problems with GFlownets. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023b. URL https://openreview.
net/forum?id=sTjW3JHs2V.

13

https://arxiv.org/abs/2410.09671
https://arxiv.org/abs/2410.09671
https://aclanthology.org/2024.acl-long.510/
https://arxiv.org/abs/2406.05673
https://arxiv.org/abs/2406.05673
https://arxiv.org/abs/2406.03816
https://arxiv.org/abs/2406.03816
https://openreview.net/forum?id=ZBUthI6wK9h
https://openreview.net/forum?id=sTjW3JHs2V
https://openreview.net/forum?id=sTjW3JHs2V

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied,
Weizhu Chen, and Nan Duan. Agieval: A human-centric benchmark for evaluating foundation
models, 2023. URL https://arxiv.org/abs/2304.06364.

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv: 1909.08593, 2019.

14

https://arxiv.org/abs/2304.06364

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A LLM USAGE

We used LLMs to aid and polish writing throughout this manuscript. Specifically, we employed
large language models for grammatical refinement, clarity improvements, and ensuring consistency
in technical terminology across sections. All scientific content, experimental design, results, and
interpretations represent original work by the authors, with LLMs serving solely as writing assistants
for language enhancement.

B BROADER IMPACT AND APPLICATIONS

Our diversity-aware approach has significant implications beyond mathematical reasoning. In ed-
ucational contexts, systems using our method could better evaluate student work that differs from
canonical solutions but remains mathematically sound. The step-level GFlowNet principles could
generalize to other sequential reasoning domains, such as coding tasks where lines of code could
be treated analogously to reasoning steps, or logical proofs where intermediate deductions follow
similar hierarchical structures.

C EXTENDED RELATED WORK

Mathematical Reasoning in LLMs. Recent 2024 developments include multimodal approaches
like MultiMath (Peng et al., 2024), and advanced training methods like Flow of Reasoning (Yu et al.,
2025), which enables diverse solution generation with minimal training examples. However, critical
studies like GSM-Symbolic (Mirzadeh et al., 2025) reveal fundamental limitations in current LLMs,
showing performance degradation when numerical values or problem structure vary, indicating re-
liance on pattern matching rather than genuine reasoning.

Generative Flow Networks. GFlowNets have been successfully applied to molecule generation
(Jain et al., 2022), Bayesian structure learning (Deleu et al., 2022), causal discovery (Manta et al.,
2023; Deleu et al., 2022), material design (Cipcigan et al., 2024; Nguyen et al., 2023), drug discovery
(Pandey et al., 2024), biological sequence design and editing (Jain et al., 2022; Ghari et al., 2024),
scheduling (Zhang et al., 2023a), and combinatorial optimization problems (Zhang et al., 2023b).
Recent theoretical extensions have expanded GFlowNets to continuous spaces (Lahlou et al., 2023),
stochastic environments (Pan et al., 2023), and adversarial settings (Jiralerspong et al., 2024).

D RELATIONSHIP TO MAXIMUM ENTROPY RL

Recent theoretical work (Tiapkin et al., 2024) establishes that GFlowNets are equivalent to max-
imum entropy RL when the underlying DAG forms a tree structure. In sequential mathematical
reasoning, this raises the question of why our approach outperforms standard PPO.

We note that the theoretical equivalence holds for maximum entropy RL (where entropy maximiza-
tion is the primary objective), not standard PPO with entropy regularization. While our PPO base-
line includes entropy regularization (coefficient 0.01), this serves primarily as an exploration bonus
rather than implementing the full maximum entropy framework where entropy is co-optimized with
reward.

The key differences are: (1) Entropy Treatment: GFlowNets naturally sample proportionally to
rewards (maximum entropy principle), while our PPO uses entropy as a small regularization term;
(2) Training Objective: GFlowNets directly optimize for reward-proportional sampling, while PPO
maximizes expected return with entropy bonus; (3) Exploration Dynamics: The SubTB loss pro-
vides different exploration dynamics than clipped PPO objectives.

This distinction explains our empirical improvements: even when theoretically related, the imple-
mentation details and training dynamics create meaningful practical differences.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

E PROCESS REWARD MODEL TRAINING

E.1 MCTS DATA GENERATION PROCESS

Our MCTS-based data generation extends beyond the binary evaluation framework of Luo et al.
(2024) to generate rich step-level training data with continuous quality scores. This section details
the technical implementation and algorithmic components.

