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Abstract

State-of-the-art (SOTA) approaches to deep network (DN) training overparametrize the
model and then prune a posteriori to obtain a “winning ticket” subnetwork that can achieve
high accuracy. Using a recently developed spline interpretation of DNs, we obtain novel
insights into how DN pruning affects its mapping. In particular, under the realm of spline
operators, we are able to pinpoint the impact of pruning onto the DN’s underlying input
space partition and per-region affine mappings, opening new avenues in understanding why
and when are pruned DNs able to maintain high performance. We also discover that a
DN’s spline mapping exhibits an early-bird (EB) phenomenon whereby the spline’s partition
converges at early training stages, bridging the recently developed DN spline theory and
lottery ticket hypothesis of DNs. We finally leverage this new insight to develop a principled
and efficient pruning strategy whose goal is to prune isolated groups of nodes that have a
redundant contribution in the forming of the spline partition. Extensive experiments on four
networks and three datasets validate that our new spline-based DN pruning approach reduces
training FLOPs by up to 3.5X while achieving similar or even better accuracy than current
state-of-the-art methods. Code is available at https://github.com/RICE-EIC/Spline-EB.

1 Introduction

Deep Networks (DNs) are powerful and versatile function approximators that have reached outstanding
performances across various tasks, such as board-game playing (Silver et al., 2017), genomics (Zou et al.,
2019), and computer vision (Esteva et al., 2019). For decades, the main driving factor of DN performances
has been progresses in their architectures, e.g. with the finding of novel nonlinear operators (Glorot et al.,
2011; Maas et al., 2013), or by discovering novel arrangements of the succession of linear and nonlinear
operators (LeCun et al., 1995; He et al., 2016; Zhang et al., 2018). With a tremendously increasing need for
DNs’ practical deployments, one line of research aims to produce a simpler, energy efficient DN by pruning
a dense and overparametrized one, e.g. removing either weights, nodes, filters, layers, or any combination
of these options from a DN architecture, leading to a much reduced computational cost (Frankle & Carbin,
2019b; Han et al., 2015; Chin et al., 2020; Liu et al., 2017). Recent progresses (You et al., 2020; Molchanov
et al., 2016) in this direction allow to obtain models much more energy friendly while nearly maintaining
the models’ task accuracy (Li et al., 2020).

While tremendous empirical progress has been made regarding DN pruning, there remains a lack of explicit
understanding of its impact on a DN’s underlying mapping. A few studies (Dong et al., 2017; Qian &
Klabjan, 2021) have started to compare different pruning strategies from a more theoretical perspective.
Yet, such formulations propose very specialized solutions who often fail to extend to any pruning policy.

* denotes equal contribution
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Providing a more general framework to study the many pruning solutions that keep emerging rapidly is
however crucial e.g. to compare all those methods under a unified mathematical model, to better decide
which method to use based on a given application, or even to design novel pruning techniques guided by
some a priori knowledge about the given task and data. Our goal in this study is to motivate the use of the
affine spline formulation of DNs to analyze the recently developed empirical pruning techniques, e.g., lottery

ticket hypothesis Frankle & Carbin (2019b); You et al. (2020); Evci et al. (2019); Su et al. (2020); Blalock
et al. (2020).

In this paper, we shed new light on the inner workings of pruning techniques from a spline perspective, by
leveraging recent advances in DN understandings and spline formulation (Montufar et al., 2014; Balestriero
& Baraniuk, 2018). Specifically, current DNs are affine splines, that is the input-output mapping is affine
in polytopal regions of the input space partition. From this viewpoint pruning acts upon a DN by remov-
ing/altering the partition boundaries as demonstrated in Fig. 1, and therefore pruning affects the decision
boundary which is constrained to be linear within the regions of the DN partition. We will demonstrate how
this viewpoint allows us to interpret current pruning techniques (e.g., lottery tickets hypothesis (Frankle &
Carbin, 2019a)) by studying their impact on the DN input space partition, demonstrating how and when
can pruning be used without sacrificing the final performances. Finally, we demonstrate how to derive a
new pruning scheme based on our gained understandings that reaches competitive performances. In order
to ease our development, we slightly abuse notations and refer to a DN as being overparametrized whenever
it can be pruned while maintaining its performances and refer to a DN as being minimal whenever it can
not be pruned without impacting its performances. We summarize our contributions as follows:

[C1] We discover and bridge the connection between spline theory and network pruning techniques. Specifi-
cally, we relate the pruning of DN nodes or weights to (i) the DN input space partition, (%) the per-region
affine parameters, and (4i) the decision boundary, providing the explicit interpretation of existing empirical
pruning strategies at various granularity levels (either structured or unstructured).

[C2] We further extend these insights by proposing a partition-based metric to quantify the evolution of the
partition boundaries during training, which allows us to efficiently detect early-bird (EB) tickets when an
overparametrize DN has been trained enough and can be pruned; and as opposed to previous EB methods,
ours detects EB tickets regardless of the employed pruning techniques or hyperparameters.

[C3] We leverage the new insights and the finding of [C2] to derive an efficient pruning strategy from first
principles, which only focuses on DN nodes whose corresponding spline partition boundaries contribute to
the final decision boundary. A series of experiments on various benchmarked models and datasets validate
that our pruning method achieves 3.5X training FLOPs reduction and maintains similar or even better
accuracies over state-of-the-art pruning techniques, while being principled and interpretable.

2 Background and Related Works

A DN transforms an input @ through a composition of L layers fe, {=1,...,L to form the final prediction:
flx) = (fL o 'Ofl )(x). Each layer is a (nonlinear) mapping taking as input a D'"!_dimensional feature map
and producing a D'-dimensional one, where D' is the ("™ feature map’s dimensionl; each layer’s parameters
are collected in 6,. The input dimension is referred to as D°. For a fully-connected and activation function
layer, 6, comprises the D' x D' dense matrix W' and the D*-dimensional bias vector b*. For convolution
operators (LeCun et al., 1995), the dense matrix wtis replaced with a circulant block circulant matrix c’
for channel-wise convolutions and summations.

