
A Unified Model for Multi-class Anomaly Detection

Zhiyuan You1∗ Lei Cui2∗ Yujun Shen3 Kai Yang4 Xin Lu4 Yu Zheng1 Xinyi Le1†

1Shanghai Jiao Tong University 2Tsinghua University 3CUHK 4SenseTime

zhiyuanyou@foxmail.com, cuil19@mails.tsinghua.edu.cn, shenyujun0302@gmail.com
{yangkai, luxin}@sensetime.com, yuzheng@sjtu.edu.cn, lexinyi@sjtu.edu.cn

Abstract

Despite the rapid advance of unsupervised anomaly detection, existing methods
require to train separate models for different objects. In this work, we present
UniAD that accomplishes anomaly detection for multiple classes with a unified
framework. Under such a challenging setting, popular reconstruction networks
may fall into an “identical shortcut”, where both normal and anomalous samples
can be well recovered, and hence fail to spot outliers. To tackle this obstacle, we
make three improvements. First, we revisit the formulations of fully-connected
layer, convolutional layer, as well as attention layer, and confirm the important role
of query embedding (i.e., within attention layer) in preventing the network from
learning the shortcut. We therefore come up with a layer-wise query decoder to
help model the multi-class distribution. Second, we employ a neighbor masked
attention module to further avoid the information leak from the input feature to
the reconstructed output feature. Third, we propose a feature jittering strategy
that urges the model to recover the correct message even with noisy inputs. We
evaluate our algorithm on MVTec-AD and CIFAR-10 datasets, where we surpass
the state-of-the-art alternatives by a sufficiently large margin. For example, when
learning a unified model for 15 categories in MVTec-AD, we surpass the second
competitor on the tasks of both anomaly detection (from 88.1% to 96.5%) and
anomaly localization (from 89.5% to 96.8%). Code is available at https://
github.com/zhiyuanyou/UniAD.

1 Introduction

Anomaly detection has found an increasingly wide utilization in manufacturing defect detection [4],
medical image analysis [17], and video surveillance [46]. Considering the highly diverse anomaly
types, a common solution is to model the distribution of normal samples and then identify anomalous
ones via finding outliers. It is therefore crucial to learn a compact boundary for normal data, as
shown in Fig. 1a. For this purpose, existing methods [6, 11, 25, 27, 48, 49, 52] propose to train
separate models for different classes of objects, like in Fig. 1c. However, such a one-class-one-model
scheme could be memory-consuming especially along with the number of classes increasing, and
also uncongenial to the scenarios where the normal samples manifest themselves in a large intra-class
diversity (i.e., one object consists of various types).

In this work, we target a more practical task, which is to detect anomalies from different object
classes with a unified framework. The task setting is illustrated in Fig. 1d, where the training data
covers normal samples from a range of categories, and the learned model is asked to accomplish
anomaly detection for all these categories without any fine-tuning. It is noteworthy that the categorical
information (i.e., class label) is inaccessible at both the training and the inference stages, considerably

∗ Contribute Equally. † Corresponding Author.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/zhiyuanyou/UniAD
https://github.com/zhiyuanyou/UniAD


Net 1

… … …

Train on Normal Data Infer to Detect Anomalies

(c) (d)

Net 2

Net N

… …
Net

𝑒!

𝑒"

Normal Anomaly Boundary
Class 1 Class 2

(a) (b) 𝑒!

𝑒"

Figure 1: Task setting of unified anomaly detection. (a) Existing methods learn separate decision
boundaries for different object classes, while (b) our approach models the multi-class data distribution
such that one boundary is enough to spot outliers regarding all categories. As a result, we escape
from the conventional one-class-one-model paradigm in (c), and manage to accomplish anomaly
detection for various classes with a unified framework in (d).

easing the difficulty of data preparation. Nonetheless, solving such a task is fairly challenging. Recall
that the rationale behind unsupervised anomaly detection is to model the distribution of normal data
and find a compact decision boundary as in Fig. 1a. When it comes to the multi-class case, we expect
the model to capture the distribution of all classes simultaneously such that they can share the same
boundary as in Fig. 1b. But if we focus on a particular category, say the green one in Fig. 1b, all
the samples from other categories should be considered as anomalies no matter whether they are
normal (i.e., blue circles) or anomalous (i.e., blue triangles) themselves. From this perspective, how
to accurately model the multi-class distribution becomes vital.

A widely used approach to learning the normal data distribution draws support from image (or feature)
reconstruction [2, 5, 26, 39, 51], which assumes that a well-trained model always produces normal
samples regardless of the defects within the inputs. In this way, there will be large reconstruction
errors for anomalous samples, making them distinguishable from the normal ones. However, we
find that popular reconstruction networks suggest unsatisfying performance on the challenging task
studied in this work. They typically fall into an “identity shortcut”, which appears as returning a
direct copy of the input disregarding its content.1 As a result, even anomalous samples can be well
recovered with the learned model and hence become hard to detect. Moreover, under the unified case,
where the distribution of normal data is more complex, the “identical shortcut” problem is magnified.
Intuitively, to learn a unified model that can reconstruct all kinds of objects, it requires the model
to work extremely hard to learn the joint distribution. From this perspective, learning an “identical
shortcut” appears as a far easier solution.

To address this issue, we carefully tailor a feature reconstruction framework that prevents the model
from learning the shortcut. First, we revisit the formulations of fully-connected layer, convolutional
layer, as well as attention layer used in neural networks, and observe that both fully-connected
layer and convolutional layer face the risk of learning a trivial solution. This drawback is further
amplified under the multi-class setting in that the normal data distribution becomes far more complex.
Instead, the attention layer is sheltered from such a risk, benefiting from a learnable query embedding
(see Sec. 3.1). Accordingly, we propose a layer-wise query decoder to intensify the use of query
embedding. Second, we argue that the full attention (i.e., every feature point relates to each other)
also contributes to the shortcut issue, because it offers the chance of directly copying the input to
the output. To avoid the information leak, we employ a neighbor masked attention module, where a
feature point relates to neither itself nor its neighbors. Third, inspired by Bengio et al. [3], we propose
a feature jittering strategy, which requires the model to recover the source message even with noisy
inputs. All these designs help the model escape from the “identity shortcut”, as shown in Fig. 2b.
Extensive experiments on MVTec-AD [4] and CIFAR-10 [23] demonstrate the sufficient superiority
of our approach, which we call UniAD, over existing alternatives under the unified task setting. For
instance, when learning a single model for 15 categories in MVTec-AD, we achieve state-of-the-art
performance on the tasks of both anomaly detection and anomaly localization, boosting the AUROC
from 88.1% to 96.5% and from 89.5% to 96.8%, respectively.

