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ABSTRACT

Sparsity has become one of the promising methods to compress and accelerate
Deep Neural Networks (DNNs). Among different categories of sparsity, struc-
tured sparsity has gained more attention due to its efficient execution on mod-
ern accelerators. Particularly, N:M sparsity is attractive because there are already
hardware accelerator architectures that can leverage certain forms of N:M struc-
tured sparsity to yield higher compute-efficiency. While there is a large body of
work proposing various recipes for N:M structured sparsity training, compute-
efficient training recipes for structured sparsity is rather a less explored territory.
In this work, we focus on N:M sparsity and extensively study and evaluate var-
ious training recipes for N:M sparsity in terms of the trade-off between model
accuracy and compute cost (FLOPs). Building upon this study, we propose two
new decay-based pruning methods, namely “pruning mask decay” and “sparse
structure decay”. Our evaluations indicate that these proposed methods consis-
tently deliver state-of-the-art (SOTA) model accuracy, comparable to unstructured
sparsity, on a Transformer-based model for a translation task. The increase in the
accuracy of the sparse model using the new training recipes comes at the cost of
marginal increase in the total training compute (FLOPs)1.

1 INTRODUCTION

Deep Neural Networks (DNNs) have shown success in many domains such as computer vision,
language modeling, and machine translation. A trend of SOTA DNN models is that the model
size increases quickly with time. For example T5 from Google (Raffel et al., 2019), OPT from
Meta (Zhang et al., 2022) and GPT-3 from OpenAI (Brown et al., 2020) have over 100 billions
parameters, making them hard to be deployed and inaccessible for many practitioners with limited
compute resources. Another line of effort in the DNN community is to propose different methods to
compress the models, such as quantization (Shen et al., 2020; Kim et al., 2021; Zafrir et al., 2019;
Zhang et al., 2020), sparsification (Evci et al., 2019; Han et al., 2015a; Guo et al., 2016; He et al.,
2017; Molchanov et al., 2016; Yao et al., 2019; Zhu & Gupta, 2017; Gamboa et al., 2020; Narang
et al., 2017a;b; Elsen et al., 2020; Park et al., 2018; Kalchbrenner et al., 2018; Evci et al., 2020a),
and distillation (Sanh et al., 2019; Jiao et al., 2019; Sun et al., 2020; Wang et al., 2020).

In this paper, we focus on sparsification (or pruning), which prunes a portion of the parameters in
the model by forcefully setting their values to 0. The benefits of such sparsification is multi-fold:
(1) reducing the amount of compute by skipping multiplications with 0, (2) reducing the memory
usage by using compressed sparse representations (Qin et al., 2021), and (3) save energy/power by
reducing memory accesses and computations. In addition, it unlocks the possibility of deploying
large models in resource-limited devices. However, sparsification is often about trading-off between
model quality2 and compression ratio. For example, many studies show promising results in spar-
sifying image classification models to around 90%-95% sparsity (5%-10% density) without quality
loss (Guo et al., 2016; Han et al., 2015b). With the success of Transformers in natural language pro-
cessing, there is rising interest in investigating sparsification in Transformer models, where around
80%-90% sparsity can be achieved. Sparsification in language models has huge potential benefits

1Anonymized code at https://anonymous.4open.science/r/n_m_decay_1255
2In this paper, we refer to algorithmic-wise criteria such as accuracy, recall, and precision as model quality; we
refer to model runtime/latency as model performance.
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especially in encoder-decoder tasks such as translation. Since decoder needs to be run iteratively for
all N tokens in a sequence, even minor performance improvements in the decoder can improve per-
formance significantly. As such, in this paper, we demonstrate our method with an encoder-decoder
Transformer-based translation model.

