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Abstract

Image segmentation is critical in neuroimaging for analyz-001
ing brain structures and identifying biomarkers associated002
with disorders. Deep learning models have shown exponen-003
tial success in computer vision tasks over the years, includ-004
ing image segmentation. However, to achieve optimal per-005
formance, these models require extensive annotated data for006
training, which is often the bottleneck in expediting brain-007
wide image analysis. For segmenting cellular structures008
such as neurons, the annotation process is cumbersome009
and time-consuming due to the inherent structural, inten-010
sity, and background variations present in the data caused011
by genetic markers, imaging techniques, etc. We propose012
an Active Learning-based neuron segmentation framework013
(Segment AnyNeuron), which incorporates state-of-the-art014
image segmentation modules - Detectron2 and HQ SAM,015
and requires minimal ground truth annotation to achieve016
high precision for brain-wide segmentation of neurons. Our017
framework can classify and segment completely unseen neu-018
ronal data by selecting the most representative samples for019
manual annotation, thus avoiding the cold-start problem020
common in Active Learning. We demonstrate the effective-021
ness of our framework for automated brain-wide segmenta-022
tion of neurons on a variety of open-source neuron imaging023
datasets, acquired from different scanners and a variety of024
transgenic mouse lines.025

1. Introduction026

Recent advancements in Deep Learning (DL) have rev-027
olutionized computer vision, demonstrating tremendous028
success in tasks such as object detection [32] and image029
segmentation [15]. However, despite these successes, a030
significant challenge persists: DL models require large031
quantities of annotated data for training, which often proves032
to be a bottleneck [20]. When sufficient labeled data is033
available, DL models for image segmentation and object034
detection exhibit remarkable performance on downstream035
tasks and are actively utilized in medical image analysis036
[25]. While DL offers substantial benefits for numerous037

medical applications, including disease diagnosis, treat- 038
ment planning, and biological research, the requirement 039
for extensive data remains a limiting factor due to the high 040
cost and time involved in annotation [25]. This challenge 041
is particularly pronounced in neuron segmentation, where 042
the small and intricate structures make manual annotation 043
exceptionally laborious and time-consuming. 044

045
To address this issue, Active Learning (AL) is a widely 046
adopted approach designed to minimize the time and 047
resources required for manual annotation [21]. AL strate- 048
gically selects the most representative and informative 049
samples from a pool of unlabelled data. These samples, 050
once manually annotated, are used to train or fine-tune the 051
model, yielding significantly better results in less time. 052
Given that AL is a well-studied solution in the context 053
of image segmentation [18] and object detection [14], it 054
is increasingly being leveraged to enhance deep learning 055
models in medical imaging [22]. Although AL-based 056
medical image segmentation models have seen signifi- 057
cant advancements over the past few years [3, 22], the 058
application of AL to neuron segmentation remains rare [13]. 059

060
We propose a novel Active Learning-based framework for 061
neuron segmentation that leverages state-of-the-art (SOTA) 062
image detection and segmentation models, specifically 063
Detectron2 [32] and HQ-SAM [15]. While Detectron2 064
is one of the most commonly used detection models for 065
medical images [1, 7, 28], HQ-SAM is also being integrated 066
into medical applications [33]. We chose Detectron2 for 067
its proven performance in instance detection on medical 068
images, including the ability to produce high-quality region 069
proposals even for small objects (thanks to its multi-scale 070
Feature Pyramid Network (FPN) architecture [17]). Mean- 071
while, HQ-SAM was selected because it addresses the 072
challenge of accurately segmenting fine structures by in- 073
corporating high-resolution feature refinement layers, thus 074
preserving small-scale object details—crucial for neurons. 075
This ensures that our framework is designed to operate with 076
minimal ground truth annotation, significantly reducing the 077
annotation burden while maintaining high performance on 078
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Figure 1. Block diagram for Segment AnyNeuron. A,B) An intensity-normalized version of the input unlabelled image is generated and
fed into the Neuron Detector to generate keypoints (dirty ground truth). C) Representative samples from the entire unlabelled dataset are
selected and fed into the Active Learning pipeline. D,E) After manual annotation fixing, the refined keypoints are F) processed by the
neuron segmenter to generate masks, which are further G) refined through thresholding. H) The data is then used to train/finetune the
Neuron Detector.