E.1.1 STEP IDENTIFICATION AND PREPROCESSING

Mathematical reasoning solutions are decomposed into individual steps using line breaks as delim-
iters. The data generation model (Qwen2.5-Math) is instructed through 4-shot prompting to structure
its reasoning with clear step separations, ensuring consistent parsing across the dataset.

E.1.2 MONTE CARLO EVALUATION PROTOCOL

The core evaluation mechanism assesses each step s through multiple completion attempts. Starting
from the solution prefix that includes all steps up to s, we generate k = 96 independent rollouts
using temperature sampling (T=0.6) to promote diversity. Each rollout produces a complete solution
attempt, and success is determined by final answer correctness:

MC(s) =
successful rollouts from prefix ending at step s

k

This continuous scoring scheme provides granular quality assessment, distinguishing between steps
that consistently lead to success (MC = 1.0), those with moderate reliability (MC ∈ (0, 1)), and
unreliable steps (MC = 0.0).

E.1.3 TREE SEARCH AND ROLLOUT MANAGEMENT

Generated rollouts are organized within an MCTS tree structure, with each node maintaining three
key statistics:

1. N(s): Visit count for state s

2. MC(s): Monte Carlo evaluation score
3. Q(s, r): State-rollout value function incorporating both quality and length considerations:

Q(s, r) = α1−MC(s)β
len(r)
L

where hyperparameters α, β ∈ (0, 1] balance quality preference against rollout length, and L > 0
normalizes length effects.

E.1.4 SELECTION STRATEGY AND EXPLORATION

Rollout selection follows an adapted PUCT mechanism that balances exploitation of high-quality
paths with exploration of under-visited regions:

(s, r) = argmax
(s,r)

[Q(s, r) + U(s)]

The exploration term U(s) encourages diverse tree construction:

U(s) = cpuct

√∑
i N(si)

1 +N(s)

where cpuct controls exploration intensity. This strategy initially favors rollouts with low visit counts
but gradually shifts preference towards those with high rollout values. By prioritizing high-quality
reasoning steps (higher MC(s) values), we create more effective training data for the PRM com-
pared to uniform sampling of potentially poor-quality steps.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

E.1.5 DATASET CONSTRUCTION AND TERMINATION

The algorithm 1 constructs training examples by exploring reasoning trees until error detection
through binary search. When a step receives MC(s) = 0 (no successful rollouts), it marks the
first reasoning error, and tree exploration for that path terminates. All valid steps preceding this
error point are included in the final training dataset with their computed MC scores.

The complete process terminates when the rollout pool is exhausted or computational limits are
reached, yielding a comprehensive dataset of step-quality pairs for PRM training.

Algorithm 1: MCTS-based data generation
Require: Question q, Language Model LM, Number of completions k = 96, Temperature T = 0.6
Ensure: Dataset of training examples

1: Initialize root state rroot ← q
2: Initialize tree with root node sroot containing rroot
3: Initialize visit count N(sroot)← 0
4: Initialize Monte Carlo estimation MC(sroot)← 0
5: Initialize state-rollout value function Q(sroot, r)← 0
6: while not converged do
7: Select a trajectory using PUCT algorithm based on Q(s, r) and U(s)
8: Perform binary search to locate the first incorrect step in the selected trajectory, the step

currently sampled is scandidate
9: Generate k completions using temperature sampling from LM(c|scandidate)

10: Initialize correct count← 0
11: for each completion ci do
12: if rollout is correct then
13: correct count← correct count+ 1
14: end if
15: end for
16: MC(scandidate)← correct count

k
17: if correct count = 0 then
18: Add scandidate to the dataset with value 0
19: This step is considered to be incorrect
20: Break
21: else
22: Update tree by adding scandidate with value MC(scandidate) and add all the generated

rollouts to the tree as well as the number of visits of the node N(scandidate) and
Q(scandidate, r)

23: end if
24: end while
25: Dataset Collection Phase:
26: for each node s in the tree do
27: Add s to the dataset with its evaluated step, value and all the rollouts generated from this

step.
28: end for
Ensure: Dataset of training examples

E.2 HYPERPARAMETERS

Training was conducted for 1 epoch with a learning rate of 8e-6, batch size 144, and weight decay
0.01 on 8 A100 GPUs.

