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Abstract

Current developments in large language models001
(LLMs) have enabled impressive zero-shot ca-002
pabilities across various natural language tasks.003
An interesting application of these systems is004
in the automated assessment of natural lan-005
guage generation (NLG), a highly challeng-006
ing area with great practical benefit. In this007
paper, we explore two options for exploiting008
the emergent abilities of LLMs for zero-shot009
NLG assessment: absolute score prediction,010
and comparative assessment which uses rela-011
tive comparisons between pairs of candidates.012
Though comparative assessment has not been013
extensively studied in NLG assessment, we014
note that humans often find it more intuitive015
to compare two options rather than scoring016
each one independently. This work examines017
comparative assessment from multiple perspec-018
tives: performance compared to absolute grad-019
ing; positional biases in the prompt; and effi-020
cient ranking in terms of the number of com-021
parisons. We illustrate that LLM comparative022
assessment is a simple, general and effective023
approach for NLG assessment. For moderate-024
sized open-source LLMs, such as FlanT5 and025
Llama2-chat, comparative assessment is supe-026
rior to prompt scoring, and in many cases can027
achieve performance competitive with state-of-028
the-art methods. Additionally, we demonstrate029
that LLMs often exhibit strong positional bi-030
ases when making pairwise comparisons, and031
we propose debiasing methods that can further032
improve performance.033

1 Introduction034

With the current rapid advances in generative AI,035

pre-trained models are increasingly utilized in a036

range of NLP tasks, necessitating reliable evalua-037

tions of these models. Human evaluation, where an-038

notators critically assess the quality of the outputs039

of natural language generation (NLG) systems, has040

been the gold standard approach (Lita et al., 2005;041

Belz and Reiter, 2006; Lai and Tetreault, 2018;042
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Figure 1: Prompt Scoring v.s. Comparative Assessment.
Comparative Assessment prompts an LLM to compare can-
didates in a pairwise manner, and the comparisons are subse-
quently converted into scores or ranks.

Fabbri et al., 2021). However, human evaluation 043

has its drawbacks, and is notably labor-intensive, 044

time-consuming, and costly. As such, automating 045

the evaluation process and assessing NLG systems 046

without human intervention is highly desirable. 047

Though there has been considerable progress in 048

automatic evaluation methods, many proposed ap- 049

proaches have certain restrictions that limit their 050

effectiveness. A large body of existing work use 051

evaluation methods designed for particular tasks 052

and attributes (Mehri and Eskenazi, 2020a; Rei 053

et al., 2020; Manakul et al., 2023b), for example, 054

measuring the consistency of summaries (Wang 055

et al., 2020; Manakul et al., 2023a). Though effec- 056

tive within their domain, these approaches are not 057

extensible to different NLG aspects and cannot be 058

used by practitioners wishing to evaluate systems 059

on inputs or properties that are less common. 060

The recent development in the emergent abili- 061

ties of LLMs (Wei et al., 2022) has enabled LLMs 062

to achieve impressive zero-shot performance for 063
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a slew of language tasks. This has led to gen-064