unseen neuronal data. The key innovation of our approach079
lies in the integration of instance detection and Active080
Learning to iteratively refine the centers of the outputted081
bounding boxes (key points) and enhance segmentation082
accuracy. By using Detectron2 to generate initial key points083
on unseen, unlabelled data, we provide a strong baseline084
that can be corrected with minimal manual intervention.085
These corrected key points are then used by HQ-SAM to086
generate precise segmentation masks. Additionally, our087
framework includes an intensity-based thresholding feature088
that allows users to control the segmentation output by089
adjusting the intensity of detected neurons, providing flex-090
ibility and customization based on specific requirements.091
Our methodology also incorporates advanced preprocess-092
ing steps such as intensity normalization and patch-based093
image segmentation, ensuring that our model receives the094
cleanest and most relevant data inputs. We demonstrate095
the effectiveness of our approach through analyses of a096
disease dataset, showcasing its adaptability and superior097
performance compared to existing methods. We aim to098
open-source our framework and provide a comprehensive099
guide on applying our Active Learning framework to novel100

datasets. 101

2. Methods 102

2.1. Intensity normalization 103

Medical images, especially fluorescent images, often 104
exhibit varying intensities, posing challenges for DL object 105
detection and image segmentation models. Therefore, 106
our pipeline incorporates essential preprocessing steps, 107
including intensity normalization, to address this issue 108
effectively. The input image is divided into smaller patches 109
that undergo intensity normalization. This process enables 110
efficient handling of high-resolution images, while inten- 111
sity normalization adjusts the pixel values to significantly 112
reduce overall intensity variability. 113

114
The image I is split into patches (of size x1 x x2) 115
and for each patch, an intensity threshold θ is calculated 116
which is used for the normalization process. 117

θ = min(max(Ipatch)− sorted(Ipatch)[−k], T ) (1) 118

We set k = 5 to ignore the top 5 pixel intensities within each 119
patch, which typically correspond to extreme outliers in our 120
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Figure 2. Qualitative results on the unseen Allen Brain dataset. The bottom rows (2nd and 4th) show the original sample, our model’s
segmentation mask before Active Learning overlaid, our model’s segmentation masks after Active Learning overlaid, and UNets segmen-
tation masks, from left to right. A zoomed-in subsection, following the same order, is shown in the top rows (1st and 3rd).

fluorescent images, and T = 10 to prevent excessively121
bright pixels from dominating the normalization. In prac-122
tice, these constants were determined by testing a range of123
values (e.g., k = 1 to k = 10) on a subset of images and se-124
lecting those that minimized over-contrast or under-contrast125
artifacts. Furthermore, for the purposes of our experiments,126
we set x1 = x2 = 256. Using θ and its mean intensity127
(µ), the patch is normalized, followed by gamma correction.128
The final image patch intensities are then rescaled between129
the 0.1 and 0.99 percentiles.130

I ′patch =
(Ipatch − µ)

max(Ipatch)− θ
× 255 (2)131

132
I ′′patch = (I ′patch)

γ (3)133

Intensity normalization enhances the contrast of the image134
leading to a more accurate and robust segmentation. All the135

intensity-normalized patches are stitched together to recon- 136
struct the original image, which is then fed as input to the 137
neuron detector. 138