While sparsification can effectively reduce the memory requirement, generally leveraging induced
(unstructured) sparsity in the model for higher performance improvements is challenging. The irreg-
ularity of the sparsity pattern makes it challenging to be effectively leveraged by the nateively-dense
accelerators such as GPU and TPU. The sparsified models often ends up with similar or worse per-
formance (because of the extra complexity to compress and decompress the parameters) than their
dense counterparts (Nvidia, 2021a; Ma et al., 2019; Renda et al., 2020; He et al., 2017; Lin et al.,
2021; Gamboa et al., 2020; Zhu et al., 2019; Wen et al., 2016; Evci et al., 2020b).

To this end, structured sparsity, which regularizes the sparsity pattern such as channel/filter spar-
sity (Li et al., 2016; Wen et al., 2016; He et al., 2017), or block sparsity (Ma et al., 2019; Tan
et al., 2020), have become increasingly popular owing to their hardware-friendly nature. For ex-
ample the dense accelerator can skip a full channel computation when it is sparsified without any
low-level modification. The caveat is structured sparsity also introduces larger quality loss. Recent
research (Yao et al., 2019; Kang, 2019) found fine-grained N:M structured sparsity, which keeps N
out of consecutive M elements in the the weight tensor, can ameliorate the quality loss. Moreover,
with the launch of 2:4 structured-sparse tensor core in GPU Ampere architecture (Nvidia, 2021a) de-
veloping sparse training recipes for N:M sparsity has acquired increased interest (Pool & Yu, 2021b;
Mishra et al., 2021; Nvidia, 2021b; Zhou et al., 2021).

In this paper, we demonstrate a training recipe for N:M structure sparsity in Transformer-based
translation task and propose two techniques. We propose Structure Decay an iterative pruning ap-
proach tailored for N:M sparsity. We propose Mask Decay, which gradually decays the mask from
1, to 0.9, 0.8, ..., to 0, instead of the conventional 1/0 mask. We found these techniques can stabilize
the training and achieve better quality and compression rate. We make following contributions:

‚ We compare Structure Decay and Mask Decay with the state-of-the-art N:M sparsity training
recipes, SR-STE (Zhou et al., 2021). They achieve (geomean) 0.004 and (geomean) 0.006 accu-
racy improvement over SR-STE, respectively.

‚ Mask Decay enables “structured pruning” to achieve comparable quality and compression rate
to “unstructured pruning”.

2 RELATED WORK

We primarily focus on weight sparsification in this work. A sparsification recipe includes: 1) pruning
criteria, 2) pruning schedule, and 3) sparsity pattern.

Pruning Criteria. Pruning criteria is the criteria to decide which elements to prunes in the weight
tensor. Magnitude pruning, which selects the pruning elements by their absolute values, is the most
widely used method (Renda et al., 2020; Guo et al., 2016; Lee et al., 2018; Frankle & Carbin,
2018; Gale et al., 2019; Zhu & Gupta, 2017; Han et al., 2015a; Liu et al., 2018; Pool & Yu, 2021a;
Mishra et al., 2021). Some other metrics such as gradient-based (Yeom et al., 2021; Evci et al.,
2020a), Hessian based (LeCun et al., 1989), connection sensitivity (Lee et al., 2018), and salient-
based (Molchanov et al., 2019; Lee et al., 2018) are also used. In this paper, we use magnitude
pruning.

Pruning Schedule. There are coarsely four different pruning schedules: 1) Fine-tuning with one-
shot pruning (Figure 1f) (Mishra et al., 2021; Pool & Yu, 2021b; Frankle & Carbin, 2018; Lee et al.,
2018), which trains a dense models, prunes the weight with one-shot, and re-trains the model in
order to recover the quality loss. 2) Fine-tuning with iterative pruning (Figure 1g) (Evci et al., 2019;
Han et al., 2015a; Guo et al., 2016; He et al., 2017; Molchanov et al., 2016; Yao et al., 2019; Zhu
& Gupta, 2017; Gamboa et al., 2020; Narang et al., 2017a;b; Elsen et al., 2020; Park et al., 2018;
Kalchbrenner et al., 2018; Evci et al., 2020a), which trains a dense model and then iterates between
pruning and re-training. This schemes are usually found to has higher ability to recover the quality
loss. 3) From-scratch with learned one-shot pruning pattern (Figure 1h) (Frankle et al., 2020; Evci
et al., 2019), which determines the sparsity pattern from the trained dense version and trains a sparse
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Fig. 1: The compute flows of (a) Dense training, (b) Sparsify, (c) Fine-tuning, and (d) Sparse
training. The training schedule of (e) regular dense training, (f) fine-tuning with one-shot
sparsifying, (g) fine-tuning with iterative sparsifying, (h) from-scratch with learned one-shot
sparsity pattern, and (i) from-scratch while learning sparsity pattern. The sparsify algorithm
in (d): ES such as (Mocanu et al., 2018), Bayesian Optimization such as (Bellec et al., 2017),
Trainable parameters such as (Wortsman et al., 2019; Dettmers & Zettlemoyer, 2019; Kusupati
et al., 2020).