1A detailed analysis can be found in Sec. 3.1 and Fig. 2.

2



2 Related work

Anomaly detection. 1) Classical approaches extend classical machine learning methods for one-class
classification, such as one-class support vector machine (OC-SVM) [38] and support vector data
description (SVDD) [35, 41]. Patch-level embedding [48], geometric transformation [18], and elastic
weight consolidation [33] are incorporated for improvement. 2) Pseudo-anomaly converts anomaly
detection to supervised learning, including classification [25, 32, 45], image denoising [52], and hyper-
sphere segmentation [27]. However, these methods partly rely on how well proxy anomalies match
real anomalies that are not known [13]. 3) Modeling then comparison assumes that the pre-trained
network is capable of extracting discriminative features for anomaly detection [11, 34]. PaDiM [11]
and MDND [34] extract pre-trained features to model normal distribution, then utilize a distance
metric to measure the anomalies. Nevertheless, these methods need to memorize and model all normal
features, thus are computationally expensive. 4) Knowledge distillation proposes that the student
distilled by a teacher on normal samples could only extract normal features [6, 13, 37, 44, 45]. Recent
works mainly focus on model ensemble [6], feature pyramid [37, 44], and reverse distillation [13].

Reconstruction-based anomaly detection. These methods rely on the hypothesis that reconstruction
models trained on normal samples only succeed in normal regions, but fail in anomalous regions
[5, 8, 26, 36, 49]. Early attempts include Auto-Encoder (AE) [5, 9], Variational Auto-Encoder
(VAE) [22, 26], and Generative Adversarial Net (GAN) [2, 30, 36, 51]. However, these methods face
the problem that the model could learn tricks that the anomalies are also restored well. Accordingly,
researchers adopt different strategies to tackle this issue, such as adding instructional information
(i.e., structural [53] or semantic [39, 46]), memory mechanism [19, 20, 29], iteration mechanism [12],
image masking strategy [47], and pseudo-anomaly [9, 32]. Recently, DRAEM [52] first recovers
the pseudo-anomaly disturbed normal images for representation, then utilizes a discriminative net to
distinguish the anomalies, achieving excellent performance. However, DRAEM [52] ceases to be
effective under the unified case. Moreover, there is still an important aspect that has not been well
studied, i.e., what architecture is the best reconstruction model? In this paper, we first compare and
analyze three popular architectures including MLP, CNN, and transformer. Then, accordingly, we
base on the transformer and further design three improvements, which compose our UniAD.

Transformer in anomaly detection. Transformer [42] with attention mechanism, first proposed in
natural language processing, has been successfully used in computer vision [7, 16]. Some attempts
try to utilize transformer for anomaly detection. InTra [31] adopts transformer to recover the image
by recovering all masked patches one by one. VT-ADL [28] and AnoVit [50] both apply transformer
encoder to reconstruct images. However, these methods directly utilize vanilla transformer, and do
not figure out why transformer brings improvement. In contrast, we confirm the efficacy of the query
embedding to prevent the shortcut, and accordingly design a layer-wise query decoder. Also, to avoid
the information leak of the full attention, we employ a neighbor masked attention module.

3 Method

3.1 Revisiting feature reconstruction for anomaly detection

In Fig. 2, following the feature reconstruction paradigm [39, 49], we build an MLP, a CNN, and a
transformer (with query embedding) to reconstruct the features extracted by a pre-trained backbone.
The reconstruction errors represent the anomaly possibility. The architectures of the three networks
are given in Appendix. The metric is evaluated every 10 epochs. Note that the periodic evaluation is
impractical since anomalies are not available during training. As shown in Fig. 2a, after a period of
training, the performances of the three networks decrease severely with the losses going extremely
small. We attribute this to the problem of “identical shortcut”, where both normal and anomalous
regions can be well recovered, thus failing to spot anomalies. This speculation is verified by the
visualization results in Fig. 2b (more results in Appendix). However, compared with MLP and CNN,
the transformer suffers from a much smaller performance drop, indicating a slighter shortcut problem.
This encourages us to analyze as follows.

We denote the features in a normal image as x+ ∈ RK×C , where K is the feature number, C is
the channel dimension. The batch dimension is omitted for simplicity. Similarly, the features in an
anomalous image are denoted as x− ∈ RK×C . The reconstruction loss is chosen as the MSE loss.

3



CNNMLP Transformer (with query embedding) Ours

MLP CNN Transformer OursAnomaly MLP CNN Transformer OursAnomaly

(a)

(b)

Figure 2: Comparison among MLP, CNN, transformer, and our UniAD on MVTec-AD [4]. (a)
Training loss (blue) as well as the testing AUROC on anomaly detection (green) and localization (red).
During the training of MLP, CNN, and transformer, the reconstruction error keeps going smaller on
normal samples, but the performance on anomalies suffers from a severe drop after reaching the peak.
This is caused by the model learning an “identical shortcut”, which tends to directly copy the input as
the output regardless of whether it is normal or anomalous. (b) Visual explanation of the shortcut
issue, where the anomalous samples can be well recovered and hence become hard to detect from
normal ones. In contrast, UniAD overcomes such a problem and manages to reconstruct anomalies as
normal samples. It is noteworthy that all models are learned for feature reconstruction and a separate
decoder is employed to render images from features. This decoder is only used for visualization.

We provide a rough analysis using a simple 1-layer network as the reconstruction net, which is trained
with x+ and tested to detect anomalous regions in x−.

Fully-connected layer in MLP. Denote the weights and bias in this layer as w ∈ RC×C , b ∈ RC ,
respectively, this layer can be represented as,

y = x+w + b ∈ RK×C . (1)

With the MSE loss pushing y to x+, the model may take shortcut to regress w → I (identity matrix),
b → 0. Ultimately, this model could also reconstruct x− well, failing in anomaly detection.

Convolutional layer in CNN. A convolutional layer with 1×1 kernel is equivalent to a fully-
connected layer. Besides, An n× n (n > 1) kernel has more parameters and larger capacity, and can
complete whatever 1×1 kernel can. Thus, this layer also has the chance to learn a shortcut.