Max-affine spline DNs. A key result of (Montufar et al., 2014; Balestriero & Baraniuk, 2018) is the
reformulation of current DN layers with (leaky-)ReLu/Linear/Abs. Value activation functions as spline
operators and in particular as Max-Affine Spline Operator (MASO), and the entire input-output mapping is
a Continuous Piecewise Affine (CPA) mapping. The input space partition of such DNs has been characterized
in (Balestriero et al., 2019). Jointly, the layers combine their input space partition to form the DN input
space partition 2. A few work have focused on studying the relation between the number of regions and the
DN architecture (Hanin & Rolnick, 2019b), the analytical form of the partition (Balestriero et al., 2019),

1 . . .
we consider matrices and tensors as flattened vectors for clarity
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Figure 1: (a) Input space partitioning presents how deeper layers successively subdivide the space in
a toy DN with 2 dimensional input space and three layers: X, € R? - X, € R° - Xy € R® - X3 € ]Rl,
where the newly introduced boundaries are in dark and previously built ones are in grey. We see that:
(i) the turning point of splines in later layers are exactly located at previous ones, and (i) splines in the
final classification layer are exactly the decision boundary (denoted as blue lines). Additional examples are
supplied in Appendix H; (b) Node (structured) pruning removes entire subdivision splines; (c) Weight
(unstructured) pruning quantizes the partition splines to be colinear to the space axes. Both (b) and (¢)
are conceptual diagrams to explain how pruning incurs the less expressiveness of the final decision boundary.

the upper bound in the number of regions (Montufar et al., 2014; Monttfar et al., 2021). The fundamental
property that we will leverage throughout this paper is that the internal weights of the layers are paired
with their input space partition. As pruning impacts those weights and/or nodes directly, this will offer us
new ways to study pruning in DNs’ input space. More background on DNs, their spline formulation, and its
connection with DN pruning can be found in Appendix F.3,

Network pruning. Pruning is a widely used DN compression technique reducing the number of activated
nodes (Liu et al., 2019¢; LeCun et al., 1990) in a given model. The common pruning scheme adopts a
three-step routine: (i) training a large model with more parameters than the desired final DN, (i) pruning
this overly large trained DN, and (%) fine-tuning the pruned model to adjust the remaining parameters and
restore as best as possible the performance lost during the pruning step. Those three steps can be iterated
to get a highly-sparse network (Han et al., 2015). Within this routine, different pruning methods can be
employed, each with a specific pruning criteria, granularity, and scheduling (Liu et al., 2019¢; Blalock et al.,
2020). Those techniques roughly fall into two categories: unstructured pruning (Han et al., 2015; Frankle
& Carbin, 2019b) and structured pruning (He et al., 2018; Liu et al., 2017; Chin et al., 2020). Regardless
of pruning methods, the trade-offs lie between the amount of pruning performed on a model and the final
accuracy. For various energy efficient applications, novel pruning techniques have been able to push this
trade-off favorably. The most recent theoretical works on DN pruning relies on studying the existence of
Winning Tickets. (Frankle & Carbin, 2019b) first hypothesized the existence of sub-networks (pruned DNs),
called winning tickets, that can produce comparable performances to their non-pruned counterpart. Later,
(You et al., 2020) showed that those winning tickets could be identified in the early training stage of the
unpruned model. Such sub-networks are denoted as early-bird (EB) tickets.

Despite the above discoveries, the DN pruning literature lacks an explicit understanding and visualization
via theoretical analysis that would bring insights into (i) current pruning techniques and (i) observed
phenomenons such as EB tickets, while leading to principled pruning techniques. We propose to approach
this task by leveraging the spline viewpoint of DNs to provide novel interpretations of existing pruning
techniques, study the conditions to their success and when should they be avoided, and finally, how to derive
novel pruning strategies from first principles.

3 Deep Networks Partition, Decision Boundary and Pruning Work Hand-In-Hand

In this section, we first introduce our novel spline interpretation of pruning at various granularity levels.
Then we extend such insights by detecting spline EB tickets through a pruning invariant partition-based
metric. Finally, we leverage the new insights to derive an principle and efficient pruning strategy.
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3.1 Exact Characterization of Deep Network Pruning Using Spline Theory

The goal of this section is to formalize the impact of pruning onto the deep networks’ underlying mapping
beyond the standard understanding that pruning, regardless of the strategy, reduces the DN capacity. As will
become clear, one formulation that enables more precise insights is the Continuous Piecewise Affine (CPA)
formulation of DNs. By adapting the known ties between DNs to CPAs Montufar et al. (2014); Balestriero
& Baraniuk (2018) (also recall Sec. 2), we now propose a precise understanding of the impact of pruning
onto the DN’s CPA mapping, first starting by providing the explicit CPA operator, to then demonstrate
how that CPA mapping is impacted by various pruning strategies.

From Deep Networks to Continuous Piecewise Affine Operators. First, we ought to recall (also
recall Sec. 2) that a CPA mapping is a mapping that is overall continuous, and that produces an output
f(x) given an input @ through a simple affine transformation whose parameters depend on the region w
of the input space partition ) containing @. To first build some insights into how a DN is in fact a CPA
operator, we consider a single-layer DN in the form of

flz) =o(W'z +b"), (1)

0
with z € R” , W'z +b' the output of the affine transformation of the first layer which is a D'-dimensional
vector, and o an element-wise activation function e.g. producing its output at coordinate k given an input
vector u as follows

[ulk, = [u]y20
[o(u)]x =
ofuly, = [ulx <0,
with « the leakiness parameter (notice that setting o = —1 also recovers the absolute value. Due to the

specific form of the activation function, we can obtain a friendlier form than the one of Eq. 1 where the DN
mapping is now viewed as a CPA mapping i.e.

f) =) (Aum+b,) g, (2)

weN

0
where 2 is a partition of the DN input space (RD ), and the collection of regions w € Q can be found
analytically as in

Q= U {{x eRr”: ((W,i,,x) +b,1€)sk <0,k = 1,...,K}}, (3)

se{-1,1}¥
hence the partition €2 is made of convex (possibly open) polytopal regions that are the intersection of half-
spaces given by each of the first layer’s affine mapping and all the possible combination of positive/negative

activation patterns of o. It should be clear that the above DN <= CPA bridge holds not only for leaky-ReLLU
but any nonlinearity that is itself a CPA e.g. max-pooling.

To ease the next derivations, we introduce the operator S : Q — {-1, 1}K which maps any region of the
partition w € 2 to its corresponding vector of signs that defined w (recall Eq. 3). With this mapping, we
can further simplify the input-output DN mapping to recover Eq. 2 as follows

f(@) =) | diag(S(w))W' z + diag(S(w))b' | 1(zeu)- (4)
weN Aw él;w

11>

A key insight is that the layer parameters Wl, b' impact both the per-region affine mapping parameters and
the partition regions (compare Eq. 3 and 4). This single layer case is already sufficient to start pinpointing
the impact of different pruning strategies on the the DN’s underlying CPA mapping. We propose to do so
in the following paragraph, and delegate the multilayer extension for the end of this section.

