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Abstract

This paper studies the problem of entropy identity testing: given sample access
to a distribution p and a fully described distribution q (both discrete distributions
over a domain of size k), and the promise that either p = q or |H(p)−H(q)| ⩾ ε,
where H(·) denotes the Shannon entropy, a tester needs to distinguish between
the two cases with high probability. We establish a near-optimal sample com-
plexity bound of Θ̃(

√
k/ε + 1/ε2) for this problem, and show how to apply it to

the problem of identity testing for in-degree-d n-dimensional Bayesian networks,
obtaining an upper bound of Õ(2d/2n3/2/ε2 + n2/ε4). This improves on the
sample complexity bound of Õ(2d/2n2/ε4) from [CDKS20], which required an
additional assumption on the structure of the (unknown) Bayesian network.

1 Introduction

Entropy is a fundamental information theory notion, which quantifies the amount of “uncertainty”
a given random variable carries. Since its introduction by Shannon, this notion has found myriads
of applications, and is central – among others – to compression and coding, probability, electrical
engineering, and learning theory.

As a result, the task of estimating the Shannon entropy of a discrete random variable (or, equiva-
lently, its probability distribution) from samples has naturally emerged, starting (in Computer Sci-
ence) with the work of [BDKR02] which considered multiplicative approximations. Additive ap-
proximation of the entropy (within ±ε) was then considered in a series of papers [VV11a, VV11b,
VV13, HJW15a, ADOS17], culminating with the work of [WY16], which establishes the optimal
sample complexity, Θ

(
k

ε log k + log2 k
ε2

)
, where k ≫ 1 is the domain size.

While the resulting sample complexity is sublinear in the domain size k, it is only so by a mere
logarithmic factor. In some settings, paying this near-linear dependence in the amount of data nec-
essary is impractical, typically in the large-domain regime (e.g., for high-dimensional data, where
k is exponential in the dimension); moreover, it may even be unnecessary. Specifically, one may
not be concerned so much about the (approximate) value of the entropy of a distribution, but rather
about whether it is above a threshold, or differs from that of a given purported model.

It is this latter task we introduce and consider in our work, which can be seen as a variant of the
standard identity testing question from distribution testing: given a reference known hypothesis
distribution q over a domain of size k, and i.i.d. samples from an unknown distribution p, what is
the sample complexity of testing whether p is equal to q, or their entropies differ significantly? And,
crucially, is this testing task more sample-efficient than that of estimating H(p)?
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Entropy Identity testing: Given a reference distribution q, parameter ε > 0, and samples
from an unknown p, what is the cost of deciding (with high probability) whether p = q vs.
|H(p)−H(q)| > ε, with correct probability at least 2/3?

Note that in the case where q is the uniform distribution over the domain, this task is equivalent to
distinguishing between H(p) = log k and H(p) < log k − ε.

Our main contribution is to show that the testing question can indeed be performed much more
efficiently than the estimation one, at least for most parameter regimes. Specifically, we establish
the following theorem:

Theorem 1.1. The sample complexity of entropy identity testing is O(
√

k log(k/ε)/ε+log2(k)/ε2).
Moreover, this is nearly tight: Ω(

√
k/ε+ log2 k/ε2) samples are necessary in the worst case.

Interestingly, this differs both from the estimation task (which, as discussed before, has a near-linear
dependence on the domain size k) but also from identity testing in total variation distance, which
has sample complexity Θ(

√
k/ε2) (see Section 1.1).

Application: Identity testing for Bayesian networks. As an application of Theorem 1.1, we
derive an efficient algorithm for identity testing (in total variation distance) for maximum in-degree
d Bayesian networks (shorten as degree-d Bayes net in the remaining of the paper):1

Theorem 1.2 (Informal; see Theorem 3.1). There is an algorithm which, given sample access to a
degree-d Bayes net p and the full description of a reference degree-d Bayes net q (both over {0, 1}n),

takes Õ
(

2d/2n3/2

ε2 + n2

ε4

)
samples from p, and distinguishes between p = q and dTV(p, q) ≥ ε.

Prior to this, the best known sample complexity upper bound for this task [CDKS20] was quadrati-
cally worse in both n and ε, and further required an assumption on the underlying graph structure of
both p and q. We emphasize that (1) our result improves on the sample complexity of the learning
baseline for d ≫ log(n/ε), and on its computational efficiency; and (2) compared to the previous
testing results, removes strong structural assumptions which considerably limited their applicability.
We elaborate on this in the next section.

1.1 Related work

As previously discussed, entropy estimation has received a considerable amount of interest from
computer scientists, information theorists and statisticians [BDKR02, Pan04, HJW15a, WY16]. En-
tropy is also a key example of symmetric property (invariant to relabeling of the domain) [VV11a,
VV11b, VV13, ADOS17], and has been considered in other settings as well, e.g., the quantum
case [GHS21, AISW20] and the memory-limited setting [ABIS19, AMNW22]. Estimation of some
generalizations of Shannon entropy, such as the family of Rényi entropies, also have been stud-
ied [AOST17].

Over the years, sample complexity of identity testing for discrete distribution has been intensively
studied and essentially settled [Pan08, BFF+01, VV17]. In high dimensions, however, the square
root dependence of the sample complexity on the domain size means that most identity testing
tasks of interest require sample complexity exponential in the dimension. Moreover, this curse of
dimensionality extends to a large range of distribution testing problems [BCY22, Theorem B.1]. As
such, many turn to the study of testing distributions under additional natural structural assumptions,
such as graphical models: [BGKV21] look at identity testing for product distributions (degree-0
Bayes nets) and give the optimal bound of Θ(

√
n|Σ|/ε2), where |Σ| is the alphabet size of each

variable (rather than binary alphabet studied in our paper). [DDK19, KDDC23] study testing Ising
models, obtaining sample complexity bounds that are poly(n/ε); [DP16], [CDKS20] give tight
results to identity testing and closeness testing for a variety of constant in-degree Bayes nets, which
also gives polynomial sample complexity bounds.

However, the testing algorithms provided in [CDKS20] and [DP16] are not fully satisfactory, as they
require some strong assumptions on Bayes nets. Specifically, [CDKS20, Theorem 21] assumes that

1Our algorithm actually provides a stronger guarantee, with respect to Hellinger distance, which implies the
TV result as dTV(p, q) ≤

√
2 dH(p, q) for any two distributions p, q.
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the topological ordering of the two Bayes nets are the same, and shows that under this assumption
O(2d/2n2/ε4) samples are sufficient.2 [CDKS20, Theorem 17] makes the further stringent restric-
tion that the reference Bayes net has to be balanced, i.e., that the conditional probabilities are all
bounded away from 0 and 1; moreover, it also requires every parental configuration to be bounded
from 0, and that the structure of the unknown Bayes net be a subset of that of the reference one.
The result of [DP16, Theorem 4.2] combined with the Hellinger tester from [DKW18, Theorem
1] implies that, under the assumption that p and q share the same factorization structure (i.e., their
associated DAGs are the same or one is a subgraph of the other), then this problem is solvable in
Õ
(
2d/2n/ε2

)
samples. While this latter sample complexity is near-optimal (in some regime3), in

view of the Ω
(
2d/2n/ε2

)
lower bound obtained in [BCY22, Theorem 4.1], the factorization struc-

ture requirement considerably limits the applicability of the algorithm.

One can also compare our result to the learning results on Bayesian networks, as any learning
algorithms enables testing as well (the “testing-by-learning” baseline). It is known [CDKS20])
that learning degree-d Bayes nets can be done with Õ(2dn/ε2) samples, without any structural
assumptions. Our testing result improves on this sample complexity as long as n2/ε4 ≪ 2dn/ε2

and 2d/2n3/2 ≪ 2dn, i.e., for d ≫ log(n/ε); moreover, it is worth noting that the known learning
algorithms are computationally inefficient (running in time nO(dn) via an enumeration of all possible
underlying graph structures [CDKS20, BGMV20]), and this is believed to be inherent [CHM04]. In
contrast, our algorithm runs in time poly(nd, 1/ε).

1.2 Techniques overview

Testing in entropy. A first idea is to use the conversion between total variation (TV) distance
and entropy difference to reduce this problem to identity testing in TV: When dTV(p, q) ⩽
1/2, then |H(p) − H(q)| ⩽ dTV(p, q) log

k
dTV(p,q) [CK11, Lemma 2.7].4 This gives an up-

per bound of O(
√
k log2(k/ε)

ε2 ), which is already better than the sample complexity of estimation:

O
(

k
ε log k + log2 k

ε2

)
for the parameter k. However, it is not clear whether the quadratic dependence

on ε is necessary: indeed, the “hard instances” for TV testing (the Paninski construction [Pan08]),
small perturbations around the uniform distribution which have TV distance ε from uniform, actu-
ally only have entropy log k − Θ(ε2). The Ω(

√
k/ε2) uniformity testing lower bound from these

hard instances thus only implies an Ω(
√
k/ε) entropy identity testing lower bound!