model from scratch. 4) From-scratch while learning sparsity pattern (Figure 1i) (Wortsman et al.,
2019; Dettmers & Zettlemoyer, 2019; Gale et al., 2019; Kusupati et al., 2020; Evci et al., 2020a;
Bellec et al., 2017; Mocanu et al., 2018; Zhou et al., 2021; Evci et al., 2020b), which trains a sparse
model from scratch while learning sparsity patterns simultaneously.

Sparsity Pattern. Unstructured Sparsity prunes the model without any sparsity pattern con-
straint (Renda et al., 2020; Guo et al., 2016; Lee et al., 2018; Frankle & Carbin, 2018; Gale et al.,
2019; Zhu & Gupta, 2017; Han et al., 2015a; Liu et al., 2018; Wortsman et al., 2019; Dettmers &
Zettlemoyer, 2019; Gale et al., 2019; Kusupati et al., 2020; Evci et al., 2020a; Bellec et al., 2017;
Mocanu et al., 2018). It is often found to be able to prune the model size to an order of magnitude
smaller while keeping the model quality. However, it has the challenge of similar or worse (because
of the additional complexity) runtime than the dense model owing to its irregular sparsity pattern.
Coarse-grained Structured Sparsity constrains the pruning scheme to prune the model in a coarse-
grained manner such as filter/channel pruning (Li et al., 2016; Wen et al., 2016; He et al., 2017),
block-wise pruning (Wen et al., 2016; Ma et al., 2019; Narang et al., 2017b; Gray et al., 2017), and
so on. By skipping the full computation at a coarse-granularity of the computation, this scheme
can often achieve speedup in dense computation accelerators such as GPUs and TPUs; however this
often sacrifices some model quality. These studies often trade off between performance and quality
for different application needs. Fine-grained N:M Structure Sparsity, which prunes (M-N) out of
consecutive M elements. Some early works rely on special threading and grouping techniques (Yao
et al., 2019) or specialized sparse accelerators (Kang, 2019) to leverage this fine-grained pattern.
With the 2:4 structured-sparse GEMM support in tensor cores in GPU Ampere architecture (Nvidia,
2021a), many recent works start to investigate in different training recipe for N:M sparsity pattern
to leverage the existing accelerators (Pool & Yu, 2021b; Mishra et al., 2021; Nvidia, 2021b; Zhou
et al., 2021).

Recipe in this paper and the SOTA SR-STE (Zhou et al., 2021). In this paper, our sparse training
recipe is (Pruning criteria: magnitude pruning, Pruning schedule: fine-tuning with iterative prun-
ing, Sparsity pattern: fine-grained N:M structure sparsity). The recipe for SR-STE (Zhou et al.,
2021) is (Pruning criteria: magnitude pruning, Pruning schedule: from-scratch with learning itera-
tive pruning, Sparsity pattern: fine-grained N:M structure sparsity). Our methods, “Mask Decay”
and “Structure Decay”, are techniques to improve the training quality of “fine-tuning with iterative
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Table 1: The compute and memory contributions of the three major layers in Transformers.
Einsum: computation of attention scores and weighted sum of values by the attention scores.
Projections: projecting inputs to key, query, and value, and projection weighted sum of values
to outputs. Feed Forward: The multiple feed forward layers at the end of the attention layer.
The other layers/ operations such as ReLU, LayerNorm, Add, Softmax, embedding, and so on
have little contributions to the FLOPS and parameters of the Transformers, hence not included
in this estimation. The feed forward layers account for around 64% of overall FLOPs and 67%
of parameters. These estimations are made under model configuration in Table 2.