E.3 TRAINING DATASET SAMPLES

Table 5 illustrates representative examples from our PRM training dataset, showcasing the diversity
of mathematical reasoning problems and the range of step quality scores generated through our
MCTS-based approach and similarity-based augmentation.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 5: Sample entries from our PRM training dataset generated via MCTS and similarity-based
augmentation. Each entry contains a mathematical problem, partial solution context, candidate next
step, and ground truth step quality score derived from Monte Carlo evaluations.

Question Solution Context Candidate Step MC Score

The product of two
whole numbers a and
b is equal to 8 times
their sum. If a is 3
more than b, what is
the value of a?

We are given that ab = 8(a+ b) and a =
b + 3. Substituting the second equation
into the first, we get (b + 3)b = 8(b +
3 + b). Simplifying, we get b2 + 3b =
8(2b+ 3). Expanding, we get b2 + 3b =
16b+24. Rearranging, we get b2−13b−
24 = 0. Factoring, we get (b − 16)(b +
1) = 0. Therefore, b = 16 or b = −1.
Since b is a whole number, b = 16. Then
a = b+ 3 = 16 + 3 = 19.

So the value of a is 19 . 1.00

In a certain coun-
try, the postal system
uses a unique three-
letter code for each
city. The code con-
sists of three differ-
ent letters, and the let-
ters are chosen from a
set of n letters, where
n is a positive inte-
ger. Given that there
are exactly 120 differ-
ent codes that can be
formed using these n
letters, find the value
of n.

The number of ways to choose the first
letter is n. The number of ways to choose
the second letter is n−1, since we cannot
repeat the first letter. The number of ways
to choose the third letter is n − 2, since
we cannot repeat the first two letters.

Therefore, the total number
of different codes is n(n −
1)(n− 2).

0.89

A triangle ABC has
vertices A(1,−2),
B(9,−2), and
C(x, y). The point C
lies on the parabola
x = y2 + 1. Find
the minimum possible
perimeter of triangle
ABC.

The distance between A and B is AB =
8. The distance between A and C is
AC =

√
(x− 1)2 + (y + 2)2 and the

distance between B and C is BC =√
(x− 9)2 + (y + 2)2. The perimeter

of triangle ABC is P = AB + AC +

BC = 8 +
√

(x− 1)2 + (y + 2)2 +√
(x− 9)2 + (y + 2)2. Since C lies on

the parabola x = y2 + 1, we can sub-
stitute x = y2 + 1 into the expression
for P to get P = 8+

√
y4 + 4y2 + 4+√

y4 − 16y2 + 64. We can simplify this
expression by noticing that y4 + 4y2 +
4 = (y2 + 2)2 and y4 − 16y2 + 64 =
(y2 − 8)2.

Therefore, the perimeter is
P = 8 +

√
(y2 + 2)2 +√

(y2 − 8)2 = 8 + y2 +

2 + y2 − 8 = 2y2.

0.00

Note: Monte Carlo (MC) scores represent ground truth labels derived from MCTS rollout evaluations,
ranging from 0.00 (steps leading to incorrect solutions) to 1.00 (steps leading to correct solutions). These

scores serve as training targets for the PRM. The similarity-based augmentation process ensures consistent
labeling across semantically equivalent reasoning steps.

E.4 ERROR DETECTION VALIDATION

We systematically corrupted correct solution steps in two ways and evaluated PRM responses:

Number Manipulation: For the step “Calculate: 24 − 6 = 18”, corrupting to “24 − 6 = 16”
reduced PRM score from 0.84 to 0.05, demonstrating sensitivity to arithmetic errors.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Logic Corruption: For the step “Since x2 = 16, we have x = 4 or x = −4”, removing the negative
solution (“x = −4”) reduced PRM score from 0.89 to 0.34, showing detection of incomplete logical
reasoning.

E.5 PRM MULTIMODALITY VALIDATION

To validate our PRM’s capability to recognize multiple valid reasoning approaches, we evaluated
its performance on problems with diverse solution strategies. Our trained PRM assigns comparable
high scores to different valid reasoning steps while correctly identifying and penalizing incorrect
steps with low scores, as illustrated in Figure 3.