A next natural idea is to strengthen the lower bound. However, it then becomes clear that the
Paninski [Pan08] construction cannot be improved: as just mentioned, when its TV distance to the
uniform distribution is around Θ(

√
ε) its entropy difference to it is only Θ(ε) (giving an Ω(

√
k/ε)

lower bound). Moreover, this is not a coincidence: when the reference distribution q is uniform, we
are able to get a matching upper bound using [DKW18, Algorithm 1], upon noticing that

H(p) = log k − dKL(p∥uk), (1)

which implies dKL(p∥uk) = log k − H(p) ⩾ ε, where uk is the uniform distribution on [k] and
dKL denotes the Kullback–Leibler divergence. Interestingly, a completely different hard instance,
against a very much non-uniform reference distribution, does yield the second term of our lower
bound, Ω(log2 k/ε2).

Inspired by these two different lower bounds, we can generalize (1) by defining A as the set of “not
too small probability elements under q”, and then observing (looking ahead, using the inequality
(7)) that

|H(pA)−H(qA)| ⩽ |dKL(pA∥qA)|+

∣∣∣∣∣∑
i∈A

(pi − qi) log
1

qi

∣∣∣∣∣ (2)

where H(pA) is the “entropy” of the sub-distribution restricted to the set A. In particular, this hints
that one could solve the general problem by testing if either of the two terms on the right-hand-side

2While the sample complexity of the algorithm is not explicitly stated in their proof, inspection of their
argument yields this bound.

3The lower bound [BCY22, Theorem 4.1] only holds under the sparse regime: d ≪ logn.
4All logarithms in the paper are natural (e as base).
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is large. The name of the game now is to (i) choose the threshold for A (i.e., what does it mean
for an element to have “not too small probability under q”), and (ii) have algorithms to test whether
these two quantities are noticeably large.

Let us focus on how to test the first term of (2). If mini qi ⩾ Ω
(
ε
k

)
, we can adapt and use an

algorithm of [DKW18] to efficiently test dKL(p∥q) ⩾ ε vs. p = q. In addition, if log(1/qi) is
bounded, then in fact, estimating the second term to O(ε) is possible as well. Thus it is natural to
wonder if we can afford to neglect the region where qi ⩽ ε

k . Indeed, the impact on entropy is at
most O(τ log(k/τ)) if we are to remove regions with at most O(τ) as mass. Thus, by adjusting the
appropriate threshold, we can still detect difference in entropy even if we only test on elements with
greater than τ/k masses, where τ = ε

log(k/ε) .

The problem then becomes to check if p puts more than 100τ mass in Ā = {i ∈ [k] : qi < τ/k},
which costs O(1/τ) = O(log(k/ε)/ε) samples. If it does, then it cannot be the case that p = q;
we can reject. After this stage, both p(Ā), q(Ā) ⩽ O(τ). To move forward, we need to check the
influence on entropy: H(p) and H(q). By Jensen’s inequality and monotonicity of f(x) = x log 1

x

when x < 1
e , we have ∑

i∈Ā

pi log
1

pi
⩽ p(Ā) log k

p(Ā)
⩽ τ log

k

τ
.

Therefore, the impact on entropy will be at most O
(
τ log k

τ

)
. Setting τ = ε

log(k/ε) , this becomes
O(ε), which gives us the room to check if |H(pA)−H(pA)| ⩾ 100ε or pA = qA.

Testing Bayesian networks. Similar to [DP16, Theorem 4.2],5 the identity testing algorithm is
straight-forward: check all every i ∈ [n], if pXi,ΠG

i
= qXi,ΠG

i
or is one of them is far apart, where

q is Markov with respect to G (q factorizes according the DAG G). The main technical part is to
show that the distance is “subaddititve” when p and q share no common structure, but are close to
sharing a common factorization structure (this can be thought of as a relaxtion of [DP16, Theorem
4.2]; refer to Lemma 3.3 for details). As a consequence of “subadditivity”, if p and q are far in
distributional distance (differed from [DP16], our work opted to test in KL divergence restricted on
subsets with large enough density), then it would imply that one of the local distance between p and
q is sufficiently large. This allows us to reduce from global testing to local testing.

Another key aspect is checking whether p and q are close to sharing common structure. More
specifically, whether dKL(p∥pG) is small, where pG is the projection of p unto q’s DAG G. Here,
we establish a connection between entropy closeness and structure closeness. In particular, we show
that if every local entropy (involving subsets of size d + 1, where d is the bound on maximum
in-degree) between p and q is close, then this means that they must approximately share the same
structure (see Lemma 3.4). The intuition behind the connection is that if all tests pass, then we can
conclude that p and q are close in local entropy and thereafter, we can utilize entropy of q to learn
the graphical structure [KCG+23] of p (which uses no additional samples).

At a high level, our algorithm first check if p and q roughly share the same structure via a proxy
check of local entropy tests. If all local entropy tests pass, then we can show that there exists i ∈ [n]

such that local KL restricted on subset with large enough mass is greater than Ω
(

ε2

n

)
. A subsequent

identity test with χ2-test [DKW18] suffice.

Preliminaries and notation. The (Shannon) entropy H of a discrete distribution p supported on
[k] is given by:

H(p) = −
∑
i∈[k]

pi log pi.

The conditional entropy H(pX | pY ) for X supported on X , and Y on Y , defined by the joint
distribution pX,Y , can be written as

H(pX | pY ) = −
∑

x∈X ,y∈Y
p(x, y) log

p(x, y)

p(y)
= H(pX,Y )−H(pY ). (3)

5We note that what they refer to as “identity testing” is different from ours (and the standard) use of the term:
in their setting, the reference distribution is replaced with sample access to the distribution (this is commonly
referred to as “closeness testing”).
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We adopt the entropy notation for a sub-probability vector H(qA) =
∑

i∈A qi log
1
qi
. Throughout

this paper, we will use e as base of the log and of the entropy. We will use← for variable assignment.
We adopt the standard O(·), Ω(·) and Θ(·) asymptotic notation and use ·̃ to hide any polylogarithmic
factors in the argument. We will use various metrics or divergences on probability distributions:
Kullback–Leibler (dKL), Hellinger (dH), chi-squared (dχ2 ), and total variation (dTV). We denote
pA as restricting p onto the elements in A, and we denote distributional distances restricting on A
as follows: dKL(pA, qA) =

∑
i∈A pi log

pi

qi
. dH(pA, qA) = 1√

2

√∑
i∈A

(√
pi −

√
qi
)2

. For a set
A, we write p(A) =

∑
i∈A pi. We also have the following inequality [DKW18, Proposition 1]:

dTV(pA, qA) ⩽
√
2 dH(pA, qA) ⩽

√∑
i∈A

(qi − pi) + dKL(pA, qA) ⩽
√

dχ2(pA, qA). (4)

A distribution p supported over the hypercube {0, 1}n is a Bayesian network if its probability mass
function satisfies the factorization associated with G, a directed acyclic graph (DAG):

p(x1, · · · , xn) =

n∏
i=1

p(xi|Πi), (5)

and Πi is the set of parents of Xi in G; and we say that p is Markov with respect to DAG G. In
section 3, slightly abusing notation, we use pG to denote a projection of a Bayes net p to a DAG G
(which it may or may not be Markov with respect to; see Definition 3.2). We work in the Poissonized
setting (see, e.g., [Can22, Appendix C]) – instead of drawing N samples directly from p, we draw
Y ∼ Poi(N) samples from p, where Poi(N) denotes the random variable distributed as the Poisson
distribution with parameter N . The Poissonized and usual sampling settings are equivalent for
constant probability of failure, up to a (small) multiplicative factor in the sample complexity.

2 Near-optimal entropy testing

We prove Theorem 1.1, establishing the sample complexity upper and lower bounds separately.

2.1 An O
(√k log(k/ε)

ε + log2(k)
ε2

)
upper bound

We will prove the following theorem:
Theorem 2.1. There is an algorithm (Algorithm 1) which, given n samples from a discrete distri-
bution p, the full description of a reference distribution q, both over [k], and parameter ε > 0,
distinguishes between p = q and |H(p)−H(q)| ⩾ ε with probability at least 2/3, as long as

n ≥ c1

(√
k log(k/ε)

ε
+

log2(k)

ε2

)
and c2ε ⩽ k, for some absolute constants c1, c2 > 0. Moreover, the algorithm runs in time linear in
the number of samples n and the domain size k.

The proof will rely on the two following claims and Lemma 2.4, which is a straightforward ex-
tension of [DKW18, Lemma 2]. Their proofs are deferred to Appendix B. Throughout, we let
τ := ε

16 log(k/ε) , and A :=
{
i ∈ [k] | qi ⩾ τ

k

}
, as in Algorithm 1.

Claim 2.2. Let A be any set such that p(Ā) < ε/2. Then, if |H(pA)−H(qA)| ⩾ ε, we must have
(i) dKL(pA∥qA) ⩾ ε

2 or (ii) |
∑

i∈A(pi − qi) log(
1
qi
)| ⩾ ε

2 .

Claim 2.3. Let p̂ be the empirical estimator for an unknown discrete distribution p supported on
[k], based on Poi(m) samples, where m = Θ

(
log2(k)

ε2

)
; assume that dχ2(pA, qA) ⩽ ε/8 and

p(Ā) + q(Ā) ⩽ 4τ = 1
4

ε
log(k/ε) ,6 then

Pr

[∣∣∣∣∣∑
i∈A

(pi − p̂i) log
1

qi

∣∣∣∣∣ ⩾ 1

8
ε

]
⩽

1

100
.