Transformer with query embedding. In such a model, there is an attention layer with a learnable
query embedding, q ∈ RK×C . When using this layer as the reconstruction model, it is denoted as,

y = softmax(q(x+)T /
√
C)x+ ∈ RK×C . (2)

To push y to x+, the attention map, softmax(q(x+)T /
√
C), should approximate I (identity matrix),

so q must be highly related to x+. Considering that q in the trained model is relevant to normal
samples, the model could not reconstruct x− well. The ablation study in Sec. 4.6 shows that without
the query embedding, the performance of transformer drops dramatically by 18.1% and 13.4% in
anomaly detection and localization, respectively. Thus the query embedding is of vital significance to
model the normal distribution.

However, transformer still suffers from the shortcut problem, which inspires our three improvements.
1) According to that the query embedding can prevent reconstructing anomalies, we design a Layer-
wise Query Decoder (LQD) by adding the query embedding in each decoder layer rather than only
the first layer in vanilla transformer. 2) We suspect that the full attention increases the possibility
of the shortcut. Since one token could see itself and its neighbor regions, it is easy to reconstruct
by simply copying. Thus we mask the neighbor tokens when calculating the attention map, called
Neighbor Masked Attention (NMA). 3) We employ a Feature Jittering (FJ) strategy to disturb the
input features, leading the model to learn normal distribution from denoising. Benefiting from these
designs, our UniAD achieves satisfying performance, as illustrated in Fig. 2.

Relation between the “identical shortcut” problem and the unified case. In Fig. 2a, we aim to
visualize the “identical shortcut” problem, where the loss becomes smaller yet the performance drops.

4



Neighbor Masked 
Attention

Neighbor Masked 
Attention

Neighbor Masked 
Attention

Query Embedding

Feed Forward Net

N ×

MSE Loss

Feature Tokens 

Reconstructed Tokens

Feature Tokens

Feed Forward Net

K

N ×

V Q

K V Q

Outputs of Last LQD Layer

Perturbation

K V Q

NME LQD

Feature Jittering

Reconstructed Tokens

Difference

Feature Tokens

Reconstructed Tokens

+

Localization Results

Avg Pool & Max

Detection Results

Train on Normal Samples

Test for Anomaly Localization & Detection
+

+

+

+

+ -

+ Add Followed by Layer Norm 

Figure 3: Framework of UniAD, consisting of a Neighbor Masked Encoder (NME) and a Layer-wise
Query Decoder (LQD). Each layer in LQD employs a learnable query embedding to help model the
complex training data distribution. The full attention in transformer is replaced by neighbor masked
attention to avoid the information leak from the input to the output. The feature jittering strategy
encourages the model to recover the correct message with noisy inputs. All the three improvements
assist the model against learning the “identical shortcut” (see Sec. 3.1 and Fig. 2 for details).

Unified Case Separate Case

Figure 4: Comparison between the unified case
and the separate case on the training curves of
MLP. In the separate case, the curves are obtained
by averaging all categories. Compared with the
separate case, the unified case has a smaller
reconstruction error but much worse performance,
indicating a severer “identical shortcut” problem.

Key

Key

Q
ue

ry

Attention Map

Query

Available Value
Masked Neighbor

Flatten

Figure 5: Illustration of neighbor masked
attention, where a feature point relates to
neither itself nor its neighbors.

We conduct the same experiment under the separate case on MLP. As shown in Fig. 4, the accuracy
(green for detection and red for localization) keeps growing up along with the loss (blue) getting
smaller. This helps reveal the relation between the “identical shortcut” problem and the unified
case, which is that the unified case is more challenging and hence magnifies the “identical shortcut”
problem. Therefore, since our approach is specially designed to solve the “identical shortcut” problem,
our method can be effective in the unified case.

3.2 Improving feature reconstruction for unified anomaly detection

Overview. As shown in Fig. 3, our UniAD is composed of a Neighbor Masked Encoder (NME)
and a Layer-wise Query Decoder (LQD). Firstly, the feature tokens extracted by a fixed pre-trained
backbone are further integrated by NME to derive the encoder embeddings. Then, in each layer
of LQD, a learnable query embedding is successively fused with the encoder embeddings and the
outputs of the previous layer (self-fusion for the first layer). The feature fusion is completed by
the Neighbor Masked Attention (NMA). The final outputs of LQD are viewed as the reconstructed
features. Also, we propose a Feature Jittering (FJ) strategy to add perturbations to the input features,
leading the model to learn normal distribution from the denoising task. Finally, the results of anomaly
localization and detection are obtained through the reconstruction differences.

5



Neighbor masked attention. We suspect that the full attention in vanilla transformer [42] contributes
to the “identical shortcut”. In full attention, one token is permitted to see itself, so it will be easy
to reconstruct by simply copying. Moreover, considering that the feature tokens are extracted by a
CNN backbone, the neighbor tokens must share lots of similarities. Therefore, we propose to mask
the neighbor tokens when calculating the attention map, called Neighbor Masked Attention (NMA).
Note that the neighbor region is defined in the 2D space, as shown in Fig. 5.

Neighbor masked encoder. The encoder follows the standard architecture in vanilla transformer.
Each layer consists of an attention module and a Feed-Forward Network (FFN). However, the full
attention is replaced by our proposed NMA to prevent the information leak.

Layer-wise query decoder. It is analyzed in Sec. 3.1 that the query embedding could help prevent
reconstructing anomalies well. However, there is only one query embedding in the vanilla transformer.
Therefore, we design a Layer-wise Query Decoder (LQD) to intensify the use of query embedding,
as shown in Fig. 3. Specifically, in each layer of LQD, a learnable query embedding is first fused
with the encoder embeddings, then integrated with the outputs of the previous layer (self-integration
for the first layer). The feature fusion is implemented by NMA. Following the vanilla transformer, a
2-layer FFN is applied to handle these fused tokens, and the residual connection is utilized to facilitate
the training. The final outputs of LQD serve as the reconstructed features.

Feature jittering. Inspired by Denoising Auto-Encoder (DAE) [3, 43], we add perturbations to feature
tokens, guiding the model to learn knowledge of normal samples by the denoising task. Specifically,
for a feature token, ftok ∈ RC , we sample the disturbance D from a Gaussian distribution,

D ∼ N(µ = 0, σ2 = (α
||ftok||2

C
)2), (3)

where α is the jittering scale to control the noisy degree. Also, the sampled disturbance is added to
ftok with a fixed jittering probability, p.

3.3 Implementation details

Feature extraction. We adopt a fixed EfficientNet-b4 [40] pre-trained on ImageNet [14] as the
feature extractor. The features from stage-1 to stage-4 are selected. Here the stage means the
combination of blocks that have the same size of feature maps. Then these features are resized to the
same size, and concatenated along channel dimension to form a feature map, forg ∈ RCorg×H×W .

