
Towards training digitally-tied analog blocks
via hybrid gradient computation

Timothy Nest∗♦
timothy.nest@mila.quebec

Maxence Ernoult†♦
maxence@rain.ai

Abstract

Power efficiency is plateauing in the standard digital electronics realm such that
new hardware, models, and algorithms are needed to reduce the costs of AI training.
The combination of energy-based analog circuits and the Equilibrium Propagation
(EP) algorithm constitutes a compelling alternative compute paradigm for gradient-
based optimization of neural nets. Existing analog hardware accelerators, however,
typically incorporate digital circuitry to sustain auxiliary non-weight-stationary
operations, mitigate analog device imperfections, and leverage existing digital
platforms. Such heterogeneous hardware lacks a supporting theoretical framework.
In this work, we introduce Feedforward-tied Energy-based Models (ff-EBMs), a
hybrid model comprised of feedforward and energy-based blocks housed on digital
and analog circuits. We derive a novel algorithm to compute gradients end-to-end
in ff-EBMs by backpropagating and “eq-propagating" through feedforward and
energy-based parts respectively, enabling EP to be applied flexibly on realistic
architectures. We experimentally demonstrate the effectiveness of this approach
on ff-EBMs using Deep Hopfield Networks (DHNs) as energy-based blocks, and
show that a standard DHN can be arbitrarily split into any uniform size while
maintaining or improving performance with increases in simulation speed of up
to four times. We then train ff-EBMs on ImageNet32 where we establish a new
state-of-the-art performance for the EP literature (46 top-1 %) 3. Our approach
offers a principled, scalable, and incremental roadmap for the gradual integration
of self-trainable analog computational primitives into existing digital accelerators.

1 Introduction

Gradient-based optimization, the cornerstone and most energy greedy component of deep learning,
fundamentally relies upon three factors: i) highly parallel digital hardware such as GPUs, ii) feedfor-
ward models and iii) backprop (BP). With skyrocketing demands of AI compute, reducing the energy
consumption of AI systems has become a matter of great economic, societal and environmental
urgency [Strubell et al., 2020], calling for the exploration of novel compute paradigms [Thompson
et al., 2020, Scellier, 2021, Stern and Murugan, 2023].

One promising path towards this goal is analog in-memory computing [Sebastian et al., 2020]:
by mapping weights onto a crossbar of resistive devices, Kirchoff current and voltage laws in-
herently perform matrix-vector multiplications with constant time complexity [Cosemans et al.,
2019]. By stacking multiple such crossbars, an entire neural network can be mapped onto a physical
system. An important formalism for such a system is that of energy-based (EB) analog circuits

∗Montreal Institute of Learning Algorithms (MILA)
†Rain AI
♦Equal contribution
3Our code is available on https://github.com/rain-neuromorphics/hybrid_bp_ep_official

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/rain-neuromorphics/hybrid_bp_ep_official

[Kendall et al., 2020, Stern et al., 2023, Dillavou et al., 2023, Scellier, 2024], which are “self-
learning” systems that can compute loss gradients through two relaxations to equilibrium (i.e. two
“forward passes”). Such a procedure falls under the umbrella of energy-based learning (EBL) al-
gorithms [Scellier et al., 2024]. One such algorithm, Equilibrium Propagation (EP) [Scellier and
Bengio, 2017], particularly stands out for its strong theoretical guarantees, relative scalability in
the realm of backprop alternatives [Laborieux and Zenke, 2022, 2023] and proven application
on small analog systems with 10, 000× greater energy-efficiency and substantial speedups com-
pared to its GPU-based counterpart [Yi et al., 2023]. This suggests a new alternative compute
paradigm for gradient-based optimization consisting of: i) analog hardware, ii) EBMs, and iii) EP.

...

...

Figure 1: Illustrating BP-EP backward
gradient chaining through feedforward
(red) and energy-based (blue) blocks, ac-
counting for digital and analog circuits
respectively.

In this paper, we propose a theoretical framework for ex-
tending end-to-end gradient computation to a realistic set-
ting where the system in question may or may not be fully
analog. Such a setting is plausible in the near term, for
two major reasons. First, analog circuits exhibit non-ideal
physical behaviors which affect both the inference pathway
[Wang et al., 2023, Ambrogio et al., 2023] and parameter
optimization [Nandakumar et al., 2020, Spoon et al., 2021,
Lammie et al., 2024], compromising performance. Second,
owing to the latency and energy-consumption of resistive
devices’ write operations, analog circuits should be fully
weight stationary – weights must be written before the
inference procedure begins – which excludes many oper-
ations used conventionally in machine learning including
activation functions, normalization, and attention [Spoon
et al., 2021, Jain et al., 2022, Liu et al., 2023, Li et al.,
2023]. Therefore, analog systems are likely to be used
in combination with auxiliary digital circuitry, resulting
in hybrid mixed precision systems [Haensch et al., 2018].
While the design of purely inferential engines made up of
analog and digital parts is nearing commercial maturity

[Ambrogio et al., 2023], in-situ learning of such systems has barely been explored. An important
challenge remains in proving EBL algorithms can scale in a manner comparable to backprop, given
the requirement of simulating EB systems on GPUs. Because of the necessity of convergence, this
amounts in practice in performing lengthy root finding algorithms to simulate physical equilibrium,
limiting proof-of-concepts thereof to relatively shallow (5-6 layer) models [Scellier et al., 2024,
Scellier, 2024].

Our work contends that the best of both worlds can be achieved with the following triad: i) hybrid
digital and analog hardware, ii) feedforward and EB models, iii) BP and EP. Namely, by modeling
digital and analog parts as feedforward and EB modules respectively, we show how backprop and EP
error signals can be chained end-to-end via feedforward and EB blocks respectively in a principled
fashion. Rather than opposing digital and analog, or backprop and “alternative” learning algorithms,
as is often done in the literature, we propose a novel hardware-aware building block which can,
in principle, leverage advances from both digital and analog hardware in the near-term. More
specifically:

• We propose Feedforward-tied Energy-based Models (ff-EBMs, Section 3.1) as high-level models
of mixed precision systems whose inference pathway read as the composition of feedforward and EB
modules (Eq. (5), Alg. 1).

• We show that gradients in ff-EBMs can be computed in an end-to-end fashion (Section 3.3),
backpropagating through feedforward blocks and “eq-propagating” through EB blocks (Theorem 3.1,
Alg. 2) and that this procedure is rooted in a deeply-nested optimization problem (Section 3.2).

• Finally, we experimentally demonstrate the effectiveness of our algorithm on ff-EBMs where
EBM blocks are Deep Hopfield Networks (DHNs) (Section 4).In particular we show that i) final
and transient gradient estimates computed by our algorithm (Alg. 2) near perfectly match gradients
computed by end-to-end automatic differentiation (Section 4.2), which we also prove mathematically
(Theorem 4.1), ii) a standard DHN model can be arbitrarily split into a ff-DHN with the equivalent

2

layers and architectural layers while maintaining or improving performance, remaining on par with
automatic differentiation and being up to four times faster to simulate depending on the convergence
criterion at use to compute equilibrium (Section 4.3), iii) the proposed approach yields 46 % top-1
(70% top-5) validation accuracy on ImageNet32 when training a ff-EBM of 15 layers, beating current
state-of-the-art for EP by a large margin, without relying on holomorphic transformations inside
EBM blocks [Laborieux and Zenke, 2022, 2023]

2 Background

Notations. Given A : Rn → Rm a differentiable mapping, we denote its total derivative with
respect to sj as dsjA(s) := dA(s)/dsj ∈ Rm, its partial derivative with respect to sj as ∂jA(s) :=
∂A(s)/∂sj ∈ Rm. When A takes scalar values (m = 1), its gradient with respect to sj is denoted as
∇jA(s) := ∂jA(s)⊤.

2.1 Energy-based models (EBMs)

For a given static input and set of weights, Energy-based models (EBMs) implicitly yield a prediction
through the minimization of an energy function. As such they are a particular kind of implicit model.
Namely, an EBM is defined by a (scalar) energy function E : s, θ, x→ E(s, θ, x) ∈ R where x, s,
and θ respectively denote a static input, hidden and output neurons and model parameters, and each
such tuple defines a configuration with an associated scalar energy value. Among all configurations
for a given input x and some model parameters θ, the model prediction s⋆ is implicitly given as an
equilibrium state which minimizes the energy function:

s⋆ := argmin
s

E(s, θ, x). (1)

2.2 Standard bilevel optimization

Assuming that ∇2
sE(x, s⋆, θ) is invertible, note that the equilibrium state s⋆ implicitly depends on x

and θ by virtue of the implicit function theorem [Dontchev et al., 2009]. Therefore our goal when
training an EBM–in a supervised setting, for instance – is to adjust the model parameters θ such
that s⋆(x, θ) minimizes some cost function ℓ : s, y → ℓ(s, y) ∈ R where y is some ground-truth
label associated to x. More formally, this learning objective can be stated with the following bilevel
optimization problem [Zucchet and Sacramento, 2022]:

min
θ
C(x, θ, y) := ℓ(s⋆, y) s.t. s⋆ = argmin

s
E(s, θ, x) (2)

Solving Eq. (2) in practice amounts to computing the gradient of its outer objective C(x, θ) with
respect to θ (dθC(x, θ)) and then performing gradient descent over θ.

2.3 Equilibrium Propagation (EP)

An algorithm used to train an EBM model in the sense of Eq. (2) may be called an EBL algorithm
[Scellier et al., 2024]. Equilibrium Propagation (EP) [Scellier and Bengio, 2017] is an EBL algorithm
which computes an estimate of dθC(x, θ) with at least two phases. During the first phase, the model
is allowed to evolve freely to s⋆ = argmins E(s, θ, x). Then, the model is slightly nudged towards
decreasing values of cost ℓ and settles to a second equilibrium state sβ . This amounts to augmenting
the energy function E by an additional term βℓ(s, y) where β ∈ R⋆ is called the nudging factor. Next,
the weights are updated to increase the energy of s⋆ and decrease that of sβ , thereby “contrasting”
these two states. More formally, Scellier and Bengio [2017] show in the seminal EP paper:

sβ := argmin
s

[E(s, θ, x) + βℓ(s, y)] , ∆θEP :=
α

β
(∇2E(s⋆, θ, x)−∇2E(sβ , θ, x)) , (3)

where α denotes some learning rate. EP comes in different flavors depending on the sign of β inside
Eq. (3) or on whether two nudged states of opposite nudging strengths (±β) are contrasted, a variant
called Centered EP (C-EP) which was shown to work best in practice [Laborieux et al., 2021, Scellier
et al., 2024] and reads as:

∆θC−EP :=
α

2β
(∇2E(s−β , θ, x)−∇2E(sβ , θ, x)) , (4)

3

3 Tying energy-based models with feedforward blocks

In the present section we introduce a new model, Feedforward-tied EBMs (ff-EBMs, section 3.1),
which read as composition of feedforward and EB transformations (Alg. 1). We show how optimizing
ff-EBMs amounts to solving a multi-level optimization problem (Section 3.2) and propose a BP-EP
gradient chaining algorithm as a solution(Section 3.3, Theorem 3.1, Alg. 2). We highlight as an
edge case the fact that ff-EBMs reduce to standard feedforward nets (Lemma A.1) and the proposed
BP-EP gradient chaining algorithm to standard BP (Corollary A.1) when each EB block comprises a
single hidden layer. We highlight in red and blue the parts of the model and associated algorithms
performed inside feedforward (digital) and EB (analog) blocks respectively.

3.1 Feedforward-tied Energy-based Models (ff-EBMs)

Inference procedure. We define Feedforward-tied Energy-based Models (ff-EBMs) as compo-
sitions of feedforward and EB transformations. Namely, an data sample x is fed into the first
feedforward transformation F 1 parametrized by some weights ω1, which yields an output x1

⋆. Then,
x1
⋆ is fed as a static input into the first EB block E1 with parameters θ1, which relaxes to an equilib-

rium state s1⋆. s1⋆ is in turn fed into the next feedforward transformation F 1 with weights ω1 and the
above procedure repeats until reaching the output layer ô. More formally, denoting F k and Ek the
kth feedforward and EB blocks parametrized by the weights ωk and θk respectively, the inference
pathway of a ff-EBM reads as:

s0 := x
xk
⋆ := F k(sk−1

⋆ , ωk), sk⋆ := argmin
s

Ek(s, θk, xk
⋆) ∀k = 1 · · ·N − 1

ô⋆ := FN (sN−1
⋆ , ωN)

(5)

The ff-EBM inference procedure is depicted more compactly inside Fig. 2 (left) and Alg. 1.

Figure 2: Depiction of the forward (left) and
backward (right) pathways through a ff-EBM,
with blue and pink blocks denoting EB and
feedforward transformations.

Algorithm 1 ff-EBM inference (Eq. (5))
1: s← x
2: for k = 1 · · ·N − 1 do
3: x← F k

(
s, ωk

)
4: s← Optim

s

[
Ek(s, θk, x)

]
5: end for
6: ô← FN (s, ωN)

Form of the energy functions. We further specify the form of the energy of the kth EB block of a
ff-EBM as defined per Eq. (5). The associated energy function Ek takes some static input xk from
the output of the preceding feedforward transformation, has hidden neurons sk and is parametrized
by weights θk. More precisely:

Ek(sk, θk, xk) := Gk(sk)− sk
⊤
· xk + Uk(sk, θk) (6)

Eq. (6) reveals three different contributions to the energy. The first term determines the non-linearity
applied inside the EB block [Zhang and Brand, 2017, Høier et al., 2023]: for a given invertible and
continuous activation function σ, G is defined such that∇G = σ−1 (see Appendix A.1.3).

The second term inside Eq. (6) accounts for a purely feedforward contribution from the previous
feedforward block F k. Finally, the third term accounts for internal interactions within the layers of
the EB block.

Recovering a feedforward net. When taking the gradient of Ek as defined in Eq. (6) with respect
to sk and zeroing it out, it can be seen that sk⋆ is implicitly defined as:

sk⋆ := σ
(
xk −∇1U

k(sk⋆, θ
k)
)

(7)

4

A noteworthy edge case highlighted by Eq. (7) is when Uk = 0 for all k’s, i.e. when there are no
intra-block layer interactions, or equivalently when the EB block comprises a single layer only. In this
case, sk⋆ is simply a feedforward mapping xk through σ and in turn the ff-EBM is simply a standard
feedforward architecture (see Lemma A.1 inside Appendix A.1.1).