6One can remove the assumption that p(Ā) + q(Ā) ⩽ 4τ , at the cost of a slightly worse constant.
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Algorithm 1 Entropy identity testing
Require: Sample access to p and full description of q, both over [k]; accuracy parameter ε.

1: Set τ := ε
16 log(k/ε) , and A :=

{
i ∈ [k] | qi ⩾ τ

k

}
.

2: Take m1 = 48/τ samples from p and compute the empirical p̂′.
3: Compute Z1 = p̂′(Ā).
4: if Z1 ⩾ 2τ then return reject ▷ Early rejection.

▷ Ni: the empirical count among samples of the i-th element.

5: Let m2 = 65536

(√
k·log(k/ε)

ε

)
. Draw Poi(m2) samples from p and compute

Z2 =
∑
i∈A

(Ni −Nqi)
2 −Ni

Nqi
.

6: if Z2 ⩾ 1
16m2ε then return reject

7: Let m3 = 140800
(

log2(k)
ε2

)
8: Draw Poi(m3) samples from p, compute the empirical p̂; let Z3 ←

∣∣∣∑i(p̂i − qi) log
(

1
qi

)∣∣∣.
9: if Z3 ⩾ 1

8ε then return reject
10: return accept

Lemma 2.4. Let A := {i ∈ [k] | qi ⩾ α}. Let m2 ⩾ 16384max
{√

1
αε ,

√
k
ε

}
be the number of

samples used to compute Z2. Then E[Z2] = m2dχ2(pA, qA). Moreover, if dχ2(pA, qA) ⩽ ε
2 , then

Var[Z2] ⩽ ( 1
32m2ε)

2. If dχ2(pA, qA) ⩾ ε, then Var[Z2] ⩽ O(E[Z2]
2).

Proof of Theorem 2.1. We prove the statement by analyzing Algorithm 1. First, note that excluding
the set of Ā (elements with small mass), can change the value of H(q) by at most ε/8: indeed,
by Jensen’s inequality (f(x) = log x is concave) and x log 1

x being monotonically increasing in
(0, 1/e),

H(qĀ) =
∑
i∈Ā

qi log
1

qi
⩽ q(Ā) log |Ā|

q(Ā)
⩽ τ log

k

τ
=

ε

16 log(k/ε)
log

(
16k

ε/ log(k/ε)

)
⩽

1

8
ε,

when τ ⩽ 1/e. Similarly, if p(Ā) ⩽ 3τ , we have that H(pĀ) ⩽
3
8ε. Therefore,

ε ⩽ |H(p)−H(q)| ⩽ |H(pA)−H(qA)|+ |H(pĀ)−H(qĀ)|
⩽ |H(pA)−H(qA)|+ |H(pĀ)|+ |H(qĀ)|
⩽ |H(pA)−H(qA)|+ 1

2ε.

For Line 4, we prove the following: with probability at least 99/100, if Z1 ⩾ 2τ , then p(Ā) ⩾ τ ;
and if Z1 < 2τ , then p(Ā) < 3τ (this is a standard technique; see e.g., [Can22, Fact 2.2].) For the
sake of completeness we include the full derivation in the Appendix A.

After Line 4 of Algorithm 1. We conclude from the above that

i. A still has sufficient entropy gap to test on: |H(pA)−H(qA)| ⩾ 1
2ε.

ii. With probability at least 99/100, when p = q, it will not be rejected in Algorithm 4 of
Line 4; and once it is pass through this stage, we have p(Ā) ⩽ 3τ .

Completeness: when p = q.

• We have that dχ2(pA, qA) = 0, and via Lemma 2.4, we know that E[Z2] = 0 and Var[Z2] ⩽
1

322m
2
2ε

2. By Chebyshev’s inequality,

Pr
[
|Z2 − E[Z2]| ⩾ 2

√
Var[Z2]

]
⩽

1

4
, and so Pr[Z2 ⩾ 2 · 1

32
m2ε+ E[Z2]] ⩽

1

4
;

and we have Pr[Z2 ⩾ 1
16m2ε] ⩽ 1

4 .
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• On the other hand, by Claim 2.3, setting m3 = 140800 log2(k)
ε2 , we have that with probability at

least 99/100,

Z3 =

∣∣∣∣∣∑
i∈A

(p̂i − qi) log
1

qi

∣∣∣∣∣ =
∣∣∣∣∣∑
i∈A

(p̂i − pi) log
1

qi

∣∣∣∣∣ ⩽ 1

8
ε.

Therefore, with probability at least 1− 1
4 −

2
100 = 73

100 > 2
3 , the tester will accept.

Soundness: when |H(p) − H(q)| ⩾ ε. If p(Ā) ⩾ 3τ then p̂(Ā) ⩾ 2τ with probability 99/100,
and the algorithm will output Reject. We proceed assuming p(Ā) ⩽ 3τ and recall Item ii. from
before, we have |H(pA) − H(qA)| ⩾ 1

2ε. By Claim 2.2, we have that either dKL(pA, qA) ⩾
1
4ε or

∣∣∑
i∈A(pi − qi) log (1/qi)

∣∣ ⩾ 1
4ε. We apply Lemma 2.4, setting α = τ/k and m2 ⩾

65536
√
k log(k/ε)/ε.

• If dKL(pA∥qA) ⩾ 1
4ε, with (4) and exp(3/2) ⩽ k/ε, we have

1

8
ε ≤ −3τ + dKL(pA, qA) ⩽

∑
i∈A

(qi − pi) + dKL(pA, qA) ⩽ dχ2(pA, qA),

which by Lemma 2.4, and our setting of m2 and α, implies Var[Z2] ⩽ ( 14E[Z2])
2 and E[Z2] =

m2 · dχ2(pA, qA) ⩾ 1
8m2ε. By Chebyshev,

Pr
[
|Z2 − E[Z2]| ⩾ 2

√
Var[Z2]

]
⩽

1

4
and so Pr[Z2 ⩽

1

16
m2ε] ⩽

1

4
.

• On the other hand, if it is the case that
∣∣∑

i∈A(pi − qi) log (1/qi)
∣∣ ⩾ 1

4ε, by Claim 2.3, setting
m3 = 140800 log2(k)/ε2, with probability at least 99/100,

1

4
ε ⩽

∣∣∣∣∣∑
i

pi log
1

qi
− qi log

1

qi

∣∣∣∣∣
⩽

∣∣∣∣∣∑
i

(pi − p̂i) log
1

qi

∣∣∣∣∣+
∣∣∣∣∣∑

i

(p̂i − qi) log
1

qi

∣∣∣∣∣
⩽

1

8
ε+

∣∣∣∣∣∑
i

(p̂i − qi) log
1

qi

∣∣∣∣∣ .
We have that Z3 =

∣∣∣∑i(p̂i − qi) log
1
qi

∣∣∣ ⩾ 1
8ε and thus with probability at least 1− 1

4 −
2

100 = 73
100 ,

the following will happen, the tester will reject: either p(Ā) ⩾ 3τ , and it is rejected at Line 4 of
Algorithm 4, or it passes and p(Ā) ⩽ 3τ and

Z2 ⩾ 1
8m2ε or Z3 ⩾ 1

8ε,

and will be rejected. This concludes the proof.

Remark 2.5. We note that we can slightly improve the sample complexity of Theorem 1.1 (specif-
ically, improving on the

√
k log(k/ε) term), at the price of a more complicated algorithm, by

adding thresholds τ ′ = ε
log log(k/ε) , τ ′′ = ε

log log log(k/ε) , and considering separately the elements
in A′ = {i : qi ∈ (τ/k, τ ′/k]}, A′′ = {i : qi ∈ (τ ′/k, τ ′′/k]}; specifically, by grouping them in
groups, and “merging” each group to get a “new” element with larger probability. For the sake of
clarity, we defer this improvement to Appendix D.

2.2 An Ω(
√
k/ε+ log2 k/ε2) lower bound

The Ω(
√
k/ε + log2 k/ε2) lower bound comes from the combination of Lemma 2.6 and Lemma

2.7. We obtain Lemma 2.6 through the classical hard instance used for uniformity testing [Pan08]
and a simple conversion between TV distance and entropy difference gives the result. We note
that distributions close to uniform distribution actually have smaller entropy difference (uniform
distribution is quite special: having the highest entropy of log k). Indeed, replacing the uniform
distribution with a slightly biased distribution, we obtain another hard instance for Lemma 2.7,
using the classical Le Cam’s two-point method.
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Algorithm 2 Identity testing for bounded degree Bayes nets
Require: Sample access to Bayes net p, full description of Bayes net q, accuracy parameter ε,

in-degree d and dimension n.

1: S1 ← O

((
2d/2n

√
d log(n/ε)

ε2 + d2n2

ε4

)
d log n

)
samples from p;

2: S2 ← O
(

2d/2n
ε2

√
log(1/ε) · log n

)
samples from p;

3: for all L ∈ Nd+1 ∪Nd do ▷ Nℓ is all subsets of {0, 1}n with size ℓ
4: Call Algorithm 1 with pL, qL and S1; ▷ Entropy test on pL and qL with accuracy ε2/n.
5: if Entropy test rejects then return reject
6: S3 ← O

(
n2·log(n/ε)·d log(n)

ε2

)
samples from p and compute its empirical distribution p̂;

7: for all i ∈ [n] do
8: if p̂Xi,ΠG

i
(Ā′

i) ⩾ Ω(ε2/(n2 · log(n/ε))) then return reject

9: Check dKL(pXi,ΠG
i ;A′

i
∥qXi,ΠG

i ;A′
i
) ⩾ ε2

n or dKL(pXi,ΠG
i ;A′

i
∥qXi,ΠG

i ;A′
i
) = 0.