eral prompt-based assessment approaches, such as065

prompt-scoring where an LLM is probed to score066

outputs on a particular aspect (Wang et al., 2023;067

Kocmi and Federmann, 2023). These approaches068

are often only effective with massive LLMs with069

175B+ parameters, which may limit the applica-070

bility of the approach, especially when access is071

limited to API access.072

With the insight that for humans, it is often eas-073

ier to select which of two options is better than074

it is to score options independently, we question075

whether pairwise comparisons may be more effec-076

tive at leveraging the impressive emergent ability of077

LLMs. In this work, we consider LLM comparative078

assessment, where an LLM is prompted to compare079

pairs of NLG candidates and predict which one is080

better. We demonstrate empirically that compara-081

tive assessment performs much better than prompt-082

scoring for FlanT5 and Llama style models, and en-083

ables moderate-sized open-source LLMs to achieve084

near (or above) state-of-the-art performance across085

a range of NLG language tasks, for a diverse set086

of attributes. Our approach is general and can be087

applied to a diverse range of tasks and textual at-088

tributes, is simple and requires minimal prompt089

engineering. Further, we demonstrate that pairwise090

LLM comparisons often exhibit strong positional091

biases, where the ordering of candidates impacts092

the decisions. We introduce a simple debiasing093

method and empirically illustrate that debiasing094

can provide further performance improvements, es-095

pecially when large biases are present.096

Our contributions are 1) We are the first work097

that comprehensively analyzes pairwise compara-098

tive assessment for NLG evaluation; 2) We demon-099

strate that comparative assessment is far more ef-100

fective than prompt-scoring for moderately-sized101

LLMs, and yields performance that is state-of-the-102

art for particular attributes; 3) We demonstrate that103

positional bias impacts comparative decisions, and104

introduce a method to debias LLMs which leads to105

performance boosts, especially when only a subset106

of comparisons are considered.107

2 Background and Related Work108

2.1 Reference-based Evaluation109

In NLG evaluation, a standard approach is the110

comparison of annotator-provided gold-standard111

references with the generated response. Estab-112

lished heuristics, such as the N-gram overlap met-113

rics ROUGE (Lin, 2004) and METEOR (Baner- 114

jee and Lavie, 2005), have extensively been ap- 115

plied for assessing summarization and machine 116

translation respectively. Recently, the paradigm 117

has evolved to incorporate embedding-based meth- 118

ods like BERTScore (Zhang et al., 2019), which 119

not only compares generated texts with references, 120

but also factors in semantic considerations beyond 121

word overlap. 122

2.2 Tailored NLG Evaluation Approaches 123

Tailored approaches have been proposed for assess- 124

ing specific properties of generated texts. For exam- 125

ple, question-answering systems are used for sum- 126

mary consistency assessment (Wang et al., 2020; 127

Scialom et al., 2021) to probe information consis- 128

tency. For Dialogue quality assessment, the lan- 129

guage model probability from a DiaoloGPT sys- 130

tem is used as a proxy for response quality (Mehri 131

and Eskenazi, 2020b). A survey for NLG evalua- 132

tion methods was conducted by Celikyilmaz et al. 133

(2020). 134

2.3 Zero-shot LLM Evaluation 135

Given the current capabilities of LLMs such as 136

ChatGPT and GPT4, the zero-shot ability of these 137

systems for a wide range of tasks, including NLG 138

evaluation, has been investigated. Existing works 139

have looked at using LLM to evaluate open-ended 140

story generation and adversarial attacks (Chiang 141

and Lee, 2023) and using ChatGPT to score the 142

quality of texts along a certain axis (Wang et al., 143

2023; Kocmi and Federmann, 2023), demonstrat- 144

ing that ChatGPT can be used in a zero-shot setting 145

and achieve reasonable performance. 146

2.4 LLM Pairwise Comparisons 147

Pairwise comparative judgement (Thurstone, 1927) 148

has been a popular approach of assessing candi- 149

dates for exams, however where typically human 150

assessors are used. Investigating the ability and 151

application of pairwise comparisons via LLMs 152

has been relatively underexplored, with concurrent 153

work using pairwise rankings for information text 154

retrieval (Qin et al., 2023) and separately for as- 155

sessing LLM-based chat assistants on open-ended 156

questions where outputs are compared to that of a 157

baseline system (Chiang et al., 2023; Zheng et al., 158

2023). 159
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3 Comparative Assessment160

3.1 Notation161

In this work, we investigate using LLM compar-162

ative judgements for NLG assessment. Assume163

that there is a context d (e.g., a text passage or di-164

alogue) and a set of N candidate responses, x1:N .165

For a given attribute (e.g., coherence, consistency,166

fluency) the N candidates have true underlying167

scores, s1:N . As scores often only have relative168

meaning, in this work only the ranks of the candi-169

dates will be evaluated. The objective is therefore170

to accurately predict the true ranks, r1:N , of the171

candidate scores. In comparative assessment, one172

uses pairwise comparisons to determine which of173

the two input responses is better. Let yij ∈ {0, 1}174

represent the true outcome of whether xi is higher175

ranked than xj , such that yij = 1(si > sj). Here,176

an LLM is used to model the probability that re-177

sponse i is better than response j, pij ,178

pij = P (yij |xi, xj , d) (1)179

Which can alternatively be converted into hard de-180

cisions, ŷij , by selecting the most likely outcome.181

ŷij =

{
1, if pij > 0.5

0, otherwise
(2)182

Let C = {ck}k=1...R represent a set of comparisons,183

where R is the total number of comparisons, and184

each comparison c = (i, j) indicates the indices185

of the two considered candidate responses. For186

example, the set of all possible comparisons, C =187

{(i, j) | i, j ∈ [1...N ], i ̸= j}, could be used, or188

alternatively a smaller subset of comparisons.189

3.2 Prompt Design190

To leverage the emergent ability of LLMs, we use191

comparative prompts that probe a model to decide192

which of the two candidates is better. Let T be a193

prompt template that converts candidate responses194

xi and xj as well as context d into an output text,195

prompt P = T (xi, xj , d). This work aims to find196

a simple, general and robust assessment method,197

and as such extensive prompt engineering is not198

in the scope of this work (despite possible perfor-199

mance gains). We evaluate two simple and suitable200

prompts in our initial investigations. Our prompts201

for comparative assessment are shown in Figure 2.202

Passage:
<context>

Summary A: <Summary 1>
Summary B: <Summary 2>

Which Summary is more consistent relative 
to the passage, Summary A or Summary B?

<context>

Summary A: <Summary 1>
Summary B: <Summary 1>

Which Summary is more consistent, 
Summary A or Summary B?

Prompt 1

Prompt 2

Figure 2: Comparative prompt template 1 and 2. When
assessing different attributes, only the attribute is changed
(e.g., consistent → engaging) and for response assessment,
the word ‘summary’ is replaced with ‘response’.