Feature reconstruction. The feature map, forg , is first tokenized to H ×W feature tokens, followed
by a linear projection to reduce Corg to a smaller channel, C. Then these tokens are processed by
NME and LQD. The learnable position embeddings [15, 16] are added in attention modules to inform
the spatial information. Afterward, another linear projection is used to recover the channel from C to
Corg. After reshape, the reconstructed feature map, frec ∈ RCorg×H×W , is finally obtained.

Objective function. Our model is trained with the MSE loss as,

L =
1

H ×W
||forg − frec||22. (4)

Inference for anomaly localization. The result of anomaly localization is an anomaly score map,
which assigns an anomaly score for each pixel. Specifically, the anomaly score map, s, is calculated
as the L2 norm of the reconstruction differences as,

s = ||forg − frec||2 ∈ RH×W . (5)
Then s is up-sampled to the image size with bi-linear interpolation to obtain the localization results.

Inference for anomaly detection. Anomaly detection aims to detect whether an image contains
anomalous regions. We transform the anomaly score map, s, to the anomaly score of the image by
taking the maximum value of the averagely pooled s.

4 Experiment

4.1 Datasets and metrics

MVTec-AD [4] is a comprehensive, multi-object, multi-defect industrial anomaly detection dataset
with 15 classes. For each anomalous sample in the test set, the ground-truth includes both image

6



Table 1: Anomaly detection results with AUROC metric on MVTec-AD [4]. All methods are
evaluated under the unified / separate case. In the unified case, the learned model is applied to detect
anomalies for all categories without fine-tuning.

Category US [6] PSVDD [48] PaDiM [11] CutPaste [25] MKD [37] DRAEM [52] Ours

O
bject

Bottle 84.0 / 99.0 85.5 / 98.6 97.9 / 99.9 67.9 / 98.2 98.7 / 99.4 97.5 / 99.2 99.7 ± 0.04 / 100
Cable 60.0 / 86.2 64.4 / 90.3 70.9 / 92.7 69.2 / 81.2 78.2 / 89.2 57.8 / 91.8 95.2 ± 0.84 / 97.6

Capsule 57.6 / 86.1 61.3 / 76.7 73.4 / 91.3 63.0 / 98.2 68.3 / 80.5 65.3 / 98.5 86.9 ± 0.73 / 85.3
Hazelnut 95.8 / 93.1 83.9 / 92.0 85.5 / 92.0 80.9 / 98.3 97.1 / 98.4 93.7 / 100 99.8 ± 0.10 / 99.9
Metal Nut 62.7 / 82.0 80.9 / 94.0 88.0 / 98.7 60.0 / 99.9 64.9 / 73.6 72.8 / 98.7 99.2 ± 0.09 / 99.0

Pill 56.1 / 87.9 89.4 / 86.1 68.8 / 93.3 71.4 / 94.9 79.7 / 82.7 82.2 / 98.9 93.7 ± 0.65 / 88.3
Screw 66.9 / 54.9 80.9 / 81.3 56.9 / 85.8 85.2 / 88.7 75.6 / 83.3 92.0 / 93.9 87.5 ± 0.57 / 91.9

Toothbrush 57.8 / 95.3 99.4 / 100 95.3 / 96.1 63.9 / 99.4 75.3 / 92.2 90.6 / 100 94.2 ± 0.20 / 95.0
Transistor 61.0 / 81.8 77.5 / 91.5 86.6 / 97.4 57.9 / 96.1 73.4 / 85.6 74.8 / 93.1 99.8 ± 0.09 / 100

Zipper 78.6 / 91.9 77.8 / 97.9 79.7 / 90.3 93.5 / 99.9 87.4 / 93.2 98.8 / 100 95.8 ± 0.51 / 96.7

Texture

Carpet 86.6 / 91.6 63.3 / 92.9 93.8 / 99.8 93.6 / 93.9 69.8 / 79.3 98.0 / 97.0 99.8 ± 0.02 / 99.9
Grid 69.2 / 81.0 66.0 / 94.6 73.9 / 96.7 93.2 / 100 83.8 / 78.0 99.3 / 99.9 98.2 ± 0.26 / 98.5

Leather 97.2 / 88.2 60.8 / 90.9 99.9 / 100 93.4 / 100 93.6 / 95.1 98.7 / 100 100 ± 0.00 / 100
Tile 93.7 / 99.1 88.3 / 97.8 93.3 / 98.1 88.6 / 94.6 89.5 / 91.6 99.8 / 99.6 99.3 ± 0.14 / 99.0

Wood 90.6 / 97.7 72.1 / 96.5 98.4 / 99.2 80.4 / 99.1 93.4 / 94.3 99.8 / 99.1 98.6 ± 0.08 / 97.9

Mean 74.5 / 87.7 76.8 / 92.1 84.2 / 95.5 77.5 / 96.1 81.9 / 87.8 88.1 / 98.0 96.5 ± 0.08 / 96.6

label and anomaly segmentation. In the existing literature, only the separate case is researched. In
this paper, we introduce the unified case, where only one model is used to handle all categories.

CIFAR-10 [23] is a classical image classification dataset with 10 categories. Existing methods [6, 24,
37] evaluate CIFAR-10 mainly in the one-versus-many setting, where one class is viewed as normal
samples, and others serve as anomalies. Semantic AD [1, 10] proposes a many-versus-one setting,
treating one class as anomalous and the remaining classes as normal. Different from both, we propose
a unified case (many-versus-many setting), which is detailed in Sec. 4.4.

Metrics. Following prior works [4, 6, 52], the Area Under the Receiver Operating Curve (AUROC)
is used as the evaluation metric for anomaly detection.

4.2 Anomaly detection on MVTec-AD

Setup. Anomaly detection aims to detect whether an image contains anomalous regions. The anomaly
detection performance is evaluated on MVTec-AD [4]. The image size is selected as 224× 224, and
the size for resizing feature maps is set as 14 × 14. The feature maps from stage-1 to stage-4 of
EfficientNet-b4 [40] are resized and concatenated together to form a 272-channel feature map. The
reduced channel dimension is set as 256. AdamW optimizer [21] with weight decay 1× 10−4 is used.
Our model is trained for 1000 epochs on 8 GPUs (NVIDIA Tesla V100 16GB) with batch size 64.
The learning rate is 1× 10−4 initially, and dropped by 0.1 after 800 epochs. The layer numbers of
the encoder and decoder are both 4. The neighbor size, jittering scale, and jittering probability are set
as 7×7, 20, and 1, respectively. The evaluation is run with 5 random seeds. In both the separate case
and the unified case, the reconstruction models are trained from the scratch.