How Pruning Impacts Deep Networks’ Partition and Per-Region Affine Mappings. Given the
above derivations, we can now provide a clear distinction between weight and unit pruning applied on a layer
¢* in how those two different strategies impact the CPA properties e.g. its partition. First, let’s formalize

Zhere £ = 1 to follow the previous paragraph derivation but the same applies to any layer in general
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the pruning strategy as the application of a mask onto the layer’s parameters as
£ 0 ¢ ¢ 0 ¢
(Wvb)H(QW®W7qub)7 (5)

4 £-1 14
where Qi € {0,1}° P and qf € {0,1}” . The entries of the mask matrix/vector depend on the employed
: . . . ¢ ¢ T ¢ ¢
strategy and can impose a specific structure e.g. unit pruning would employ Q7 = g1 and g, = gy so
that the masking applies to all the parameters of a unit at once, while parameter pruning would treat each
entry of Qf}y, qf independently.

A first direct observation can be made by combining Eq. 3, 4 and 5 demonstrating how pruning not only
impacts the CPA partition but also its per-region mappings, as both are tied together.

Proposition 1. Regardless of the type of pruning (weight/unit), setting entries of Q€V, qf to 0, i.e. applying
pruning, impacts both the per-region affine mappings A,,, b, and the DN input space partition §2.

The above already finds a very interesting insight. The ability to find pruned DNs that perform nearly as
good as their unpruned counter-part demonstrate that the affine mapping parameters A,,,b,, and the DN
partition  can be “compressed” without much detrimental impact. We first propose to leverage the DN
input space partition to study the difference between node and weight pruning, representing structured and
unstructured pruning, respectively. In the former, nodes of different layers are removed, while in the latter,
entries of the W' matrices (or C for convolutions) are removed. We demonstrate in Fig. 1 (b) and (c)
that node pruning removes entire subdivision splines while weight pruning (or quantization) can be thought
as finer granular limitations on the slopes of subdivision splines, and will only remove the subdivision lines
when all entries of a specific row in W' are pruned, in which case node and weight pruning become identical.
From this perspective, we can already identify the reason why pruned networks are less expressive than the
overparametrized variants (Sharir & Shashua, 2018) as pruned DNs’ input space partition and final decision
boundary shape are limited compared to their unpruned counterparts. This can be formalized more precisely
below. To streamline notations, we will now denote by Card(2]W,b) the number of region of the layer
given by the parameters W and b.

Theorem 1. A tight inequality between the number of regions of pruned DNs and unpruned counterparts is
given by

14

D
4 YA ) 14 YA
Card(Q|Qy © W', gy ") < Card(QIW*,b°) = > 1y1qt 1. 1)-0):
k=1

and for wunit pruning policy, the mazimum number of regions that €0 contains is given by
6t
maxy , Card(Q2|Qy © W', g5 0 ') = 27 ~(aly 1)

To see this result, notice that the number of possible sign patterns i.e. Card(Q2) reduces with the number of
units that are being pruned. If a layer contains in general K units, then its maximum number of regions or
sign patterns is 2 (see e.g. Balestriero et al. (2019)), hence unit pruning simply alters K given the amount
of units that have been removed. This raises interesting venues e.g. to study why the DN partition appears
to be much more redundant than necessary, although DN partitions already contained a number of regions
much smaller than their upper limit. In fact, even in unpruned DNs for which the number of combination
is ZK, many of those regions turn out to be empty after training as precisely characterized in (Hanin &
Rolnick, 2019a). Combining those results, we thus observe that most DNs do not require to exploit the full
potential of their partition, hence making pruning method successful.

Going to Multilayer Deep Networks and Smooth Activations

Going to any desired depth can be done following the recipe of Balestriero et al. (2019). The main idea
reads as follows. Given a DN, first consider its first layer, and find its corresponding partition i.e. as done
above. Once this is obtained, this first part of the entire DN is known to be a simple affine mapping within
each region w of the currently obtained partition. Hence —within w— we can consider this first part of the
entire DN mapping as a single linear layer and the above procedure can be repeated again to now obtain
the partition of the first two layers (the first one being a simple linear mapping on w). This provides us
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Figure 2: Classification task pruning using FCNets, where the blue lines represent subdivisions in the
first layer and the red lines denote the last layer’s decision boundary. We see that: (i) pruning indeed
removes redundant subdivision lines so that the decision boundary remains an X-shape until 80% nodes are
pruned; and (i) ideally, one blue subdivision line would be sufficient to provide two turning points for the
decision boundary, e.g., visualization at 80% sparsity. The middle figure visualizes the accuracy and training
speeds (on a NVIDIA 2080Ti GPU) of the adopted FCNet under various pruning ratios. The general trend
is that, the more nodes we prune, the faster is the training at the cost of degraded accuracy.

with a refined partition €2 that is only valid within the studied region w of the first layer partition. Doing so
for each of those regions and noticing that they are mutually exclusive, the entire partition of the first two
layers is obtained. Repeating this process recursively one layer at a time ultimately produces the partition
of the entire DN mapping.

Lastly, our entire set of experiments focus on DNs with CPA nonlinearities. But for completeness, we briefly
discuss here how the above analysis could be carried out for DNs with smooth activations. This step is
quite direct as it relies on the results from Balestriero & Baraniuk (2019) that have demonstrated how an
entire class of smooth activations correspond to nothing else but CPA nonlinearities in which the region
assignment (the indicator function in 1) is made probabilistic. In short, an input @ is not assigned to a
single region but is assigned to each of the region with a confidence value, which recovers the standard CPA
case in the zero-noise limit. Hence, using this result, all the above can be directly extended to such smooth
nonlinearities.

3.2 \Visualization of Deep Network Pruning From a Spline Perspective

We now propose to visualize the impact of pruning onto the DN partition with a more realistic setting of a
trained DN and employing an existing pruning strategy.