3.3 Comparative Decisions 203

A central aspect of LLM comparative assessment is 204

the methodology of getting comparative decisions. 205

In this section, we consider two approaches for 206

leveraging LLMs for comparative assessment; First 207

for when one has output token-level probabilities 208

(Prompt-Based Classifier), and second for when 209

only the output texts are available. 210

Prompt-Based Classifier: If one has access to the 211

output probabilities, an efficient method to get prob- 212

ability estimates of the predictions is to leverage 213

prompt-based classifiers. Let Pθ(w|x) represent an 214

LLM’s conditional language model distribution of 215

the output sequence w given the input text x. For 216

prompt-based classifiers, the LM probabilities of 217

specific label words (wk) are used as a proxy for 218

the class decisions (Liusie et al., 2023). For exam- 219

ple in summarization assessment, given a prompt 220

P ending in ‘... which summary is better’, one 221

can set wi=‘Summary A’ and wj=‘Summary B’ and 222

define the probability that response i is better than 223

response j as: 224

pij =
Pθ(wi|P)

Pθ(wi|P) + Pθ(wj |P)
(3) 225

Text Generation: Alternately, if only limited API 226

access is available, one can sample responses from 227

the conditional LM given the input prompt P , 228

w̃(k) ∼ Pθ(w|P) (4) 229

Let f(w̃) ∈ {0, 1} be a function that maps the text 230

response to the comparative decision. By generat- 231

ing K samples from the LLM, one can estimate 232
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the comparative probability pij by looking at the233

fraction of the samples that selects xi over xj .234

pij =
1

K

K∑
k=1

f(w̃(k)) (5)235

3.4 Comparisons to Ranks236

Although the full set of possible comparisons yields237

the most information for the rankings, this requires238

R=N(N−1) comparisons, which can be compu-239

tationally expensive. For computational efficiency,240

we can consider 3 different comparison selection241

strategies: random, no-repeat and symmetric. For242

random, comparisons are randomly selected from243

the set of all possible comparisons. For no-repeat,244

if (xi, xj) is selected then (xj , xi) will not be se-245

lected. For symmetric, if (xi, xj) is selected, then246

(xj , xi) will also be selected.247

Given a set of selected comparisons C and248

weights of a comparative assessment system θ,249

one can generate a predicted rank ordering r̂1:N250

of the candidate responses. A simple but effective251

approach is to sort the candidates by win-loss ratio,252

ŝi =
#wins of xi

#comparisons involving xi
(6)253

which can then be ordered to convert the scores254

into predicted ranks r̂1:N .255

3.5 Debiased Comparative Assessment256

Let ỹij represent the outcome of the comparison257

when considered in the opposite ordering, such258

that ỹij = 1 − ŷji. For a positionally unbiased259

comparator, reversing the ordering should have no260

impact on the outcome of the comparison261

ỹij = ŷij ∀ (i, j) ∈ [1...N ], i ̸= j (7)262

Systems may, however, have systematic positional263

biases and could for example favor the first posi-264

tion over the second position. To quantify the level265

of systematic bias, one can determine P (A), the266

prior associated with the first position, and P (B)267

the prior for the second position. This can be esti-268

mated for a given set of comparisons by using the269

statistics over all comparisons, and by calculating270

the fraction of times that each position is selected.271

P (A) =

∑
i,j∈C ŷij

|C|
P (B) =

∑
i,j∈C ỹij

|C|
(8)272

When using a symmetric comparative set C, for273

an unbiased system, both P (A) and P (B) should274

be 0.5 and any large deviation is symptomatic of 275

positional bias. To address possible positional bias, 276

one may reweight system probabilities, p̂ij , through 277

p̂ij =
α · pij

α · pij + (1− pij)
(9) 278

where α ∈ R+ is a weight that can be set such that 279

P (A) = P (B) = 0.5. Reweighting in this fashion 280

is equivalent to, 281

ŷij =

{
1, if pij > τ

0, otherwise
(10) 282

where τ ∈ [0, 1] is a decision threshold correspond- 283

ing to α, set such that P (A) = P (B) = 0.5. 284

4 Experimental Setup 285

4.1 Datasets 286

To investigate the general applicability of compara- 287

tive assessment, we cover a range of standard NLG 288

evaluation tasks and datasets as follows: 289

SummEval (Fabbri et al., 2021) is a summary eval- 290

uation benchmark of 100 passages, each with 16 291

machine-generated summaries. Each summary is 292

evaluated for coherency (COH), consistency (CON), 293

fluency (FLU), and relevancy (REL). 294

Podcast (Manakul and Gales, 2022) is for bench- 295

marking podcast summary assessment methods. It 296

contains 179 podcasts each with 15 abstractive sum- 297

maries. Each summary was evaluated for its overall 298

quality on a 4-point scale. 299

TopicalChat with the USR annotations (Mehri and 300

Eskenazi, 2020b) is for benchmarking dialogue 301

evaluation. It includes 60 dialogue contexts and 302

six system responses per context. These responses 303

were assessed on coherency (COH), continuity (CNT), 304

engagingness (ENG), and naturalness (NAT). 305

WebNLG (Gardent et al., 2017) is for benchmark- 306

ing data-to-text evaluation methods. It contains 223 307

semantic triple groups, each paired with outputs 308

from 8 triple-to-text generation systems. These 309

texts were evaluated for fluency (FLU), grammar 310

(GRA) and semantic equivalence (SEM). 311

4.2 Base Large Language Models (LLMs) 312

We investigate two families of open-source 313

instruction-tuned LLMs. The first system is FlanT5 314

(Chung et al., 2022), T5 (Raffel et al., 2020) that 315

have been instruction tuned on a diverse set of 1000 316

NLP tasks (Wang et al., 2022). The second system 317
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is Llama2-chat (Touvron et al., 2023), which is318