3.2 Multi-level optimization of ff-EBMs

Just as learning EBMs can be naturally cast as a bilevel optimization problem, learning ff-EBMs
equates to a multi-level optimization problem where the variables being optimized in the inner
subproblems are comprised of EB block variables s1, · · · , sN−1. To make this clearer, we re-write
the energy function of the kth block Ek from Eq. (6) to highlight the dependence between two
consecutive EB block states:

Ẽk(sk, θk, sk−1
⋆ , ωk) := Ek

(
sk, θk, F k

(
sk−1
⋆ , ωk−1

))
(8)

It can be seen from Eq. (8) that the equilibrium state sk⋆ obtained by minimizing Ek will be dependent
upon the equilibrium state sk−1

⋆ of the previous EB block, which propagates back through prior
EB blocks. Denoting W := {θ1, · · · , θN−1, ω1, · · · , ωN}, the learning problem for a ff-EBM can
therefore be written as:

min
W
C(x,W, y) := ℓ(ô⋆ = FN (sN−1

⋆ , ωN), y) (9)

s.t. sN−1
⋆ = argmin

s
ẼN−1(s, θN−1, sN−2

⋆ , ωN−1) · · · s.t. s1⋆ = argmin
s

Ẽ1(s, θ1, x, ω1)

Here again and similarly to bilevel optimization, solving Eq. (9) in practice amounts to computing
gθk := dθkC and gωk := dωkC and performing gradient descent on θk and ωk.

3.3 A BP–EP gradient chaining algorithm

Main result: explicit BP-EP chaining. Based on the multilevel optimization formulation of ff-
EBMs learning in Eq. (9), we state the main theoretical result of this paper in Theorem 3.1 (see proof
in Appendix A.2.1).

Theorem 3.1 (Informal). Assuming a model of the form Eq. (5), we denote s1⋆, x
1
⋆, · · · , sN−1

⋆ , ô⋆ the
states computed during the forward pass as depicted in Alg. 1. We define the nudged state of block k,
denoted as skβ , implicitly through∇1Fk(skβ , θ

k, xk
⋆, δs

k, β) = 0 with:

Fk(sk, θk, xk
⋆, δs

k, β) := Ek(sk, θk, xk
⋆) + βsk

⊤
· δsk (10)

Denoting δsk and ∆xk the error signals computed at the input of the feedforward block F k and of
the EB block Ek respectively, then the following chain rule applies:

δsN−1 := ∇sN−1ℓ(ô⋆, y), gωN = ∇ωN ℓ(ô⋆, y) (11)
∀k = 2 · · ·N − 1 : ∆xk = dβ

(
∇3E

k(skβ , θ
k, xk

⋆)
)∣∣∣

β=0
, gθk = dβ

(
∇2E

k(skβ , θ
k, xk

⋆)
)∣∣∣

β=0

δsk−1 = ∂1F
k
(
sk−1
⋆ , ωk

)⊤ ·∆xk, gωk = ∂2F
k
(
sk−1
⋆ , ωk

)⊤ ·∆xk
(12)

Proposed algorithm: implicit BP-EP chaining. Theorem 3.1 reads intuitively. It prescribes an
explicit chaining of EP error signals passing backward through Ek (δsk→∆xk) and BP error signals
passing backward through ∂F k⊤

(∆xk → δsk−1), which directly mirrors the ff-EBM inference
pathway as depicted in Fig. 2. Yet noticing that:

 δsk−1 = ∂1F
k
(
sk−1
⋆ , ωk

)⊤ ·∆xk = dβ

(
∇3Ẽ

k
(
skβ , θ

k, sk−1
⋆ , ωk

))∣∣∣
β=0

,

gωk = ∂2F
k
(
sk−1
⋆ , ωk

)⊤ ·∆xk = dβ

(
∇4Ẽ

k
(
skβ , θ

k, sk−1
⋆ , ωk

))∣∣∣
β=0

,

the same error signal can by passed through Ẽk (δsk → δsk−1) where BP and EP are implicitly
chained inside Ẽk (see Appendix A.2.1). This insight, along with a centered scheme to estimate

5

derivatives with respect to β around 0 as done for the C-EP algorithm (Eq. (4)), motivates the
implicit BP-EP gradient chaining algorithm in Alg. 2 we used for our experiments (see Alg. 5 inside
Appendix A.3.1 for its explicit counterpart). Given that the proposed algorithm appears as a a
generalization of EP, we refer to Alg. 2as “EP” in the experimental section, for simplicity.

Algorithm 2 Implicit BP-EP gradient chaining (Theorem (3.1))

1: δs, gωN ← ∇sN−1ℓ(ô⋆, y),∇ωN ℓ(ô⋆, y) ▷ Single BP step
2: for k = N − 1 · · · 1 do
3: sβ ← Optim

s

[
Ẽk(s, θk, sk−1

⋆ , ωk) + βs⊤ · δs
]

▷ EP in Ẽk

4: s−β ← Optim
s

[
Ẽk(s, θk, sk−1

⋆ , ωk)− βs⊤ · δs
]

5: gθk ← 1
2β

(
∇2Ẽ

k(sβ , θ
k, sk−1

⋆ , ωk)−∇2Ẽ
k(s−β , θ

k, sk−1
⋆ , ωk)

)
6: gωk ← 1

2β

(
∇4Ẽ

k(sβ , θ
k, sk−1

⋆ , ωk)−∇4Ẽ
k(s−β , θ

k, sk−1
⋆ , ωk)

)
▷ Implicit BP in F k

7: δs← 1
2β

(
∇3Ẽ

k(sβ , θ
k, sk−1

⋆ , ωk)−∇3Ẽ
k(s−β , θ

k, sk−1
⋆ , ωk)

)
8: end for

Recovering backprop. When the ff-EBM under consideration is purely feedforward (Uk = 0), we
show that Eqs. (11)–(12) reduce to standard BP through a feedforward net (Corollary A.1, Alg. 6 and
Alg. 7 in Appendix A.2.1). Since this case is extremely close to standard BP through feedforward
nets, we do not consider this setting in our experiments.

4 Experiments

In this section, we present the ff-EBMs used in our experiments (Section 4.1) and carry out static gra-
dient analysis – computing and analyzing ff-EBM parameter gradients for some x and y (Section 4.2).
We extend the observation made by Ernoult et al. [2019] –that transient EP parameter gradients
obtained during the second phase match those computed by automatic differentiation through equilib-
rium and across blocks– to ff-EBMs (Fig. (3)–(4), Theorem 4.1), showing that gradient estimates
of automatic differentiation and EP in our framework, are near perfectly aligned (Fig. 5). We then
show on the CIFAR-10 task that performance of ff-EBMs can be maintained or improved across
various block splits maintaining the same number of layers, while remaining on par with automatic
differentiation(Section 4.3). We show furthermore that blocks of smaller size are up to four times
faster to simulate depending on the convergence criterion at use for computing equilibrium inside EB
blocks. Finally, we perform further ff-EBM training experiments on CIFAR-100 and ImageNet32
where we establish a new state-of-the-art performance in the EP literature (Section 4.4).

4.1 Setup

Models. Using the same notations as in Eq. (6), the ff-EBMs at use in this section are defined:{
Uk
FC(s

k, θk) := − 1
2s

k⊤ · θk · sk,
Uk
CONV(s

k, θk) := − 1
2s

k •
(
θk ⋆ sk

) ,

{
F k
BN(s

k−1, ωk) := BN
(
P
(
ωk
CONV ⋆ sk−1

L

)
;ωk

α, ω
k
β

)
,

F k
ID(s

k−1) := sk−1
L

(13)
with BN(·;ωk

α, ω
k
β), P and ⋆ the batchnorm, pooling and convolution operations, • the generalized

dot product for tensors and sk :=
(
sk

⊤

1 , · · · sk⊤

L

)⊤
the state of block k comprising L layers. Such

EBM blocks are known as Deep Hopfield Networks (DHNs). DHNs are comprised of fully connected
(Uk

FC) and convolutional operations (Uk
CONV) forming a symmetric weight matrix θk with a sparse,

block-wise structure such that each layer skℓ is bidirectionally connected to its neighboring layers
skℓ−1 and skℓ+1 through connections θkℓ−1 and θk

⊤

ℓ respectively (see Appendix A.1.3). To empirically
ensure convergence, the non-linearity σ applied within EB blocks is σα(x) := min (max (αx, 0) , 1)
with α ∈ (0, 1). Finally, two design choices were instrumental to the success of ff-EBM gradient
computation and subsequent training. First, we initialized the weights of Uk

FC and Uk
CONV using

6

Gaussian Orthogonal Ensembles (GOE) [Agarwala and Schoenholz, 2022] to enable faster equilib-
rium computation (see next paragraph). Second, while the last layer of a given block was simply
passed as an input to the next block (i.e. using F k

ID in Eq. (13)) for small enough models (L = 6
inside the experiment depicted in Section 4.3), the use of batchnorm layers in between blocks (i.e.
using F k

BN in Eq. (13)) becomes essential for deeper models.

Equilibrium computation. As depicted in Alg. 2, the steady states s±β may be computed with
any loss minimization algorithm. Here, as in past works on EP [Ernoult et al., 2019, Laborieux et al.,
2021, Laborieux and Zenke, 2022, Scellier et al., 2024], we employ a fixed-point iteration scheme to
compute the EB blocks steady states. Namely, we iterate Eq. (7) until reaching equilibrium (the same
scheme is used for ff-EBM inference, Alg. 1, with β = 0.):

sk±β,t+1 ← σ
(
xk −∇1U

k(sk±β,t, θ
k)∓ βδsk

)
(14)

Important details about how Eq. (14) is executed in practice have to be highlighted. First, we employ
a scheme to asynchronously update even (sk2ℓ′) and odd (sk2ℓ′+1) layers [Scellier et al., 2024] – see
Appendix A.1.3. Second, Eq. (14) were either executed for a fixed and predetermined number of steps
as done in the aforementioned EP literature, or using an ϵ−tolerance-based convergence criterion
(TOL) which stops executing Eq. (14) when (sit+1 − sit)/s

i
t ≤ ϵ on average – see Appendix A.5.3

for details.

Algorithm baseline. As an algorithmic baseline, we simply use automatic differentiation (AD)
backward through the fixed-point iteration scheme Eq. (14) with β = 0 and directly initializing
skt=0 = s⋆ (Fig. 4). This version of AD, where we backpropagate through equilibrium, is known as
“Recurrent Backpropagation” [Almeida, 1987, Pineda, 1987] or Implicit Differentiation (ID).

4.2 Static comparison of EP and ID on ff-EBMs

In order to study the transient dynamics of ID and EP, we define, with W k := {θk, ωk}:{
ĝIDWk(t) :=

∑T
k=0 dWk(T−k)C(x,W k, y),

ĝEP
Wk(β, t) :=

1
2β

(
∇WkẼk(skβ,t,W

k, sk−1
⋆)−∇WkẼk(sk−β,t,W

k, sk−1
⋆)

)
,

(15)

where sk±β,t is computed from Eq. (14) with the nudging error current δsk computed with Alg. 2, and
T is the total number of iterations used for both ID and EP in the gradient computation phase.

Figure 3: EP and ID partially computed gradients ((ĝEP
w (t))t≥0 in black dotted curves and (ĝIDw (t))t≥0

in plain colored curves) going backward through equilibrium for ID and forward through the nudging
phase for EP [Ernoult et al., 2019] for a random sample x and associated label y. The ff-EBM
comprises 6 blocks and 15 layers in total, with block sizes of either 2 or 3 layers. Each sub-panel
represents a layer (labeled on the y-axis) with each curve corresponding to a randomly selected
weight. “Backward” time is indexed from t = 0 to T = 120, starting from block 6 backward to block
1, with 20 fixed-point iteration dynamics (Eq. (14)) being used for both EP and ID within each block.

For a given block k, dWk(T−k)C(x,W, y) is the “sensitivity” of the loss C to parameter W k at timestep
T − k so that ĝIDWk(t) is a ID gradient truncated at T − t. Fig. 4 depicts the computational graph
that is differentiated through when using ID and shows where ĝIDWk(t) are obtained correspondingly.
Similarly, ĝEP

Wk(t) is an EP gradient truncated at t steps forward through the nudged phase. When T

is sufficiently large, ĝIDWk(T) and ĝEP
Wk(T) converge to dWkC(x,W, y). Fig. 3 displays (ĝIDWk(t))t≥0

and (ĝEP
Wk(t))t≥0 on an heterogeneous ff-EBM of 6 blocks and 15 layers (16 if counting the last linear

7

“readout” layer computing the logits) with blocks comprising 2 or 3 layers for a randomly selected
sample x and its associated label y – see caption for a detailed description. It can be seen EP and
ID error weight gradients qualitatively match very well throughout time, across layers and blocks.
We also display the cosine similarity between the final EP and ID weight gradient estimate ĝIDWk(T)

and ĝEP
Wk(T) for each layer and observe that EP and ID weight gradients are near perfectly aligned.

Theorem 4.1 generalizes the equivalence between EP and ID to ff-EBMs [Ernoult et al., 2019].

Theorem 4.1 (Informal). Assuming ∀k = 1 · · ·N − 1 : sk0 = · · · = skτ = sk⋆:

∀k = 1 · · ·N − 1, ∀t = 0 · · · τ : ĝAD
Wk(t) = ĝIDWk(t) = lim

β→0
ĝEP
Wk(β, t) (16)

... ...

Figure 4: Light grey: computational graph associated with ff-EBM inference (Alg. 1) when applying
fixed-point iteration to compute equilibrium states within each block (Eq. (14)) where the node skt
denotes the state of block k (comprising several layers) at timestep t. Blue arrows: backward auto-
matic differentiation (AD) through the computational graph where ĝIDWk(t) is the partially computed
gradient truncated at T − t. Since the states which are differentiated through are taken at equilibrium
(skt = sk⋆ ∀t = 0 · · · τ) this instantiation of AD can be viewed as Implicit Differentiation (ID).

4.3 Splitting experiment

For a given (standard, single block) EBM with a fixed number of layers, we ask how block splitting
of this EBM into a ff-EBM with multiple EB blocks affects training performance and Wall Clock
(simulation) Time (WCT). We address this question with two different depths (L = 6 and L = 12
layers in total) and various block sizes (bs), maintaining a fixed total number of layers (e.g. for
L = 6, 1 block of 6 layers, 2 blocks of 3 layers, etc.). Additionally, to ensure the fairest comparison
in terms of WCTs across different splits, we adopt the aforementioned TOL approach to execute
the fixed-point dynamics Eq. (14) within each EB block. We display the results obtained on the
CIFAR-10 task inside Table 1. We observe that EP performance improves with smaller block sizes

Figure 5: Cosine similarity between EP and
ID weight gradients on a randomly selected
sample x and associated label y in the same
setting as Fig. 3 using the same color code
to label the layers. We observe near-perfect
alignment between EP and ID gradients. See
Fig. 7 for a precise depiction of the model at
use.

Table 1: Validation accuracy and Wall Clock Time
(WCT) obtained on CIFAR-10 by EP (Alg. 2) and
ID on models with different number of layers (L)
and block sizes (“bs”). 3 seeds are used.