139

2.2. Neuron Detector 140

The object detection model we employ as part of our neu- 141
ron detector is Detectron2, chosen for its widespread use 142
and efficacy in medical image analysis [28], [1]. Building 143
upon Mask-RCNN [12], Detectron2 uses a Feature Pyramid 144
Network (FPN) [17] with ResNet [11] blocks to downsam- 145
ple images and extract hierarchical features. Detectron2’s 146
FPN-based architecture [17] has been shown to be effective 147
at multi-scale object detection, generating bounding boxes 148
that often align well with neuron centers even under chal- 149
lenging intensity conditions. This baseline reduces the an- 150
notation effort required for small structures by minimizing 151
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Figure 3. Qualitative results on the unseen Fluocells dataset. The original sample for the 3 stains in the dataset is shown on the left,
followed by the masks generated by our framework before intensity thresholding, the masks after applying intensity thresholding, masks
generated by UNet, and the actual ground truths. The DICE score between the model’s masks and ground truth is mentioned in the bottom
left corner of the masks.

gross localization errors, hence allowing experts to focus152
only on fine corrections. Furthermore, the Region Proposal153
Network (RPN) [23] processes these features to generate154
top-scoring bounding boxes, which are refined through the155
BoxHead for the final output. In our framework, Detectron2156
detects neurons in normalized images by using the centers157
of bounding boxes as keypoints, crucial for accurate neuron158
identification. While Detectron2 can produce segmentation159
masks, it is less effective for small neurons, often merging160
multiple neurons into a single mask. Thus, we rely on the161
object detection head for precise neuron identification and162
segmentation. Moreover, during finetuning, we use indi-163
vidual neuron masks within each image to further minimize164
the possibility of multiple neurons being assigned a single165
mask. Detectron2 also plays a pivotal role in generating an166
initial, albeit imperfect, ground truth for our Active Learn-167
ing pathway. Using keypoints over segmentation masks sig-168
nificantly speeds up the ground truth correction process, as169
annotating key points is more straightforward and expedi-170
ent, enhancing annotation efficiency.171

2.3. Active Learning172

To optimize our model for any neuron data, we employ173
Active Learning, which allows fine-tuning with minimal174
ground truth and fewer training iterations. This human-in-175
the-loop approach involves experts correcting the initial,176
”dirty” ground truth generated by our neuron detector for177

the most representative samples. To ensure comprehensive 178
coverage of the feature space during sample selection for 179
manual annotation, we first embed all unlabeled images 180
using UMAP [19] and then partition the projection space 181
into equally sized clusters (e.g., 5–10 clusters based on 182
cluster density). From each cluster, we randomly select 183
5% of its points, ensuring both dense and sparse regions 184
are sampled. We then select representative samples from 185
both sparse and dense clusters for use in the active learning 186
pipeline. 187

188
Starting with the neuron detector’s output provides an 189
initial baseline, reducing manual labeling effort and cir- 190
cumventing the cold-start problem commonly associated 191
with Active Learning [6]. This iterative process of refining 192
the ground truth and continuously updating the model 193
enhances its generalization capabilities and enables rapid 194
convergence to a highly accurate state. 195

196
197

2.4. Neuron Segmenter 198

The refined keypoints from the Active Learning step are 199
fed into the Neuron segmenter. We use HQ SAM [15], a 200
state-of-the-art segmentation model as part of our pipeline 201
as it excels at processing keypoints to generate high-quality 202
segmentation masks, even in complex and noisy images, 203
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cFOS Orexin CTb LIVECell

Model Precision Recall DICE
Score

Precision Recall DICE
Score

Precision Recall DICE
Score

Precision Recall DICE
Score

mAP

Ours (After AL) 0.81 0.78 0.71 0.32 0.39 0.29 0.85 0.66 0.63 0.88 0.76 0.77 0.560
Baseline (Before AL) 0.43 0.77 0.54 0.12 0.22 0.14 0.43 0.57 0.47 0.55 0.33 0.24 0.290
Cell ResUNET [8] 0.79 0.62 0.69 0.33 0.25 0.28 0.67 0.63 0.65 – – – –
UNET [27] 0.51 0.43 0.41 0.18 0.13 0.15 0.41 0.54 0.37 0.82 0.27 0.36 0.1420
Cascade Mask RCNN [4] – – – – – – – – – – – – 0.4790