Figure 3: Reasoning steps and corresponding PRM scores. Valid steps from different approaches
receive high, comparable scores, while corrupted steps receive lower scores.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

E.6 PRM LIMITATIONS AND BIAS CONSIDERATIONS

While our automated PRM training eliminates human annotation costs, it may introduce certain bi-
ases. The MCTS-based data generation could favor certain reasoning patterns over others, and the
similarity-based augmentation might propagate systematic errors. To partially mitigate these con-
cerns, our similarity grouping approach creates more diverse training examples and helps identify
inconsistencies in step valuations. However, we acknowledge that more sophisticated bias detection
and mitigation strategies, such as consensus filtering or adversarial validation, remain important
areas for future work.

F BAYESIAN POSTERIOR SAMPLING FRAMEWORK

Our approach can be viewed as performing Bayesian posterior sampling over reasoning paths, fol-
lowing the framework established by Deleu et al. (2022) for Bayesian structure learning. In this
interpretation, we seek to sample diverse reasoning trajectories from a posterior distribution that
combines a prior over reasoning paths with evidence from our PRM.

Formally, let τ = (s0, s1, ..., sn) represent a reasoning trajectory, where s0 is the initial question
and sn is the complete solution. We define:

• Prior: P (τ) represents the pretrained LLM’s distribution over reasoning paths, encoding
learned mathematical reasoning patterns

• Likelihood: L(τ |PRM) =
∏n

i=1 U(si|si−1) represents the evidence from our PRM about
each reasoning step

• Posterior: P (τ |PRM) ∝ P (τ) · L(τ |PRM) combines pretrained knowledge with PRM
evidence

Justification for PRM as Likelihood: The PRM scores U(si|si−1) naturally function as likeli-
hood terms because they represent the probability of observing a “correct” reasoning step given
the context. In Bayesian terms, we can interpret this as P (step is correct|si, si−1,PRM). Since
our PRM is trained to predict the probability that a step leads to a correct solution (using MCTS-
derived ground truth), these scores directly quantify the evidence that each step provides toward the
trajectory being correct. The multiplicative structure

∏n
i=1 U(si|si−1) reflects the conditional inde-

pendence assumption that step correctness depends primarily on local context, which is reasonable
for mathematical reasoning where each step builds incrementally on previous work.

The GFlowNet framework naturally implements this Bayesian updating by learning to sample tra-
jectories with probabilities proportional to the reward R(τ) = P (τ) ·L(τ |PRM). This formulation
provides a principled foundation for diverse reasoning: rather than seeking a single optimal solution
(as in traditional RL), we sample from the full posterior distribution, naturally capturing multiple
high-quality reasoning strategies.

G GFLOWNET TRAINING IMPLEMENTATION

G.1 EXPERIMENTAL CONFIGURATION

We conduct experiments on Llama3 (Dubey et al., 2024) using two model sizes:

• Llama3.2-3B-it: A smaller model to demonstrate efficiency

• Llama3.1-8B-it: A medium-sized model for performance comparison

Hyperparameters:

• Learning Rate: We used a learning rate of 5e-6 for the Adam optimizer during GFlowNet
fine-tuning. To optimize the learning rate schedule, we used a cosine scheduler, which
gradually decreases the learning rate over the course of the training epoch.

• Batch Size: A batch size of 144 trajectories was used for each training iteration. This batch
size was chosen to balance computational efficiency and the stability of gradient updates.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

• Gradient Clipping: To prevent exploding gradients during training, we applied gradient
clipping with a maximum norm of 1.0. This technique helps to stabilize the training pro-
cess, particularly in the context of recurrent neural networks like the LLMs used in our
GFlowNet policy.

• λ Value for SubTB Loss: The λ hyperparameter in the Subtrajectory Balance (SubTB)
loss function controls the discount factor for subtrajectory rewards. We set λ = 1.0 in our
experiments. This value implies no discounting, giving equal weight to all subtrajectory
balance terms in the loss.

• Replay Buffer Size: To stabilize training and improve sample efficiency, we utilized a
replay buffer of size 1000. This buffer stores previously generated complete trajectories,
allowing the GFlowNet policy to learn from a diverse set of high-reward experiences.

G.2 STEP-LEVEL GFLOWNET ALGORITHM

Our step-level GFlowNet fine-tuning procedure leverages the trained PRM for reward evaluation
and employs a prioritized replay buffer to enhance training efficiency and solution diversity.