EP ID
Top-1 (%) WCT Top-1 (%) WCT

L =6
bs=6 89.2 ±0.2 7:01 87.3 ±0.4 6:51
bs=3 89.8 ±0.2 5:17 89.3 ±0.2 5:10
bs=2 90.1 ±0.1 3:57 90.0 ±0.1 4:05
L =12
bs=4 89.4 ±0.7 11:59 89.5 ±0.2 8:28
bs=3 92.5 ±0.1 7:33 92.0 ±0.1 4:16
bs=2 92.0 ±0.2 3:14 91.5 ±0.2 3:07

(reaching 90.1% and 92.5% for L = 6 and L = 12 respectively with bs = 2 and bs = 3) with
overall WCT reduction (up to ≈ ×4) while remaining on par with ID. This significant reduction in

8

WCT is due to the fact that inference time for ff-EBMs with DHN blocks by construction scales
linearly with the number of blocks rather than supralinearly with the number of layers as has been
empirically observed in the EP literature [Ernoult et al., 2019]. When instead using a fixed number
of iterations to execute Eq. (14) inside EB blocks (Table 5 in Appendix A.5.3), EP performance is
maintained across all splits (90.1% and 92.5% for L = 6 and L = 12 resp.) and is still on par with
ID. However, there is no advantage in terms of WCTs in this case as the number of iterations is kept
the same across all block splits and is much larger than necessary for smaller block sizes. Results for
L = 6 are consistent with the existing literature and those for L = 12 surpass EP state-of-the-art on
CIFAR-10 [Scellier et al., 2024, Laborieux and Zenke, 2022]. Overall these results suggest that: i)
ff-EBM performance is agnostic to EB block sizes and are therefore flexible in design, ii) ff-EBMs
are much faster to simulate that EBM counterparts of equivalent depth.

4.4 Scaling experiment

We now consider ff-EBMs of fixed block size 2, and relatively small number of iterations . We train
two models of depth (L = 12 and L = 15) on CIFAR-100 and ImageNet32 by EP and ID and show
the results obtained in Table 2. Here again we observe that EP matches ID performance on all models
and tasks, ff-EBMs benefit from depth, and the performance obtained by training the 15-layer deep
ff-EBM by EP exceeds state-of-the-art performance on ImageNet32 by around 10% top-1 validation
accuracy [Laborieux and Zenke, 2022] and by around 5% the best performance reported on this
benchmark among all backprop alternatives [Høier et al., 2023].

Table 2: Validation accuracy and Wall Clock Time (WCT) obtained on CIFAR100 and ImageNet32 by
EP and Autodiff on models with different number of layers (L) and a block size of 2 (bs=2). 3 seeds
are used. We compare our results against best published results on ImageNet32 by EP [Laborieux
and Zenke, 2022] and against all backprop alternatives [Høier et al., 2023].

EP ID
Top-1 (%) Top-5 (%) WCT Top-1 (%) Top-5 (%) WCT

CIFAR100 L=12 69.3 ±0.2 89.9 ±0.5 4:33 69.2±0.1 90.0 ±0.2 4:16
L=15 71.2±0.2 90.2±1.2 2:54 71.1±0.3 90.9 ±0.1 2:44

ImageNet32 L=12 44.7 ±0.1 61:00 ±0.1 65:23 44.7 ±0.6 68.9±0.6 57:00
L=15 46.0 ±0.1 70.0 ±0.2 46:00 45.5 ±0.1 69.0 ±0.1 40:01

Laborieux and Zenke [2022] 36.5 60.8 – – – –
Høier et al. [2023] 41.5 64.9 – – – –

5 Discussion

EP literature. Ever since fixed-point iteration schemes were first proposed to facilitate EP
experiments [Ernoult et al., 2019, Laborieux et al., 2021], there has been a growing body of work
assessing scalability of EP and its algorithmic extensions on standard vision tasks. Most notably,
Laborieux and Zenke [2022] introduced a holomorphic version of EP where loss gradients are
computed with adiabatic oscillations of the model by nudging in the complex plane, which was
very recently extended to more general implicit models [Laborieux and Zenke, 2023]. Moving
further towards physical implementations of EP, Scellier et al. [2022] proposed a fully black-box
version of EP where details about the system may not be known. All these advances could be
readily applied inside our EP-BP chaining algorithm to EB blocks. The work closest to ours,
albeit with a purely theoretical motivation and without clear algorithmic prescriptions, is that of
Zach [2021] where feedforward model learning is cast as a deeply nested optimization in which
consecutive layers are tied by elemental pair-wise energy functions. This work more recently
inspired the Dual Propagation algorithm [Høier et al., 2023]. Such a setting can be construed as a
particular case of ff-EBM learning by EP where each EB block comprises a single layer (Uk = 0) in-
side Eq. (6)–which, as we have shown, is tantamount to standard BP(see last paragraph of Section 3.3).

Forward-only learning beyond EP. Given that zeroth-order (ZO) optimization and “forward-
forward” (FF) algorithms [Dellaferrera and Kreiman, 2022, Hinton, 2022] can be applied to any

9

model, and–like EP– compute a learning rule through multiple inference steps, one may wonder
why it is important that our models should be energy-based. While mechanistically appealing for
analog hardware [Oguz et al., 2023, Momeni et al., 2023, 2024, Xue et al., 2024], these forward-only
approaches do not match the performance of automatic differentiation on equivalent models, even if
they are roughly the same size as those studied in our work. On the one hand, weight perturbation
[Fiete et al., 2007] (WP or “SPSA” [Spall, 1998]), yields unbiased yet noisy gradient estimates with
variance scaling cubically with the model dimensionality [Ren et al., 2022], resulting in a significant
gap in model performance compared to backprop, that can only be partially mitigated when using
heuristics [Silver et al., 2021, Ren et al., 2022, Fournier et al., 2023, Chen et al., 2023]. On the other
hand FF algorithms, as learning heuristics, suffer from a lack of theoretical guarantees which may
impact the resulting model performance.

Limitations and future work. Since our recipe advocates EP–BP chaining by construction,
it is fair to say that ff-EBM learning partially inherits the pitfalls of BP. Fortunately, noth-
ing prevents feedforward modules inside ff-EBMs from being trained by any BP alternative to
mitigate specific issues. For instance: BP can be parameterized by feedback weights to ob-
viate weight transport from the inference circuit to the gradient computation circuit [Akrout
et al., 2019]; BP gradients can be approximated as finite differences of feedback operators
[Ernoult et al., 2022]; or computed via implicit forward-mode differentiation [Hiratani et al.,
2022, Fournier et al., 2023, Malladi et al., 2023]; local layer-wise self-supervised or super-
vised loss functions can be used to prevent “backward locking” [Belilovsky et al., 2019, Ren
et al., 2022, Hinton, 2022]. This insight may help exploring many variants of ff-EBM training.

Figure 6: ff-EBMs as hierarchi-
cal systems implementing EP at
chip scale (adapted from [Yi et al.,
2023]) using energy-based analog
processors made up of resistors
(green edges), diodes (in blue),
voltage sources (in purple), ADCs
and DACs (adapted from [Scellier,
2024]), digital processors, memory
buffers, all of these being connected
by digital buses (red lines).

Pursuing the core motivation of this work, one natural extension
of this study is to incorporate more hardware realism into ff-
EBMs. Beyond Deep Hopfield networks, Deep Resistive Nets
(DRNs) – developed by Scellier [2024] and strongly inspired by
Kendall et al. [2020] – are exact models of idealized analog cir-
cuits, trainable by EP, promising fast simulation times. As such,
using DRNs as EB blocks inside ff-EBMs is an exciting re-
search direction – see Fig. 6. Still, further work in this direction
presents new challenges especially given device non-idealities
which may affect the inference pathway, such as analog-to-
digital and digital-to-analog noise [Rasch et al., 2023, Lammie
et al., 2024]. Finally, considerable work is needed to prove
ff-EBM further at scale on more difficult tasks (e.g. standard
ImageNet), considerably deeper architectures, and moving be-
yond vision tasks. One other exciting research direction would
be the design of ff-EBM based transformers, with attention
layers being chained with energy-based fully connected layers
inside attention blocks.

Concluding remarks and broader impact. We show that
ff-EBMs constitute a novel framework for deep-learning in het-
erogeneous hardware settings. We hope that the proposed algo-
rithm can help to overcome the typical division between digital
versus analog or BP versus BP-free algorithms and that the
greater energy-efficiency afforded by this framework provides
a pragmatic, near-term blueprint to mitigating the dramatic
carbon footprint of AI training [Strubell et al., 2020]. While
we are still a long way from fully analog training accelerators
at commercial maturity, we believe this work offers an incre-
mental and sustainable roadmap to gradually integrate analog,
energy-based computational primitives as they are developed
into existing digital accelerators.

10

Acknowledgements and disclosure of funding

The authors warmly thank Irina Rish, Jack Kendall and Suhas Kumar for their support of the
project idea from the very start, Gregory Kollmer and Mohammed Fouda for helpful feedback
on the manuscript as well as Benjamin Scellier for useful discussions last year which led to an
alternative derivation of our main result (Appendix A.2.2). TN acknowledges the support from
the Canada Excellence Research Chairs Program, as well as CIFAR and Union Neurosciences
et Intelligence Artificielle Quebec (UNIQUE). This research was enabled by the computational
resources provided by the Summit supercomputer, awarded through the Frontier DD allocation and
INCITE 2023 program for the project "Scalable Foundation Models for Transferable Generalist AI"
and SummitPlus allocation in 2024. These resources were supplied by the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory, with support from the Office of Science
of the U.S. Department of Energy. ME acknowledges funding from Rain AI which commercializes
technologies based on brain-inspired learning algorithms, as well as Constance Castres Saint-Martin
for her unwavering support at the maternity hospital where most of this manuscript was written.

Author contributions

TN was responsible for implementation, architecture design, coding all algorithmic details and
running training experiments, as well as discovery of criteria for stable convergence. TN also
participated in writing relevant portions of this manuscript. ME designed the study, derived all
theoretical results, debugged and refactored the initial codebase and wrote most of the manuscript.

References
A. Agarwala and S. S. Schoenholz. Deep equilibrium networks are sensitive to initialization statistics.

In International Conference on Machine Learning, pages 136–160. PMLR, 2022.

M. Akrout, C. Wilson, P. Humphreys, T. Lillicrap, and D. B. Tweed. Deep learning without weight
transport. Advances in neural information processing systems, 32, 2019.

L. B. Almeida. A learning rule for asynchronous perceptrons with feedback in a combinatorial
environment. In Proceedings, 1st First International Conference on Neural Networks, volume 2,
pages 609–618. IEEE, 1987.

S. Ambrogio, P. Narayanan, A. Okazaki, A. Fasoli, C. Mackin, K. Hosokawa, A. Nomura, T. Yasuda,
A. Chen, A. Friz, et al. An analog-ai chip for energy-efficient speech recognition and transcription.
Nature, 620(7975):768–775, 2023.

S. Bai, J. Z. Kolter, and V. Koltun. Deep equilibrium models. Advances in neural information
processing systems, 32, 2019.

E. Belilovsky, M. Eickenberg, and E. Oyallon. Greedy layerwise learning can scale to imagenet. In
International conference on machine learning, pages 583–593. PMLR, 2019.

M. Blondel, Q. Berthet, M. Cuturi, R. Frostig, S. Hoyer, F. Llinares-López, F. Pedregosa, and J.-P.
Vert. Efficient and modular implicit differentiation. Advances in neural information processing
systems, 35:5230–5242, 2022.

A. Chen, Y. Zhang, J. Jia, J. Diffenderfer, J. Liu, K. Parasyris, Y. Zhang, Z. Zhang, B. Kailkhura, and
S. Liu. Deepzero: Scaling up zeroth-order optimization for deep model training. arXiv preprint
arXiv:2310.02025, 2023.

P. Chrabaszcz, I. Loshchilov, and F. Hutter. A downsampled variant of imagenet as an alternative to
the cifar datasets. arXiv preprint arXiv:1707.08819, 2017.

S. Cosemans, B. Verhoef, J. Doevenspeck, I. Papistas, F. Catthoor, P. Debacker, A. Mallik, and
D. Verkest. Towards 10000tops/w dnn inference with analog in-memory computing–a circuit
blueprint, device options and requirements. In 2019 IEEE International Electron Devices Meeting
(IEDM), pages 22–2. IEEE, 2019.

11

G. Dellaferrera and G. Kreiman. Error-driven input modulation: Solving the credit assignment
problem without a backward pass. In International Conference on Machine Learning, pages
4937–4955. PMLR, 2022.

S. Dillavou, B. Beyer, M. Stern, M. Miskin, A. Liu, and D. Durian. Transistor-based self-learning
networks. In APS March Meeting Abstracts, volume 2023, pages D07–006, 2023.

A. L. Dontchev, R. T. Rockafellar, and R. T. Rockafellar. Implicit functions and solution mappings:
A view from variational analysis, volume 616. Springer, 2009.

M. Ernoult, J. Grollier, D. Querlioz, Y. Bengio, and B. Scellier. Updates of equilibrium prop match
gradients of backprop through time in an rnn with static input. Advances in neural information
processing systems, 32, 2019.

M. M. Ernoult, F. Normandin, A. Moudgil, S. Spinney, E. Belilovsky, I. Rish, B. Richards, and
Y. Bengio. Towards scaling difference target propagation by learning backprop targets. In
International Conference on Machine Learning, pages 5968–5987. PMLR, 2022.

I. R. Fiete, M. S. Fee, and H. S. Seung. Model of birdsong learning based on gradient estimation
by dynamic perturbation of neural conductances. Journal of neurophysiology, 98(4):2038–2057,
2007.

L. Fournier, S. Rivaud, E. Belilovsky, M. Eickenberg, and E. Oyallon. Can forward gradient match
backpropagation? In International Conference on Machine Learning, pages 10249–10264. PMLR,
2023.

W. Haensch, T. Gokmen, and R. Puri. The next generation of deep learning hardware: Analog
computing. Proceedings of the IEEE, 107(1):108–122, 2018.

G. Hinton. The forward-forward algorithm: Some preliminary investigations. arXiv preprint
arXiv:2212.13345, 2022.

N. Hiratani, Y. Mehta, T. Lillicrap, and P. E. Latham. On the stability and scalability of node
perturbation learning. Advances in Neural Information Processing Systems, 35:31929–31941,
2022.

R. Høier, D. Staudt, and C. Zach. Dual propagation: Accelerating contrastive hebbian learning
with dyadic neurons. In International Conference on Machine Learning, 2023. URL https:
//icml.cc/virtual/2023/poster/23795.

S. Jain, H. Tsai, C.-T. Chen, R. Muralidhar, I. Boybat, M. M. Frank, S. Woźniak, M. Stanisavljevic,
P. Adusumilli, P. Narayanan, et al. A heterogeneous and programmable compute-in-memory
accelerator architecture for analog-ai using dense 2-d mesh. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 31(1):114–127, 2022.

J. Kendall, R. Pantone, K. Manickavasagam, Y. Bengio, and B. Scellier. Training end-to-end analog
neural networks with equilibrium propagation. arXiv preprint arXiv:2006.01981, 2020.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

A. Laborieux and F. Zenke. Holomorphic equilibrium propagation computes exact gradients through
finite size oscillations. Advances in Neural Information Processing Systems, 35:12950–12963,
2022.

A. Laborieux and F. Zenke. Improving equilibrium propagation without weight symmetry through
jacobian homeostasis. arXiv preprint arXiv:2309.02214, 2023.

A. Laborieux, M. Ernoult, B. Scellier, Y. Bengio, J. Grollier, and D. Querlioz. Scaling equilibrium
propagation to deep convnets by drastically reducing its gradient estimator bias. Frontiers in
neuroscience, 15:633674, 2021.