Llama2 tuned on instruction datasets. We investi-319

gate a range of model sizes; 220M, 770M, 3B and320

11B for FlanT5, and 3B and 13B for Llama2.321

4.3 Baselines322

The NLG evaluation methods can be categorized323

into reference-based and reference-free. Reference-324

based methods compare the output against the refer-325

ence such as n-gram metrics (e.g., BLEU (Papineni326

et al., 2002) and ROUGE (Lin, 2004)), or embed-327

ding based metrics (e.g., BERTScore (Zhang et al.,328

2019)). In contrast, reference-free methods com-329

pare the generated texts against the original source330

(or context for generation) directly.331

4.3.1 Bespoke Methods332

Bespoke methods require a specific data which333

could be supervised labels (e.g., human judgements334

for the summaries) or data for model training (e.g.,335

question-answering). Although bespoke methods336

could work in a similar domain (e.g., developed337

for summarization, but applied on dialogue genera-338

tion), they are not as general as zero-shot methods.339

UniEval (Zhong et al., 2022) convert NLG evalua-340

tion into Boolean QA problem. This method uses341

pre-defined schemes for selected aspects (e.g., co-342

herence) and generates synthetic data to fine-tune343

a T5 system for NLG assessment. References are344

used for particular aspects (e.g. relevancy), and345

schemes/systems are bespoke for a particular at-346

tribute (though a sequentially trained system that347

scores multiple attributes is also explored).348

QuestEval (Scialom et al., 2021) and MQAG349

(Manakul et al., 2023a) are QA-based approaches350

for assessing consistency in summarization tasks.351

QuestEval uses extracted answer spans while352

MQAG represents information using multiple-353

choice questions. Both methods are reference-free.354

Longformer-SFT: For podcast summarization, we355

follow Manakul and Gales (2022) in using a Su-356

pervised Fine-Tuned longformer (Beltagy et al.,357

2020) as a baseline. The input is the document and358

the summary, and human judgement is used as the359

supervised target label at training, and the perfor-360

mance is reported using 5-fold cross-validation.361

4.3.2 Zero-shot Methods362

Zero-shot methods can be applied generally to any363

task without further training or fine-tuning. Com-364

parative assessment is a zero-shot method.365

GPTScore (Fu et al., 2023) evaluates texts using 366

conditional language model scores. By condition- 367

ing the language model on instruction and context, 368

GPTScore assumes that it will assign a higher prob- 369

ability to a high-quality generated text. 370

Prompt Scoring. Another baseline is prompt- 371

scoring. With this approach, for a particular at- 372

tribute, the LLMs is asked to assess the response 373

quality between 1-10. Simple prompts are used 374

with the general templates shown in Figure 3. 375

Prompt-scoring is run for all open-source LLMs 376

considered (FlanT5 and Llama2), and is used as the 377

main baseline to compare comparative assessment 378

against. During generation, the maximum gener- 379

ation length is set to 5 and the temperature is set 380

to 1.0. Similarly, ChatGPT prompt-scoring has re- 381

cently been proposed in Wang et al. (2023); Kocmi 382

and Federmann (2023), which we also include as a 383

baseline where applicable. 384

Passage: 
<context>

Summary: <Summary>

Score the response between 1 and 10 based 
on how consistent the summary is

<context>

Summary: <Summary>

Provide a score between 1 and 10 that 
measures the summary’s consistency

Prompt 1

Prompt 2

Figure 3: Scoring template 1 and template 2. Only the at-
tribute is changed (e.g., consistent → engaging) and response
description (‘summary’→ ‘response’) for different tasks.

4.4 Methodology 385

Each LLM is used for both prompt-scoring and 386

comparative assessment. For the main comparative 387

assessment results, we consider the full set of pos- 388

sible comparisons, where all pairs of candidates in 389

both permutations are compared by the framework. 390

Comparisons are made using the prompt-based 391

classifier (as described in §3.3) using the prompt 392

templates shown in Fig. 2, where the system out- 393

puts a probability for Response A and Response 394

B. The winner of the comparison is the response 395

with the highest probability, where candidates are 396

then ranked in order of the win-ratio (as described 397

in §3.4). For Llama2, comparative prompts are ap- 398

pended with ‘Answer:’ while scoring prompts end 399
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with ‘Score:’. The spearman correlation between400