Despite the constraints that pruning imposes on the DN input space partition, classification performances
do not necessarily reduce when pruning is employed. In fact, the final decision boundary, while being tied
with the DN input space partition, does not always depend on all the existing subdivision lines. That is,
pruning will not degrade performances as long as the needed decision boundary geometry does not rely on the
partition regions that are being affected by pruning. We demonstrate and provide explicit visualization of the
above in Fig. 2 and Fig. 3 with fully-connected networks (FCNets) and convolutional networks (ConvNets),
respectively. The observation consistently shows that only parts of subdivision splines are useful
for decision boundary; and the goal of pruning is to remove those (redundant) subdivision
splines and find winning tickets. For example, we observe that for a two-layer FCNet (20 nodes per
layer), applying pruning ratios ranging from 20% ~ 95% (i.e., prune 4 ~ 19 nodes) does not prevent solving
the task as long as the remaining subdivision lines are positioned to allow the decision boundary geometry to
remain intact. We also extend the above experiment to a high dimensional case with MNIST classification
and a DN with two convolutional layers, 20 filters, and kernel sizes of 21 and 5, respectively in Fig. 3. By
adopting the same channel pruning method as in (Liu et al., 2017), we see that most of the pruned nodes
remove subdivision lines that were not crucial for the decision boundary and thus only have a small impact
on the final classification performance. Hence, as long as pruning leaves at least those few subdivision lines,
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Figure 3: Classification task pruning using ConvNets, where to produce these visuals, we choose two
images from different classes to obtain a 2-dimensional slice of the 764-dimensional input space (grid depicted
on the left). We thus obtain a low-dimensional depiction of the subdivision splines that we depict in blue
for the first layer, green for the second convolutional layer, and red for the decision boundary of 6 vs. 9
(based on the left grid). We consistently find that only a fraction of splines are necessary to provide the
turning points of final decision boundary. The middle figure visualizes the accuracy and training speeds (on
a NVIDIA 2080Ti GPU) of the adopted FCNet under various pruning ratios. The general trend is that, the
more nodes we prune, the faster is the training at the cost of degraded accuracy.

the final performances will remain high. Apart from the empirical study, we also provide some analysis about
the connection between pruning (e.g, lottery ticket hypothesis (LTH)) and spline theory in Appendix G.

3.3 Spline early-bird tickets detection

Early-Bird (EB) tickets (You et al., 2020) provides a method to draw winning ticket sub-networks from a
large model very early during training (10% ~ 20% of the total number of training epochs). The EB drawn
is based on an a priori designed pruning strategy and hyperparameters and compares how different (in terms
of which nodes/channels are removed) are the hypothetical pruned models through the training steps; this
method outperforms SOTA methods (Frankle & Carbin, 2019b; Liu et al., 2017). The main limitation of EB
lies in the need to define a priori a pruning technique (itself depending on various hyperparameters). Based
on the spline formulation, we formulate a novel EB method that does not rely on an external technique
and only considers the evolution of the DN input space partition during training.

Early-bird in the spline trajectory. First, we demonstrate that there exists an EB phenomenon when
viewing the DN input space partition, which should follow naturally as the DN weights and the DN input
space partition are tied. We visualize DN partition’s evolution at different training stages in Fig. 4 (a) and
(b), under the same settings as Sec. 3.2. From this, we clearly see that the partition quickly adapts to the
task and data at hand, and then is only slightly refined through the remaining training epochs. This fast
convergence comes as early as the 2000-th iteration (w.r.t. 10000 iterations for FCNets) and the 30-th epoch
(w.r.t. 160 epochs for ConvNets). Additionally, we observe that the contribution of the first layers in the
input space partition becomes stable more rapidly than for deeper layers. We can thus leverage this early
convergence to detect EB tickets with a novel metric based on those subdivision lines to draw more
unified EB tickets than (You et al., 2020). Moreover, EB tickets have been found to be universal under
different optimization and initialization methods, of which the experiments are provided in Appendix D and
E.

Quantitative distance between input space partitions. To draw EB tickets based on the evolution of
DN input space partitions, we first need to provide a metric that conveys such information. First, recall that
each region from the DN input space has an associated binary code based on which side of the subdivision
trajectories the regions lie (Montufar et al., 2014; Balestriero & Baraniuk, 2018). Given a large collection of
data points, we can assign each datum the code of the region it lies in (found simply based on the sign of the
per-layer feature maps). As training occurs and the partition adapts, the code associated with an input will
vary. However, once training stabilizes and regions do not change anymore, this code will remain the same.
In fact, one can easily show that in the infinite data sample regime covering the entire input space, DNs with
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Figure 5: Visualization of the early-bird (EB) phenomenon, which can be leveraged to largely reduce the
training costs due to the less training of costly overparametrized DNs. Each sub-figure visualizes the quan-
titative distance over the whole training process. Both x and y axis represent the epoch where we draw the
binary code to represent the DN input space partition. FEach point means the distance between the binary
code drawn from z-th epoch and y-th epoch. The quantitative distances between consecutive epochs change
rapidly in the first few training epochs (denoted by dashed red box) and remain similar after that, we then
draw Spline EB tickets at such epoch, which is the very beginning of the training process (i.e., 10 ~ 20
epochs), indicating both the existence of EB tickets and the effectiveness of our detector.

the same codes also have the same input space partition, in turn the same decision boundary geometry. The
proposed metric is thus the hamming distance between the codes of each datum observed at two consecutive
training steps.

We visualize the above hamming distance of the DN partition between 160 consecutive epochs, when training
AlexNet on CIFAR-10 (shown as the spline distance matrix (160 x 160) in Fig. 5, where the (7, j)-th element
represents the spline distance between networks from the i-th and j-th epochs. The distances are normalized
between 0 and 1, where a lower value (w.r.t. warmer temperature) indicates a smaller spline distance (and
thus DNs with similar partitions). We consistently observe that such distance becomes small (i.e., < 0.15) in
the first few epochs under different models and datasets settings. indicating the EB phenomenon, but now
captured in terms of the DN input space partition. To obtain an active EB drawing strategy from that, we
measure and record the spline distance between three consecutive epochs, and stop the training when the
two associated distances are smaller than a predefined threshold of 0.15, denoted by the red block in Fig.
5. The detailed algorithm is provided in Appendix A. We conclude by emphasizing that as opposed to the
usual EB tickets drawn in (You et al., 2020), our formulation provide a more interpretable scheme that
is invariant to the pruning strategy as well as its hyperparameters (e.g., the pruning ratio). Hence, our
formulation allows for a unified solution that does not require to be adapted based on the pruning technique
that users experiment with.