12

https://icml.cc/virtual/2023/poster/23795
https://icml.cc/virtual/2023/poster/23795

C. Lammie, F. Ponzina, Y. Wang, J. Klein, M. Zapater, I. Boybat, A. Sebastian, G. Ansaloni, and
D. Atienza. Lionheart: A layer-based mapping framework for heterogeneous systems with analog
in-memory computing tiles. arXiv preprint arXiv:2401.09420, 2024.

W. Li, M. Manley, J. Read, A. Kaul, M. S. Bakir, and S. Yu. H3datten: Heterogeneous 3-d integrated
hybrid analog and digital compute-in-memory accelerator for vision transformer self-attention.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2023.

R. Liao, Y. Xiong, E. Fetaya, L. Zhang, K. Yoon, X. Pitkow, R. Urtasun, and R. Zemel. Reviving and
improving recurrent back-propagation. In International Conference on Machine Learning, pages
3082–3091. PMLR, 2018.

S. Liu, C. Mu, H. Jiang, Y. Wang, J. Zhang, F. Lin, K. Zhou, Q. Liu, and C. Chen. Hardsea: Hybrid
analog-reram clustering and digital-sram in-memory computing accelerator for dynamic sparse
self-attention in transformer. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
2023.

I. Loshchilov and F. Hutter. Sgdr: Stochastic gradient descent with warm restarts. In International
Conference on Learning Representations, 2017.

S. Malladi, T. Gao, E. Nichani, A. Damian, J. D. Lee, D. Chen, and S. Arora. Fine-tuning language
models with just forward passes. Advances in Neural Information Processing Systems, 36:53038–
53075, 2023.

A. Momeni, B. Rahmani, M. Malléjac, P. Del Hougne, and R. Fleury. Backpropagation-free training
of deep physical neural networks. Science, 382(6676):1297–1303, 2023.

A. Momeni, B. Rahmani, B. Scellier, L. G. Wright, P. L. McMahon, C. C. Wanjura, Y. Li,
A. Skalli, N. G. Berloff, T. Onodera, et al. Training of physical neural networks. arXiv preprint
arXiv:2406.03372, 2024.

S. Nandakumar, M. Le Gallo, C. Piveteau, V. Joshi, G. Mariani, I. Boybat, G. Karunaratne,
R. Khaddam-Aljameh, U. Egger, A. Petropoulos, et al. Mixed-precision deep learning based
on computational memory. Frontiers in neuroscience, 14:406, 2020.

I. Oguz, J. Ke, Q. Weng, F. Yang, M. Yildirim, N. U. Dinc, J.-L. Hsieh, C. Moser, and D. Psaltis.
Forward–forward training of an optical neural network. Optics Letters, 48(20):5249–5252, 2023.

F. J. Pineda. Generalization of back-propagation to recurrent neural networks. Physical review letters,
59(19):2229, 1987.

M. J. Rasch, C. Mackin, M. Le Gallo, A. Chen, A. Fasoli, F. Odermatt, N. Li, S. Nandakumar,
P. Narayanan, H. Tsai, et al. Hardware-aware training for large-scale and diverse deep learning
inference workloads using in-memory computing-based accelerators. Nature communications, 14
(1):5282, 2023.

M. Ren, S. Kornblith, R. Liao, and G. Hinton. Scaling forward gradient with local losses. arXiv
preprint arXiv:2210.03310, 2022.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, et al. Imagenet large scale visual recognition challenge. International journal of
computer vision, 115:211–252, 2015.

B. Scellier. A deep learning theory for neural networks grounded in physics. arXiv preprint
arXiv:2103.09985, 2021.

B. Scellier. A fast algorithm to simulate nonlinear resistive networks. arXiv preprint
arXiv:2402.11674, 2024.

B. Scellier and Y. Bengio. Equilibrium propagation: Bridging the gap between energy-based models
and backpropagation. Frontiers in computational neuroscience, 11:24, 2017.

B. Scellier and Y. Bengio. Equivalence of equilibrium propagation and recurrent backpropagation.
Neural computation, 31(2):312–329, 2019.

13

B. Scellier, S. Mishra, Y. Bengio, and Y. Ollivier. Agnostic physics-driven deep learning. arXiv
preprint arXiv:2205.15021, 2022.

B. Scellier, M. Ernoult, J. Kendall, and S. Kumar. Energy-based learning algorithms for analog
computing: a comparative study. Advances in Neural Information Processing Systems, 36, 2024.

A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou. Memory devices and applica-
tions for in-memory computing. Nature nanotechnology, 15(7):529–544, 2020.

D. Silver, A. Goyal, I. Danihelka, M. Hessel, and H. van Hasselt. Learning by directional gradient
descent. In International Conference on Learning Representations, 2021.

J. C. Spall. Implementation of the simultaneous perturbation algorithm for stochastic optimization.
IEEE Transactions on aerospace and electronic systems, 34(3):817–823, 1998.

K. Spoon, H. Tsai, A. Chen, M. J. Rasch, S. Ambrogio, C. Mackin, A. Fasoli, A. M. Friz, P. Narayanan,
M. Stanisavljevic, et al. Toward software-equivalent accuracy on transformer-based deep neural
networks with analog memory devices. Frontiers in Computational Neuroscience, 15:675741,
2021.

M. Stern and A. Murugan. Learning without neurons in physical systems. Annual Review of
Condensed Matter Physics, 14:417–441, 2023.

M. Stern, S. Dillavou, D. Jayaraman, D. J. Durian, and A. J. Liu. Physical learning of power-efficient
solutions. arXiv preprint arXiv:2310.10437, 2023.

E. Strubell, A. Ganesh, and A. McCallum. Energy and policy considerations for modern deep
learning research. In Proceedings of the AAAI conference on artificial intelligence, volume 34,
pages 13693–13696, 2020.

N. C. Thompson, K. Greenewald, K. Lee, and G. F. Manso. The computational limits of deep learning.
arXiv preprint arXiv:2007.05558, 2020.

Z. Wang, P. S. Nalla, G. Krishnan, R. V. Joshi, N. C. Cady, D. Fan, J.-s. Seo, and Y. Cao. Digital-
assisted analog in-memory computing with rram devices. In 2023 International VLSI Symposium
on Technology, Systems and Applications (VLSI-TSA/VLSI-DAT), pages 1–4. IEEE, 2023.

Z. Xue, T. Zhou, Z. Xu, S. Yu, Q. Dai, and L. Fang. Fully forward mode training for optical neural
networks. Nature, 632(8024):280–286, 2024.

S.-i. Yi, J. D. Kendall, R. S. Williams, and S. Kumar. Activity-difference training of deep neural
networks using memristor crossbars. Nature Electronics, 6(1):45–51, 2023.

C. Zach. Bilevel programs meet deep learning: A unifying view on inference learning methods. arXiv
preprint arXiv:2105.07231, 2021.

Z. Zhang and M. Brand. Convergent block coordinate descent for training tikhonov regularized deep
neural networks. Advances in Neural Information Processing Systems, 30, 2017.

N. Zucchet and J. Sacramento. Beyond backpropagation: implicit gradients for bilevel optimization.
arXiv preprint arXiv:2205.03076, 2022.

14

A Appendix

Contents

A.1 Model details . 16

A.1.1 Feedforward-tied EBMs (ff-EBMs) . 16

A.1.2 Feedforward nets as a special case . 16

A.1.3 Equilibrium computation . 16

A.2 Main theoretical result . 19

A.2.1 Proof of Theorem 3.1 . 19

A.2.2 An alternative proof of Theorem 3.1 . 23

A.3 Resulting algorithms . 26

A.3.1 Explicit BP-EP chaining . 26

A.3.2 Recovering backprop through feedforward nets as a special case 26

A.3.3 Detailed implementation of the implicit BP-EP chaining algorithm (Alg. 2) 27

A.4 Static gradient analysis . 29

A.4.1 Algorithmic baselines . 29

A.4.2 Proof of Theorem 4.1 . 31

A.4.3 Details about Fig. 3 . 33

A.5 Experimental Details . 34

A.5.1 Datasets . 34

A.5.2 Data preprocessing . 34

A.5.3 Simulation details . 34

15

A.1 Model details

A.1.1 Feedforward-tied EBMs (ff-EBMs)

We first formally define Feedforward-tied Energy-based Models (ff-EBMs) with precise assumptions
on the energy-based and feedforward blocks.

Definition A.1 (ff-EBMs). A Feedforward-tied Energy-based Model (ff-EBM) of size N comprises
N twice differentiable feedforward mapping F 1, · · · , FN and N − 1 twice differentiable energy
functions E1, · · · , EN−1 with respect to all their variables. For a given x, the inference procedure
reads as:

s0 := x
xk
⋆ := F k(sk−1

⋆ , ωk), sk⋆ := argmin
s

Ek(s, θk, xk
⋆) ∀k = 1 · · ·N − 1

ô⋆ := FN (sN−1
⋆ , ωN)

(17)

Finally, we assume that ∀k = 1 · · ·N − 1,∇2
1E

k(sk⋆, θ
k, ωk) is invertible.

A.1.2 Feedforward nets as a special case

We show that when energy-based blocks comprise a single layer only, the ff-EBM becomes purely
feedforward.

Lemma A.1. We consider ff-EBM per Def. (A.1) where the energy functions Ek have the form:

Ek(sk, θk, xk) := Gk(sk)− sk
⊤
· xk + Uk(sk, θk). (18)

We assume that Uk = 0 for k = 1 · · ·N − 1, s→ ∇G(s) is invertible and we denote σ := ∇G−1.
Then, the resulting model is a feedforward model described by the following recursive equations: s0⋆ = x

xk
⋆ = F k(sk−1

⋆ , ωk), sk⋆ = σ(xk
⋆) ∀k = 1 · · ·N − 1

ô⋆ := FN (sN−1
⋆ , ωN)

(19)

Proof of Lemma A.1. Let k ∈ [1, N − 1]. By definition of sk⋆ and xk
⋆:

∇1E
k(sk⋆, θ

k, xk
⋆) = 0

⇔ ∇Gk(sk⋆)− xk
⋆ +∇1U

k(sk⋆, θ
k) = 0

⇔ sk⋆ = σ
(
xk
⋆ −∇1U

k(sk⋆, θ
k)
)

(20)

Therefore Eq. (19) is immediately obtained from Eq. (20) with Uk = 0.

A.1.3 Equilibrium computation

For a single block. As mentioned in Section 3.1, the energy function of the kth EB block has the
form:

Ek(sk, θk, xk) := Gk(sk)− sk
⊤
· xk + Uk(sk, θk), (21)

where xk is the output of the preceding feedforward block. For a given choice of a continuously
invertible activation function, Gk

σ is defined as:

Gk
σ(s

k) :=

dim(sk)∑
i=1

∫ si

σ−1
i (ui)dui such that ∇Gk

σ(s
k)i = σ−1

i (ski) ∀i = 1 · · · dim(sk).

(22)

16

To be more explicit and as we did previously, we re-write the augmented energy-function which
encompasses both the kth EB block and the feedforward module that precedes it:

Ẽk(sk, θk, sk−1
⋆ , ωk) := Ek

(
sk, θk, F k

(
sk−1
⋆ , ωk

))
. (23)

Deep Hopfield Nets (DHNs) as EB blocks. In our experiments, we used weight matrices of the
form:

θk =

0 θk

⊤

1 0

θk1 0 θk
⊤

2

0 θk2
.
. . . 0 θk

⊤

L

θkL 0

 , (24)

whereby each layer ℓ is only connected to its adjacent neighbors. Therefore, fully connected and
convolutional DHNs with L layers have an energy function of the form:

Uk
FC(s

k, θk) := −1

2
sk⊤ · θk · sk = −1

2

∑
ℓ

sk
⊤

ℓ+1 · θkℓ · skℓ (25)

Uk
CONV(s

k, θk) := −1

2
sk •

(
θk ⋆ sk

)
= −1

2

∑
ℓ

skℓ+1 •
(
θkℓ ⋆ skℓ

)
(26)

Synchronous fixed-point iteration. We showed that when G is chosen such that∇G = σ−1 for
some activation function σ, then the steady state of the kth block reads:

sk⋆ := σ
(
xk −∇1U

k(sk⋆, θ
k)
)
, (27)

which justifies the following fixed-point iteration scheme, when the block is influenced by some error
signal δs with nudging strength β:

sk±β,t+1 ← σ
(
xk −∇1U

k(sk±β,t, θ
k)∓ βδsk

)
. (28)

The dynamics prescribed by Eq. 28 are also used for the inference phase with β = 0. To further refine
Eq. (28), let us re-write Eq. (28) with a layer index ℓ where ℓ ∈ [1, Lk] with Lk being the number of
layers in the kth block, and replacing xk by its explicit expression:

∀ℓ = 1 · · ·Lk : skℓ,±β,t+1 ← σ
(
F k

(
sk−1
⋆ , ωk−1

)
−∇skℓ

Uk(sk±β,t, θ
k)∓ βδsk

)
. (29)

As done in past EP works [Ernoult et al., 2019, Laborieux et al., 2021, Laborieux and Zenke, 2022,
2023, Scellier et al., 2024] and for notational convenience, we introduce the primitive function of the
kth block as:

Φk
(
sk, θk, sk−1

⋆ , ωk
)
:= sk

⊤
· F k

(
sk−1
⋆ , ωk

)
− Uk(sk, θk) (30)

such that Eq. (29) re-writes:

∀ℓ = 1 · · ·Lk : skℓ,±β,t+1 ← σ
(
∇skℓ

Φ
(
sk±β,t, θ

k, sk−1
⋆ , ωk

)
∓ βδsk

)
. (31)

Eq. (31) depicts a synchronous scheme where all layers are simultaneously updated at each timestep.

17

Asynchronous fixed-point iteration. Another possible scheme, employed by Scellier et al. [2024],
instead prescribes to asynchronously update odd and even layers and was shown to speed up conver-
gence in practice:

 ∀ odd ℓ ∈ {1, · · · , Lk} : sk
ℓ,±β,t+ 1

2

← σ
(
∇skℓ

Φ
(
sk±β,t, θ

k, sk−1
⋆ , ωk

)
∓ βδsk

)
,

∀ even ℓ ∈ {1, · · · , Lk} : skℓ,±β,t+1 ← σ
(
∇skℓ

Φ
(
sk±β,t+ 1

2

, θk, sk−1
⋆ , ωk

)
∓ βδsk

)
.

(32)

We formally depict this procedure as the subroutine Asynchronous inside Alg. 3. In practice, we
observe that it was more practical to use a fixed number of iterations rather than using a convergence
criterion with a fixed threshold.

Algorithm 3 Asynchronous (for all blocks until penultimate)

Input: T , θk, ωk, sk−1
⋆ , β, δsk

Output: skβ
1: sk ← 0
2: for t = 1 · · ·T do
3: ∀ odd ℓ ∈ {1, · · · , Lk} : skℓ,β ← σ

(
∇skℓ

Φ
(
skβ , θ

k, sk−1
⋆ , ωk

)
− βδsk

)
4: ∀ even ℓ ∈ {1, · · · , Lk} : skℓ,β ← σ

(
∇skℓ

Φ
(
skβ , θ

k, sk−1
⋆ , ωk

)
− βδsk

)
5: end for

Resulting ff-EBM inference algorithm. With the aforementioned details in hand, we re-write the
inference algorithm Alg. 1 presented in the main as a Forward subroutine.