Baselines. Our approach is compared with baselines including: US [6], PSVDD [48], PaDiM [11],
CutPaste [25], MKD [37], and DRAEM [52]. Under the separate case, the baselines’ metric is
reported in their papers except the metric of US borrowed from [52]. Under the unified case, US,
PSVDD, PaDiM, CutPaste, MKD, and DRAEM are run with the publicly available implementations.

Quantitative results of anomaly detection on MVTec-AD [4] are shown in Tab. 1. Though
all baselines achieve excellent performances under the separate case, their performances drop
dramatically under the unified case. The previous SOTA, DRAEM, a reconstruction-based method
trained by pseudo-anomaly, suffers from a drop of near 10%. For another strong baseline, CutPaste,
a pseudo-anomaly approach, the drop is as large as 18.6%. However, our UniAD has almost no
performance drop from the separate case (96.6%) to the unified case (96.5%). Moreover, we beat the
best competitor, DRAEM, by a dramatically large margin (8.4%), demonstrating our superiority.

7

https://github.com/denguir/student-teacher-anomaly-detection
https://github.com/nuclearboy95/Anomaly-Detection-PatchSVDD-PyTorch
https://github.com/xiahaifeng1995/PaDiM-Anomaly-Detection-Localization-master
https://github.com/Runinho/pytorch-cutpaste
https://github.com/Niousha12/Knowledge_Distillation_AD
https://github.com/VitjanZ/DRAEM


Table 2: Anomaly localization results with AUROC metric on MVTec-AD [4]. All methods are
evaluated under the unified / separate case. In the unified case, the learned model is applied to detect
anomalies for all categories without fine-tuning.

Category US [6] PSVDD [48] PaDiM [11] FCDD [27] MKD [37] DRAEM [52] Ours

O
bject

Bottle 67.9 / 97.8 86.7 / 98.1 96.1 / 98.2 56.0 / 97 91.8 / 96.3 87.6 / 99.1 98.1 ± 0.04 / 98.1
Cable 78.3 / 91.9 62.2 / 96.8 81.0 / 96.7 64.1 / 90 89.3 / 82.4 71.3 / 94.7 97.3 ± 0.10 / 96.8

Capsule 85.5 / 96.8 83.1 / 95.8 96.9 / 98.6 67.6 / 93 88.3 / 95.9 50.5 / 94.3 98.5 ± 0.01 / 97.9
Hazelnut 93.7 / 98.2 97.4 / 97.5 96.3 / 98.1 79.3 / 95 91.2 / 94.6 96.9 / 99.7 98.1 ± 0.10 / 98.8
Metal Nut 76.6 / 97.2 96.0 / 98.0 84.8 / 97.3 57.5 / 94 64.2 / 86.4 62.2 / 99.5 94.8 ± 0.09 / 95.7

Pill 80.3 / 96.5 96.5 / 95.1 87.7 / 95.7 65.9 / 81 69.7 / 89.6 94.4 / 97.6 95.0 ± 0.16 / 95.1
Screw 90.8 / 97.4 74.3 / 95.7 94.1 / 98.4 67.2 / 86 92.1 / 96.0 95.5 / 97.6 98.3 ± 0.08 / 97.4

Toothbrush 86.9 / 97.9 98.0 / 98.1 95.6 / 98.8 60.8 / 94 88.9 / 96.1 97.7 / 98.1 98.4 ± 0.03 / 97.8
Transistor 68.3 / 73.7 78.5 / 97.0 92.3 / 97.6 54.2 / 88 71.7 / 76.5 64.5 / 90.9 97.9 ± 0.19 / 98.7

Zipper 84.2 / 95.6 95.1 / 95.1 94.8 / 98.4 63.0 / 92 86.1 / 93.9 98.3 / 98.8 96.8 ± 0.24 / 96.0

Texture

Carpet 88.7 / 93.5 78.6 / 92.6 97.6 / 99.0 68.6 / 96 95.5 / 95.6 98.6 / 95.5 98.5 ± 0.01 / 98.0
Grid 64.5 / 89.9 70.8 / 96.2 71.0 / 97.1 65.8 / 91 82.3 / 91.8 98.7 / 99.7 96.5 ± 0.04 / 94.6

Leather 95.4 / 97.8 93.5 / 97.4 84.8 / 99.0 66.3 / 98 96.7 / 98.1 97.3 / 98.6 98.8 ± 0.03 / 98.3
Tile 82.7 / 92.5 92.1 / 91.4 80.5 / 94.1 59.3 / 91 85.3 / 82.8 98.0 / 99.2 91.8 ± 0.10 / 91.8

Wood 83.3 / 92.1 80.7 / 90.8 89.1 / 94.1 53.3 / 88 80.5 / 84.8 96.0 / 96.4 93.2 ± 0.08 / 93.4

Mean 81.8 / 93.9 85.6 / 95.7 89.5 / 97.4 63.3 / 92 84.9 / 90.7 87.2 / 97.3 96.8 ± 0.02 / 96.6

Normal Anomaly Recon GT Pred Normal Anomaly Recon GT Pred

(a) (b)

(c) (d)

Figure 6: Qualitative results for anomaly localization on MVTec-AD [4]. From left to right: normal
sample as the reference, anomaly, our reconstruction, ground-truth, and our predicted anomaly map.
The approach to visualizing reconstruction is the same as the one used in Fig. 2.

4.3 Anomaly localization on MVTec-AD

Setup and baselines. Anomaly localization aims to localize anomalous regions in an anomalous
image. MVTec-AD [4] is chosen as the benchmark dataset. The setup is the same as that in Sec. 4.2.
Besides the competitors in Sec. 4.2, FCDD [27] is included, whose metric under the separate case is
reported in its paper. Under the unified case, we run FCDD with the implementation: FCDD.

Quantitative results of anomaly localization on MVTec-AD [4] are reported in Tab. 2. Similar
to Sec. 4.2, switching from the separate case to the unified case, the performance of all competitors
drops significantly. For example, the performance of US, an important distillation-based baseline,
decreases by 12.1%. FCDD, a pseudo-anomaly approach, suffers from a dramatic drop of 28.7%,
reflecting the pseudo-anomaly is not suitable for the unified case. However, our UniAD even gains a
slight improvement from the separate case (96.6%) to the unified case (96.8%), proving the suitability
of our UniAD for the unified case. Moreover, we significantly surpass the strongest baseline, PaDiM,
by 7.3%. This significant improvement reflects the effectiveness of our model.