10: if i-th KL test says far then return reject
11: return accept ▷ Accept if all tests pass.

Lemma 2.6. With fewer than c3 ·
√
k/ε samples from p, no tester can distinguish between p = q

and |H(p)−H(q)| ⩾ ε with probability higher than 2/3, where c3 > 0 is an absolute constant.

Lemma 2.7. With fewer than c4 · log2 k/ε2 samples from p, no tester can distinguish between p = q
and |H(p)−H(q)| ⩾ ε with probability higher than 2/3, where c4 > 0 is an absolute constant.

3 Application to identity testing for Bayes nets

We now provide an application of our main entropy identity testing theorem, to obtain an improved
“standard” identity testing algorithm for Bayesian networks:
Theorem 3.1. Given sample access to an in-degree d Bayes net p and full description of in-degree
d Bayes net q, Algorithm 2 takes

C ·

(
2d/2nd3/2 log n ·

√
log(n/ε)

ε2
+

d3n2 · log n
ε4

+
2d/2n3/2 · log n

ε2

)
samples to test between p = q or dH(p, q) ⩾ Ω(ε), where C > 0 is an absolute constant. Moreover,
the algorithm runs in time polynomial in nd and 1/ε.

Before proceeding to the analysis of our algorithm, we require the following definitions.
Definition 3.2. A projection of a Bayes net p on {0, 1}n unto a DAG G is denoted pG, and is defined
by its probability mass function (PMF) as follows:

pG(X1, . . . , Xn) =

n∏
i=1

p(Xi | ΠG
i ),

where ΠG
i is the set of parents of Xi in G. Abusing the notation in the context of Bayesian networks,

we refer to pXi,Πi or pXi,Πi(xi, πi) as the marginal distribution of p on the subset {Xi,Πi}.

Denote U :=
⋃n

i=1Ai, whereAi :=
{
x ∈ {0, 1}n : qXi,ΠG

i
(xi(x), π

G
i (x)) ⩾ Ω

(
ε2

2d+1n2 log(n/ε)

)}
.

This gives us the property that marginalization over Xi = xi,Π
G
i = πG

i works nicely as we include
elements only based on its local property (as long as qXi,Πi is large enough). And q is Markov w.r.t.

G. We use (xi, πi) ∈ A′
i, where A′

i =
{
x′ ∈ {0, 1}|ΠG

i |+1 : qXi,ΠG
i
(x′) ⩾ Ω

(
ε2

2d+1n2 log(n/ε)

)}
.

Let (a,B) ∈ A′
i, we have that as long as (xi(x), πi(x)) = (a,B), then x ∈ Ai and vice versa,

which means that

U =

n⋃
i=1

Ai =

n⋃
i=1

{x ∈ {0, 1}n : (xi(x), π
G
i (x)) ∈ A′

i}.
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We will check if pXi,ΠG
i
(Ā′

i) ⩾ Ω(ε2/(n2 · log(n/ε))) and reject early if true; this takes

O
(

n2·log(n/ε)·d log(n)
ε2

)
samples for all tests to be correct via a union bound. After passing this

test, we can conclude that

p(Ū) =
∑

x∈
⋂n

i=1 Āi

p(x) ⩽
∑
x∈Ā1

p(x) =
∑

x′∈Ā′
1

pX1,ΠG
1
(x′) = pX1,ΠG

1
(Ā′

1) ⩽ O(
ε2

n2 · log(n/ε)
),

where we marginalize over everything other than (X1,Π
G
1 ) in the third step.

Similarly, we can upper bound q(Ū) ⩽ qXi,ΠG
i
(Ā′

i) ⩽ O(ε2/(n2 · log(n/ε))). Abusing the notation
slightly, we denote pG;U as the distribution obtained by projecting p onto G (which gives pG) and
then restricting the distribution pG to take elements in U .

We will need the following Lemma 3.3 whose proof is deferred to Appendix E.

Lemma 3.3. Suppose d2H(p, q) ⩾ Ω(ε2); dKL(p∥pG) ⩽ O(ε2); p(Ū) ⩽ ε2

n log(n/ε) ; ∀i ∈
[n], p(Ā′

i) ⩽ ε2

n2 log(n/ε) , where A′
i is defined above, and q is Markov with respect to G, then we

have
n∑

i=1

dKL(pXi,ΠG
i ;A′

i
∥qXi,ΠG

i ;A′
i
) ⩾ Ω(ε2).

Therefore testing dKL(pXi,ΠG
i ;A′

i
∥qXi,ΠG

i ;A′
i
) ⩾ ε2

n over all i suffices to detect this case.

In addition, to connect entropy testing to Bayes net testing, we will need the following Lemma 3.4,
whose proof will be deferred to Appendix E. And so if we can show that all local entropies between
Bayes nets p and q are sufficiently close, then this implies that p must be close to q’s DAG G and q
must also be close to p’s DAG G′.
Lemma 3.4. Let p and q be two max in-degree-d Bayes nets supported on {0, 1}n such that for
every subset L ⊆ {X1, · · · , Xn} of size d+ 1, the following holds:

|H(pL)−H(qL)| ⩽ O

(
ε2

n

)
.

Suppose p is Markov w.r.t. G′ and q Markov w.r.t. G. Then we have that

dKL(p∥pG) ⩽ O(ε2) and dKL(q∥qG′) ⩽ O(ε2).

Proof of Theorem 3.1. We show the result by analyzing Algorithm 2. By Theorem 1.1, the sample
complexity for entropy testing on any subset L of size (dimension) d or d+ 1, is

O
(
2d/2n

√
d log(n/ε)/ε2 + d2n2/ε4

)
.

To guarantee the success of every tests employed in the algorithm, we increase the sample complex-
ity of each test by an extra O(log(nd+1)) = O(d log n) factor to boost their success probability to
1− 1

100nd+1 (via a standard majority vote technique), which will allow us to use a union bound over
all tests as there are at most nd+1 subsets with size d+ 1. For this step, the sample complexity will
be

O

((
2d/2n

√
d log(n/ε)

ε2
+

d2n2

ε4

)
d log n

)
.

With this in hand, we will proceed with the analysis under the event that every entropy test performed
is correct (which by the above argument happens with high probability). If distribution p manages
to pass all the entropy tests, it must satisfy the following:

|H(pL)−H(qL)| ⩽
ε2

n
, (6)

for every subset L of size d + 1 for the latter, and every subset L of size d or d + 1 for the former.
From here, in principle, we can perform structural learning of p through H(qL), which then gives
us an approximated DAG Ĝ of p and we can check dH(pĜ, qĜ). Unfortunately, structural learning
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of Bayes nets is known to be computationally hard in many settings [Höf93, CHM04], and so this
would lead to a computationally inefficient algorithm.

Instead, we argue that this (learning) step can be bypassed entirely: the intuition of the argument is
to view structure learning for Bayes net as an optimization problem; and any assignment x to the
two optimization problems (structure learning of p and q) satisfy f1(x) = f2(x)±O(ε2) due to their
local entropy being close7 – this means that an optima x1 for f1 satisfies minx f1(x) = f1(x1) ⩾
f2(x1)− ε2 ⩾ minx f2(x)− ε2 and vice versa (optima x2 for f2).

Applying Lemma 3.4, we have that dKL(p∥pG) ⩽ O(ε2) where G is the DAG q is Markov
with respect to. With this at hand, we continue onto the KL testing part. The algorithm
will check if pXi,ΠG

i
(Ā′

i) ⩾ Ω(ε2/max(n, log(1/ε))) and reject early if it is true (this costs

O
(

d log(n)·max(n,log(1/ε))
ε2

)
samples) and then check for every i ∈ [n],

dKL(pXi,ΠG
i ;A′

i
∥qXi,ΠG

i ;A′
i
) ⩾

ε2

n
or dKL(pXi,ΠG

i ;A′
i
∥qXi,ΠG

i ;A′
i
) = 0.

Recalling (4), if the former case holds, we have

dχ2(pXi,ΠG
i ;A′

i
∥qXi,ΠG

i ;A′
i
) ⩾ pXi,ΠG

i
(Ā′

i)− qXi,ΠG
i
(Ā′

i)︸ ︷︷ ︸
⩽O(ε2/n)

+dKL(pXi,ΠG
i ;A′

i
∥qXi,ΠG

i ;A′
i
) = Ω

(
ε2

n

)

the bound on the first term following from the algorithm’s check on Line 10. Using Lemma 2.4, we
can perform the corresponding check for i ∈ [n], and after a union bound over n tests, noting that
q(xi, π

G
i ) ⩾

ε2

2d+1n2 log(n/ε)
when restricted on A′

i, the sample complexity is

O

((√
1/

(
ε2

2d+1n2 log(n/ε)
· ε

2

n

)
+

√
2d+1 · n
ε2

)
· log n

)
= O

(
2d/2n3/2

ε2
· log n

)
.

Following this, we look at the two cases:

• If p = q, then with high probability, p will pass all entropy tests, all KL local tests and the
tester will accept.