Table 1. Performance comparison of our AL framework with different models, on the Fluocells dataset (cFOS, Orexin, and CTb stains)
and the LIVECell dataset.

achieving precise neuron segmentation. Compared to the204
standard Segment Anything Model (SAM) [16], HQ-SAM205
incorporates additional feature refinement modules and206
multi-resolution attention, which better preserve small207
object details—critical in neuron segmentation where208
structures can be just a few pixels wide. We fine-tuned209
HQ-SAM on a small subset of neuron data to adapt its210
learned priors to domain-specific intensity distributions,211
improving its mask quality for neuronal boundaries. The212
process begins with the refined keypoints, which are213
corrected through minimal ground truth annotation during214
the Active Learning phase. These keypoints serve as crucial215
landmarks, guiding HQ SAM to focus on specific regions216
of interest within the image patches. The accurate reference217
points provided by these keypoints significantly enhance218
the precision of the segmentation. This approach helps219
mitigate issues of overlapping and closely packed neurons.220
The precise masks generated by HQ SAM are more reliable221
and accurate. Once the masks are generated, intensity-222
based thresholding is applied to filter out low-intensity223
neurons, enhancing the overall segmentation accuracy.224

225
226

2.5. Intensity-based thresholding227

We apply intensity-based thresholding to the masks228
generated by HQ-SAM since it allows us to filter out229
low-intensity neurons, which are often false positives.230
By adjusting the intensity threshold, users can control231
the inclusion of neurons in the final segmentation mask,232
optimizing the results based on their specific requirements.233
The user-controlled intensity knob provides flexibility and234
customization, ensuring that the segmentation meets the235
desired accuracy and specificity. Post-segmentation, the236
intensity of each neuron is measured using the original237
image to ensure accurate intensity values. These values238
are then normalized for consistency. Users can adjust239
the intensity threshold, which allows them to filter out240
neurons that do not meet the desired intensity criteria. This241
step facilitates in removing false positives and improving242
the overall accuracy of the segmentation by giving users243
the freedom to exclude neurons based on their specific244

intensity requirements. This flexibility is essential for 245
tailoring the segmentation to different applications and 246
datasets, enhancing the framework’s effectiveness. 247

248

2.6. Performance evaluation 249

To quantify our model’s performance, we compare our 250
results with U-Net [27], a well-established model in 251
medical image segmentation. U-Net serves as a benchmark 252
in the domain, particularly for medical datasets, and is 253
widely used by recent models to demonstrate segmentation 254
efficacy [30], [5]. Its architecture, featuring a contracting 255
path for context capture and an expansive path for precise 256
localization, makes it exceptionally effective for tasks 257
such as neuron segmentation. U-Net’s ability to work well 258
with limited annotated data and produce high-resolution 259
segmentation maps has led to its widespread adoption and 260
significant success in various medical imaging applica- 261
tions. This makes it an ideal model for benchmarking and 262
comparing new segmentation algorithms [2]. 263

264
Prior to experimentation, we trained UNet on the pre- 265
defined training set of Fluocells for approximately 100 266
epochs and used that checkpoint for performance compar- 267
isons. We demonstrate that our model performs marginally 268
better than UNet on both the Fluocells and SOM-Cre 269
Mouse Line datasets. 270

3. Results & Discussion 271

We propose Segment AnyNeuron, a multi-step framework 272
designed to optimize segmentation performance on novel 273
neuron data. The framework consists of a neuron detec- 274
tor and segmenter, which, in conjunction with the Active 275
Learning module, deliver benchmarking performance on 276
unlabeled neuron datasets with minimal manual annotation. 277
The overall pipeline of our framework, Segment AnyNeu- 278
ron, is shown in Figure 1. 279