predicted scores and human judgements is used as401

the performance metric.402

5 Experiments403

5.1 NLG Evaluation Results404

Summary Assessment: Table 1 analyzes the effec-405

tiveness of comparative assessment on SummEval,406

where the following observations can be made:407

(1) Moderate-sized LLMs are ineffective in the408

prompt-scoring set-up, with the best system409

(FlanT5-3B) achieving spearman correlations of410

10-20. The performance difference with ChatGPT411

prompt-scoring implies that scoring is likely an412

emergent ability only effective for larger LLMs.413

(2) LLMs are able to achieve considerably higher414

correlations in the comparative assessment set-up,415

with performance higher for nearly all systems.416

Further, comparative assessment leads to more ro-417

bust performance, with most 3B+ models achieving418

correlations within the range of 30-50.419

(3) Comparative assessment enables LLMs of un-420

der 1B to perform well, with FlanT5-770M achiev-421

ing moderate correlations. However, performance422

improves significantly when using 3B+ LLMs, al-423

though for SummEval there are diminishing (if any)424

performance gains by scaling up.425

(4) The best comparative assessment LLM (FlanT5-426

3B) is competitive with all other zero-shot methods,427

including ChatGPT scoring (an LLM with two or-428

ders of magnitude more parameters), and achieves429

the best correlation in 3 of the 4 aspects.430

(5) Comparative assessment achieves competitive431

performance with UniEval. Although UniEval432

has better overall performance, UniEval was de-433

signed for bespoke tasks and aspects (it is fine-434

tuned on synthetic data created for particular at-435

tributes) where the results in Tables 2 and 4 show436

that UniEval has noticeable degradation in out-of-437

domain settings. In contrast, comparative assess-438

ment is zero-shot and general.439

Podcast Assessment: When considering podcast440

summarization with long inputs of over 5k tokens441

on average, only Llama2 models (which have a442

limit of 4k tokens) were used (as FlanT5 has a443

limit of 1k tokens). Table 2 shows that comparative444

assessment yields highly impressive performance445

for long-spoken summarization, with comparative446

assessment out-competing all other baselines. Fur-447

ther, although prompt-scoring has good system-448

level correlations, the lack of granularity leads to449

Approach COH CON FLU REL

Baselines (§4.3)
BERTScore (w/ Ref) 25.9 19.7 23.7 34.7
QuestEval 18.2 30.6 22.8 26.8
MQAG 17.0 28.8 19.3 16.6
UniEval (single-best) 54.6 47.2 43.3 46.3
UniEval (continual) 57.5 44.6 44.9 42.6
GPTScore FlanT5-3B 47.0 43.6 42.1 34.4
GPTScore FlanT5-11B 45.6 43.8 42.4 34.3
GPTScore GPT3 40.1 47.5 41.0 34.3
ChatGPT scoring† 45.1 43.2 38.0 43.9
Prompt Scoring (§4.3.2)
FlanT5-220M 4.0 -0.2 0.2 2.8
FlanT5-770M -3.6 -1.6 -1.5 -0.0
FlanT5-3B 14.5 19.8 3.9 15.2
FlanT5-11B 0.7 11.2 3.2 5.7
Llama2-chat-7B 8.6 9.0 1.8 7.8
Llama2-chat-13B 9.9 6.9 1.2 9.2
Comparative Assessment (§3)
FlanT5-220M 4.0 -0.2 0.2 2.8
FlanT5-770M 29.8 26.3 20.6 35.1
FlanT5-3B 51.2 47.1 32.5 44.8
FlanT5-11B 44.2 37.2 30.2 43.4
Llama2-chat-7B 27.9 24.6 20.2 35.6
Llama2-chat-13B 40.9 39.9 30.8 45.3

Table 1: Spearman correlation coefficient for SummEval,
averaged over both prompts per system (for prompt-scoring
and comparative). †ChatGPT performance is quoted from
Wang et al. (2023), which use more detailed scoring prompts.

Approach System-lvl Summary-lvl

Baselines (§4.3)
BERTScore (w/ Ref) 73.9 25.1
UniEval (continual) 42.0 22.8
QuestEval 42.5 20.4
MQAG 77.9 12.6
Longformer-SFT 89.6 19.6
Prompt Scoring (§4.3.2)
Llama2-chat-7B 88.5 2.6
Llama2-chat-13B 80.0 25.3
Comparative Assessment (§3)
Llama2-chat-7B 88.2 37.4
Llama2-chat-13B 97.1 45.5

Table 2: Spearman correlation coefficient for Podcast.

poor summary-level performance. 450

Dialogue Assessment: Next, we analyze compar- 451

ative assessment on TopicalChat, for evaluating 452

conversational responses. Table 3 shows similar 453

findings for TopicalChat as to those in SummEval, 454

where comparative assessment again outperforms 455

the correlations seen from prompt-scoring. 456

Data-to-Text Assessment: For data-to-text gen- 457

eration, the context is highly abstract and is a list 458

of triples in the form of (object, relation, subject). 459

This makes assessing the semantics challenging, as 460

the LLM needs to parse and understand semantic 461

triples. Table 4 shows that understanding triples is 462
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Approach COH CNT ENG NAT

Baselines (§4.3)
UniEval (single-best) 60.7 - 59.6 54.7
UniEval (continual) 61.3 - 60.5 44.4
GPTScore GPT3 56.9 32.9 49.6 52.4
ChatGPT scoring† 54.7 57.7 37.9 58.0
Prompt Scoring (§4.3.2)
FlanT5-220M -2.2 0.2 -8.4 2.1
FlanT5-770M 3.7 3.1 -4.3 3.8
FlanT5-3B 31.9 28.8 17.4 23.7
FlanT5-11B 15.3 8.0 4.3 24.3
Llama2-chat-7B 16.4 17.0 20.6 21.4
Llama2-chat-13B 21.7 19.9 31.4 23.2
Comparative Assessment (§3)
FlanT5-220M -0.3 8.2 -10.5 2.2
FlanT5-770M 38.5 36.3 25.3 35.3
FlanT5-3B 49.4 49.4 37.3 47.4
FlanT5-11B 54.3 42.2 54.7 54.2
Llama2-chat-7B 28.9 33.7 36.1 30.3
Llama2-chat-13B 32.4 43.2 55.5 33.5