Algorithm 4 Forward
Input: T , x, W = {θ1, ω1, · · ·ωN}
Output: s1, · · · , sN−1 or ô depending on the context

1: s0 ← x
2: for k = 1 · · ·N − 1 do
3: sk ← Asynchronous

(
T, θk, ωk, sk−1

)
▷ Alg. 3

4: end for
5: ô← FN

(
s, ωN

)

18

A.2 Main theoretical result

A.2.1 Proof of Theorem 3.1

The proof of Theorem 3.1 is structured as follows:

• We directly solve the multilevel problem optimization defined inside Eq. (9) using a
Lagrangian-based approach (Lemma A.2), yielding optimal Lagrangian multipliers, block
states and loss gradients.

• We show that by properly nudging the blocks, EP implicitly estimates the previously derived
Lagrangian multipliers (Lemma A.3).

• We demonstrate Theorem 3.1 by combining Lemma A.2 and Lemma A.3.

• Finally, we highlight that when a ff-EBM is a feedforward net (Lemma A.1), then the
proposed algorithm reduces to BP (Corollary A.1).

Lemma A.2 (Lagrangian-based approach). Assuming a ff-EBM (Def. A.1), we denote
s1⋆, x

1
⋆, · · · , sN−1

⋆ , ô⋆ the states computed during the forward pass as prescribed by Eq. (17). Then,
the gradients of the objective function C := ℓ(ô(sN−1

⋆), y) as defined in the multilevel optimization
problem (Eq. (9)), where it is assumed that ℓ is differentiable, read:

dωNC = ∂2F

N (sN−1
⋆ , ωN)⊤ · ∂1ℓ(ô⋆, y),

dθkC = ∇2
1,2Ẽ

k(sk⋆, θ
k, sk−1

⋆ , ωk) · λk
⋆ ∀k = 1 · · ·N − 1,

dωkC = ∇2
1,4Ẽ

k(sk⋆, θ
k, sk−1

⋆ , ωk) · λk
⋆ ∀k = 1 · · ·N − 1,

(33)

where λ1
⋆, · · · , λN−1

⋆ satisfy the following conditions: ∇sN−1ℓ(ô(sN−1
⋆), y) +∇2

1Ẽ
N−1(sN−1

⋆ , θN−1, sN−2
⋆ , ωN−1) · λN−1

⋆ = 0
∀k = N − 2, · · · , 1 :

∇2
1,3Ẽ

k+1
(
sk+1
⋆ , θk+1, sk⋆, ω

k+1
)
· λk+1

⋆ +∇2
1Ẽ

k
(
sk⋆, θ

k, sk−1
⋆ , ωk

)
· λk

⋆ = 0
(34)

Proof of Lemma A.2. Denoting s := (s1, · · · , sN−1)⊤ the state variables of the energy-based
blocks, λ := (λ1, · · · , λN−1)⊤ the Lagrangian multipliers associated with each of these variables,
W := {θ1, ω1, · · · , θN−1, ωN−1} the energy-based and feedforward parameters and ô(sN−1) :=
FN

(
sN−1, ωN−1

)
the logits, the Lagrangian of the multilevel optimization problem as defined in

Eq. (9) reads:

L(s, λ,W) := ℓ
(
ô(sN−1), y

)
+

N−1∑
k=1

λk⊤
· ∇1Ẽ

k(sk, θk, sk−1, ωk), s0 := x (35)

Writing the associated Karush-Kuhn-Tucker (KKT) conditions ∂1,2L(s⋆, λ⋆,W) := 0 satisfied by
optimal states and Lagrangian multipliers s⋆ and λ⋆, we get :

∇1Ẽ
k(sk⋆, θ

k, sk−1
⋆ , ωk) = 0 ∀k = 1, · · · , N − 1 (36)

∇sN−1ℓ(ô(sN−1
⋆), y) +∇2

1Ẽ
N−1(sN−1

⋆ , θN−1, sN−2
⋆ , ωN−1) · λN−1

⋆ = 0 (37)

∇2
1,3Ẽ

k+1
(
sk+1
⋆ , θk+1, sk⋆, ω

k+1
)
· λk+1

⋆ +∇2
1Ẽ

k
(
sk⋆, θ

k, sk−1
⋆ , ωk

)
· λk

⋆ = 0 ∀k = N − 2, · · · , 1
(38)

Eq. (36) governs the bottom-up block-wise relaxation procedure (as depicted in Alg. 1), while Eq. (37)
and Eq. (38) governs error propagation in the last block and previous blocks respectively. Given
s⋆ and λ⋆ by Eq. (36) – Eq. (38), the total derivative of the loss function with respect to the model
parameters read:

19

dW ℓ(ô⋆, y) = dW

ℓ (ô⋆, y) +

N−1∑
k=1

λk⊤

⋆ · ∇1Ẽ
k(sk⋆, θ

k, sk−1
⋆ , ωk)︸ ︷︷ ︸

=0 (Eq. (36))

= dWL(s⋆, λ⋆,W)

= dW s⊤⋆ · ∂1L(s⋆, λ⋆,W)︸ ︷︷ ︸
=0 (Eq. (36))

+dWλ⊤
⋆ · ∂2L(s⋆, λ⋆,W)︸ ︷︷ ︸

=0 (Eq. (37)–(38))

+∂3L(s⋆, λ⋆,W)

= ∂3L(s⋆, λ⋆,W) (39)

More precisely, applying Eq. (39) to the feedforward and energy-based block parameters yields:

dωN ℓ(ô⋆, y) = ∂2F
N (sN−1

⋆ , ωN)⊤ · ∇1ℓ(ô⋆, y),

dθkℓ(ô⋆, y) = ∇2
1,2Ẽ

k(sk⋆, θ
k, sk−1

⋆ , ωk) · λk
⋆ ∀k = 1 · · ·N − 1

dωkℓ(ô⋆, y) = ∇2
1,4Ẽ

k(sk⋆, θ
k, sk−1

⋆ , ωk) · λk
⋆ ∀k = 1 · · ·N − 1

Lemma A.3 (Computing Lagrangian multipliers by EP). Under the same hypothesis as Lemma A.2,
we define the nudged state of block k, denoted as skβ , implicitly through∇1Fk(skβ , θ

k, xk
⋆, δs

k, β) = 0
with:

Fk(sk, θk, xk
⋆, δs

k, β) := Ek(sk, θk, xk
⋆) + βsk

⊤
· δsk. (40)

Defining (δsk)k=1···N−1 recursively as:

δsN−1 := ∇sN−1ℓ(ô⋆, y), δsk := dβ

(
∇3Ẽ

k+1
(
sk+1
β , θk+1, sk⋆, ω

k+1
))∣∣∣

β=0
∀k = 1 · · ·N−2,

(41)
then we have:

λk
⋆ = dβ

(
skβ

)
|β=0 ∀k = 1 · · ·N − 1, (42)

where (λk)k=1···N−1 are the Lagrangian multipliers associated to the multilevel optimization problem
defined in Eq. (9).

Proof of Lemma A.3. We prove this result by backward induction on k.

Initialization (k = N − 1). By definition, sN−1
β satisfies :

β∇sN−1ℓ (ô⋆, y) +∇1Ẽ
N−1

(
sN−1
β , θN−1, sN−2

⋆ , ωN−1
)
= 0 (43)

Differentiating Eq. (43) with respect to β and evaluating the resulting expression at β = 0, we obtain:

∇sN−1ℓ (ô⋆, y) +∇2
1Ẽ

N−1
(
sN−1
⋆ , θN−1, sN−2

⋆ , ωN−1
)
· dβsN−1

β |β=0 = 0 (44)

Substracting out Eq. (37) defining the Lagrangian multiplier λN−1
⋆ and Eq. (44), we obtain:

∇2
1Ẽ

N−1
(
sN−1
⋆ , θN−1, sN−2

⋆ , ωN−1
)
·
(
dβs

N−1
β |β=0 − λN−1

⋆

)
= 0 (45)

By invertibility of∇2
1Ẽ

N−1
(
sN−1
⋆ , θN−1, sN−2

⋆ , ωN−1
)
, we therefore have that:

λN−1
⋆ = dβs

N−1
β |β=0 (46)

20

Backward induction step (k + 1→ k). Let us assume that λk+1
⋆ = dβs

k+1
β |β=0. We want to prove

that λk
⋆ = dβs

k
β |β=0. Again, sk+1

β satisfies by definition:

βδsk +∇1Ẽ
k
(
skβ , θ

k, sk−1
⋆ , ωk

)
= 0, δsk := dβ

(
∇3Ẽ

k+1
(
sk+1
β , θk+1, sk⋆, ω

k+1
))∣∣∣

β=0
.

(47)

On the one hand, proceeding as for the initialization step, differentiating Eq. (47) with respect to β
and taking β = 0 yields:

δsk +∇2
1Ẽ

k(sk⋆, θ
k, sk−1

⋆ , ωk) · dβskβ |β=0 = 0. (48)

On the other hand, note that δsk rewrites :

δsk = dβ

(
∇3Ẽ

k+1
(
sk+1
β , θk+1, sk⋆, ω

k+1
))∣∣∣

β=0

= ∇2
1,3Ẽ

k+1
(
sk+1
⋆ , θk+1, sk⋆, ω

k+1
)
· dsk+1

β

∣∣∣
β=0

= ∇2
1,3Ẽ

k+1
(
sk+1
⋆ , θk+1, sk⋆, ω

k+1
)
· λk+1

⋆ , (49)

where we used at the last step the recursion hypothesis. Therefore combining Eq. (48) and Eq. (49),
we get:

∇2
1,3Ẽ

k+1
(
sk+1
⋆ , θk+1, sk⋆, ω

k+1
)
· λk+1

⋆ +∇2
1Ẽ

k(sk⋆, θ
k, sk−1

⋆ , ωk) · dβskβ |β=0 = 0. (50)

Finally, we substract out Eq. (38) and Eq. (50) to obtain:

∇2
1Ẽ

k(sk⋆, θ
k, sk−1

⋆ , ωk) ·
(
dβs

k
β |β=0 − λk

⋆

)
= 0. (51)

We conclude again by invertibility of∇2
1Ẽ

k(sk⋆, θ
k, sk−1

⋆ , ωk) that λk
⋆ = dβs

k
β |β=0.

Theorem A.1 (Formal). Assuming a model of the form Eq. (5), we denote s1⋆, x
1
⋆, · · · , sN−1

⋆ , ô⋆ the
states computed during the forward pass as prescribed by Alg. 1. We define the nudged state of block
k, denoted as skβ , implicitly through∇1Fk(skβ , θ

k, xk
⋆, δs

k, β) = 0 with:

Fk(sk, θk, xk
⋆, δs

k, β) := Ek(sk, θk, xk
⋆) + βsk

⊤
· δsk. (52)

Denoting δsk and ∆xk the error signals computed at the input of the feedforward block F k and of
the energy-based block Ek respectively, gθk and gωk the gradients of the loss function:

∀k = 1, · · · , N − 1 : gθk := dθkC, ∀k = 1 · · ·N : gωk := dωkC, (53)
then the following chain rule applies:

δsN−1 := ∇sN−1ℓ(ô⋆, y), gωN = ∂2F
N
(
sN−1
⋆ , ωN

)⊤ · ∇1ℓ(ô⋆, y) (54)

∀k = 1 · · ·N − 1 : ∆xk = dβ

(
∇3E

k(skβ , θ
k, xk

⋆)
)∣∣∣

β=0
, gθk = dβ

(
∇2E

k(skβ , θ
k, xk

⋆)
)∣∣∣

β=0

δsk−1 = ∂1F
k
(
sk−1
⋆ , ωk

)⊤ ·∆xk, gωk = ∂2F
k
(
sk−1
⋆ , ωk

)⊤ ·∆xk
(55)

Proof of Theorem A.1. Combining Lemma A.2 and Lemma A.3, the following chain rule computes
loss gradients correctly:

21

δsN−1 := ∇sN−1ℓ(ô⋆, y), gωN = ∂2F
N
(
sN−1
⋆ , ωN

)⊤ · ∇1ℓ(ô⋆, y) (56)

∀k = 1 · · ·N − 1 : ∆sk−1 = dβ

(
∇3Ẽ

k
(
skβ , θ

k, sk−1
⋆ , ωk

))∣∣∣
β=0

, gθk = ∇2
1,2Ẽ

k(sk⋆, θ
k, sk−1

⋆ , ωk) · dβskβ |β=0

gωk = ∇2
1,4Ẽ

k(sk⋆, θ
k, sk−1⋆,ω

k

) · dβskβ |β=0

(57)

Therefore to conclude the proof, we need to show that ∀k = 1, · · · , N − 1:

dβ

(
∇3Ẽ

k
(
skβ , θ

k, sk−1
⋆ , ωk

))∣∣∣
β=0

= ∂1F
k
(
sk−1
⋆ , ωk

)⊤ · dβ (∇3E
k(skβ , θ

k, xk
⋆)
)∣∣

β=0
(58)

∇2
1,2Ẽ

k(sk⋆, θ
k, sk−1

⋆ , ωk) · dβskβ |β=0 = dβ
(
∇2E

k(skβ , θ
k, xk

⋆)
)∣∣

β=0
(59)

∇2
1,4Ẽ

k(sk⋆, θ
k, sk−1

⋆ , ωk) · dβskβ |β=0 = ∂2F
k
(
sk−1
⋆ , ωk

)⊤ · dβ (∇3E
k(skβ , θ

k, xk
⋆)
)∣∣

β=0
(60)

Let k ∈ [1, N − 1]. We prove Eq. (58) as:

dβ

(
∇3Ẽ

k
(
skβ , θ

k, sk−1
⋆ , ωk

))∣∣∣
β=0

= dβ
(
∇sk−1Ek

(
skβ , θ

k, F k
(
sk−1
⋆ , ωk

)))∣∣
β=0

= ∂1F
k
(
sk−1
⋆ , ωk

)⊤ · dβ (∇3E
k(skβ , θ

k, xk
⋆)
)∣∣

β=0

Eq. (59) can be obtained as:

∇2
1,2Ẽ

k(sk⋆, θ
k, sk−1

⋆ , ωk) · dβskβ |β=0 = dβ

(
∇2Ẽ

k(skβ , θ
k, sk−1

⋆ , ωk)
)∣∣∣

β=0

= dβ
(
∇2E

k(skβ , θ
k, xk

⋆)
)∣∣

β=0

Finally and similarly, we have:

∇2
1,4Ẽ

k(sk⋆, θ
k, sk−1

⋆ , ωk) · dβskβ |β=0 = dβ

(
∇4Ẽ

k(skβ , θ
k, sk−1

⋆ , ωk)
)∣∣∣

β=0

= dβ
(
∇ωkEk(skβ , θ

k, F k
(
sk−1
⋆ , ωk

)
)
)∣∣

β=0

= dβ

(
∂2F

(
sk−1
⋆ , ωk

)⊤ · ∇3E
k(skβ , θ

k, xk
⋆)
)∣∣∣

β=0

= ∂2F
(
sk−1
⋆ , ωk

)⊤ · dβ (∇3E
k(skβ , θ

k, xk
⋆)
)∣∣

β=0

22

A.2.2 An alternative proof of Theorem 3.1

An energy function for ff-EBMs? While it is clear that the energy function of a ff-EBM is not
E =

∑N−1
k=1 Ẽk (which would correspond in this case to the “single block” standard case), one may

wonder if:

• ff-EBM inference (Alg. 1) can still be described as the minimization of some energy
function?