3.4 Spline pruning policy

We now propose to derive from first principles novel pruning strategies of DNs based on the spline viewpoint
insights. Recall from Sec. 2 that the layer input space partition is formed by a successive subdivision process
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involving each per-layer input space partition. As we also studied in the previous section, for classification
performances, not all the input space partition regions and boundaries are relevant since not all affect the
final decision boundary. Knowing a priori which regions of the input space partition are helping in solving
the task is extremely challenging, since it requires knowledge of the desired decision boundary and of the
input space partition, both being highly difficult to obtain for high dimensional spaces and large networks
(Montufar et al., 2014; Balestriero et al., 2019; Hanin & Rolnick, 2019a). What is simpler to obtain, however,
is how redundant are some of the layer weights/units in terms of the forming of the DN partition relative to
other units/weights. From that, it will become easy to prune the redundant units/weights as their impact
on the forming of the decision boundary is already carried by another unit/weight.

When considering the layer input space partition, we can identify “redundant” units based on how each
unit impacts the partition with respect to other units. For example, if two units have biases and slope
vectors proportional to each other, then one can effectively remove one of the two units without altering the
layer input space partition. While this is a pathological case, we will demonstrate that the angles between
per-unit slope matrices and inter-bias distances measure such a redundancy. We first introduce our pairwise
redundancy measure as the following equation:

(W i W 1)

2 ]
Nk KDY =1 -
8 NIW Tk N2 IW Dl

)+pu#h—[#hmp>u (6)

where W}, refers to the corresponding slope matrices of the k-th unit, p is an hyper-parameter measuring the
sensitivity of the difference in angle versus the biases. In the case of a convolutional layer, Wy, is the flattened
filter of shape (channels_ in, height, width). Finding the two units with the most similar contribution to the
DN input space partitioning can be done via arg miny, 4.y, N,f(k7 k') where the obtained couple (k, k') encodes
the two units which are the most redundant. In turn, one of those two units can be pruned such that the
impact of pruning onto the DN input space partition is minimized.

Proposition 2. Given a layer and its input space partition, removing sequentially one of the two units, k
and k', for which Nﬁ(k7 k:') =0, leaves the layer input space partition unchanged.

The above result exploits (Balestriero DN Partition Nf (k,k') Pruned Q
et al., 2019). In short, if Nﬁ(kj,k') for 3 3 \ ' 3
any positive p, then the layer-partition 2 2 f

. . ] \ 2
boundaries (of layer ¢) of units k, k per-
fectly overlap. The DN partition bound- 1 1 1
aries correspond to the layer-partition
boundaries backpropagated through the 0 0 X 0
earlier layers to reach the data space. _; 1 N 1
But this process is a continuous operator
i.e., the layer-partition boundaries that -2 -2 -2
overlap will produce DN partition bound-

aries that overlap. In practice, units 2 _o_ -3
_ P p ), 32-10123 32-10123 -3-2-101 2 3
with small enough but nonzero N,(k, k')

are also highly redundant and can be re- Figure 6: Left: a small (L =2, D' = 9, D* = 8) DN input space
moved. We provide an example of this partition. Middle: the pruning criteria as in Eq. (6). Right:
procedure in Fig. 6, where a small DN the pruned input space partition based on the criteria.

input space partition (layer 1 trajectories

in black and layer 2 in blue) is depicted. In the middle we visualize the measurements from Eq. (6) that
trying to find similar “partition trajectories” from layer 2 seen in the DN input space (comparing the green
trajectory to the others with coloring based on the induce similarity from dark to light). Based on this
measure, pruning can be done to remove the “grouped partition trajectoris” and obtain the pruned partition
on the right.

Efficiency of the spline pruning. Note that instead of using parameter-wise pruning, we perform channel-
wise pruning of which the pruning overhead is negligible when evaluating across four models and three
datasets. For example, ResNet-50 has about 20k channels and needs 100G FLOPs to prune, which is only
1/30,000,000 of the training costs (3000P FLOPs).
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Table 1: Evaluating the proposed layerwise spline pruning over SOTA pruning methods on CIFAR-100,
where all accuracies are averaged over five runs and “Improv.” denotes the improvements of our layerwise
spline pruning over the network slimming (NS) method.

p . PreResNet-101 | VGG-16
Dataset runing ; : ; :
ratio NS Spline EB Spline  Improv. | NS Spline EB Spline  Improv.
Unpruned 93.66+£0.04  93.66+0.04 93.66+0.04 - 92.71£0.07 92.71£0.07  92.71£0.07 -
30% 93.48+£0.08 93.56+0.05 93.07+0.10 +0.08 | 93.294+0.10 93.21+0.06 92.83+0.09 -0.08
CIFAR-10 50% 92.52+£0.02 92.55+0.03  92.37£0.04 +0.03 91.85£0.12 92.13+£0.18  92.23+0.14  +0.38

70% 91.274£0.23  91.33£0.22 91.33+0.15  +40.06 88.52+0.22  89.68+0.24  88.65%+0.20 +1.16

Unpruned 73.10+£0.15  73.10£0.15 73.10£0.15 - 71.43£0.25 71.43£0.25 71.43£0.25 -
10% 71.58+0.15  71.58%£0.16 73.14+0.12 41.56 71.6+0.25 71.78+0.17  72.28+0.27  +0.68
CIFAR-100 30% 70.70£0.21  70.13£0.19  72.11£0.24  +1.41 70.32£0.20 71.15£0.23  71.59%£0.18  +1.27
50% 68.70£0.62  69.05£0.93 70.88+0.83  +42.18 66.10£0.49 69.92+£0.32  69.96+0.41 +3.86
70% 66.51+1.12  67.06£1.08 68.41+0.92  +1.90 61.16+1.36 63.13+1.42 64.01+1.40 +2.85

4 Experiment results

In this section, we first describe our experiment settings, and then benchmark the proposed spline pruning
method over ten SOTA pruning baselines in the context of layerwise pruning and gloabl pruning, respectively.
Finally, we present ablation studies in terms of the only hyper-parameter p.