Qualitative results for anomaly localization on MVTec-AD [4] are illustrated in Fig. 6. For both
global (Fig. 6a) and local (Fig. 6b) structural anomalies, both scattered texture perturbations (Fig. 6c)
and multiple texture scratches (Fig. 6d), our method could successfully reconstruct anomalies to their
corresponding normal samples, then accurately localize anomalous regions through reconstruction
differences. More qualitative results are given in Appendix.

4.4 Anomaly detection on CIFAR-10

Setup. To further verify the effectiveness of our UniAD, we extend CIFAR-10 [23] to the unified
case, which consists of four combinations. For each combination, five categories together serve
as normal samples, while other categories are viewed as anomalies. The class indices of the four

8

https://github.com/liznerski/fcdd


Table 3: Anomaly detection results with AUROC metric on CIFAR-10 [23] under the unified case.
Here, {01234} means samples from class 0, 1, 2, 3, 4 are borrowed as the normal ones.

Normal Indices US [6] FCDD [27] FCDD+OE [27] PANDA [33] MKD [37] Ours

{01234} 51.3 55.0 71.8 66.6 64.2 84.4 ± 0.02
{56789} 51.3 50.3 73.7 73.2 69.3 80.9 ± 0.02
{02468} 63.9 59.2 85.3 77.1 76.4 93.0 ± 0.03
{13579} 56.8 58.5 85.0 72.9 78.7 90.6 ± 0.09

Mean 55.9 55.8 78.9 72.4 72.1 87.2 ± 0.03

Table 4: Performance comparison and architecture comparison between UniAD and transformer-
based competitors on MVTec-AD [4]. All methods are evaluated under the unified / separate case.

Method Det. Loc. 1 query Layer-wise query

InTra [31] 65.3 / 95.0 70.6 / 96.6 ✗ ✗
VT-ADL [28] 55.4 / 78.7 64.4 / 82.0 ✗ ✗
AnoVit [50] 69.6 / 78 68.4 / 83 ✗ ✗

Ours (baseline) 87.6 / 94.7 92.8 / 95.8 ✓ ✗
Ours 96.5 / 96.6 96.8 / 96.6 ✗ ✓

combinations are {01234}, {56789}, {02468}, {13579}. Here, {01234} means the normal samples
include images from class 0, 1, 2, 3, 4, and similar for others. Note that the class index is obtained by
sorting the class names of 10 classes. The setup of the model is detailed in Appendix.

Baselines. US [6], FCDD [27], FCDD+OE [27], PANDA [33], and MKD [37] serve as competitors.
US, FCDD, FCDD+OE, PANDA, and MKD are run with the publicly available implementations.

Quantitative results of anomaly detection on CIFAR-10 [23] are shown in Tab. 3. When five
classes together serve as normal samples, two recent baselines, US and FCDD, almost lose their
ability to detect anomalies. When utilizing 10000 images sampled from CIFAR-100 [23] as auxiliary
Outlier Exposure (OE), FCDD+OE improves the performance by a large margin. We still stably
outperform FCDD+OE by 8.3% without the help of OE, indicating the efficacy of our UniAD.

4.5 Comparison with transformer-based competitors

As described in Sec. 2, some attempts [31, 28, 50] also try to utilize transformer for anomaly detection.
Here we compare our UniAD with existing transformer-based competitors on MVTec-AD [4]. Recall
that, we choose transformer as the reconstruction model considering its great potential in preventing
the model from learning the “identical shortcut” (refer to Sec. 3.1). Concretely, we find that the
learnable query embedding is essential for avoiding such a shortcut but is seldom explored in existing
transformer-based approaches. As shown in Tab. 4, after introducing even only one query embedding,
our baseline already outperforms existing alternatives by a sufficiently large margin in the unified
setting. Our proposed three components further improve our strong baseline. Recall that all three
components are proposed to avoid the model from directly outputting the inputs.

4.6 Ablation studies

To verify the effectiveness of the proposed modules and the selection of hyperparameters, we
implement extensive ablation studies on MVTec-AD [4] under the unified case.

Layer-wise query. Tab. 5a verifies our assertion that the query embedding is of vital significance.
1) Without query embedding, meaning the encoder embeddings are directly input to the decoder,
the performance is the worst. 2) Adding only one query embedding to the first decoder layer (i.e.,
vanilla transformer [42]) promotes the performance dramatically by 18.1% and 13.4% in anomaly
detection and localization, respectively. 3) With layer-wise query embedding in each decoder layer,
image-level and pixel-level AUROC is further improved by 7.4% and 3.7%, respectively.

Layer number. We conduct experiments to investigate the influence of layer number, as shown
in Tab. 5b. 1) No matter with which combination, our model outperforms vanilla transformer by a
large margin, reflecting the effectiveness of our design. 2) The best performance is achieved with a

9

https://github.com/denguir/student-teacher-anomaly-detection
https://github.com/liznerski/fcdd
https://github.com/liznerski/fcdd
https://github.com/talreiss/PANDA
https://github.com/Niousha12/Knowledge_Distillation_AD


Table 5: Ablation studies with AUROC metric on MVTec-AD [4]. Default settings are in blue.
(a) Layer-wise query, NMA, & FJ

w/o q. 1 q. Layer-wise q. NMA FJ Det. Loc.

✓ - - - - 69.5 79.4
- ✓ - - - 87.6 92.8
- - ✓ - - 95.0 96.5
- ✓ - ✓ - 96.1 96.3
- ✓ - - ✓ 95.0 95.8
- - ✓ ✓ ✓ 96.5 96.8

(b) Layer Number of Encoder & Decoder

Vanilla [42] Ours
#Enc, #Dec Det. Loc. Det. Loc.

4, 0 69.8 79.2 94.9 96.0
0, 4 80.5 88.3 96.1 96.3
2, 2 84.7 90.6 95.1 96.0
4, 4 87.6 92.8 96.5 96.8
6, 6 86.1 91.9 96.5 96.7

(c) Neighbor Size in NMA

Size Det. Loc.

1×1 94.6 96.3
5×5 96.4 96.8
7×7 96.5 96.8
9×9 96.3 96.7

(d) Where to Add NMA
Place Det. Loc.

Enc 95.8 96.3
Enc+Dec1 96.4 96.8
Enc+Dec2 96.5 96.7

All 96.5 96.8

(e) Jitter Scale α in FJ
α Det. Loc.

5 96.1 96.7
10 96.4 96.7
20 96.5 96.8
30 95.7 96.6

(f) Jitter Prob. p in FJ
p Det. Loc.