• Therefore, if Theorem 3.1 can be derived by directly applying EP to this energy function?

We show below that this is indeed the case. We follow Zach [2021], denoting s :=

(s1
⊤
, · · · , sN−1⊤)⊤ and W = {W1, · · · ,WN−1}, by picking the following energy function:

F (s,W, x, β) :=

N−1∑
k=1

{
Ẽk

(
sk,W k, sk−1

⋆

)
+
[
∇3Ẽ

k+1
(
sk+1,W k+1, sk⋆

)
−∇3Ẽ

k+1
(
sk+1
⋆ ,W k+1, sk⋆

)]⊤
·
(
sk − sk⋆

)}
+ ẼN−1

(
sN−1,WN−1, sN−2

⋆

)
+ βℓ̃(sN−1, y,WN), (61)

where we locally redefine x as the concatenation of all block inputs, i.e. x ←
(x⊤, s1

⊤

⋆ , · · · , sN−2⊤

⋆)⊤, and with s⋆ := (s1
⊤

⋆ , · · · , sN−1⊤

⋆) implicitly defined through
∇1F(s⋆,W, x, β = 0) = 0. In Lemma A.4, we show that the free steady state of the above
energy function (s⋆ obtained with β = 0 inside Eq. (61)) indeed corresponds to the states computed
by the ff-EBM inference scheme (Alg. 1).

Lemma A.4. Let Ẽ1, · · · , ẼN−1 be the block-wise energy functions of a ff-EBM defined per Def. A.1.
Assume s⋆ implicitly defined through∇1F(s⋆,W, β = 0) = 0 where F is defined by Eq. (61). Then:

s0⋆ := x, ∀k = 1, · · ·N − 1 : ∇1Ẽ
k(sk⋆,W

k, sk−1
⋆) = 0 (62)

Proof of Lemma A.4. For k = N − 1, the stationarity condition∇sN−1F(s⋆,W, x, β) yields:

∇1Ẽ
N−1

(
sN−1
⋆ ,WN−1, sN−2

⋆

)
+ 0 = 0. (63)

Then, for any 1 ≤ k < N − 1,∇skF(s⋆,W, x, β) = 0 yields:

∇1Ẽ
k(sk⋆,W

k, sk−1
⋆) +

[
∇3Ẽ

k+1
(
sk+1,W k+1, sk⋆

)
−∇3Ẽ

k+1
(
sk+1
⋆ ,W k+1, sk⋆

)]
︸ ︷︷ ︸

=0

= 0 (64)

Eq. (63) and Eq. (63) indeed correspond to ff-EBM inference as depicted inside Alg. 1.

The EP fundamental Lemma. For self-containedness of this paper, we restate the fundamental EP
result below inside Lemma A.5.
Lemma A.5 ([Scellier, 2021]). Let F(s,W, x, β) be a twice differentiable function of the three
variables s, W and β. For fixed W , x and β, let sβ be a point that satisfies the stationarity condition:

∇1F(sβ ,W, x, β) = 0, (65)

and suppose that ∇2
1F(sβ ,W, x, β) is invertible. Then, in the neighborhood of this point, we can

define a continuously differentiable function (x,W, β)→ sβ such that Eq. (65) holds for any (x,W, β)
in this neighborhood. Furthermore, we have the following identity:

dW (∇βF(sβ ,W, x, β)) = dβ (∇2F(sβ ,W, x, β)) (66)

In particular, Eq. (66) may be evaluated with F = E + βℓ at β = 0 to yield the EP learning rule,
denoting C := ℓ(s⋆, y) [Scellier and Bengio, 2017]:

dWC = dβ (∇2F(sβ ,W, x, β)) |β=0 (67)

23

Theorem 3.1 as a direct application of EP. Now we know Eq. (61) defines a valid energy function
for ff-EBMs and with Lemma A.5 in hand, we are ready to apply EP directly to this energy function.
We rewrite below the block-wise free energy functions at use inside Theorem 3.1 and used in practice
inside Alg. 2 to nudge a block of energy Ẽk given some top-down error signal δk:{

F̃k(sk,W k, sk−1
⋆ , δsk, β) := Ẽk(sk,W k, sk−1

⋆) + βsk
⊤ · δsk,

δsk := dβ

(
∇3Ẽ

k+1
(
skβ ,W

k+1, sk⋆

))∣∣∣
β=0

if k < N − 1 else∇1ℓ̃(s
N−1
⋆ , y,WN)

(68)

In Theorem A.2, we show that the direct application of Lemma A.5 to F as defined inside Eq. (61)
yields the same gradient formula for each parameter W k and the same nudged block states as those
prescribed by Theorem 3.1 for sufficiently small β.
Theorem A.2 (Informal). Let F be defined as in Eq. (61) satisfying the same assumptions as in
Lemma A.5. For fixed W , x and β, let sβ satisfy the stationarity condition:

∇1F(sβ ,W, x, β) = 0.

Then, we have:

dWkC = dβ

(
∇2Ẽ

k(skβ ,W
k, sk−1

⋆)
)∣∣∣

β=0
, ∇1F̃k(skβ ,W

k, sk−1
⋆ , δsk, β) = O(β2) (69)

Proof of Theorem A.2. Lemma A.5 yielding:

dWkC = dβ (∇WkF(sβ ,W, x, β))|β=0 ,

proving Eq. (69) amounts to show that:

dβ (∇WkF(sβ ,W, x, β))|β=0 = dβ

(
∇2Ẽ

k(skβ ,W
k, sk−1

⋆)
)∣∣∣

β=0
, (70)

∇1F̃k(skβ ,W
k, sk−1

⋆ , δsk, β) = O(β2) (71)

On the one hand, we have:

∇WkF(sβ ,W, x, β) = ∇2Ẽ
k(skβ ,W

k, sk−1
⋆)

+
(
∇2

2,3Ẽ
k(skβ ,W

k, sk−1
⋆)−∇2

2,3Ẽ
k(sk⋆,W

k, sk−1
⋆)

)
·
(
sk−1
β − sk−1

⋆

)
(72)

For notational convenience, we define A(β) :=
(
∇2

2,3Ẽ
k(skβ ,W

k, sk−1
⋆)−∇2

2,3Ẽ
k(sk⋆,W

k, sk−1
⋆)

)
.

Note that A(β = 0) = 0. Differentiating Eq. (72) with respect to β and taking β = 0 yields:

dβ (∇WkF(sβ ,W, x, β)) |β=0 = dβ

(
∇2Ẽ

k(skβ ,W
k, sk−1

⋆)
)
|β=0

+ dβA(β)|β=0 ·
(
sk−1
β=0 − sk−1

⋆

)
︸ ︷︷ ︸

=0

+A(0)︸︷︷︸
=0

·
(
sk−1
β − sk−1

⋆

)
= dβ

(
∇2Ẽ

k(skβ ,W
k, sk−1

⋆)
)
|β=0,

which proves Eq. (70).

On the other hand, the stationary condition∇skF(sβ ,W, x, β) on the last block (k = N − 1) yields:

∇1Ẽ
N−1(sN−1

β ,WN−1, sN−2
⋆) + β∇1ℓ̃(s

N−1
β , y,WN) = 0

⇒∇1Ẽ
N−1(sN−1

β ,WN−1, sN−2
⋆) + β∇1ℓ̃(s

N−1
⋆ , y,WN) = O(β2)

⇔∇1F̃N−1(sN−1
β ,WN−1, sN−2

⋆ , δsN , β) = O(β2). (73)

24

For previous blocks, i.e. k < N − 1, we have:

∇skF(sβ ,W, x, β) = 0

⇔∇1Ẽ
k(skβ ,W

k, sk−1
⋆) +∇3Ẽ

k+1
(
sk+1
β ,W k+1, sk⋆

)
−∇3Ẽ

k+1
(
sk+1
⋆ ,W k+1, sk⋆

)
= 0

⇒∇1Ẽ
k(skβ ,W

k, sk−1
⋆) + dβ

(
∇3Ẽ

k+1
(
sk+1
β ,W k+1, sk⋆

))∣∣∣
β=0

= O(β2)

⇔∇1F̃k(skβ ,W
k, sk−1

⋆ , δsk, β) = O(β2). (74)

Altogether, Eq. (73) and Eq. (74) finishes to prove Eq. (71).

25

A.3 Resulting algorithms

A.3.1 Explicit BP-EP chaining

We presented in Alg. 2 a “pure” EP algorithm where the BP-EP gradient chaining is implicit. We
show below, inside Alg. 5, an alternative implementation (equivalent in the limit β → 0) where
the use of BP through feedforward modules is explicit and which is the direct implementation of
Theorem A.1. We also show the resulting algorithm when the ff-EBM reduces to a feedforward
net (Lemma A.1) inside Alg. 7, highlight in blue the statements which differ from the general case
presented inside Alg. 5.

Algorithm 5 Explicit BP-EP gradient chaining (Theorem (3.1))

1: δs, gωN ← ∇sN−1ℓ(ô⋆, y),∇ωN ℓ(ô⋆, y) ▷ Single backprop step
2: for k = N − 1 · · · 1 do
3: sβ ← Optim

s

[
Ek(s, θk, xk

⋆) + βs⊤ · δs
]

▷ EP through Ek

4: s−β ← Optim
s

[
Ek(s, θk, xk

⋆)− βs⊤ · δs
]

5: gθk ← 1
2β

(
∇2E

k(sβ , θ
k, xk

⋆)−∇2E
k(s−β , θ

k, xk
⋆)
)

6: ∆x← 1
2β

(
∇3E

k(sβ , θ
k, xk

⋆)−∇3E
k(s−β , θ

k, xk
⋆)
)

7: gωk ← ∂2F
k
(
sk−1
⋆ , ωk

)⊤ ·∆x ▷ Explicit BP through F k

8: δs← ∂1F
k
(
sk−1
⋆ , ωk

)⊤ ·∆x
9: end for

A.3.2 Recovering backprop through feedforward nets as a special case

Corollary A.1. Under the same hypothesis as Theorem A.1 and Lemma A.1, then the following chain
rule applies to compute error signals backward from the output layer:

δsN−1 := ∇sN−1ℓ(ô⋆, y), gωN = ∇ωN ℓ(ô⋆, y)
∆xk = σ′(xk

⋆)⊙ δsk

δsk−1 = ∂1F
k
(
sk−1
⋆ , ωk

)⊤ ·∆xk, gωk = ∂2F
k
(
sk−1
⋆ , ωk

)⊤ ·∆xk

(75)

Proof of Corollary A.1. Let k ∈ [1, N − 1]. As we can directly apply Theorem A.1 here, proving
the result simply boils down to showing that:

∆xk = σ′(xk
⋆)⊙ δsk (76)

First, we notice that when Ek is of the form of Eq. (18), then ∆xk reads as:

∆xk = dβ
(
∇3E

k(skβ , θ
k, xk

⋆)
)∣∣

β=0
= − dβ

(
skβ

)∣∣
β=0

. (77)

skβ satisfies, by definition and when Uk = 0:

σ−1(skβ)− xk
⋆ + βδsk = 0

⇔ skβ = σ
(
xk
⋆ − βδsk

)
(78)

Combining Eq. (77) and Eq. (78) yields Eq. (76), and therefore, along with Theorem A.1, the
chain-rule Eq. (75).

We showcase in Alg. 6 and Alg. 7 the resulting algorithms implicit and explicit BP-EP chaining
respectively, with lines in blue highlighting differences with the general algorithm Alg. 2.

26

Algorithm 6 Implicit BP-EP gradient chaining with Uk = 0

1: δs, gωN ← ∇sN−1ℓ(ô⋆, y),∇ωN ℓ(ô⋆, y) ▷ Single backprop step
2: for k = N − 1 · · · 1 do
3: sβ , s−β ← σ

(
xk
⋆ − βδsk

)
, σ

(
xk
⋆ + βδsk

)
▷ EP through Ẽk

4: gωk ← 1
2β

(
∇4Ẽ

k(sβ , θ
k, sk−1

⋆ , ωk)−∇4Ẽ
k(s−β , θ

k, sk−1
⋆ , ωk)

)
▷ i-BP through F k

5: δs← 1
2β

(
∇3Ẽ

k(sβ , θ
k, sk−1

⋆ , ωk)−∇3Ẽ
k(s−β , θ

k, sk−1
⋆ , ωk)

)
6: end for

Algorithm 7 Explicit BP-EP gradient chaining with Uk = 0

1: δs, gωN ← ∇sN−1ℓ(ô⋆, y),∇ωN ℓ(ô⋆, y) ▷ Single backprop step
2: for k = N − 1 · · · 1 do
3: ∆x← − 1

2β

(
σ
(
xk
⋆ − βδsk

)
− σ

(
xk
⋆ + βδsk

))
4: gωk ← ∂2F

k
(
sk−1
⋆ , ωk

)⊤ ·∆x ▷ Explicit BP through F k

5: δs← ∂1F
k
(
sk−1
⋆ , ωk

)⊤ ·∆x
6: end for

A.3.3 Detailed implementation of the implicit BP-EP chaining algorithm (Alg. 2)

Nudging the last block. From looking at the procedure prescribed by Theorem 3.1 and algorithms
thereof (Alg. 2, Alg. 5), all the error signals used to nudge the EB blocks are stationary, including the
top-most block where the loss error signal is fed in. Namely, the augmented energy function of the
last block reads as:

FN−1(sN−1, θN−1, xN−1
⋆ , β) := EN−1(sN−1, θN−1, xN−1

⋆) + βsN−1⊤ · ∇sN−1ℓ(ô⋆, y), (79)

where ô⋆ := FN
(
sN−1
⋆ , ωN

)
is constant. Up to a constant, Eq. (80) uses the cost function linearized

around sN−1
⋆ instead of the cost function itself. This is, however, in contrast with most EP implemen-

tations where the nudging force acting upon the EB block is usually elastic, i.e. the nudging depends
on the current state of the EB block. More precisely, instead of using Eq. (79), we instead use:

FN−1(sN−1, θN−1, xN−1
⋆ , β) := EN−1(sN−1, θN−1, xN−1

⋆) + βℓ(FN (sN−1, ωN), y), (80)

This results in the following asynchronous fixed-point dynamics for the last block:

 ∀ odd ℓ ∈ {1, · · · , Lk} : sk
ℓ,±β,t+ 1

2

← σ
(
∇skℓ

Φ
(
sk±β,t, θ

k, sk−1
⋆ , ωk

)
∓ β∇skℓ(s

k
±β,t, y)

)
,

∀ even ℓ ∈ {1, · · · , Lk} : skℓ,±β,t+1 ← σ
(
∇skℓ

Φ
(
sk±β,t+ 1

2

, θk, sk−1
⋆ , ωk

)
∓ β∇skℓ(s

k
±β,t, y)

)
.