Table 3: Spearman correlation coefficient for TopicalChat.
†ChatGPT is prompted using our prompt-scoring prompts.

an emergent ability of LLMs, where for grammar463

and fluency the correlations are quite similar be-464

tween the 3B and 11B/13B systems, however for465

semantic understanding, the 10B+ systems highly466

outcompete the 3B+ systems. Note that when eval-467

uating UniEval, we used the closest attribute that468

they designed for, which was naturalness for both.469

5.2 Positional Bias470

We investigate whether the comparative prompts471

have any implicit positional bias, and whether sys-472

tems prefer the first/second position. Table 5 shows473

the fraction of comparisons that selected the candi-474

date in the first position for SummEval. Since all475

comparisons in both permutations are considered,476

this fraction should be 0.50 for an unbiased sys-477

tem. However, we observe considerably high bias,478

with some set-ups even selecting the first option479

80% of the time. Further, we observe that larger480

systems appear to be more susceptible to bias than481

smaller systems, which may explain the similarity482

in performance for the 3B and 11B/13B systems in483

the previous main results. Similar results for other484

datasets are provided in Appendix A.2485

5.3 Debiasing486

The previous section demonstrates that compara-487

tive assessment exhibits positional bias which may488

impact system decisions. We therefore investigate489

whether debiasing can improve evaluation perfor-490

mance. Table 6 shows standard and debiased LLM491

comparative assessment performance for the con-492

Approach FLU GRA SEM

Baselines (§4.3)
BLEU 36.3 34.7 50.3
METEOR 44.3 42.9 62.7
NLI Model∗ - - 63.7
UniEval (continual) 21.7 16.3 -
Prompt Scoring (§4.3.2)
FlanT5-220M 18.5 17.4 8.0
FlanT5-770M 14.5 13.6 17.1
FlanT5-3B 30.8 32.7 38.5
FlanT5-11B -0.7 6.9 20.8
Llama2-chat-7B 3.8 2.4 17.0
Llama2-chat-13B 1.8 0.5 5.6
Comparative Assessment (§3)
FlanT5-220M -13.6 -17.9 0.1
FlanT5-770M 36.2 35.2 11.4
FlanT5-3B 40.6 41.4 12.8
FlanT5-11B 41.4 44.8 52.4
Llama2-chat-7B 22.9 37.8 -5.3
Llama2-chat-13B 44.9 45.1 53.5

Table 4: Spearman correlation coefficient for WebNLG.
∗Quoted from the NLI method with the backoff template in
Dušek and Kasner (2020).

System Prompt COH CON FLU REL

FlanT5 1 0.37 0.46 0.39 0.41
3B 2 0.43 0.47 0.40 0.44

FlanT5 1 0.18 0.20 0.13 0.23
7B 2 0.24 0.24 0.17 0.26

Llama2-chat 1 0.41 0.17 0.26 0.18
7B 2 0.68 0.56 0.48 0.45

Llama2-chat 1 0.31 0.37 0.18 0.32
13B 2 0.29 0.30 0.19 0.26

Table 5: Positional bias P (A) for both prompt templates, for
various systems in the comparative setup on SummEval.

sidered tasks and scores, with WebNLG SEM and 493

Podcast omitted due to the required emergent abil- 494

ity and large context length respectively. We ob- 495

serve that debiasing can lead to performance boosts, 496

where we note that the prompts which have a high 497

bias (seen in Table 5 and Table 8 in the appendix) 498

benefit most from debiasing. In particular, for Topi- 499

calChat we observe large gains for the FlanT5-11B 500

system, which enables state-of-the-art performance. 501

To explain why debiasing can lead to large perfor- 502

mance boosts, consider a very biased system where 503

the first response is always selected as better. Al- 504

though over both permutations the system is un- 505

biased for any comparison, the bias in the system 506

will cause the system to assume that all candidates 507

are of the same quality. By reducing the bias of 508

each comparison, the system may be able to pick 509

up subtler quality differences between the samples. 510
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System Debias SummEval TopicalChat WebNLG Avg.COH CON FLU REL COH CNT ENG NAT FLU GRA

FlanT5-3B ✗ 51.2 47.1 32.5 44.8 49.4 49.4 37.3 47.4 41.0 41.8 44.2
✓ 51.8 46.9 33.0 45.3 49.6 50.2 38.0 46.3 40.7 42.3 44.4

FlanT5-11B ✗ 44.2 37.2 30.2 43.4 54.3 42.2 54.7 54.2 41.4 44.8 44.7
✓ 45.3 39.7 30.7 44.7 57.2 59.5 59.5 58.8 44.5 44.6 48.5

Llama2-chat-7B ✗ 29.4 24.6 19.7 35.2 28.2 33.1 36.3 28.7 22.9 37.8 29.6
✓ 28.8 24.8 19.7 35.5 29.1 34.5 39.7 28.5 24.3 37.1 30.2

Llama2-chat-13B ✗ 40.9 39.9 30.8 45.3 32.4 43.2 55.5 33.5 44.9 45.1 41.2
✓ 42.8 40.3 31.9 47.1 32.5 44.5 56.9 38.4 45.9 43.7 42.4

Table 6: Spearman correlation coefficient on different aspects of the NLG evaluation tasks, averaged over all prompts considered,
using all pairs and ordering considered (i.e. full matrix comparisons).