0.25 95.6 96.5
0.50 95.8 96.7
0.75 96.3 96.7

1 96.5 96.8

moderate layer number: 4Enc+4Dec. A larger layer number like 6Enc+6Dec does not bring further
promotion, which may be because more layers are harder to train.

Neighbor masked attention. 1) The effectiveness of NMA is proven in Tab. 5a. Under the case of
one query embedding, adding NMA brings promotion by 8.5% for detection and 3.5% for localization.
2) The neighbor size of NMA is selected in Tab. 5c. 1×1 neighbor size is the worst, because 1×1 is
too small to prevent the information leak, thus the recovery could be completed by copying neighbor
regions. A larger neighbor size (≥ 5×5) is obviously much better, and the best one is selected as 7×7.
3) We also study the place to add NMA in Tab. 5d. Only adding NMA in the encoder (Enc) is not
enough. The performance could be stably improved when further adding NMA in the first or second
attention in the decoder (Enc+Dec1, Enc+Dec2) or both (All). This reflects that the full attention of
the decoder also contributes to the information leak.

Feature jittering. 1) Tab. 5a confirms the efficacy of FJ. With one query embedding as the baseline,
introducing FJ could bring an increase of 7.4% for detection and 3.0% for localization, respectively.
2) According to Tab. 5e, the jittering scale, α, is chosen as 20. A larger α (i.e., 30) disturbs the feature
too much, degrading the results. 3) In Tab. 5f, the jittering probability, p, is studied. In essence, the
task would be a denoising task with feature jittering, and be a reconstruction task without feature
jittering. The results show that the full denoising task (i.e., p = 1) is the best.

5 Conclusion

In this work, we propose UniAD that unifies anomaly detection regarding multiple classes. For such a
challenging task, we assist the model against learning an “identical shortcut” with three improvements.
First, we confirm the effectiveness of the learnable query embedding and carefully tailor a layer-wise
query decoder to help model the complex distribution of multi-class data. Second, we come up with a
neighbor masked attention module to avoid the information leak from the input to the output. Third,
we propose feature jittering that helps the model less sensitive to the input perturbations. Under the
unified task setting, our method achieves state-of-the-art performance on MVTec-AD and CIFAR-10
datasets, significantly outperforming existing alternatives.

Discussion. In this work, different kinds of objects are handled without being distinguished. We have
not used the category labels that may help the model better fit multi-class data. How to incorporate
the unified model with category labels should be further studied. In practical uses, normal samples are
not as consistent as those in MVTec-AD, often manifest themselves in some diversity. Our UniAD
could handle all 15 categories in MVTec-AD, hence would be more suitable for real scenes. However,
anomaly detection may be used for video surveillance, which may infringe personal privacy.

Acknowledgments and Disclosure of Funding

Acknowledgement. This work is sponsored by the National Key Research and Development Program
of China (2021YFB1716000) and National Natural Science Foundation of China (62176152).

10



References
[1] F. Ahmed and A. Courville. Detecting semantic anomalies. In Assoc. Adv. Artif. Intell., 2020.

[2] S. Akcay, A. Atapour-Abarghouei, and T. P. Breckon. GANomaly: Semi-supervised anomaly detection via
adversarial training. In Asian Conf. Comput. Vis., 2018.

[3] Y. Bengio, L. Yao, G. Alain, and P. Vincent. Generalized denoising auto-encoders as generative models. In
Adv. Neural Inform. Process. Syst., 2013.

[4] P. Bergmann, M. Fauser, D. Sattlegger, and C. Steger. MVTec AD–A comprehensive real-world dataset for
unsupervised anomaly detection. In IEEE Conf. Comput. Vis. Pattern Recog., 2019.

[5] P. Bergmann, S. Löwe, M. Fauser, D. Sattlegger, and C. Steger. Improving unsupervised defect segmentation
by applying structural similarity to autoencoders. In International Joint Conference on Computer Vision,
Imaging and Computer Graphics Theory and Applications (VISIGRAPP), 2019.

[6] P. Bergmann, M. Fauser, D. Sattlegger, and C. Steger. Uninformed students: Student-teacher anomaly
detection with discriminative latent embeddings. In IEEE Conf. Comput. Vis. Pattern Recog., 2020.

[7] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko. End-to-end object detection
with transformers. In Eur. Conf. Comput. Vis., 2020.

[8] L. Chen, Z. You, N. Zhang, J. Xi, and X. Le. UTRAD: Anomaly detection and localization with U-
transformer. Neural Networks, 2022.

[9] A.-S. Collin and C. De Vleeschouwer. Improved anomaly detection by training an autoencoder with skip
connections on images corrupted with stain-shaped noise. In Int. Conf. Pattern Recog., 2021.

[10] L. Deecke, L. Ruff, R. A. Vandermeulen, and H. Bilen. Transfer-based semantic anomaly detection. In Int.
Conf. Mach. Learn., 2021.

[11] T. Defard, A. Setkov, A. Loesch, and R. Audigier. PaDim: A patch distribution modeling framework for
anomaly detection and localization. In Int. Conf. Pattern Recog., 2021.

[12] D. Dehaene, O. Frigo, S. Combrexelle, and P. Eline. Iterative energy-based projection on a normal data
manifold for anomaly localization. In Int. Conf. Learn. Represent., 2019.

[13] H. Deng and X. Li. Anomaly detection via reverse distillation from one-class embedding. In IEEE Conf.
Comput. Vis. Pattern Recog., 2022.

[14] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A large-scale hierarchical image
database. In IEEE Conf. Comput. Vis. Pattern Recog., 2009.

[15] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional transformers
for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[16] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for image
recognition at scale. In Int. Conf. Learn. Represent., 2021.

[17] T. Fernando, H. Gammulle, S. Denman, S. Sridharan, and C. Fookes. Deep learning for medical anomaly
detection–a survey. ACM Computing Surveys (CSUR), 2021.

[18] I. Golan and R. El-Yaniv. Deep anomaly detection using geometric transformations. In Adv. Neural Inform.
Process. Syst., 2018.

[19] D. Gong, L. Liu, V. Le, B. Saha, M. R. Mansour, S. Venkatesh, and A. v. d. Hengel. Memorizing normality
to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection. In Int.
Conf. Comput. Vis., 2019.

[20] J. Hou, Y. Zhang, Q. Zhong, D. Xie, S. Pu, and H. Zhou. Divide-and-assemble: Learning block-wise
memory for unsupervised anomaly detection. In Int. Conf. Comput. Vis., 2021.

[21] L. Ilya and H. Frank. Decoupled weight decay regularization. In Int. Conf. Learn. Represent., 2019.