• If dH(p, q) ⩾ ε, either it fails one of the entropy tests. If it does pass the entropy test, then
we must have that dKL(p∥pG) ⩽ O(ε2) by (26). Then following Lemma 3.3 and Lemma
2.4, the tester will reject.

In total, the sample complexity is:

O

((
2d/2n

√
d log(n/ε)

ε2
+

d2n2

ε4

)
d log n+

2d/2n3/2

ε2
· log n

)
.

This concludes the proof of the theorem.

4 Conclusion and open problems

In this paper, we study a variant of distribution testing problem in terms of entropy difference; we
give nearly tight upper and lower sample complexity bounds for the problem. We subsequently
apply our entropy testing algorithm to identity testing of Bayes nets, which unlike prior works,
makes merely the necessary assumptions (the bound on the in-degree of the Bayes nets).

Future directions. We believe the closeness (two-sample) testing variant of the problem (testing
if two unknown distribution p and q are the same or far in terms of entropy difference) could also
be interesting; and, notably, has connections to other distribution testing problems: first, it should
lead to a natural solution to closeness testing of Bayes nets via ideas in this paper. Second, solving
the closeness entropy testing problem give another path to testing independence in terms of mu-
tual information (studied in [BGP+23] and also covered in [CDKS18]), a notion closely related to
entropy.

7Here, x is the DAG’s assignment of parents and child; and f1(x) (resp. f2(x)) is the associated KL-
divergence (also called score of the DAG in the literature, which measures the how well DAG models the true
Bayes net) between p (resp. q) and x. Since we are in the realizable setting, the optimal is in fact 0.
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A Derivation for Line 4 in Algorithm 1

We need to show the following: with probability at least 99/100, if Z1 ⩾ 2τ , then p(Ā) ⩾ τ ; and
if Z1 < 2τ , then p(Ā) < 3τ . For the first one, we prove by contrapositive: with high probability
1 − 1

200 , p(Ā) < τ ⇒ Z1 < 2τ . Suppose T = Binomial(m1, τ) and setting m1 = 48
τ ⩾ 3 log 200

τ ,
and using a Chernoff bound, we have the following

Pr[T ⩾ 2τ ] ⩽ exp(−τ ·m1/3) ⩽
1

200
.

Since any Binomial(m1, p(Ā)) will be first-order stochastic dominated by Binomial(m1, τ) if
p(Ā) < τ , we can conclude the following: if p(Ā) < τ , then Pr[Z1 ⩾ 2τ ] ⩽ Pr[T ⩾ 2τ ] ⩽ 1

200 .

For the latter, we prove via its contrapositive: with probability 1− 1
200 , p(Ā) ⩾ 3τ ⇒ Z1 ⩾ 2τ . As

p(Ā) ⩾ 3τ , take m1 = 48
τ ⩾ 9 log 200

τ , by a Chernoff bound, we have

Pr[p̂′(Ā) ⩽ 2τ ] ⩽ Pr[p̂′(Ā) ⩽ (1−1/3)·p(Ā)] ⩽ exp

(
−m1 · p(Ā)

18

)
⩽ exp

(
−m1 · τ

9

)
⩽

1

200
.

Combining the two with a union bound concludes the proof.

B Deferred proofs from Section 2.1

Claim 2.2. Let A be any set such that p(Ā) < ε/2. Then, if |H(pA)−H(qA)| ⩾ ε, we must have
(i) dKL(pA∥qA) ⩾ ε

2 or (ii) |
∑

i∈A(pi − qi) log(
1
qi
)| ⩾ ε

2 .

Proof of Claim 2.2. We can bound |H(pA)−H(qA)| as

ε ≤ |H(pA)−H(qA)| =

∣∣∣∣∣∑
i∈A

(
pi log

1

pi
− qi log

1

qi

)∣∣∣∣∣
=

∣∣∣∣∣∑
i∈A

(
pi log

qi
pi

+ pi log
1

qi
− qi log

1

qi

)∣∣∣∣∣
⩽

∣∣∣∣∣∑
i∈A

pi log
qi
pi

∣∣∣∣∣+
∣∣∣∣∣∑
i∈A

(
pi log

1

qi
− qi log

1

qi

)∣∣∣∣∣
= |dKL(pA∥qA)|+

∣∣∣∣∣∑
i∈A

(pi − qi) log
1

qi

∣∣∣∣∣ , (7)

which implies that at least one of the two terms is at least ε/2. If it is the second, we are done;
otherwise, we know that either

dKL(pA∥qA) ⩾
1

2
ε or dKL(pA∥qA) ⩽ −

1

2
ε.

We will rule out the second case, using that log 1
x ⩾ 1− x for x > 0,8

dKL(pA∥qA) =
∑
i∈A

pi log
pi
qi

⩾
∑
i∈A

pi

(
1− qi

pi

)
= q(Ā)− p(Ā) > −1

2
ε.

Thus, we cannot have dKL(pA∥qA) ⩽ − 1
2ε and so dKL(pA∥qA) ⩾ 1

2ε.

Claim 2.3. Let p̂ be the empirical estimator for an unknown discrete distribution p supported on
[k], based on Poi(m) samples, where m = Θ

(
log2(k)

ε2

)
; assume that dχ2(pA, qA) ⩽ ε/8 and

p(Ā) + q(Ā) ⩽ 4τ = 1
4

ε
log(k/ε) ,9 then

Pr

[∣∣∣∣∣∑
i∈A

(pi − p̂i) log
1

qi

∣∣∣∣∣ ⩾ 1

8
ε

]
⩽

1

100
.

8In the case of pi = 0, we still have pi log
(

pi
qi

)
⩾ pi − qi.

9One can remove the assumption that p(Ā) + q(Ā) ⩽ 4τ , at the cost of a slightly worse constant.
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Proof of Claim 2.3. We follow the same analysis as in [WY16]. Letting Yi := (pi − p̂i) log
1
qi

for
i ∈ A, we have E[Yi] = 0 and

Var[Yi] = E[(Yi − E[Yi])
2] = E[Y 2

i ] = E[(pi − p̂i)
2] log2

1

qi
=

1

m2
(mpi) log

2 1

qi
=

pi
m

log2
1

qi
.

Let Y :=
∑

i∈A(pi − p̂i) log
1
qi

. We will use our assumption that dχ2(pA, qA) ⩽ ε/8 and p(Ā) +
q(Ā) ⩽ 1

4
ε

log(k/ε) below. Note that, our analysis is in the Poissonized setting:

Var[Y ] = Var

[∑
A

(pi − p̂i) log
1

qi

]

=
∑
i∈A

pi
m

log2
(
1

qi

)

=
∑
i∈A

pi
m

(
log

(
1

pi

)
+ log

(
pi
qi

))2

⩽
∑
i∈A

pi
m

(
2

(
log

(
1

pi

))2

+ 2

(
log

(
pi
qi

))2
)

=
∑
i∈A

2

m
pi log

2

(
1

pi

)
+
∑
i∈A

2

m
pi log

2

(
pi
qi

)
⩽

∑
i∈A

2

m
pi log

2

(
1

pi

)
+

∑
pi
qi

⩾1,i∈A

2

m
pi

(
pi
qi
− 1

)
+

∑
pi
qi

<1,i∈A

2

m
pi

(
qi
pi
− 1

)
(8)

=
∑
i∈A

2

m
pi log

2

(
1

pi

)
+

∑
pi
qi

⩾1,i∈A

2

m

(pi − qi)
2

qi
+

∑
pi
qi

⩾1,i∈A

2

m
(pi − qi) +

∑
pi
qi

<1,i∈A

2

m
(qi − pi)

⩽
4 log2 k

m
+

6

m
+

2

m
(dχ2(pA, qA) + dTV(p, q)) (9)

⩽
4 log2 k

m
+

6

m
+

2

m

(
ε

8
+

√
ε

8
+ 4τ

)
⩽

4 log2 k

m
+

8

m
⩽

22 log2 k

m
(10)

For (8), we analyze by two cases: if pi

qi
⩾ 1, we have that pi log

2
(

pi

qi

)
⩽ pi

(
pi

qi
− 1
)

;

otherwise, pi log
2
(

pi

qi

)
= pi log

2
(

qi
pi

)
< pi

(
qi
pi
− 1
)

. And we use [HJW15b, Lemma3],∑
i∈A pi log

2
(

1
pi

)
⩽ 2 log2 k + 3 in (9). We use the premise and (4) in (10) and we have that

dTV(p, q) = dTV(pA, qA) + dTV(pĀ, qĀ) ⩽
√
dχ2(pA, qA) + p(Ā) + q(Ā) ⩽

√
ε

8
+ 4τ ;

and the last step is obtained by noticing that log(k) ⩾ 2
3 for k ⩾ 2. By Chebyshev’s inequality, we

then have that

Pr

|Y | ⩾ 10

√
38 log2 k

m

 ⩽ Pr
[
|Y − E[Y ]| ⩾ 10

√
Var[Y ]

]
⩽

1

100
,

and this last inequality yields the statement as long as m ⩾ 22×100×82 log2(k)
ε2 = 140800 log2(k)

ε2 .