System Debias COH CON FLU REL

FlanT5-3B ✗ 68.6 82.0 68.2 67.2
✓ 69.8 82.1 68.8 67.8

FlanT5-11B ✗ 61.6 70.3 60.3 63.3
✓ 66.2 76.7 65.9 67.4

Llama2-chat-7B ✗ 59.6 63.8 59.6 61.0
✓ 60.3 65.7 60.4 63.1

Llama2-chat-13B ✗ 62.6 75.4 61.1 65.4
✓ 65.8 76.9 67.2 68.5

Table 7: Accuracy of the comparative systems, at a compari-
son level, for SummEval.

5.4 Comparative Accuracy511

One can also measure the accuracy of the compara-512

tive system at a comparison level. Table 7 shows513

the pairwise comparison accuracy for Summeval,514

over all candidate pairs where the true score of515

the candidate response varies. We observe accura-516

cies between 60-80% across all tasks and observe517

that debiasing can substantially increase accuracy.518

This highlights that LLMs are able to compare the519

quality of responses fairly well, though the moder-520

ately sized LLMs may not always select the best521

response (with respect to labels).522

5.5 Subset of Comparisons523

Due to O(N2) number of comparisons required for524

the full comparison matrix, it might be practical525

to only consider a subset of comparisons. Fig-526

ure 4 shows the downstream Spearman correlation527

for SummEval coherency, when averaged over 50528

runs, for different comparison selection strategies.529

Of the three schemes, we observe that for small530

R (i.e. less than half the total number of com-531

parisons) selecting comparisons with no repeats532

leads to a marginal improvement over random se-533

lection. Further, by using the symmetric selection534

scheme, despite the number of comparisons being535

half that of no-repeat (although each comparison 536

is done twice, once in each permutation), interest- 537

ingly there is only a performance difference of 1 538

in terms of Spearman. Finally, we observe that 539

debiasing can be very effective in efficient set-ups, 540

and leads to larger benefits when the number of 541

comparisons is small. Equivalent plots for other 542

tasks/scores can be found in Appendix A.1. 543

50 75 100 125 150 175 200 225
R (number of comparisons)

44

46

48

50

52

Sp
ea

rm
an

no-repeat (debias)
random (debias)
symmetric (debias)
no-repeat
random
symmetric

Figure 4: FlanT5-3B performance for SummEval COH when
a subset of the comparisons are selected by either random,
no-repeat or symmetric (as described in §3.4). For no-repeat,
each pair is compared once, hence has a smaller maximum R.

6 Conclusions 544

This paper investigates LLM comparative assess- 545

ment, a simple zero-shot approach to NLG evalu- 546

ation. We demonstrate that for moderately sized 547

LLMs, comparative assessment outperforms abso- 548

lute scoring, and is an effective automatic assess- 549

ment, achieving near state-of-the-art performance 550

for a range of NLG evaluation tasks. Furthermore, 551

we show that LLMs are prone to have positional 552

bias that could impact their decisions, however, we 553

introduce a simple debiasing approach that leads to 554

performance boosts, especially for biased systems. 555
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Limitations556

Computational Cost. The comparative assessment557

framework with the full set of comparisons uses558

N · (N − 1) comparisons, which for large N can559

be computationally prohibitive. This paper investi-560

gated datasets with at most 16 candidates, and may561

not scale when more candidates are required.562

Base LLMs. The empirical findings are for LLMs563

of up to 13B parameters. By using larger models564

(with 100B+ parameters) one may expect further565

performance improvements. However, due to API566

costs and the O(N2) number of comparisons, re-567

sults are limited to open-source LLMs.568

Selection of the subset of comparisons. For our569

comparison selection scheme, this work only con-570

sidered static selection schemes. Future work may571

investigate dynamic selection schemes, either by572

considering sorting algorithms or ELO competition573

schemes, and methods similar to those studied in574

information retrieval by Qin et al. (2023).575

Ethics Statement576

For some tasks/datasets, comparative assessment577

could be ineffective and have poor generalisa-578

tion over the task. Deploying machine learning579

classifiers in real-world classification settings has580

many associated risks, and careful analysis should581

be made before deploying such systems. Mis-582

use/overconfidence in the approach may lead to583

mistrust of users towards LLM solutions.584
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A Additional Results 770

A.1 Partial Comparison Curves 771
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(b) FlanT5-3B, SummEval, FLU
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(c) FlanT5-3B, SummEval, REL
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(d) FlanT5-11B, TopicalChat, COH

10 15 20 25 30
R (number of comparisons)

35

40

45

50

55

Sp
ea

rm
an

no-repeat (debias)
random (debias)
symmetric (debias)
no-repeat
random
symmetric

(e) FlanT5-11B, TopicalChat, ENG
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(f) FlanT5-11B, TopicalChat, NAT
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(g) FlanT5-11B, SummEval, REL
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(h) Llama-chat-7B, SummEval, CON
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(i) Llama-chat-13B, SummEval, FLU

Figure 5: Assessment Performance when only a subset of comparisons are considered (extending the results of Figure 4).
Multiple different base LLMs, datasets and scores and displayed.