Einsum Projections Feed Forward Einsum Projections Feed Forward

(T)FLOPS 1.6 13.2 26.4 4% 32% 64%
Params (MB) 0.0 50.3 100.7 0% 33% 67%

pruning”. SR-STE (Zhou et al., 2021) is a “Sparse-Refined (SR)” technique to stabilize the train-
ing of “from-scratch with learning iterative pruning”. Both SR-STE (Zhou et al., 2021) and us are
proposing techniques to pursue high quality sparsification for fine-grained N:M structure sparsity
pattern.

3 METHODOLOGY

Workload and model. We evaluate different sparsification methods on the WMT translate
task (wmt, 2017) that uses a encoder-decoder Transformer-based model (Vaswani et al., 2017), and
is a key benchmark in machine translation research. They hold several translation datasets across
different languages. The encoder and decoder blocks in this model each have six attention lay-
ers with 16 heads. The embedding dimension for both input and query/key/value are 1024. The
feed-forward blocks within each attention head has 4096 neurons. For all the experiments, we only
induce sparsity in the feed-forward layers of both encoder and decoder blocks (Table 1 shows that
feed-forward layers account for around 64% of FLOPS and 67% of parameters of the entire model.
Therefore, we focus on feed-forward layers for sparsification). We follow the standard practice of
fine-tuning using the final learning rate used during the original training phase (Liu et al., 2018).

Training details. Table 2 shows the details of training hyperparameters that we use for all the
evaluations. For each experiment, we use a TPUv3 with 32 cores.

4
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Table 2: Model configurations and hyper-parameters.

number of encoder layers 6
number of decoder layer 6
hidden dimension size 1024
feed forward dimension size 4096
number of head 16
max sequence length 256
training set WMT-17
testing set WMT-14
learning rate 0.0625
warmup steps 1000
decay factor 0.5
batch size 512
training steps 200K
Adam optimizer beta1 = 0.9, beta2 = 0.92

Table 3: The effect of update frequency in SR-STE (Zhou et al., 2021). Raising the “Update
Frequency” increases the training time significantly. Hence, we only include the results for
“Update Frequency” 100 and 1000.

Accuracy Update Frequency

every 1000 steps every 100 steps

Sparsity Target

1:16 0.709 0.710
1:32 0.707 0.707
1:64 0.706 0.706

1:128 0.706 0.706

3.1 SPARSIFICATION METHOD BASELINE

Fine-grained N:M sparsity. We follow the proposed method in (Zhou et al., 2021) to induce
structured N:M sparsity from scratch, as shown in Figure 2(a). This method employs standard online
magnitude-based pruning with an introduced sparse-refined regularization term. This regularization
term applies refined gradients for pruned weights during backward pass. The authors use the refined
gradient updates to increase the likelihood of pruning the same network weights at each training
step, which purportedly leads to a more robust sparse training. While this work proposes to re-
evaluate the pruning mask after each training iteration, we find this process time-consuming which
significantly slows down the training process on TPU. Therefore, we moderately alter the frequency
of updating the pruning mask to 1000 training steps. We ablate the importance of the frequency of
updating pruning masks. Our results show that the model accuracy for WMT task is not sensitive to
this parameter, as shown in Table 3.

3.2 PROPOSED SPARSIFICATION METHODS

In this section, we propose two sparsification methods that employ a decaying mechanism to grad-
ually induce the target sparsity on the model. Note that, we do not alter the gradient update rule in
either of these proposed methods. Instead, we simply employ various gradual update rules to the
pruning mask itself.