Lemma 2.4. Let A := {i ∈ [k] | qi ⩾ α}. Let m2 ⩾ 16384max
{√

1
αε ,

√
k
ε

}
be the number of

samples used to compute Z2. Then E[Z2] = m2dχ2(pA, qA). Moreover, if dχ2(pA, qA) ⩽ ε
2 , then

Var[Z2] ⩽ ( 1
32m2ε)

2. If dχ2(pA, qA) ⩾ ε, then Var[Z2] ⩽ O(E[Z2]
2).
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Proof of Lemma 2.4. The proof is a relatively straightforward modification of the argument
of [DKW18, Lemma 2]. We have the expectation and variance of Z2,

E[Z2] = m2dχ2(pA, qA) and Var[Z2] =
∑
i∈A

[
2
p2i
q2i

+ 4m2
pi(pi − qi)

2

q2i

]
.

It boils down to bounding the following,

2
∑
i∈A

p2i
q2i

⩽ 4k + 4
∑
i∈A

(pi − qi)
2

q2i

⩽ 4k +
4

α

∑
i∈A

(pi − qi)
2

qi

⩽ 4k +
4

αm2
E[Z2].

Derivation of the inequalities follow from [DKW18, proof of Lemma 2].

4m2

∑
i∈A

pi(pi − qi)
2

q2i
⩽ 4m2

(∑
i∈A

p2i
q2i

)1/2(∑
i∈A

(pi − qi)
4

q2i

)1/2

⩽ 4m2

(
4k +

4

αm2
E[Z2]

)1/2
(∑

i∈A

(pi − qi)
2

qi

)

= 4

(
2
√
k + 2

√
1

αm2
E[Z2]

)
E[Z2]

= 8
√
kE[Z2] + 8(αm2)

−1/2(E[Z2])
3/2.

Combing both, we have that

Var[Z2] ⩽ 4k +

(
4

αm2
+ 8
√
k

)
E[Z2] + 8(αm2)

−1/2(E[Z2])
3/2. (11)

When dχ2(pA, qA) ⩽ ε/2, then E[Z2] ⩽
m2ε
2 ; and we solve Var[Z2] ⩽ ( 1

32m2ε)
2, which gives

4k +

(
4

αm2
+ 8
√
k

)
m2ε

2
+ 8(αm2)

−1/2(
m2ε

2
)3/2 ⩽ (

1

32
m2ε)

2.

We solve for the relaxation:

LHS ⩽ 4 ·max

{
4k,

2ε

α
, 4
√
km2ε, 8

m2√
α23/2

ε3/2
}

⩽ (
1

32
m2ε)

2

In the end, we obtain:

max

{
128 ·

√
k

ε
, 64

√
2

αε
, 322 · 16

√
k, 322 · 16 1

√
αε
√
2

}
⩽ 322 · 16 ·max

{√
k

ε
,

√
1

αε

}
⩽ m2

When dχ2(pA, qA) ⩾ ε, then E[Z2] ⩾ m2ε; and we solve Var[Z2] ⩽ ( 14E[Z2])
2,

4k +

(
4

αm2
+ 8
√
k

)
E[Z2] + 8(αm2)

−1/2(E[Z2])
3/2 ⩽ (

1

4
E[Z2])

2,

which is equivalent to the following

4k

(E[Z2])3/2
+

(
4

αm2
+ 8
√
k

)
1

(E[Z2])1/2
+ 8(αm2)

−1/2 ⩽
1

16
(E[Z2])

1/2
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Further relaxing the solution, it is enough to have

4k

(E[Z2])3/2
+

(
4

αm2
+ 8
√
k

)
1

(E[Z2])1/2
+ 8(αm2)

−1/2

⩽
4k

(m2ε)3/2
+

(
4

αm2
+ 8
√
k

)
1

(m2ε)1/2
+ 8

1
√
αm2

⩽
1

16
(m2ε)

1/2 ⩽
1

16
(E[Z2])

1/2,

as long as the following holds,

m2 ⩾ 64max

{
2
√
k

ε
, 2

√
1

αε
, 8

√
k

ε
, 8

√
α

ε

}
= max

{
128

√
1

αε
, 512

√
k

ε

}
. (12)

Letting m2 ⩾ 512max
{√

1
αε ,

√
k
ε

}
, we have that both statements.

C Proofs of entropy testing lower bounds

Lemma 2.6. With fewer than c3 ·
√
k/ε samples from p, no tester can distinguish between p = q

and |H(p)−H(q)| ⩾ ε with probability higher than 2/3, where c3 > 0 is an absolute constant.

Proof of Lemma 2.6. This follows from the standard uniformity testing lower bound [Pan08], which
provides a lower bound of Ω(

√
k/η2): there exists a family of distributions that are hard to dis-

tinguish from uniform uk, using fewer than c1 ·
√
k/η samples. Let k be an even number; the

construction is by taking θ = {−1, 1}k/2 uniformly at random, and letting, for every i ∈ [k/2],

pnoθ (2i) =
1 + θi · η

k
, pnoθ (2i+ 1) =

1− θi · η
k

.

We can verify that for any θ:

|H(pnoθ )−H(uk)| = log k − k

2

(
1 + η

k
log

(
1 + η

k

)
+

1− η

k
log

(
1− η

k

))
= Θ(η2)

Setting η = ε2 yields the lower bound of Ω
(√

k
ε

)
.

Lemma 2.7. With fewer than c4 · log2 k/ε2 samples from p, no tester can distinguish between p = q
and |H(p)−H(q)| ⩾ ε with probability higher than 2/3, where c4 > 0 is an absolute constant.

Proof of Lemma 2.7. Following [WY16, B.2 Proof of Proposition 2], we look at the same construc-
tion but with different parameters ε′ = ε

log(2(k−1)) :

p =

(
1

3(k − 1)
, . . . ,

1

3(k − 1)
,
2

3

)
, q =

(
1 + ε′

3(k − 1)
, . . . ,

1 + ε′

3(k − 1)
,
2− ε′

3

)
.

One can check that

H(q)−H(p) ⩾
1

3
log(2(k − 1))ε′−ε′2 = Ω(ε).

Moreover, direct calculation of the (squared) Hellinger distance shows that

dH(p, q)
2 = Θ(ε′2) = Θ

(
ε2

log2 k

)
which implies that p and q cannot be distinguished with fewer than c4

log2 k
ε2 samples [BY02, Theo-

rem 4.7].
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D Sketch proof of O
(√

k log log log(k/ε)

ε
+ log2(k)

ε2

)
upper bound.

We will rely the following inequality for compression, both via Jensen’s inequality,(∑
i∈∆

pi

)
log

(
1∑

i∈∆ pi

)
⩽
∑
i∈∆

pi log
1

pi
⩽

(∑
i∈∆

pi

)
log

(
|∆|∑
i∈∆ pi

)
, (13)

as log(x) is concave and log
(
1
x

)
is convex.∑

i∈∆

pi log
1

pi
⩾

(∑
i∈∆

pi

)
log

(∑
i∈∆ pi∑
i∈∆ p2i

)
⩾

(∑
i∈∆

pi

)
log

(
1∑

i∈∆ pi

)
,

suggesting that if we merge elements of ∆ into one, then we will lose a log(|∆|) factor of the
entropy. By merging enough elements, we can then reduce this problem into the first case, where
elements have large enough mass in each location.
Claim D.1. Let S ⊆ [k], if p(S)− q(S) > −η, then

|dKL(pS∥qS)| ⩾ η ⇒ dKL(pS∥qS) ⩾ η.

Proof. If |dKL(pS∥qS)| ⩾ η, then

dKL(pS∥qS) ⩾ η or dKL(pS∥qS) ⩽ −η.
We will rule out the second case, using that log 1

x ⩾ 1− x for x > 0, 10

dKL(pS∥qS) =
∑
i∈S

pi log
pi
qi

⩾
∑
i∈S

pi

(
1− qi

pi

)
= p(S)− q(S) > −η. (14)

Thus, we cannot have dKL(pS∥qS) ⩽ −η and so dKL(pS∥qS) ⩾ η.

We use the same idea as our first upper bound but choose a series of thresholds. Let

S3 :=

{
i ∈ [k]|qi ⩾ Ω

(
ε

k log log log(k/ε)

)}
;

S2 =

{
i ∈ [k]|Ω

(
ε

k log log(k/ε)

)
⩽ qi ⩽ O

(
ε

k log log log(k/ε)

)}
;

S1 =

{
i ∈ [k]|Ω

(
ε

k log(k/ε)

)
⩽ qi ⩽ O

(
ε

k log log(k/ε)

)}
.

The following calculation ensues

Ω(ε) ⩽ |H(pA)−H(qA)|

⩽

∣∣∣∣∣
3∑

i=1

dKL(pSi
, qSi

)

∣∣∣∣∣+
∣∣∣∣∣∑
i∈A

(pi − qi) log
1

qi

∣∣∣∣∣
⩽

3∑
i=1

|dKL(pSi , qSi)|+

∣∣∣∣∣∑
i∈A

(pi − qi) log
1

qi

∣∣∣∣∣ .
We have that one of the four terms will be at least Ω(ε/4). If it is∣∣∣∣∣∑

i∈A
(pi − qi) log

1

qi

∣∣∣∣∣ ⩾ Ω(ε),

which is testable with O
(

log2(k)
ε2

)
samples using arguments from proof of Theorem 2.1. If it is

|dKL(pSi
, qSi

)| ⩾ Ω(ε), for i = 1, 2, 3. We have the following:

10In the case of pi = 0, we still have pi log
(

pi
qi

)
⩾ pi − qi.
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Case S3. Suppose |dKL(pS3
, qS3

)| ⩾ Ω(ε). We will check whether p(S3) ⩾ Ω
(

ε
log log log(k/ε)

)
, if

not, we can reject. We proceed assuming the inequality holds. Note that

|p(S3)− q(S3)| = |p(S3)− q(S3)| ⩽ O

(
ε

log log log(k/ε)

)
.