A.2 Positional Bias 772

System prompt SummEval TopicalChat WebNLG PodcastCOH CON FLU REL COH CNT ENG NAT FLU GRA SEM

FlanT5 1 0.37 0.46 0.41 0.42 0.47 0.44 0.50 0.49 0.46 0.41 0.89 -
3B 2 0.43 0.47 0.42 0.44 0.46 0.44 0.47 0.47 0.38 0.36 0.85 -

FlanT5 1 0.18 0.25 0.16 0.23 0.25 0.17 0.27 0.26 0.15 0.19 0.56 -
11B 2 0.24 0.29 0.19 0.26 0.27 0.13 0.29 0.31 0.19 0.21 0.42 -

Llama2-chat 1 0.41 0.21 0.28 0.18 0.57 0.26 0.25 0.36 0.36 0.53 0.98 0.33
7B 2 0.68 0.57 0.50 0.45 0.56 0.37 0.22 0.35 0.37 0.48 0.90 0.24

Llama2-chat 1 0.31 0.43 0.20 0.32 0.69 0.73 0.67 0.74 0.23 0.38 0.50 0.22
13B 2 0.29 0.37 0.22 0.26 0.65 0.65 0.62 0.68 0.28 0.40 0.29 0.40

Table 8: Fraction of comparisons where the candidate in the first position was selected by the LLM when using the full
(symmetric) set of comparisons. The bias is presented for both prompts, over all datasets and scores, extending the results in
Table 5.

11



A.3 Accuracy of Pairwise Comparisons773

System debias SummEval TopicalChat WebNLG PodcastCOH CON FLU REL COH CNT ENG NAT FLU GRA SEM

FlanT5 ✗ 68.6 82.0 68.2 67.2 75.3 71.0 65.6 70.3 66.2 65.5 51.8 -
3B ✓ 69.8 82.1 68.8 67.8 75.4 72.2 65.6 69.9 66.7 66.6 51.3 -

FlanT5 ✗ 61.6 70.3 60.3 63.3 70.0 60.5 68.0 68.9 60.8 62.7 69.6 -
11B ✓ 66.2 76.7 65.9 67.4 76.6 74.2 74.4 74.7 67.6 67.3 69.9 -

Llama2-chat ✗ 59.6 63.8 59.6 61.0 64.0 62.0 61.0 60.4 56.6 61.1 48.3 63.4
7B ✓ 60.3 65.7 60.4 63.1 64.0 64.3 65.9 61.6 57.1 61.1 50.2 -

Llama2-chat ✗ 62.6 75.4 61.1 65.4 64.5 66.8 72.0 62.3 64.7 67.6 67.3 70.3
13B ✓ 65.8 76.9 67.2 68.5 65.9 69.4 73.8 65.2 66.7 67.4 68.9 -

Table 9: Accuracy of pairwise comparisons of all candidates which differ in true value. Accuracies are shown for all datasets
and scores, extending the results of Table 6.

B Alternate Ranking Strategies774

In the main paper, we only consider the win ra-775

tio as an approach of converting comparisons to776

ranks, due to win-ratio being simple and intuitive.777

However alternate ranking strategies are possible;778

a well-motivated decoding approach is to select779

the ranks with the highest probability given the ob-780

served comparisons. By Bayes’ theorem, this is781

equivalent to finding the ranks that maximise the782

likelihood of the observations.783

r̂1:N = argmax
r1:N

P (C|r1:N ) (11)784

For a set of ranks r1:N , let zij=1(ri<rj)∈{0, 1},785

i.e. whether the ranks imply xi is better than xj .786

Given the probability of each comparison, the like-787

lihood of the ranks can be defined as788

P (C|r1:N ) =
∏

(i,j)∈C

(
p
zij
ij + (1− pij)

1−zij
)
(12)

789

If only hard decisions are available (i.e. the proba-790

bilities are not), then one can instead approximate791

the likelihood and find the ranks that maximise the792

approximate-likelihood.793

P (C|r1:N ) =
∏

(i,j)∈C

P (ŷij |zij) (13)794

Since ŷij ∈ {0, 1} and zij ∈ {0, 1}, there are 4795

conditional probabilities P (ŷij |zij). Setting one796

probability will set the other 3, which can be esti-797

mated with the system’s comparative statistics.798

799

B.1 Initial Results
Table 10 presents initial results for FlanT5-3B on
Summeval, comparing the maximum likelihood
ranking to the win ratio approach. The initial find-
ing was that performance was similar between the
two conversion schemes. However, it’s worth not-
ing that minimizing the objective function poses
intractability challenges, necessitating an approx-
imate greedy search. For the sake of simplicity,
our main paper focused on the win-ratio method,
while future research may explore more advanced
conversion strategies.

SummEval
COH CON FLU REL

win-loss 51.4 46.4 31.9 45.0
likelihood 51.7 46.0 31.5 44.7

Table 10: Spearman correlation when the comparisons are
converted using either win-ratio or maximum likelihood, for
FlanT5-3B on SummEval.
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