Pruning mask decay. In the first approach, instead of using a binary pruning mask (e.g. “0”
indicates pruning locations), we use a floating-point pruning mask with decaying, as shown in Fig-
ure 2(b). At the start of training, we employ an all-ones matrix as the pruning mask that simply
indicates no pruning. At the beginning of sparse training phase, we use the same standard online
magnitude-based pruning criteria to identify the locations of pruned weights. However, in contrast to
prior work in which “0” is used to prune the weights, we use 0 ă β ă 1.0 for the pruned weights in
the pruning mask. We gradually decrease the value of β at different intervals following the formula
βd, where d indicates the decaying iteration index (e.g. β1, β2, β3, ...). After sufficient decaying
intervals, we set β to zero to indicate the locations of pruned weights. We postulate that using a non-
binary pruning mask enables the gradients of pruned weights to flow through the network leading to
a more robust sparse training and better model performance.
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Sparse structure decay. In the second proposed sparsification method, we apply a decaying mech-
anism on the structure of pruning mask, gradually increasing sparsification degree. At the beginning
of sparse training phase, we start with M-1:M structured sparsity. As training progresses, we increase
the sparsification degree by applying M

2d
:M structured sparsity at different decaying intervals. Sim-

ilar to previous method, d denotes the decaying iteration index. This method at its crux follows a
similar hypothesis as the pruning mask decay. That is, enabling the gradient of pruned weights to
flow through the network. However, because we still use a binary pruning mask, the contribution of
the gradients of the pruned weights to the network reduces after each decaying interval.

4 EVALUATION

4.1 METHODOLOGY

Task and datasets. We use translation as our target task. We use WMT dataset (En-De) (wmt,
2017). We use WMT-17 as training dataset and WMT-14 as testing dataset, and use testing accuracy
for evaluation. We prune the parameters of every feed forward layers in the Transformer-based
models. We follow the standard practice of fine-tuning using the final learning rate used during the
original training phase (Liu et al., 2018). The model and training configuration is shown in Table 2.

Comparisons. In this study, we compare the effectiveness of different SOTA sparsification methods.
All methods train for n steps.

‚ Dense: Dense training without sparsification for n steps (Figure 1(e)).
‚ Dense-sparse: Dense train for d steps, sparsify, and fine-tune for (n-d) steps, as in (Mishra

et al., 2021) (Figure 1(f)).
‚ Sparse: SR-STE (Zhou et al., 2021)-based sparse training for n steps (Figure 2(a)).
‚ Structure Decay: Dense train for d steps, structure decay the sparsity pattern for (n-d-s) steps,

and fine-tune for s steps (Figure 1(g)). The structure decay is set to decay by the power of 2
(§3.1). For example, when target sparsity pattern is 1:16, we divide (n-d-s) steps to five equal
time frame, and the sparsity pattern of each time frame is 15:16, 8:16, 4:16, 2:16, and 1:16,
respectively.

‚ Mask Decay: Dense train for d steps, mask decay the sparsity pattern for (n-d-s) steps, and
fine-tune for s steps (Figure 2(b)). We use the mask decay rate (β) of 0.9 and mask update
period of 1000 steps. In the above experiments, we use n = 200K, d = 20K, s = 20K.

4.2 COMPARING WITH BASELINE

Quality. We compare Structure Decay and Mask Decay, with two baseline Dense-Sparse (Mishra
et al., 2021) and Sparse (Zhou et al., 2021) in Table 4. We evaluate the methods on different sparsity
targets. Sparsity target is the final sparsity pattern we will achieve after model training. For example,
sparsity target of 1:32 means the trained model will have only 1 non-zero parameters every 32 pa-
rameters. Table 4 shows that Dense-Sparse performs similarly to Sparse, and Mask Decay achieves
the best accuracy across all sparsity targets. Structure Decay performs the second best. More inter-
estingly, “Mask Decay” can help achieve similar or better accuracy than the “unstructured sparsity”
ones. Our results indicate that the “Mask Decay” pruning method on dense layers enables mod-
els to be pruned structurally while achieving comparable or even better accuracy to “unstructured
pruning”.