4.1 Experiment settings

Models, datasets, baslines, and metrics: Models & Datasets: We consider four DNN models
(PreResNet-101, VGG-16, and ResNet-18/50) on both the CIFAR-10/100 and ImageNet datasets follow-
ing the basic setting of (You et al., 2020). Baselines: We evaluate the proposed spline pruning methods over
ten SOTA training and pruning baselines, including network slimming (NS) (Liu et al., 2017), lottery tickets
(LT) (Frankle & Carbin, 2019a), SNIP (Lee et al., 2019), ThiNet (Luo et al., 2017), SFP (He et al., 2018),
LeGR (Chin et al., 2020), GAL-0.5 (Lin et al., 2019), GDP (Lin et al.), C-SGC-50 (Ding et al., 2019), and
meta pruning (Liu et al., 2019b). Among them, LT and SNIP are unstructured parameter-wise pruning
while others (as well as ours) are structured filter/channel-wise pruning, therefore it is desired to see that
LT and SNIP perform better under high pruning ratios, e.g., 70%, but lead to much higher energy cost or
training FLOPs. All other comparisons are apple-to-apple comparisons in the structured pruning scenarios.
Metrics: We evaluate in terms of the retraining accuracy, total training FLOPs, and real-device energy cost,
the latter of which are measured by training the models on an edge GPU (NVIDIA JETSON TX2) (NVIDIA
Inc.), which considers both the computational and data movement costs.

Training settings: For the CIFAR-10/100 datasets, the training takes a total of 160 epochs; and the initial
learning rate is set to 0.1 and is divided by 10 at the 80-th and 120-th epochs, respectively. For the ImageNet
dataset, the training takes a total of 90 epochs while the learning rate drops at the 30-th and 60-th epochs,
respectively. In all the experiments, the batch size is set to 256, and an SGD solver is adopted with a
momentum of 0.9 and a weight decay of 0.0001, following the setting of (Liu et al., 2019¢). Additionally,
p in Equ. 2 is set to 0.05 for all experiments except for the ablation studies. All experiments are run in a
server with ten NVIDIA 2080 Ti GPUs.

4.2 Layerwise spline pruning

Recall that the spline pruning policy is done by solving arg miny, ;4 N, ﬁ (k,k"). By regard k as the index of
channels for convolutional layers, we are able to conduct channel pruning in a layerwise manner. Table 1
shows the comparison between the spline pruning (w/ and w/o EB detection) and SOTA network slimming
(NS) method (Liu et al., 2017) on CIFAR-10/100 datasets. We can see that the spline pruning consistently
outperforms NS, achieving -0.08% ~ 3.86% accuracy improvements. This set of results verifies our hypothesis
that removing redundant splines incurs little changes in decision boundary and thus provides a good a priori
initialization for retraining.

4.3 Global spline pruning

We next extend the analysis to global pruning, where the mismatch of the filter dimension in different layers
impedes the cosine similarity calculation. To solve this issue, in practice, we adopt PCA (Scholz et al.,

10



Published in Transactions on Machine Learning Research (07,/2022)

Table 2: Evaluating our global spline pruning method over SOTA methods on CIFAR-10/100 datasets. Note
that the “Spline Improv.” denotes the improvement of our spline pruning (w/ or w/o EB) as compared to
the strongest baselines. All accuracies are averaged over five runs.

Retrain acc. Energy cost (KJ)/FLOPs (P)
Setting Methods p=30% p=50% p=70% p=30% p=50% p=70%

LT (one-shot) 93.701£0.09 93.21+0.05 92.78+0.13 | 6322/14.9 6322/14.9 6322/14.9

SNIP 93.7610.05 93.31£0.11 92.7610.16 3161/7.40 3161/7.40 3161/7.40

NS 93.8310.03 93.42140.14 92.4910.27 5270/13.9 4641/12.7 4211/11.0

PreResNet-101  ThiNet 93.3910.09 93.0710.15 91.4240.25 3579/13.2 2656/10.6 1901/8.65
CIFAR-10 Spline 94.13+0.04 93.92+0.12  92.06%0.25 4897/13.6 4382/12.1 3995/10.1
EB Spline 93.6710.08 93.1840.13 92.3240.28 | 2322/6.00 1808/4.26 1421/2.74

Spline Improv. +0.3 +0.5 -0.46 | 1.4x/1.2x  1.5x/2.5x  1.4x/3.2x

LT (one-shot) 93.18+0.05 93.25+0.19  93.28+0.17 | 746.2/30.3 746.2/30.3 746.2/30.3

SNIP 93.2010.09 92.71+0.18 92.310.22 373.1/15.1 373.1/15.1 373.1/15.1

NS 93.0510.07 92.9610.20 92.710.24 617.1/27.4 590.7/25.7 553.8/23.8

VGG16 ThiNet 92.82£0.12 91.92+0.21 90.4£0.20 631.5/22.6 383.9/19.0 380.1/16.6
CIFAR-10 Spline 93.62+0.08 93.46+0.10 92.85+0.21 643.5/26.4 603.4/25.0 538.1/19.6
EB Spline 93.2810.04 93.051+0.17 91.9610.19 476.1/19.4 436.1/15.5  370.7/11.1

Spline Improv. +0.42 +0.21 -0.43 | 0.8x/0.8x 0.9x/1.0x 1.0x/1.4x

LT (one-shot) 71.90+0.20 71.60£0.23  69.95+0.39 | 6095/14.9 6095/14.9 6095/14.9

SNIP 72.34£0.22 71.63£0.26 70.01£0.46 3047/7.40 3047/7.40 3047/7.40

NS 72.8+0.14 71.52+0.19 68.461+0.49 4851/13.7 4310/12.5 3993/10.3

PreResNet-101  ThiNet 73.10£0.13 70.92+0.29 67.2910.39 3603/13.2 2642/10.6 1893/8.65
CIFAR-100 Spline 73.7910.22 72.04+0.24  68.24%0.37 4980/12.6 4413/10.9 4008/9.36
EB Spline 72.6710.21 71.9940.25 69.74£0.33 | 2388/5.44 1821/3.84 1416/2.46

Spline Improv. +0.69 +0.44 -0.27 | 1.83x/1.4x  1.5x/2.8x  1.3x/3.5x

p=10% p=30% p=50% p=10% p=30% p=50%

LT (one-shot) 72.6240.21 71.31+0.25 70.96+0.46 | 741.2/30.3 741.2/30.3 741.2/30.3

SNIP 71.5540.28 70.8310.24 70.35+0.38 | 370.6/15.1 370.6/15.1  370.6/15.1

NS 71.24£0.27 71.2840.29 69.74+0.51 636.5/29.3 592.3/27.1 567.8/24.0

VGG16 ThiNet 70.8310.22 69.57+0.21 67.2210.43 632.2/27.4 568.5/22.6 381.4/19.0
CIFAR-100 Spline 72.18%£0.26  71.54+0.29  70.07+0.41 688.3/28.0 605.2/22.9 555.0/19.4
EB Spline 72.071£0.24 71.4610.23 70.2940.36 512.2/19.9 429.1/15.3 378.9/11.8

Spline Improv. -0.44 +0.23 -0.67 | 0.7x/0.8x 0.9x/1.0x 1.0x/1.3x

2008) for reducing the feature dimensions to the same before applying the spline pruning. However, we also
consider factor analysis (FA) dimension reduction to demonstrate that spline pruning is not sensitive to the
adopted dimension reduction methods as long as it can be used to measure the correlation between two
units, and these FA experiments are provided in Appendix C.