The resulting Asynchronous subroutine, applying for the last block, is depicted inside Alg. 8.

Readout. Laborieux et al. [2021] introduced the idea of the “readout” whereby the last linear layer
computing the loss logits is not part of the EB free block dynamics but simply “reads out” the state of
the penultimate block. In all our experiments we use such a readout in combination with the cross
entropy loss function. Using our formalism, our readout is simply the last feedforward transformation
used inside ℓ, namely FN (·, ωN).

Detailed implicit EP-BP chaining algorithm. We provide a detailed implementation of our
algorithm presented in the main (Alg. 2) in Alg. 11. As usually done for EP experiments, we
always perform a “free phase” to initialize the block states (Forward subroutine, Alg. 4). Then, two

27

Algorithm 8 Asynchronous (for last block)

Input: T , θN−1, ωN−1, ωN , sk−1
⋆ , β, ℓ (cost function), y

Output: sN−1
β

1: sN−1 ← 0
2: for t = 1 · · ·T do
3: ∀ odd ℓ ∈ {1, · · · , LN}:
4: sN−1

ℓ,β ← σ
(
∇sN−1

ℓ
Φ
(
sN−1
β , θN−1, sN−2

⋆ , ωN−1
)
− β∇sN−1

ℓ
ℓ(FN (sN−1, ωN), y)

)
5: ∀ even ℓ ∈ {1, · · · , LN}:
6: sN−1

ℓ,β ← σ
(
∇sN−1

ℓ
Φ
(
sN−1
β , θN−1, sN−2

⋆ , ωN−1
)
− β∇sN−1

ℓ
ℓ(FN (sN−1, ωN), y)

)
7: end for

nudged phases are applied to the last block and parameter gradients subsequently computed, as done
classically (BlockGradient subroutine for the last block, Alg. 9), with an extra computation to
compute the error current to be applied to the penultimate block (δsN−2). Then, the same procedure
is recursed backward through blocks (Alg. 10), until reaching first block.

Algorithm 9 BlockGradient (for last block)
Input: T , sN−2

⋆ , θN−1, ωN−1, ωN , β, ℓ, y
Output:δsN−2

1: sN−1
β ← Asynchronous

(
T, θN−1, ωN−1, ωN , β, ℓ, y

)
▷ Alg. 8

2: sN−1
−β ← Asynchronous

(
T, θN−1, ωN−1, ωN ,−β, ℓ, y

)
3: gωN ← 1

2

(
∇sN−1ℓ(FN

(
sN−1
β , ωN

)
) +∇sN−1ℓ(FN

(
sN−1
−β , ωN

)
)
)

4: gθN−1 ← 1
2β

(
∇2Ẽ

N−1(sN−1
β , θN−1, sN−2

⋆ , ωN−1)−∇2Ẽ
N−1(sN−1

−β , θN−1, sN−2
⋆ , ωN−2)

)
5: gωN−1 ← 1

2β

(
∇4Ẽ

N−1(sN−1
β , θN−1, sN−2

⋆ , ωN−1)−∇4Ẽ
N−1(sN−1

−β , θN−1, sN−2
⋆ , ωN−2)

)
6: δsN−2 ← 1

2β

(
∇3Ẽ

N−1(sN−1
β , θN−1, sN−2

⋆ , ωN−1)−∇3Ẽ
N−1(sN−1

−β , θN−1, sN−2
⋆ , ωN−2)

)

Algorithm 10 BlockGradient (for all blocks until penultimate)
Input: T , sk−1

⋆ , θk, ωk, β, δs
Output:δsk−1

1: skβ ← Asynchronous
(
T, θk, ωk, β, δs

)
▷ Alg. 3

2: sk−β ← Asynchronous
(
T, θk, ωk,−β, δs

)
3: gθk ← 1

2β

(
∇2Ẽ

k(skβ , θ
k, sk−1

⋆ , ωk)−∇2Ẽ
k(sk−β , θ

k, sk−1
⋆ , ωk)

)
4: gωk ← 1

2β

(
∇4Ẽ

k(skβ , θ
k, sk−1

⋆ , ωk)−∇4Ẽ
k(sk−β , θ

k, sk−1
⋆ , ωk)

)
5: δsk−1 ← 1

2β

(
∇3Ẽ

k(skβ , θ
k, sk−1

⋆ , ωk)−∇3Ẽ
k(sk−β , θ

k, sk−1
⋆ , ωk)

)

Algorithm 11 Detailed implicit BP-EP gradient chaining

1: s1⋆, · · · , sN−1
⋆ ← Forward (Tfree, x,W) ▷ Alg. 4

2: δs← BlockGradient
(
Tnudge, s

N−2
⋆ , θN−1, ωN−1, ωN , β, ℓ, y

)
▷ Alg. 9

3: for k = N − 2 · · · 1 do
4: δs← BlockGradient

(
Tnudge, s

k−1
⋆ , θk, ωk, β, δs

)
▷ Alg. 10

5: end for

28

A.4 Static gradient analysis

Important foreword. The whole subsection is dedicated to an important tool when developing
code for EP research. While EP is agnostic to how the steady states are obtained – the EP theory only
prescribes they are energy minimizers – they can be obtained in practice (i.e. in simulations) through
fixed-point iteration schemes (see Appendix A.1.1). The below formally defines the computational
graph spanned by these schemes and abstract them away into a transition function K and defines three
different techniques to compute gradients on this graph: Automatic Differentiation (AD, Prop. A.1),
Implicit Differentiation (ID, Def. A.3) or Equilibrium Propagation (EP, Def. A.4). After defining
each of these algorithms formally, we will state and demonstrate an equivalence between EP and ID
(Theorem A.3) which we test numerically and relied upon for the development of our codebase.

A.4.1 Algorithmic baselines

Definition of the computational graph being optimized. We abstract fixed-point iteration dynam-
ics away into a kernel function K which, given some block state skt yields skt+1.

Definition A.2 (Form of the computational graph through equilibrium).

∀k = 1, · · · , N − 1, ∀t = 1, · · · , τ :

x0 = x, skt = K(skt−1,W
k
t−1 = W k, xk = sk−1

τ), C = ℓ(FN (sN−1
τ , ωN), y) := ℓ̃(sN−1, y)

(81)

Note that we emphasize, through the W k
t−1 = W k notation, that the parameters W k are shared across

all timesteps t = 1, · · · , τ . This will help us define loss gradient with respect to W k
t−1 further below,

i.e. how much W k contributes at time t − 1 to changing the loss C. The total contribution of W k

reads as the sum of the elemental contributions of all W k
t . This intuition is more precisely illustrated

further below. Given the computational graph defined in Def. A.2, we can now formally define the
Automatic Differentiation (AD) baseline.

Automatic Differentiation (AD). Our goal is to compute:

gAD
Wk := ĝAD

Wk(τ) with: ĝAD
Wk(t) :=

t∑
k=1

∂Wk
τ−k
C (82)

In plain words, ĝAD
Wk(t) denotes the loss gradient for parameter W k truncated at the tth step moving

backward in time. We formally define below Automatic Differentiation (AD).

Proposition A.1 (Automatic Differentiation (AD)). The gradients ĝAD
Wk(t) can be computed using the

following recursive equations:

∀k = N − 1 · · · 1 :

δsk0 = δxk+1
τ if k < N − 1 else ∇1ℓ̃(s

N−1
τ , y)

δxk
0 = 0, ĝAD

Wk(0) = 0

∀t = 1, · · · , τ : δskt = ∂1K(skτ−t,W
k, xk = sk−1

τ)⊤ · δsk−1
t−1

ĝAD
Wk(t) = ĝAD

Wk(t− 1) + ∂2K(skτ−t,W
k, xk = sk−1

τ)⊤ · δskt−1

δxk
t = δxk

t−1 + ∂3K(skτ−t,W
k, xk = sk−1

τ)⊤ · δskt−1

(83)

Proof of Prop. A.1. This is a straightforward application of the chain rule applied to Eq. (81).

Implicit Differentiation (ID). We define the steady state of block k, which we denote sk⋆ , as the
fixed point of Eq. (81). With this notation in hand, we can define Implicit Differentiation (ID) in this
setting.

29

Definition A.3 (Implicit Differentiation (ID)). Denoting sk⋆ the fixed point of Eq. (81) inside block k,
we define Implicit Differentiation (ID) through the following recursive equations:

∀k = N − 1 · · · 1 :

δsk0 = δxk+1
τ if k < N − 1 else∇1ℓ̃(s

N−1
τ , y)

δxk
0 = 0, ĝIDWk(0) = 0

∀t = 1, · · · , τ : δskt = ∂1K(sk⋆,W
k, xk = sk−1

⋆)⊤ · δsk−1
t−1

ĝIDWk(t) = ĝIDWk(t− 1) + ∂2K(sk⋆,W
k, xk = sk−1

⋆)⊤ · δskt−1

δxk
t = δxk

t−1 + ∂3K(sk⋆,W
k, xk = sk−1

⋆)⊤ · δskt−1

(84)

We are now ready to state a simple algorithmic equivalence between ID and AD, which we built upon
for our implementation of Alg. 12.

Corollary A.2 (Equivalence of ID and AD). Assuming that:

∀k = 1, · · · , N − 1, ∀t = 1, · · · , τ : skt = sk⋆, (85)

where sk⋆ denotes the fixed-point of Eq. 81, then automatic differentiation (Prop. A.1) and implicit
differentiation (Def. A.3) are equivalent, namely:

∀k = 1, · · · , N − 1, ∀t = 1, · · · , τ : ĝIDWk(t) = ĝAD
Wk(t) (86)

Proof of Corollary A.2. This is a straightforward application of the definition of AD (Prop. A.1 along
with the hypothesis made inside Corollary A.2.

Resulting implementation of ID. We describe our implementation of ID inside Alg. 12. First, we
relax all blocks sequentially to equilibrium following Alg. 4 and we do not track gradients throughout
this first phase, using Tfree fixed-point iteration steps per block. Then, initializing the block states
with those computed at the previous step, we re-execute the same procedure (still with Alg. 4), this
time tracking gradients and using Tnudge steps fixed-point iteration steps for each block. Then, we
use automatic differentiation to backpropagate through the last Tnudge steps for each block, namely
backpropagating, backward in time, through equilibrium.

Algorithm 12 Our implementation of ID

1: Without tracking gradients: ▷ e.g. with torch.no_grad()
2: s1⋆, · · · , sN−1

⋆ ← Forward (Tfree, x,W) ▷ Alg. 4
3: Initialize block states at s1⋆, · · · , sN−1

⋆
4: ô⋆ ← Forward (Tnudge, x,W) ▷ This time gradients are tracked
5: C ← ℓ(ô⋆, y)
6: Backpropagate C backward through the last Tnudge steps for each block ▷ e.g. C.backward()

An important note about this implementation of ID. Note that this is not a standard implementa-
tion of ID and it may be surprising at first glance to implement ID as AD, thereby loosing the constant
O(1) memory cost of ID with respect to the length of the computational graph. Instead, the memory
cost of Alg. 12 is O((N − 1)τ) 4. However, our goal is not so much to optimize for memory usage
(as in the context of Deep Equilibrium Models [Bai et al., 2019]) but to code an algorithmic baseline
which we know to be equivalent to EP. Lastly, note that this implementation of ID is also known as
Recurrent Backprop (RBP, [Almeida, 1987, Pineda, 1987]) or Von-Neumann RBP [Liao et al., 2018],
and that ID generally comes in many more algorithmic flavors [Blondel et al., 2022].

4We are not accounting for the spatial depth (L) of the computational graph in this cost. In this case, standard
ID would have memory cost O(L) and our implementation inside Alg. 12 O(L(N − 1)τ).

30

A.4.2 Proof of Theorem 4.1

In order to state a formal equivalence between EP and ID, we first need to formally define EP in the
context of the aforementioned computational graph defined in Def. A.2.

Definition A.4 (Equilibrium Propagation (EP)). Denoting sk⋆ the fixed point of Eq. (81) inside block k
and assuming that the transition kernel K has the form K(s,W k, xk) = ∇1Φ(s,W

k, xk), we define
Equilibrium Propagation (EP) through the following recursive equations:

∀k = N − 1 · · · 1 :

δsk = ∆xk+1
τ if k < N − 1 else∇1ℓ̃(s

N−1
τ , y)

∆xk
0 = 0, ĝEP

Wk(0) = 0, skβ,t=0 = sk⋆

∀t = 1, · · · , τ :
skβ,t+1 = ∇1Φ(s

k
β,t,W

k, xk = sk−1
⋆)− βδsk

ĝEP
Wk(β, t) = − 1

2β

(
∇2Φ(s

k
β,t+1,W

k, xk = sk−1
⋆)−∇2Φ(s

k
−β,t+1,W

k, xk = sk−1
⋆)

)
∆xk

β,t = − 1
2β

(
∇3Φ(s

k
β,t+1,W

k, xk = sk−1
⋆)−∇3Φ(s

k
−β,t+1,W

k, xk = sk−1
⋆)

)
Now that we have properly defined ID and EP, we are ready to state the main result of this section
about the algorithmic equivalence between ID and EP which our coding work significantly built upon.
Theorem A.3 (Extension of [Ernoult et al., 2019] to ff-EBMs). Assuming that:

∀k = 1, · · · , N − 1, ∀t = 1, · · · , τ : skt = sk⋆, (87)

where sk⋆ denotes the fixed-point of Eq. (81) and that the transition kernel K has the form
K(s,W k, xk) = ∇1Φ(s,W

k, xk), then implicit differentiation (Def. A.3) and equilibrium prop-
agation (Def. A.4) are equivalent in the limit β → 0, namely:

∀k = 1, · · · , N − 1, ∀t = 1, · · · , τ : lim
β→0

ĝEP
Wk(β, t) = ĝIDWk(t) (88)

Proof of Theorem A.3. This proof follows the exact same methodology as that of Ernoult et al. [2019].
For self-containedness though and because of some subtle differences, we carry out here the derivation.
We first define:

∆skt := dβs
k
t+1|β=0 − dβs

k
t |β=0. (89)

Note that since skβ,t=0 = s⋆, dβskt |β=0 = 0 since s⋆ does not depend on θ. Furthermore, note that
by differentiating the equation satisfied by skβ,t+1 with respect to β and evaluating the resulting
expressions at β = 0 yields:

dβs
k
β,t+1|β=0 = ∂1K(sk⋆,W

k, xk = sk−1
⋆) · dβskβ,t|β=0 − δsk (90)

In particular, evaluating Eq. (90) for t = 0 yields:

∆sk0 = dβs
k
β,1|β=0 − dβs

k
β,0|β=0︸ ︷︷ ︸
=0

= −δsk. (91)

Therefore, substracting Eq. (90) across two timesteps yields altogether:

∆skt = ∂1K(sk⋆,W
k, xk = sk−1

⋆) ·∆skt−1

= ∇2
1Φ(s

k
⋆,W

k, xk = sk−1
⋆) ·∆skt−1

= ∇2
1Φ(s

k
⋆,W

k, xk = sk−1
⋆)⊤ ·∆skt−1

= ∂1K(sk⋆,W
k, xk = sk−1

⋆)⊤ ·∆skt−1 (92)