Table 4: Comparisons between different sparsification strategies.

Accuracy Dense Structure Sparsity Unstructure Sparsity

Schedule Dense Structure Decay Mask Decay Dense-Sparse (Mishra et al., 2021) Sparse (Zhou et al., 2021) Dense-Sparse Unstr Sparse

Sparsity
Target

1:16 0.747 0.717 0.717 0.714 0.709 0.714 0.714
1:32 0.747 0.713 0.714 0.710 0.707 0.711 0.712
1:64 0.747 0.710 0.711 0.708 0.707 0.711 0.711

1:128 0.747 0.708 0.711 0.708 0.707 0.708 0.709

Performance. Note that there are no off-the-shelf accelerators that can support 1:16 or more aggres-
sive sparsity patterns. To demonstrate the potential performance, we build a cost model to estimate
the FLOPS and memory sizes. Table 5 shows that after 1:16 sparsification, the model sizes will
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reduce by 62% and inference FLOPS will reduce by 60%. More interestingly, since different meth-
ods have different sparsification schedules, the averaged training FLOPS across their training time
will be different. “Dense-Sparse” is the most straight-forward and light-weighted training sched-
ule in terms of FLOPS. “Sparse” relies on continuous mask update across the full training steps
(Figure 2(a)), therefore performing worse in terms of FLOPS. Structure Decay becomes the most
performant method to achieve the best quality at 1:16 sparsity. However, to sparsify more aggres-
sively, Mask Decay is still the best method (Table 4).

Table 5: Comparisons of model performance (FLOPS) and quality (accuracy).

Sparsity Target (1:16) Dense Structure Decay Mask Decay Dense-Sparse Sparse

Params (MB) 151.0 56.6 56.6 56.6 56.6
Inference TFLOPS 41.2 16.5 16.5 16.5 16.5
Training TFLOPS 123.7 108.0 121.2 101.4 123.7
Accuracy 0.75 0.72 0.72 0.714 0.709

4.3 ABLATION STUDIES

Dense training v.s. Training from scratch for SR-STE. SR-STE uses sparse training from scratch.
All the other methods that we evaluated have a dense training phase at the first few steps (epochs).
This recipe has been proven to be effective as shown in the previous experiments and many prior
works (Mishra et al., 2021; Pool & Yu, 2021b; Frankle & Carbin, 2018; Lee et al., 2018; Evci et al.,
2019; Han et al., 2015a; Guo et al., 2016; He et al., 2017; Molchanov et al., 2016; Yao et al., 2019;
Zhu & Gupta, 2017; Gamboa et al., 2020; Narang et al., 2017a;b; Elsen et al., 2020; Park et al.,
2018; Kalchbrenner et al., 2018; Evci et al., 2020a). Therefore, we experiment on adding a dense
training phase at the beginning of SR-STE training, as shown in Table 6. We found that adding few
steps of dense training (1.25% - 10% of the total training steps) can increase the accuracy by around
0.002 to 0.003. This tells that few steps of dense training does help achieve better performance even
for SR-STE. Interestingly, the improved SR-STE becomes competitive to the proposed Structure
Decay. However, Mask Decay is still consistently better.

Table 6: Ablation: SR-STE augmented with few epochs of dense training.

Training Schedule Accuracy

Dense steps SR-STE -styled Sparse steps 1:16 1:32 1:64 1:128

SR-STE 0 200K 0.710 0.707 0.706 0.706

Dense + SR-STE

2.5K 197.5K 0.712 0.710 0.708 0.706
5K 195K 0.712 0.709 0.707 0.708

10K 190K 0.712 0.710 0.707 0.708
20K 180K 0.713 0.710 0.708 0.707

Effect of dense training steps (d). Both our proposed methods include a dense training phase. We
do an ablation study on different number of dense training steps in Table 7. We found that changing
the dense step between 1.25% - 10% of the total training steps does not observably change the
accuracy performance. However, empirically, we found that dense training phase is still essential.
The model cannot achieve as competitive accuracy without few epochs of dense training.