Algorithm 2: GFlowNet Fine-tuning
Require: Question q, Policy Model πθ (LLM), PRM U , Replay Buffer B, Generations per

question k, Temperature T , Batch Size B
1: for each batch of questions in the training dataset do
2: for each question q in the batch do
3: Generate k responses for question q using πθ with temperature T
4: Split each response into steps and evaluate reward R(s1:isf) for each trajectory using the

PRM, storing trajectories in B
5: Sample a batch of size B from the replay buffer B
6: for each trajectory in the batch do
7: Compute the loss L based on the reward function R and policy model πθ

8: end for
9: Perform one step of optimization to minimize the loss L with respect to the parameters θ

of πθ

10: end for
11: end for
Ensure: Trained policy model πθ with GFlowNets

G.3 TRAINING DYNAMICS AND OPTIMIZATION

Our step-level GFlowNet training incorporates several key optimizations to improve convergence
and sample efficiency:

Prioritized Replay Buffer: Instead of uniform sampling, we implement a prioritized replay mech-
anism that favors trajectories with higher PRM-evaluated rewards. This prioritization accelerates
learning by focusing on high-quality reasoning experiences, similar to prioritized experience replay
in deep RL but adapted for our reward-proportional sampling objective.

Temperature Scheduling: We use temperature sampling (T = 0.6) during trajectory generation to
balance exploration and exploitation. This temperature is carefully tuned: higher values (T > 0.8)
lead to excessive exploration and incoherent steps, while lower values (T < 0.4) result in mode
collapse, reducing solution diversity.

Gradient Stabilization: The SubTB loss can exhibit high variance due to the multiplicative reward
structure. We apply gradient clipping (max norm 1.0) and use a learning rate schedule that reduces
volatility while maintaining effective parameter updates. The discount factor λ = 1.0 gives equal
weight to all subtrajectories, ensuring comprehensive coverage of the reasoning space.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

H TRAINING DYNAMICS ANALYSIS

This section presents a comprehensive analysis of the training dynamics during GFlowNet fine-
tuning of our language model. We monitor three key metrics throughout the training process to
assess convergence behavior and validate the effectiveness of our Sub-TB learning approach.

H.1 MONITORED METRICS

We track the following metrics during training to provide insights into the learning dynamics:

• Sub-TB Loss: The Sub-Trajectory Balance (Sub-TB) loss function used to train the
GFlowNet policy. This loss ensures that the flow conservation constraint is satisfied at
each step of the trajectory, enabling the model to learn proper sampling probabilities pro-
portional to rewards.

• Average Reward: The mean reward signal obtained from the PRM across sampled trajec-
tories during training. This metric reflects the quality of reasoning steps generated by the
model.

• Proportionality Gap: A critical alignment metric measuring the absolute deviation be-
tween token selection probabilities and their corresponding PRM rewards.

H.2 PROPORTIONALITY GAP: A KEY ALIGNMENT METRIC

The proportionality gap directly measures how well the model achieves the fundamental GFlowNet
objective of sampling trajectories with probabilities proportional to their rewards. Following our
implementation, this metric is computed as:

Proportionality Gap = Et∼τ [|pt − rt|] (2)

where pt represents the probability assigned by the model to selecting the token at step t, and rt is
the corresponding reward from the PRM for that step.

This metric is fundamental to validating GFlowNet training effectiveness. The core principle of
GFlowNets requires that sampling probabilities should be proportional to rewards. Therefore, a
decreasing proportionality gap indicates successful learning of this alignment. When this gap ap-
proaches zero, it signifies that the model has learned to assign higher probabilities to reasoning steps
that receive higher rewards from the PRM, which is precisely the desired behavior for effective
mathematical reasoning.

The reduction of this gap throughout training provides direct evidence that our Sub-TB loss success-
fully guides the model toward the optimal sampling distribution, where high-quality reasoning paths
are preferentially explored.

H.3 TRAINING PROGRESSION ANALYSIS

Figure 4 illustrates the evolution of these three critical metrics throughout the GFlowNet fine-tuning
process. The training dynamics reveal several important characteristics that validate our approach.