31

Note that ĝEP
Wk(t) rewrites:

ĝEP
Wk(β, t) = −dβ

(
∇2Φ(s

k
β,t+1,W

k, xk = sk−1
⋆)

)
+O(β2)

= −∇2
1,2Φ(s

k
⋆,W

k, xk = sk−1
⋆) · dβskβ,t+1|β=0 +O(β2)

= −∇2
1,2Φ(s

k
⋆,W

k, xk = sk−1
⋆) ·∆skt −∇2

1,2Φ(s
k
⋆,W

k, xk = sk−1
⋆) · dβskβ,t|β=0 +O(β2)

= −∇2
1,2Φ(s

k
⋆,W

k, xk = sk−1
⋆)︸ ︷︷ ︸

=∇2
2,1Φ(sk⋆,W

k,xk=sk−1
⋆)⊤

·∆skt + ĝEP
Wk(β, t− 1) +O(β2)

= ∂2K(sk⋆,W
k, xk = sk−1

⋆)⊤ ·
(
−∆skt

)
+ ĝEP

Wk(β, t− 1) +O(β2) (93)

Likewise, we can show that:

∆xk
β,t = ∂3K(sk⋆,W

k, xk = sk−1
⋆)⊤ ·

(
−∆skt

)
+∆xk

β,t−1 +O(β2) (94)

Altogether, Eq. (91), Eq. (92) Eq. (93) and Eq. (94) yield, denoting ĝEP
Wk(t) := limβ→0 ĝ

EP
Wk(β, t)

and ∆xk
t := limβ→0 ∆xk

β,t:

∀k = N − 1, · · · , 1 :

−∆sk0 = δsk = ∆xk+1
τ if k < N − 1 else ∇1ℓ̃(s

N−1
τ , y), ĝEP

Wk(0) = 0, ∆xk
0 = 0 (95)

∀t = 1, · · · , τ : −∆skt = ∂1K(sk⋆,W
k, xk = sk−1

⋆)⊤ · (−∆skt−1)
ĝEP
Wk(t) = ĝEP

Wk(t− 1) + ∂2K(sk⋆,W
k, xk = sk−1

⋆)⊤ ·
(
−∆skt

)
∆xk

t = ∂3K(sk⋆,W
k, xk = sk−1

⋆)⊤ ·
(
−∆skt

)
+∆xk

t−1

(96)

Starting from k = N − 1, (−∆sN−1
t)t∈J1,τK and (δsN−1

t)t∈J1,τK, (∆xN−1
t)t∈J1,τK and

(δxN−1)t∈J1,τK, (ĝEP
WN−1(t))t∈J1,τK and (ĝIDWN−1(t))t∈J1,τK satisfy the same initial conditions and

recursive equations, therefore there are all (pair-wise) equal for t = 1, · · · , τ . Therefore in particular,
∆xN−1

τ = δxN−1
τ such that (−∆sN−2

t)t∈J1,τK and (δsN−2
t)t∈J1,τK from the previous (N − 2)th

block satisfy the same initial conditions, such that the reasonning applying to k = N − 1 recurses for
k < N − 1, which yields Eq. (88).

32

A.4.3 Details about Fig. 3

Precise hyperparameters to reproduce Fig. 5 and Fig. 3 can be found inside our repository.
Fig. 7 precisely depict the architecture at use for these experiments.

Conv-64

BatchNorm

Conv-128

BatchNorm

Pool

Conv-128

Conv-256

BatchNorm

Pool

Conv-256

Conv-256

Conv-512

BatchNorm

Pool

Conv-512

BatchNorm

Pool

Conv-512

BatchNorm

Linear

Conv-512

Conv-512

Conv-512

Conv-512

Linear

Conv-64

Figure 7: Architecture used for the static gradient analysis. The color code used to label layers
matches that of Fig. 3 and Fig. 5. In the context of the static gradient analysis, “block” k is defined as
all layers participating in Ẽk, which therefore includes F k and Ek modules (rather than one of these
taken alone).

33

A.5 Experimental Details

A.5.1 Datasets

Simulations were run on CIFAR-10, CIFAR-100 and Imagenet32 datasets, all consisting of color
images of size 32× 32 pixels. CIFAR-10 [Krizhevsky, 2009] includes 60,000 color images of objects
and animals. Images are split into 10 classes, with 6,000 images per class. Training data and test data
include 50,000 images, and 10,000 images respectively. CIFAR-100 [Krizhevsky, 2009] likewise
comprises 60,000 and features a diverse set of objects and animals split into 100 distinct classes.
Each class contains 600 images. Like CIFAR-10, the dataset is divided into a training set with 50,000
images and a test set containing the remaining 10,000 images. The ImageNet32 dataset [Chrabaszcz
et al., 2017] is a downsampled version of the original ImageNet dataset Russakovsky et al. [2015]
containing 1,000 classes with 1,281,167 training images, 50,000 validation images, 100,000 test
images and 1000 classes.

A.5.2 Data preprocessing

All data were normalized according to statistics shown in 3 and augmented with 50% random
horizontal flips. Images were randomly cropped and padded with the last value along the edge of the
image.

Table 3: Data Normalization. Input images were normalized by conventional mean (µ) and standard
deviation (σ) values for each dataset. All images used are color (three channels).

Dataset Mean (µ) Standard deviation (σ)

CIFAR-10/100 (0.4914, 0.4822, 0.4465) (0.2470, 0.2435, 0.2616)
Imagenet32 (0.485, 0.456, 0.406) (0.3435, 0.336, 0.3375)

A.5.3 Simulation details

Weight initialization. EP, similar to other machine learning paradigms reliant on fixed-point
iteration [Bai et al., 2019], is highly sensitive to initialization statistics [Agarwala and Schoenholz,
2022], hence conventionally difficult to tune, and requiring many iterations for the three relaxation
phases. Initialization of weights as Gaussian Orthogonal Ensembles (GOE) ensures better stability
(reduced variance) and, combined with other stabilizing measures discussed below, empirically yields
faster convergence.
According to GOE, weights are intialized as:

Wij ∼
{
N (0, V

N), if i ̸= j

N (0, 2V
N), if i = j

where N (µ, σ2) denotes a Gaussian (normal) distribution with mean µ and variance σ2. N was
manually tuned for each architecture.

State initialization. All layers are initialized as zero matrices.

Activation functions. An important detail for faithful reproduction of these experiments is the
choice and placement of activation functions applied during the iterative fixed-point procedure. In the
literature, activations (i.e. “clamping”) is conventionally applied at each layer, with the exception
of the final layer, where it is sometimes included e.g. Scellier et al. [2024], and sometimes omitted
Laborieux et al. [2021], depending on the loss function at use. For these experiments we used both
the standard hard activation employed by Ernoult et al. [2019] and Scellier et al. [2024], and the more
conservative one given in [Laborieux et al., 2021]. For the tolerance based and splitting experiments,
we generalize the approach of Laborieux et al. [2021], by scaling values by a variable factor α instead
of a fixed value 0.5 . Details are given in Table 4.

In practice, we find that the smaller scaling factors corresponding with the “laborieux” activation,
in conjunction with GOE, and the omission of clamping at the output of each block significantly

34

Table 4: Activation functions
Name Description Source

ernoult σ(x) = max(min(x, 1), 0) [Ernoult et al., 2019]
laborieux σ(x) = max(min(0.5× x, 1), 0) [Laborieux et al., 2021]
nest σ(x) = max(min(α× x, 1), 0) This work

enhances gradient stability and speeds convergence in deep multi-block settings. In the interest of
multi-scale uniformity and consistency with previous literature [Laborieux et al., 2021] Ernoult et al.
[2019], we apply clamping activations on all layers in our 6-layer architecture.

For the scaling experiments, we apply the “laborieux” activation at every layer except the output of
each block. For the 12-layer splitting experiment, we do the same, omitting clamping from the output
of the final layer of each block in the block-size=4 and block-size=3 experiments. However, in the
block-size=2 case we clamp the output of the second and fourth blocks to preserve dynamics of the
block-size=4 split. Such consistency is not possible for the block-size=3 experiment, constituting a
possible discrepancy in dynamics.

Cross-entropy loss and softmax readout. Following [Laborieux et al., 2021], all models were
implemented such that the output y is removed from the system (e.g. not included in the relaxation
dynamics) but is instead the function of a weight matrix: Wout of size dim(y)× dim(s), where s is
the state of the final layer. For each time-step t, ŷt = softmax(Woutst).

The cross-entropy cost function associated with the softmax readout is then:

l(s, y,Wout) = −
C∑

c=1

yc log(softmaxc(Wout · s)).

Convention to count layers. It is important to note that by convention we refer to architectures
throughout this text to the exclusion of the softmax readout, which is technically an additional layer,
though not involved in the relaxation process.

Architecture. All convolutional layers used in experiments are of kernel size 3 and stride and
padding 1. Max-pooling was applied with a window of 2× 2 and stride of 2. For the 6-layer model
used in Table 1 , batchnorm was applied after the first layer convolution and pooling operation.
All other models in both experiments use batch-normalization on the first layer of each block after
convolution and pooling (where applied). These details exclude the linear softmax readout of size n
classes.

Hyperparameters. Detailed hyperparameters for to reproduce Table 1 and Table 2 are given
inside the configuration files of our repository. Note that all architectural details for the 12-layer
models are identical across splitting and scaling experiments. Additionally, identical hyperparameters
were used for CIFAR100 and Imagenet experiments of Table 2. Unlike previous literature, the
use of GOE intialization eliminates the need for separate layerwise learning rates and initialization
parameters. One noteworthy detail is that only 100 epochs were used for the larger model for Table 2
compared with 200 epochs for the smaller 12-layer model. This was due to prohibitively long run-time
of training the larger model. Noteably, performance still significantly improves with decreased overall
runtime.

Root-finding algorithms. While in principle any root-finding algorithm may be used for the
two relaxation phases of our EP implementation (for inference and gradient computation), our
implementation utilized a simple fixed-point iteration procedure, in which neuron states are initialized
as zero vectors with values updated asynchronously on each iteration to that of the gradient of the total
system energy with respect to current state. An approximate illustration of this procedure is found in
Alg. 3. As indicated in Section 4.3, two variants of the convergence procedure were employed, one in
which the average value of current state is compared to that of the previous state for each layer, and
relaxation is truncated when values for all layers have a difference of less than 1e-4. This was known

35

as the tolerance-based (TOL) procedure. Notably, tolerance-based convergence criteria were applied
on the free phase only, with nudging computed with a fixed value of iterations. This was to ensure
consistency between ID and EP, though in practice a tolerance can be applied equally to the nudging
phase.

Algorithm 13 Asynchronous with Tolerance (for all blocks until penultimate)

Input: T , θk, ωk, sk−1
⋆ , β, δsk

Output: skβ
1: sk ← 0
2: c←∞
3: for t = 1 · · ·T do
4: ∀ odd ℓ ∈ {1, · · · , Lk} : skℓ,β,temp ← σ

(
∇skℓ

Φ
(
skβ , θ

k, sk−1
⋆ , ωk

)
− βδsk

)
5: ∀ even ℓ ∈ {1, · · · , Lk} : skℓ,β,temp ← σ

(
∇skℓ

Φ
(
skβ , θ

k, sk−1
⋆ , ωk

)
− βδsk

)
6: if t ≥ 2 then
7: ∀ ℓ ∈ {1, · · · , Lk} : ckℓ ←

skℓ,β,temp−skℓ,β
|skℓ,β |

8: if mean(ck) ≤ Tol then
9: BREAK;

10: end if
11: end if
12: skℓ,β ← skℓ,β,temp

13: end for

Supplementary results with a fixed number of iterations. In addition to the TOL-based pro-
cedure, we obtained results for 4.3 using the more conventional approach of [Scellier and Bengio,
2019][Laborieux et al., 2021][Ernoult et al., 2019], applying fixed number of iterations on the first and
second relaxation phases (see 1). This approach was also the default used for our scaling experiments
in 4.4. Importantly, with the TOL procedure described above Alg 3 becomes Alg 13. Results using a
fixed iteration root-finding scheme are shown in 5

Table 5: Validation accuracy and Wall Clock Time (WCT) obtained on CIFAR-10 by EP (Alg. 2) and
ID on models with different number of layers (L) and block sizes (“bs”). 3 seeds are used.

EP ID
Top-1 (%) WCT Top-1 (%) WCT

L =6
bs=6 88.8±0.2 8:06 87.3 ±0.6 8:05
bs=3 89.5±0.2 8:01 89.2±0.2 7:40
bs=2 90.1±0.2 7:47 90.0 ±0.2 7:18

L =12
bs=4 91.6±0.1 7:49 91.6±0.1 7:08
bs=3 92.2±0.2 6:06 92.2±0.1 5:59
bs=2 91.7±0.2 6:10 91.8±0.1 6:08

Other details. All experiments were run using Adam optimizer [Kingma and Ba, 2014]and Cosine
Annealing scheduler[Loshchilov and Hutter, 2017], specifying some minimum learning rates and
setting maximum T equal to epochs (i.e. no warm restarts). Code was implemented in Pytorch 2.0
and all simulations were run on NVIDIA A100 SXM4 40GB GPUs.

36

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: we have a dedicated paragraph in the “Discussion” section of the paper which
explicitly mentions limitations and future work.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All proofs are included in the appendix.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: detailed information to reproduce experiments along with configuration files
are provided on our github repository.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The URL to our github repository is provided in the main.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: all these details are provided in the appendix.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: we perform each of our training simulations on 3 different seeds and reported
mean and standard deviation of the resulting performance.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: this information is also inside our appendix.

9. Code Of Ethics

37

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: we wrote a dedicated paragraph inside our “Discussion” section.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work poses no such risk at present as it only provides proof-of-concepts
for systems which do not yet exist.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: this work does not use existing assets.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: this paper does not release new assets.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: our paper does not involve crowdsourcing nor research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: our paper does not involve crowdsourcing nor research with human subjects.

38

https://neurips.cc/public/EthicsGuidelines

	Introduction
	Background
	Energy-based models (EBMs)
	Standard bilevel optimization
	Equilibrium Propagation (EP)

	Tying energy-based models with feedforward blocks
	Feedforward-tied Energy-based Models (ff-EBMs)
	Multi-level optimization of ff-EBMs
	A BP–EP gradient chaining algorithm

	Experiments
	Setup
	Static comparison of EP and ID on ff-EBMs
	Splitting experiment
	Scaling experiment

	Discussion
	Appendix
	Model details
	Feedforward-tied EBMs (ff-EBMs)
	Feedforward nets as a special case
	Equilibrium computation

	Main theoretical result
	Proof of Theorem 3.1
	An alternative proof of Theorem 3.1

	Resulting algorithms
	Explicit BP-EP chaining
	Recovering backprop through feedforward nets as a special case
	Detailed implementation of the implicit BP-EP chaining algorithm (Alg. 2)

	Static gradient analysis
	Algorithmic baselines
	Proof of Theorem 4.1
	Details about Fig. 3

	Experimental Details
	Datasets
	Data preprocessing
	Simulation details