Spline pruning over SOTA on CIFAR. Table 2 compares the retraining accuracy, the total training
FLOPs, and the total training energy of our spline pruning methods with four SOTA pruning baselines,
including two unstructured pruning baselines (i.e., the original lottery ticket (LT) training (Frankle & Carbin,
2019b) and SNIP (Lee et al., 2019)) and two structured pruning baselines (i.e., NS (Liu et al., 2017) and
ThiNet (Luo et al., 2017)). The results demonstrate that our spline pruning again consistently outperforms all
the competitors in terms of the achieved accuracy and training efficiency trade-offs. Specifically, compared
with the strongest competitor among the four SOTA baselines, spline pruning achieves 0.8 X ~ 3.5 X
training FLOPs reductions and 0.7 X ~ 1.5 X energy cost reductions while offering comparable or even
better (-0.67% ~ 0.69%) accuracies. In particular, spline pruning consistently achieves 1.16 X ~ 3.16 X
training FLOPs reductions than all the structured pruning baselines, while leading to comparable or better
accuracies (-0.17% ~ 1.28%). More comparisons with baselines of pruning at initialization can be found in
Appendix B.

Spline pruning over SOTA on ImageNet. We further investigate whether the spline pruning have
consistent performance in a harder dataset, using ResNet-18/50 on ImageNet and benchmarking with eight
SOTA pruning methods including ThiNet, NS, SFP, LeGR, GAL-0.5, GDP, C-SGD-50, and Meta Pruning.

11



Published in Transactions on Machine Learning Research (07,/2022)

Table 3: Evaluating the proposed global spline pruning over SOTA pruning methods on ImageNet.

Madels Methods TR | TP LA |t e | e B i

Unpruned - | 69.57 - |  89.24 - | 1259.13 98.14
10% 69.65 +0.08 89.20 -0.04 2424.86 193.51

x NS 30% 67.85 -1.72 88.07 -1.17 2168.89 180.92
£ SFP 30% | 67.10 -2.47 | 8778 -1.46 | 1991.94 158.14
e ) 10% | 69.41£0.08 -0.16 89.04 -0.20 1101.24 95.63
EB Spline 30% | 67.81%0.12 -1.76 87.99 -1.25 831.00 82.85
Unpruned - | 75.99 - | 9298 - | 2839.96 280.72
30% 72.04 -3.95 90.67 -2.31 4358.53 456.13

ThiNet 50% 71.01 -4.98 90.02 -2.96 3850.03 431.73
o SFP 30% | 7461 -1.38 | 92,06 -0.92 | 4330.86 470.72
lz LeGR 50% | 75.3 -0.69 | 924 -0.58 | 4174.74 412.66
% GAL-0.5 40% | 720 -3.99 | 918 -1.18 | 4458.74 440.73
= cop 0% | 726 -3.39 | 911 -1.88 | 4487.14 443.54
C-SGD-50 50% | 745 -1.49 | 921 -0.88 | 4117.94 407.04
Meta Pruning ~ 50% | 734 -2.59 | - - | 3532.63 349.12
30% | 75.08+0.11 -0.91 92.58 -0.40 2434.09 264.24

EB Spline 50% | 73.37£0.18 -2.62 91.53 -1.45 1636.02 197.09

Specifically, spline pruning with EB detection (EB Spline) achieves a reduced training FLOPs of 43.8% ~
57.5% and a reduced training energy of 42.1% ~ 54.3% for ResNet-50, while leading to a top-1 accuracy
improvement of -0.12% ~ 3.04% (a top-5 accuracy improvement of 0.18% ~ 1.91%). Consistently, EB Spline
achieves a reduced training FLOPs of 44.7% ~ 61.7% and a reduced training energy of 39.5% ~ 54.2%
for ResNet-18, while leading to comparable top-1 accuracies (-0.24% ~ 0.71%) and top-5 accuracies (-0.16%
~ 0.21%).

4.4 Ablation studies of the spline pruning method
Recalling that the only hyper-parameters

. . . PreResNet-101 VGG-16
p in our spline pruning method (see Equ. 3 3
2 of the main content), which balances 3 7°] <757
the difference between the angles ver- 8 8
. 5701 5 701
sus the biases. Here we conduct ab- g g
lation studies to measure the retrain- < 4s ] <
. . . 2 0= p=30% 2 65
ing accuracies under different values of p = e P =50% £
. . . . e 9 en p=70% 2
for investigating its sensitivity, as shown 2 60 L 604

in Fig. 7. Without loss of generality, 001 005 01 03 04 001 005 01 03 04

we evaluate two commonly used models, e P
VGG-16 and PreResNet-101, on the rep- Figure 7: Abalation studies of the hyperparameter p in our spline

resentative CIFAR-100 dataset. Results Pruning on two models, VGG-16 and PreResNet-101.

show that spline pruning consistently performs well for a wide range of p values ranging from 0.01 to 0.4,
which also generalizes to different pruning ratios (denoted by p). This set of experiments demonstrate the
robustness of our spline pruning methods.

5 Conclusions

We discover and bridge the connection between spline theory and network pruning techniques, providing
explicit visualization and new insights into how pruning DN nodes affects the decision boundary, which well
explains the presence of winning tickets and the importance of obtaining good initialization staring from
overparametrization. Moreover, we extend these insights by proposing a pruning invariant metric to quantify
the evolution of splines during training and detect the unified spline EB tickets. Finally, we leveraged the
spline formulation of DNs to sharpen our understanding of different pruning policies, study the conditions
in which pruning does not deteriorate performances, and develop a novel and more principled pruning
strategy extending spline EB tickets; and extensive experiments demonstrated the superior performances
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(accuracy and energy efficiency) of the proposed method. The proposed spline viewpoint opens new avenues
to theoretically study novel and existing pruning techniques as well as guide practitioners via the proposed
visualization tools.
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A Algorithm for searching Spline EB tickets

Algorithm 1: The Algorithm for Searching Spline EB Tickets

1: Initialize the weights W and the FIFO queue @ with length [;

2: while ¢ (epoch) < t,,,, do
3:  Update W and r using SGD training;
4:  Calculate the distance between the input space partitions of the current and the previous networks,

and then add it to Q.

t=t+1

end if

end while

if Max(Q) < € then
Return f(z; W) (Spline EB ticket);

B Comparison with pruning at initialization baselines

We further supply another three pruning-at-initialization (unstructured parameter-wise pruning) methods,
RigL (Evci et al., 2019), GraSP (Wang et al., 2020), and SynFlow (Tanaka et al., 2020), as our baselines and
present the comparison results as shown in Tab. 4. We can see that our method consistently outperforms the
pruning-at-initialization baselines in terms of accuracy-efficiency trade-offs, achieving up to 2.68% accuracy
improvement at comparable or even (up to 3.2x) lower total training FLOPs.