H.4 COMPUTATIONAL EFFICIENCY ANALYSIS

To assess the computational efficiency of our GFlowNet fine-tuning approach, we conducted a
comparative analysis of the training time and computational resources required for PRM training,
GFlowNet fine-tuning, and PPO baseline training. These experiments were performed using con-
sistent hardware and training data settings to ensure a fair comparison. The results of this training
efficiency comparison are summarized below:

Computational Resources: All training experiments were conducted on a cluster of machines
equipped with NVIDIA A100 GPUs. For PRM training, we utilized 8 A100 GPUs in parallel to
accelerate the data generation and model fine-tuning process. GFlowNet and PPO fine-tuning ex-
periments were conducted using the same hardware setup for consistent resource allocation.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0 2000 4000 6000
Training Step

1500

3000

4500
Lo

ss

Training Loss

(a) Sub-TB Loss Evolution

0 2000 4000 6000
Training Step

0.78

0.81

0.84

0.87

0.90

R
ew

ar
d

Average Reward

(b) Average Reward Progression

0 2000 4000 6000
Training Step

0.08

0.12

0.16

0.20

Pr
op

or
tio

na
lit

y
G

ap

Proportionality Gap

(c) Proportionality Gap Reduction

Figure 4: Training dynamics during GFlowNet fine-tuning of Llama3.2-3B-it showing (a) Sub-TB
loss convergence, (b) average reward improvement, and (c) proportionality gap reduction. The con-
sistent decrease in proportionality gap demonstrates successful alignment between token selection
probabilities and PRM rewards, validating the effectiveness of our Sub-TB learning approach.

Training Time Comparison:

• PRM Training: Training the Process Reward Model (PRM), including the automated data
generation phase using MCTS and the subsequent PRM fine-tuning, required approxi-
mately 4 hours of training time using 8 A100 GPUs. The data generation phase using
MCTS constitutes a significant portion of this training time.

• GFlowNet Fine-tuning: Fine-tuning a GFlowNet policy for a specific LLM (e.g.,
Llama3.2-3B-it or Llama3.1-8B-it) using our step-level approach typically required around
1 hour of training time on the allocated hardware for 10,000 questions from the OpenMath-
Instruct2 dataset (Toshniwal et al., 2024).

• PPO Baseline Training: Training the PPO baseline models, using the same PRM for
reward guidance and with comparable hyperparameter settings, generally required approx-
imately 2 hours of training time for 10,000 questions from the OpenMathInstruct2 dataset
(Toshniwal et al., 2024). This is longer than the GFlowNet fine-tuning time, potentially in-
dicating a greater sample efficiency or faster convergence of the GFlowNet training process
in our setup.

I DIVERSITY EXAMPLE

To illustrate the diversity induced by GFlowNet fine-tuning concretely, we evaluate both approaches
under identical generation conditions. Using consistent sampling parameters, consider solving “Find
the value of x if 2x+ 3 = 11”:

PPO Solutions (consistent trajectory, lexical variations):

• “Subtract 3 from both sides: 2x = 8. Divide by 2: x = 4.”
• “First subtract 3 from each side: 2x = 8. Then divide both sides by 2: x = 4.”

GFlowNet Solutions (distinct valid trajectories):

• “Subtract 3 from both sides: 2x = 8. Divide by 2: x = 4.”
• “Divide the entire equation by 2: x+ 1.5 = 5.5. Subtract 1.5: x = 4.”

While PPO converges to a single approach with minor linguistic variations, GFlowNet generates
genuinely distinct mathematical pathways, demonstrating exploration of diverse solution strategies
rather than exploitation of a single optimal path.

23

	Introduction
	Background and Related Work
	Process Reward Model for Mathematical Reasoning Steps
	Automated Data Generation via MCTS
	Dataset Augmentation via Rollout Reuse and Similarity Grouping
	PRM Training
	PRM Validation

	Step-Level GFlowNet Fine-tuning for Diverse Solutions
	Step-Level GFlowNet Framework
	Training Objective and Implementation

	Experiments
	Main Results
	Solution Diversity Analysis

	Conclusion
	LLM Usage
	Broader Impact and Applications
	Extended Related Work
	Relationship to Maximum Entropy RL
	Process Reward Model Training
	MCTS Data Generation Process
	Step Identification and Preprocessing
	Monte Carlo Evaluation Protocol
	Tree Search and Rollout Management
	Selection Strategy and Exploration
	Dataset Construction and Termination

	Hyperparameters
	Training Dataset Samples
	Error Detection Validation
	PRM Multimodality Validation
	PRM Limitations and Bias Considerations

	Bayesian Posterior Sampling Framework
	GFlowNet Training Implementation
	Experimental Configuration
	Step-Level GFlowNet Algorithm
	Training Dynamics and Optimization

	Training Dynamics Analysis
	Monitored Metrics
	Proportionality Gap: A Key Alignment Metric
	Training Progression Analysis
	Computational Efficiency Analysis

	Diversity Example