Thus, p(S3) − q(S3) > −O
(

ε
log log log(k/ε)

)
, and by Claim D.1, we have that dKL(pS3 , qS3) ⩾

Ω(ε). Using (4), we then have that dχ2(pS3 , qS3) ⩾ Ω(ε). Using Lemma 2.4 (setting

α = O
(

ε
k log log log(k/ε)

)
), and similar argument from the proof of Theorem 2.1, we have that

O

(√
k log log log(k/ε)

ε

)
suffices to check between the case that dχ2(pS3

, qS3
) ⩾ Ω(ε) and pS3

=

qS3 .

Case S2. Suppose |dKL(pS2
, qS2

)| ⩾ Ω(ε). We will check whether

Ω

(
ε

log log(k/ε)

)
⩽ p(S2) ⩽ O

(
ε

log log log(k/ε)

)
,

if not, we will reject. We proceed assuming the inequality holds. Now, recall that the main bottle-
neck of the χ2 tester analyzed in Lemma 2.4 is due to the minimum probability α = mini∈S2 qi
(increasing this would decrease the sample complexity). Our main idea here is to increase α by
merging a suitable number (log log(k/ε) in this case) of elements into one single bin to form a new
distribution to test. Denote ∆j where j ∈

[
|S2|

log log(k/ε)

]
and

⋃
j ∆j = S2. We will subsequently treat

every elements in ∆j as 1 bin in the new distribution, calling it p∆, q∆ and denote p(∆j), q(∆j) as
mass on ∆j , where p(∆j) =

∑
i∈∆j

pi. This gives us the following:

i. q(∆j) ⩾ Ω
(

ε
k log log(k/ε)

)
· |∆j | ⩾ Ω

(
ε
k

)
; the domain size is |S2|

minj |∆j | ⩽

O
(

k
log log(k/ε)

)
.

ii.
∑

j p(∆j) = p(S2) ⩽ O
(

ε
log log log(k/ε)

)
and

∑
j q(∆j) = q(S2) ⩽ O

(
ε

log log log(k/ε)

)
.

iii. Their entropy difference is preserved, which we will prove next:

∣∣∣∣∣∣
∑
j

p(∆j) log
1

p(∆j)
−
∑
j

q(∆j) log
1

q(∆j)

∣∣∣∣∣∣ ⩾ Ω(ε).

Note that these are better conditions compared to i. and ii. in the proof of Theorem 2.1 (in this
analysis, using ii., it is sufficient to prove that dKL(p∆, q∆) ⩾ Ω(ε) in view of Claim D.1). The gain
comes from the fact that we can apply Lemma 2.4 with better α = minj q(∆j) ⩾ Ω

(
ε
k

)
and thus

O

(√
1

αε
+

√
k′

ε

)
= O

(√
k

ε2

)
= O

(√
k

ε

)
.

However, the gain only affect Claim 2.3 by constant factors. The soundness and completeness then
follows similarly to the proof of Theorem 2.1. We prove (iii.) next:
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Suppose H(pS2
)−H(qS2

) ⩾ ε, then,

Ω(ε)

⩽
∑
l∈S2

pl log
1

pl
−
∑
l∈S2

ql log
1

ql

=
∑
j

∑
i∈∆j

pi,j log
1

pi,j
−
∑
j

∑
i∈∆j

qi,j log
1

qi,j

⩽
∑
j

p(∆j) log
|∆j |
p(∆j)

−
∑
j

q(∆j) log
1

q(∆j)
(15)

=
∑
j

p(∆j) log |∆j |+
∑
j

p(∆j) log
1

p(∆j)
−
∑
j

q(∆j) log
1

q(∆j)
.

⩽ O

(
ε

log log log(k/ε)

)
max

j
log |∆j |+

∑
j

p(∆j) log
1

p(∆j)
−
∑
j

q(∆j) log
1

q(∆j)
. (16)

where the (15) is due to (13) and for (16), recall that
∑

j p(∆j) = p(S2) ⩽ O
(

ε
log log log(k/ε)

)
.

Suppose H(qS2
)−H(pS2

) ⩾ Ω(ε), the same goes below:

Ω(ε) ⩽
∑
l

ql log
1

ql
−
∑
l

pl log
1

pl

=
∑
j

∑
i∈∆j

qi,j log
1

qi,j
−
∑
j

∑
i∈∆j

pi,j log
1

pi,j

⩽
∑
j

q(∆j) log
|∆j |
q(∆j)

−
∑
j

p(∆j) log
1

p(∆j)

⩽ O(ε) +
∑
j

q(∆j) log
1

q(∆j)
−
∑
j

p(∆j) log
1

p(∆j)
.

Therefore, we have proved (iii.).

Case S1. The proof follow similar to Case S2, but by merging log(k/ε) elements.

E Proofs of testing Bayesian networks

Claim E.1. Suppose that p(Ū) ⩽ O(ε2/ log(1/ε)), then we have for any distribution q,

dKL(pŪ∥qŪ ) ⩾ −p(Ū) · log
(
q(Ū)
p(Ū)

)
⩾ −O(ε2).

This implies that dKL(pŪ∥pG;Ū ) ⩾ −O(ε2) for any DAG G. Moreover, if dKL(p∥pG) ⩽ O(ε2),
then dKL(pU∥pG;U ) ⩽ O(ε2).
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Proof of Claim E.1.

dKL(pŪ∥pG;Ū ) =
∑
x∈Ū

p(x) log
p(x)

pG(x)

= −
∑
x∈Ū

p(x) log
pG(x)

p(x)

⩾ −

∑
x∈Ū

p(x)

 · log
∑x∈Ū p(x) · pG(x)

p(x)∑
x∈Ū p(x)


= −p(Ū) · log

(
pG(Ū)
p(Ū)

)
⩾ −O(ε2/ log(1/ε)) · log

(
1

ε2/ log(1/ε)

)
⩾ −O(ε2),

where we use monotonicity of −x log 1
x and the fact that pG(Ū) ⩽ 1 in the second last inequality.

Since dKL(p∥pG) = dKL(pU∥pG;U ) + dKL(pŪ∥pG;Ū ) ⩽ O(ε2) and dKL(pŪ∥pG;Ū ) ⩾ −O(ε2), we
can rearrange and see that dKL(pU∥pG;U ) ⩽ O(ε2).

We will need the following claim for the proof of Lemma 3.3.

Claim E.2. The following inequalities hold, for any i ∈ [n]

∑
x′∈A′

i

pXi,ΠG
i
(x′) log

p(πG
i (x

′))

q(πG
i (x

′))
⩾ −O

(
ε2

n2

)
. (17)

∑
x∈Ai\U

p(x) log
p(xi(x)|πG

i (x))

q(xi(x)|πG
i (x))

⩾ −O
(
ε2

n

)
. (18)

Proof. We will show (17) first.

∑
x′∈A′

i

pXi,ΠG
i
(x′) log

p(πG
i (x

′))

q(πG
i (x

′))
⩾

 ∑
x′∈A′

i

pXi,ΠG
i
(x′)

 · log
 ∑

x′∈A′
i
pXi,ΠG

i
(x′)∑

x′∈A′
i
pXi,ΠG

i
(x′) · q(π

G
i (x′))

p(πG
i (x′))


⩾

 ∑
x′∈A′

i

pXi,ΠG
i
(x′)

 · log( ∑
x′∈A′

i
pXi,ΠG

i
(x′)∑

(x,π)∈A′
i
pXi|ΠG

i
(x|π) · q(π)

)

⩾

 ∑
x′∈A′

i

pXi,ΠG
i
(x′)

 · log
 ∑

x′∈A′
i

pXi,ΠG
i
(x′)


⩾

(
1−O

(
ε2

n2 log(n/ε)

))
log

(
1−O

(
ε2

n2 log(n/ε)

))
⩾ −O

(
ε2

n2 log(n/ε)

)
where the first step follows from Jensen’s inequality applied to the function f(x) = log(1/x), and
the second-to-last step is due to x log x is monotonically increasing when x ⩾ 1

e and log(1− x) ⩾
−2x when x ∈ (0, 0.5). This concludes the proof of (17).
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We next move on to proving (18).

∑
x∈Ai\U

p(x) log
p(xi(x)|πG

i (x))

q(xi(x)|πG
i (x))

⩾

 ∑
x∈Ai\U

p(x)

 log

 ∑
x∈Ai\U p(x)∑

x∈Ai\U p(x) · q(xi(x)|πG
i (x))

p(xi(x)|πG
i (x))


=

 ∑
x∈Ai\U

p(x)

 log

 ∑
x∈Ai\U p(x)∑

x∈Ai\U
p(x)

p(xi(x)|πG
i (x))

q(xi(x)|πG
i (x))


⩾

 ∑
x∈Ai\U

p(x)

 log

 ∑
x∈Ai\U

p(x)


⩾ −O

(
ε2

n

)
,

where the second-to-last step follows from Equation (19) below, and last step by monotonic-
ity (decreasing) of f(x) = x log x when x ⩽ 1

e and
∑

x∈Ai\U p(x) ⩽
∑

i ̸=j

∑
x∈Aj

p(x) ⩽∑
i ̸=j O

(
ε2

n2 log(n/ε)

)
⩽ O

(
ε2

n log(n/ε)

)
.