3.1. Image datasets 280

SOM-Cre mouse line dataset: To evaluate the per- 281
formance of our Active Learning pipeline, we employ 282
open-source data from the Allen Brain Data Repository, 283
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focusing on transgenic somatostatin-Cre (SOM-Cre) mouse284
strains (Sst-IRES-Cre;Ai14). The SOM-Cre strain is285
extensively studied to elucidate the physiological role of286
somatostatin-expressing neurons in the mouse brain [29]287
and its association with Alzheimer’s disease [24, 31],288
thus providing a pertinent dataset for our experimental289
validation. The dataset comprises detailed neuronal mouse290
brain sections, from which we strategically select a few for291
our Active Learning pipeline.292

293
Fluocells v2 dataset: Since our (pre-trained) model294
was primarily fine-tuned on an in-house neuron dataset, we295
sought to demonstrate its effectiveness on similar datasets296
by selecting the Fluorescent Neuronal Cells v2 dataset297
[8]. Fluocells comprise three fluorescence microscopy298
image collections, where rodent neuronal cell nuclei299
and cytoplasm are stained with cFOS, the b-subunit of300
Cholera Toxin (CTb), and orexin markers, highlighting301
their anatomical and functional characteristics. Ground302
truth annotations for these images are publicly available.303

304
LIVECell dataset: For performance validation, we305
compared our pre-trained model and UNET on the LIVE-306
Cell dataset [10], a comprehensive, high-quality dataset of307
phase-contrast images that have been manually annotated308
and validated by experts. It includes over 1.6 million309
cells, encompassing a wide range of cell morphologies310
and culture densities. Prior to model input, all images311
underwent standard pre-processing procedures, including312
intensity normalization and patching.313

3.2. Active Learning performance on SOM-Cre314
mouse line dataset315

To evaluate the effectiveness of our Active Learning316
pipeline on novel data, we employ unseen SOM-Cre mouse317
line samples from the Allen Brain Data repository, which318
differ in neuron size and structure from our training set. As319
a result, the current model checkpoint shows suboptimal320
performance on this new dataset. To address this domain321
shift, we generate preliminary (dirty) ground truth using322
our neuron detector on a strategically chosen subset of323
samples, then refine these annotations manually via the324
Active Learning loop. These corrected samples, along325
with their key points, are used by the segmentation model326
to generate the corresponding masks. The generated327
masks are further refined using an intensity thresholding328
parameter, which enables the elimination of extraneous329
neurons, thereby producing a more accurate and cleaner330
ground truth mask. After pre-processing, the images and331
their masks are converted into patches and fed into our332
model for fine-tuning. We conduct minimal fine-tuning333
(approximately 10 epochs) and present the qualitative334
results of our model before and after Active Learning335

as seen in Figure 2. It presents distinct sections of the 336
mouse brain, accompanied by the masks generated by 337
our pipeline before and after the application of Active 338
Learning. In addition to the full section masks, the top rows 339
(1st and 3rd rows) display zoomed-in subsections with 340
their corresponding masks overlaid. 341

342
Before Active Learning, our model struggled to accu- 343
rately capture neurons, often producing blob-like masks 344
with a significant number of false positives. However, in 345
post-active learning, our model demonstrates an enhanced 346
capability to precisely identify and generate individual 347
masks for specific neurons. By employing a detection 348
model followed by image segmentation, we effectively 349
address the issue of multiple neurons being amalgamated 350
under a single mask. As illustrated in the zoomed-in 351
subsections in Figure 2, our model successfully generates 352
distinct masks for neurons even in close proximity. Ad- 353
ditionally, the intensity-based thresholding significantly 354
reduces false positives, resulting in cleaner and more 355
accurate segmentation. 356

357
We compare our model’s performance with UNET 358
[26] using the same data samples. As shown in Figure 359
2, UNET exhibits a higher occurrence of false positives 360
and often misses smaller-sized neurons. The zoomed-in 361
sections reveal that the segmentation masks generated by 362
UNET contain significant broken masks as well. 363