Table 7: Ablation: The effect of number of dense training steps (d).

Accuracy Mask Decay Structure Sparsity

Sparsity Target 1:16 1:32 1:64 1:128 1:16 1:32 1:64 1:128

Dense steps (d)

2.5 K 0.7155 0.7134 0.7106 0.7100 0.7157 0.7134 0.7108 0.7106
5 K 0.7160 0.7127 0.7110 0.7093 0.7160 0.7136 0.7117 0.7100

10 K 0.7157 0.7137 0.7103 0.7094 0.7164 0.7141 0.7107 0.7098
20 K 0.7156 0.7126 0.7107 0.7104 0.7165 0.7128 0.7115 0.7107

Effects of fine-tuning steps (s). We also have a sets of study on number of fine-tuning steps in
Table 8. We found that for both of our propose methods the fine-tuning steps between 10% - 20% of
the total training steps does not observably change the accuracy performance. However, empirically,
we also found few steps of fine-tuning at the end is essential to recover the accuracy.
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Table 8: Ablation: The effect of number of fine-tuning steps (s).

Accuracy Mask Decay Structure Sparsity

Sparsity Target 1:16 1:32 1:64 1:128 1:16 1:32 1:64 1:128

Fine-tuning steps (s) 20 K 0.7153 0.7130 0.7107 0.7098 0.7160 0.7125 0.7095 0.7072
40 K 0.7161 0.7132 0.7106 0.7097 0.7121 0.7093 0.7081 0.7065

Effects of β in Mask Decay. Note that the extreme case of a mask decay rate (β=0) will turn the
pruning mask back to the conventional 1/0 mask. As shown in Table 9, we found a mask decay rate
of 0.9 is better than an aggressive one (0.001). It suggests the Mask Decay technique does contribute
and lead to better accuracy performance.

Table 9: Ablation: The effect of mask decay rate (β).

Accuracy Mask Decay

Sparsity Target 1:16 1:32 1:64 1:128

Mask decay rate (β) 0.9 0.715 0.713 0.711 0.710
0.001 0.712 0.709 0.708 0.707

5 LIMITATIONS

This paper studies only translation task with one sparsification recipe (Criteria: magnitude pruning,
Schedule: Structure Decay or Mask Decay, Pattern N:M structured pruning) and only prunes feed-
forward layers. 1) We show we can effectively prune the most compute- and parameter-heavy layers
in our model, feed forward layers. An interesting next-step is to prune other layers such as projec-
tions layers as well to further compress the model. 2) Studies on other language tasks or visions
tasks and on different models such as on Resnet (He et al., 2016) or ViTs (Dosovitskiy et al., 2020))
would be an interesting follow-up. 3) In addition, we only study one combination of sparsification
recipe. We might discover better recipe by exploring other combinations such as salient-based prun-
ing + Mask Decay + N:M structured pruning, magnitude pruning + Structure Decay + unstructured
sparsity, or many others. 4) Lastly, in the evaluations, most of the hyper-parameters are set manually.
We did a limited scope of hyper-parameters sweep in §4.3. A full-fledged hyper-parameter search
might discover more performance improvement in “Mask Decay” and “Structure Decay”.

6 CONCLUSION

In this work, we study and evaluate various training recipes for N:M structured sparsity. Building
on this study, we propose and compare two new training recipes for N:M structured sparsity based
on decaying mechanisms. We study the trade-off between model accuracy and training compute
cost (FLOPs) across these training recipes. We show that gradual decay of pruning mask values
consistently yield better model accuracy, on-par with unstructured sparsity, on translate task at the
cost of modest increase in the training compute cost. While structured sparsity seems to be better
positioned for hardware acceleration, its associated training cost should not be overlooked. This
work represents a first step in evaluating training recipes for structured sparsity from the perspective
of trade-off between model accuracy and compute cost. As future work, we plan to expand the pool
of models to other tasks and models and develop a platform to systematically evaluate and compare
various sparse training recipes both for model accuracy and training cost.
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