∑
x∈Ai\U

p(x)

p(xi(x)|πG
i (x))

q(xi(x)|πG
i (x))

=
∑

x∈Ai\U

p(x)

p(xi(x)|πG
i (x))

q(xi(x)|πG
i (x))

=
∑

x∈Ai\U

p(πG
i (x))q(xi(x)|πG

i (x))

p(xi(x), πG
i (x))

p(x)

=
∑

x∈Ai\U

p(πG
i (x))q(xi(x)|πG

i (x)) · p(x|xi(x), π
G
i (x))

⩽
∑

(xi,πG
i )∈{0,1}|ΠG

i
|+1

p(πG
i )q(xi|πG

i )


∑

x′∈{0,1}n−|Πi|+1

p(x′|xi, π
G
i )︸ ︷︷ ︸

=1

 (19)

=
∑

πG
i ∈{0,1}|ΠG

i
|

p(πG
i )

∑
xi∈{0,1}

q(xi|πG
i )︸ ︷︷ ︸

=1

= 1.

This concludes the proof of (18).

Lemma 3.3. Suppose d2H(p, q) ⩾ Ω(ε2); dKL(p∥pG) ⩽ O(ε2); p(Ū) ⩽ ε2

n log(n/ε) ; ∀i ∈
[n], p(Ā′

i) ⩽ ε2

n2 log(n/ε) , where A′
i is defined above, and q is Markov with respect to G, then we

have
n∑

i=1

dKL(pXi,ΠG
i ;A′

i
∥qXi,ΠG

i ;A′
i
) ⩾ Ω(ε2).

Therefore testing dKL(pXi,ΠG
i ;A′

i
∥qXi,ΠG

i ;A′
i
) ⩾ ε2

n over all i suffices to detect this case.

Proof of Lemma 3.3. By Claim E.1 and the assumption that dKL(p∥pG) ⩽ O(ε2), we have that

dKL(pU∥pG;U ) = dKL(p∥pG)− dKL(pŪ∥pG;Ū ) ⩽ O(ε2). (20)

Ω(ε2) ⩽ d2H(p, q) = d2H(pU , qU )+d2H(pŪ , qŪ ) ⩽ d2H(pU , qU )+
1

2
(p(Ū)+q(Ū)) ⩽ d2H(pU , qU )+O(ε2).
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Ω(ε2) ⩽ d2H(pU , qU ) ⩽ dKL(pU∥qU ) + q(U)− p(U)⇒ dKL(pU∥qU ) ⩾ Ω(ε2). (21)

Combining and (20) and (21), we write

Ω(ε2) ⩽ dKL(pU∥qU )− dKL(pU∥pG;U )

=
∑
x∈U

p(x)

n∑
i=1

log
p(xi(x)|πG

i (x))

q(xi(x)|πG
i (x))

=

n∑
i=1

∑
x∈Ai

p(x) log
p(xi(x)|πG

i (x))

q(xi(x)|πG
i (x))

−
∑

x∈Ai\U

p(x) log
p(xi(x)|πG

i (x))

q(xi(x)|πG
i (x))


=

(
n∑

i=1

∑
x∈Ai

p(x) log
p(xi(x)|πG

i (x))

q(xi(x)|πG
i (x))

)
−

 n∑
i=1

∑
x∈Ai\U

p(x) log
p(xi(x)|πG

i (x))

q(xi(x)|πG
i (x))


=

 n∑
i=1

∑
x′∈A′

i

pXi,ΠG
i
(x′) log

p(xi(x
′)|πG

i (x
′))

q(xi(x′)|πG
i (x

′))

−
 n∑

i=1

∑
x∈Ai\U

p(x) log
p(xi(x)|πG

i (x))

q(xi(x)|πG
i (x))


=

n∑
i=1

dKL(pXi,ΠG
i ;A′

i
∥qXi,ΠG

i ;A′
i
)−

n∑
i=1

∑
x′∈A′

i

pXi,ΠG
i
(x′) log

p(πG
i (x

′))

q(πG
i (x

′))

−

 n∑
i=1

∑
x∈Ai\U

p(x) log
p(xi(x)|πG

i (x))

q(xi(x)|πG
i (x))


With Claim E.2 and Claim E.1, we can lower bound the sum of local KL divergences,

n∑
i=1

dKL(pXi,ΠG
i ;A′

i
∥qXi,ΠG

i ;A′
i
) ⩾ Ω(ε2).

Lemma 3.4. Let p and q be two max in-degree-d Bayes nets supported on {0, 1}n such that for
every subset L ⊆ {X1, · · · , Xn} of size d+ 1, the following holds:

|H(pL)−H(qL)| ⩽ O

(
ε2

n

)
.

Suppose p is Markov w.r.t. G′ and q Markov w.r.t. G. Then we have that

dKL(p∥pG) ⩽ O(ε2) and dKL(q∥qG′) ⩽ O(ε2).

Proof of Lemma 3.4. More formally, by the celebrated works of Chow and Liu [CL68] and its gen-
eralization to Bayes net, one can write the KL divergence between a Bayes net and its projection to
any graph G as difference between sum of n local conditional entropies (we provide a derivation for
the sake of completeness in Appendix F):

0 ⩽ dKL(p∥pG) = −
n∑

i=1

H(pXi,XΠi
|pXΠi

) +

n∑
i=1

H(pXi,XΠG
i

|pX
ΠG
i

), (22)

0 ⩽ dKL(q∥qG′) = −
n∑

i=1

H(qXi,XΠG
i

|qX
ΠG
i

) +

n∑
i=1

H(qXi,XΠi
|qXΠi

), (23)

where XΠi
denotes the parents of Xi in Bayes net p and XΠG

i
denotes the parents of Xi in DAG

G. Here we assume that q is Markov with respect to G. Since the local entropies between p and q
are close by O(ε2/n) (see (6)) and its relation to conditional entropy via (3), we can conclude the
following:

H(qXi,XΠi
|qXΠi

)−O(ε2/n) ⩽ H(pXi,XΠi
|pXΠi

) ⩽ H(qXi,XΠi
|qXΠi

) +O(ε2/n). (24)
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H(qXi,XΠG
i

|qX
ΠG
i

)−O(ε2/n) ⩽ H(pXi,XΠG
i

|pX
ΠG
i

) ⩽ H(qXi,XΠG
i

|qX
ΠG
i

) +O(ε2/n). (25)

Since we assume that q is Markov with respect to G, we can combine (22), (23), (24) and (25),
which then give:

dKL(p∥pG) ⩽ −
n∑

i=1

H(qXi,XΠi
|qXΠi

)+

n∑
i=1

H(qXi,XΠG
i

|qX
ΠG
i

)+O(ε2) = −dKL(q∥qG′)+O(ε2),

where p is Markov with respect to G′, as Πi is the set of parents of Xi for p. Rearranging terms and
we have

dKL(p∥pG) + dKL(q∥qG′) ⩽ O(ε2). (26)
Since KL-divergence is nonnegative, we conclude that both terms must be at most O(ε2).

F Derivation for KL decomposition

Below, we provide a full proof on decomposing the KL divergence between a Bayes net p and its
projection pG, for any DAG G, into local conditional entropies.

dKL(p, pG)

=
∑

x∈{0,1}n

p(x) log
p(x)

pG(x)

=
∑

x∈{0,1}n

p(x) log

∏n
i=1 p(xi|πi)∏n

i=1 pG(xi|πG
i )

=
∑

x∈{0,1}n

p(x) log

(
n∏

i=1

p(xi|πi)

)
− p(x) log

(
n∏

i=1

pG(xi|πG
i )

)

=
∑

x∈{0,1}n

n∑
i=1

p(x) log(p(xi|πi))− p(x) log(pG(xi|πG
i ))

=

n∑
i=1

∑
x∈{0,1}n

p(x) log(p(xi|πi))− p(x) log(pG(xi|πG
i ))

=

n∑
i=1

 ∑
xi,πi∈Xi,Πi

p(xi, πi) log(p(xi|πi))

−
 ∑

xi,πi∈Xi,ΠG
i

p(xi, π
G
i ) log(pG(xi|πG

i ))


=

n∑
i=1

H(pXi,ΠG
i
|pΠG

i
)−H(pXi,Πi

|pΠi
),

where πi,Πi denote the parents of xi, Xi in Bayes net p (a set of random variables or their domain);
and πG

i ,Π
G
i as the parents defined by G. pG is the projection of p unto G as defined by Definition

3.2. It is not hard to see that the derivation extends beyond the case of hypercube, {0, 1}n.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification:

Guidelines:
• The answer NA means that the abstract and introduction do not include the claims

made in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification:

Guidelines:
• The answer NA means that the paper has no limitation while the answer No means

that the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The proofs are provided either in the main paper or the appendix, both part of
the submission. Assumptions are fully stated in the theorem and lemma statements.
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Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: The paper does not contain experiments.

Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
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Justification:

Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification:

Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [NA]

Justification:

Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.
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• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification:

Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: this work is theoretical in nature; it is hard to predict its societal impact.

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification:

Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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