3.3. Evaluation on Fluocells v2 and LIVECell 364
dataset 365

To establish the baseline performance of our AL pipeline, 366
first we use the Fluocells v2 dataset and compare the results 367
with those obtained using UNET. We utilize the existing 368
test set for qualitative and quantitative evaluation. The pre- 369
processed, normalized images are passed through the neu- 370
ron detector and segmenter, and the DICE score [9] is com- 371
puted between the model’s output and the corresponding 372
ground truth. Figure 3 and Table 1 illustrate the quantita- 373
tive and qualitative results of our model and UNET on sam- 374
ples corresponding to the three stains present in the dataset. 375
Initially, we observe that our model’s results include the ac- 376
tual neurons (true positives) but also a significant number 377
of false positives, resulting in a low DICE score. To ad- 378
dress the issue of excessive false positives, we apply inten- 379
sity thresholding to the generated masks. As demonstrated 380
in Figure 3, this process effectively removed the false pos- 381
itives, leading to a significant increase in the DICE score 382
and producing a cleaner output mask. This improvement 383
was consistently observed across all three stains — cFOS, 384
CTb, and orexin. 385

While UNET achieves decent overall performance 386
and a comparable DICE score, our model demonstrates 387
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superior performance, particularly in handling samples388
with varying intensity levels. UNET struggles to capture389
low-intensity neurons, resulting in missed detections and a390
lower DICE score in such cases. In contrast, our model is391
better equipped to handle these variations, leading to more392
accurate segmentation and higher overall performance. A393
similar trend is observed for the LIVECell dataset (Table394
1), where our model achieves superior performance across395
all metrics. Notably, it outperforms Cascade Mask R-CNN396
[4], the current state-of-the-art for cell segmentation, along397
with the other models.398

399
Using the Fluocells, LIVECell and SOM-Cre Mouse400
line datasets, we demonstrate the performance of our401
framework. While the improvements in DICE score402
are sometimes modest, these small gains can be crucial403
for large-scale brain-wide analyses where even a slight404
reduction in false positives or missed neurons can substan-405
tially influence downstream cell counting or morphology406
assessments. Moreover, the active learning component407
accelerates annotation, offsetting the complexity of the408
pipeline. Furthermore, it is important to note that once the409
intensity parameter is adjusted, the segmentation results410
closely match the ground truth, leading to near-perfect411
ground truth masks.412

4. Conclusion413

We present Segment AnyNeuron, an active learning-based414
framework for neuron segmentation using Detectron2 and415
HQ-SAM. This approach reduces manual annotation needs416
by iteratively refining the model with minimal ground417
truth correction while maintaining high performance.418
Advanced preprocessing, including intensity normalization419
and patch-based segmentation, ensures clean inputs, and420
intensity-based thresholding further enhances accuracy.421
We validate our framework on the Fluocells, LIVECell,422
and SOM-Cre mouse line datasets, showing high accuracy423
and robustness. Active Learning on the SOM-Cre dataset424
further improves performance, mitigating the cold-start425
problem and optimizing manual annotation of key samples.426

427
While our approach adds overhead from the two-stage428
detection and segmentation pipeline, the Active Learning429
loop ultimately reduces total manual annotation effort430
compared to a fully supervised approach, making the431
added compute cost worthwhile for large datasets. Looking432
ahead, automating intensity-threshold selection and further433
refining HQ-SAM for smaller neuronal structures are434
promising directions to explore. Despite these limitations,435
Segment AnyNeuron offers a robust and adaptable solution436
for neuron segmentation, combining state-of-the-art models437
with Active Learning efficiency. This method enhances438
segmentation accuracy and provides a scalable approach439

for complex medical imaging datasets, paving the way for 440
future innovations in medical image analysis. 441
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