[22] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

[23] A. Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, University of Tront,
2009.

11



[24] G. Kwon, M. Prabhushankar, D. Temel, and G. AlRegib. Backpropagated gradient representations for
anomaly detection. In Eur. Conf. Comput. Vis., 2020.

[25] C.-L. Li, K. Sohn, J. Yoon, and T. Pfister. CutPaste: Self-supervised learning for anomaly detection and
localization. In IEEE Conf. Comput. Vis. Pattern Recog., 2021.

[26] W. Liu, R. Li, M. Zheng, S. Karanam, Z. Wu, B. Bhanu, R. J. Radke, and O. Camps. Towards visually
explaining variational autoencoders. In IEEE Conf. Comput. Vis. Pattern Recog., 2020.

[27] P. Liznerski, L. Ruff, R. A. Vandermeulen, B. J. Franks, M. Kloft, and K.-R. Müller. Explainable deep
one-class classification. In Int. Conf. Learn. Represent., 2021.

[28] P. Mishra, R. Verk, D. Fornasier, C. Piciarelli, and G. L. Foresti. VT-ADL: A vision transformer network
for image anomaly detection and localization. In International Symposium on Industrial Electronics, 2021.

[29] H. Park, J. Noh, and B. Ham. Learning memory-guided normality for anomaly detection. In IEEE Conf.
Comput. Vis. Pattern Recog., 2020.

[30] P. Perera, R. Nallapati, and B. Xiang. OCGAN: One-class novelty detection using GANs with constrained
latent representations. In IEEE Conf. Comput. Vis. Pattern Recog., 2019.

[31] J. Pirnay and K. Chai. Inpainting transformer for anomaly detection. arXiv preprint arXiv:2104.13897,
2021.

[32] M. Pourreza, B. Mohammadi, M. Khaki, S. Bouindour, H. Snoussi, and M. Sabokrou. G2D: generate to
detect anomaly. In IEEE Winter Conf. Appl. Comput. Vis., 2021.

[33] T. Reiss, N. Cohen, L. Bergman, and Y. Hoshen. Panda: Adapting pretrained features for anomaly detection
and segmentation. In IEEE Conf. Comput. Vis. Pattern Recog., 2021.

[34] O. Rippel, P. Mertens, and D. Merhof. Modeling the distribution of normal data in pretrained deep features
for anomaly detection. In Int. Conf. Pattern Recog., 2021.

[35] L. Ruff, R. Vandermeulen, N. Goernitz, L. Deecke, S. A. Siddiqui, A. Binder, E. Müller, and M. Kloft.
Deep one-class classification. In Int. Conf. Mach. Learn., 2018.

[36] M. Sabokrou, M. Khalooei, M. Fathy, and E. Adeli. Adversarially learned one-class classifier for novelty
detection. In IEEE Conf. Comput. Vis. Pattern Recog., 2018.

[37] M. Salehi, N. Sadjadi, S. Baselizadeh, M. H. Rohban, and H. R. Rabiee. Multiresolution knowledge
distillation for anomaly detection. In IEEE Conf. Comput. Vis. Pattern Recog., 2021.

[38] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimating the support of a
high-dimensional distribution. Neural Computation, 2001.

[39] Y. Shi, J. Yang, and Z. Qi. Unsupervised anomaly segmentation via deep feature reconstruction.
Neurocomputing, 2021.

[40] M. Tan and Q. Le. EfficientNet: Rethinking model scaling for convolutional neural networks. In Int. Conf.
Mach. Learn., 2019.

[41] D. M. Tax and R. P. Duin. Support vector data description. Machine Learning, 2004.

[42] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin.
Attention is all you need. In Adv. Neural Inform. Process. Syst., 2017.

[43] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust features with
denoising autoencoders. In Int. Conf. Mach. Learn., 2008.

[44] G. Wang, S. Han, E. Ding, and D. Huang. Student-teacher feature pyramid matching for anomaly detection.
Brit. Mach. Vis. Conf., 2021.

[45] S. Wang, L. Wu, L. Cui, and Y. Shen. Glancing at the patch: Anomaly localization with global and local
feature comparison. In IEEE Conf. Comput. Vis. Pattern Recog., 2021.

[46] Y. Xia, Y. Zhang, F. Liu, W. Shen, and A. L. Yuille. Synthesize then compare: Detecting failures and
anomalies for semantic segmentation. In Eur. Conf. Comput. Vis., 2020.

[47] X. Yan, H. Zhang, X. Xu, X. Hu, and P.-A. Heng. Learning semantic context from normal samples for
unsupervised anomaly detection. In Assoc. Adv. Artif. Intell., 2021.

12



[48] J. Yi and S. Yoon. Patch SVDD: Patch-level SVDD for anomaly detection and segmentation. In Asian
Conf. Comput. Vis., 2020.

[49] Z. You, K. Yang, W. Luo, L. Cui, Y. Zheng, and X. Le. ADTR: Anomaly detection transformer with feature
reconstruction. arXiv preprint arXiv:2209.01816, 2022.

[50] L. Yunseung and K. Pilsung. AnoViT: Unsupervised anomaly detection and localization with vision
transformer-based encoder-decoder. arXiv preprint arXiv:2203.10808, 2022.

[51] M. Z. Zaheer, J.-h. Lee, M. Astrid, and S.-I. Lee. Old is gold: Redefining the adversarially learned one-class
classifier training paradigm. In IEEE Conf. Comput. Vis. Pattern Recog., 2020.

[52] V. Zavrtanik, M. Kristan, and D. Skočaj. DRAEM-A discriminatively trained reconstruction embedding
for surface anomaly detection. In Int. Conf. Comput. Vis., 2021.

[53] K. Zhou, Y. Xiao, J. Yang, J. Cheng, W. Liu, W. Luo, Z. Gu, J. Liu, and S. Gao. Encoding structure-texture
relation with P-Net for anomaly detection in retinal images. In Eur. Conf. Comput. Vis., 2020.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Discussion in Sec. 5.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Discussion in Sec. 5.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main
experimental results (either in the supplemental material or as a URL)? [Yes] See
Sec. 4 and Appendix. Also, we have released the code.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Sec. 4.1 & Sec. 4.4 for data splits, and Sec. 4.6 for the choice
of hyperparameters.

(c) Did you report error bars (e.g., with respect to the random seed after running
experiments multiple times)? [Yes] See Tab. 1, Tab. 2, and Tab. 3.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Setup in Sec. 4.2.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] See Sec. 4.1 and
Baselines in Sec. 4.

(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

13



(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14