Table 4: Evaluating our global spline pruning method over SOTA pruning at initialization methods on
CIFAR-10/100 datasets. All accuracies are averaged over three runs.

Retrain Accuracy (%) FLOPs (P)
Setting Methods pP=30% p=50% p=70% p=30% p=50% p=70%
RigL, 93.56+0.06 93.26+0.14 92.724£0.21 7.81 7.81 7.81
GraSP 93.21+0.05 92.83+0.13 92.5740.25 7.5 7.5 7.5
SynFlow 93.25+0.08 92.86+0.16 91.76£0.19 7.5 7.5 7.5
PreResNet-101 K

CIFAR-10 Spline 94.13+£0.04 93.92+0.12 92.0640.25 13.6 12.1 10.1
EB Spline 93.67+£0.08 93.18+0.13 92.32£0.28 6 4.26 2.74

Spline Improv. +40.57% ~ 4+0.92% +0.66% ~ +1.09% -0.4% ~ 4+0.56% 0.6X ~ 2.9%
RigL 92.65+0.05 92.7240.13 92.40+0.18 15.6 15.6 15.6
GraSP 92.49+0.04 91.47+0.11 90.79+0.17 15.3 15.3 15.3
VGG-16 SynFlow 92.74+0.06 91.89+0.12 92.17+0.20 15.3 15.3 15.3
CIFAR-10 Spline 93.62+0.08 93.46+0.10 92.85%0.21 26.4 25 19.6
EB Spline 93.28+0.04 93.05+0.17 91.96+0.19 19.4 15.5 11.1

Spline Improv. +0.88% ~ +1.13% 4+0.74% ~ 1.99% +0.45% ~ 2.06% 0.6X ~ 1.4X%X
RigL 72.55+0.19 71.87+0.28 69.92+0.36 7.81 7.81 7.81
GraSP 72.09+0.27 71.66+0.15 69.60£0.43 7.5 7.5 7.5
PreResNet-101 SyIl.Fl()VV 72.33+£0.20 71.88+0.25 69.86+0.35 7.5 7.5 7.5
CIFAR-100 Spline 73.79+0.22 72.04+0.24 68.24+0.37 12.6 10.9 9.36
EB Spline 72.67+0.21 71.99+0.25 69.74+0.33 5.44 3.84 2.46

Spline Improv. +1.24% ~ +1.7% +0.16% ~ +0.38%  -0.18% ~ 0.14% 0.6x ~ 3.2Xx

p=10% p=30% p=50% p=10% p=30% p=50%

RigL 71.40£0.26 70.98+0.16 70.75+0.37 15.6 15.6 15.6
GraSP 69.50+0.29 69.25+0.29 68.43+0.45 15.3 15.3 15.3
VGG-16 SynFlow 72.08+0.28 71.4840.25 71.20+0.48 15.3 15.3 15.3
CIFAR-100 Spline 72.18+0.26 71.54+0.29 70.07+£0.41 28 22.9 19.4
EB Spline 72.07£0.24 71.46+0.23 70.29+0.36 19.9 15.3 11.8

Spline Improv. +0.1% ~ +2.68% +0.06% ~ +2.29% -0.91% ~ +1.86% 0.6x ~ 1.3%

C Global Spline pruning with FA dimension reduction

We further adopt factor analysis (FA) dimension reduction methods on PreResNet-101 and VGG-16. The
results are shown in the Tab. 5. We can see that our spline based pruning method is not sensitive to
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Table 5: Global spline pruning with PCA and FA dimension reduction methods.

Accuracy (%)

Setting Methods p=30% p=50% p=70%

Spline (FA)  94.2740.06 94.26%0.15 91.97+0.21

PreResNet-101QCIFAR-10  gpline (PCA)  94.134£0.04  93.9240.12  92.06+0.25
Spline (FA)  93.1030.09 93.2530.12 92.49+0.22

VGG-16@CIFAR-10 Spline (PCA)  93.62+0.08 93.46+0.10 92.85+0.21
Spline (FA)  74.37£0.18 72.9440.21 68.0240.29

PreResNet-101QCIFAR-100  gpjine (PCA)  73.7940.22  72.0440.24 68.24+0.37
p=10%  p=30%  p=50%

Spline (FA)  72.2040.19 71.9940.32 70.62%0.39

VGG-16@CIFAR-100 Spline (PCA)  72.18+0.26 71.54+0.29 70.07+0.41

the adopted dimension reduction methods as long as it can be used to measure the correlation between
two units. We think that studying the theoretical guarantees on what methods and in which regime those
methods are in fact preserving that information would be an interesting future research direction to provide

further theoretical guarantees.

D How universal is the EB for different optimization methods?

We detect EB tickets using different optimization methods, including SGD, Adam, Adagrad, and RMSprop
(Ruder, 2016), and report both the emerging epochs and the retraining accuracies of detected EB tickets on
PreResNet-101 and VGG-16 in the Tab. 6. The results show that our spline EB tickets consistently emerge
at early training stages and perform on par with their unpruned counterparts, and thus are empirically

observed to be universal to different optimization methods.

Table 6: EB tickets detection using different optimization methods.

Retrain Accuracy (%)

Setting Methods EB Emerge Epoch Unpruned p=30% p=50%

B (SGD) 61 93.66£0.04 93.67£0.08 93.18+0.13

B (Adam) 30 89.63£0.15  89.63+0.18  89.26+0.18

PreResNet-101QCIFAR-10 g (Adagrad) 33 90.64+0.09  90.76+0.11  90.79%0.09
B (RMSprop) 80 87.41£0.16  86.83+0.17 86.37+0.20

B (SGD) 24 92.7120.07 93.28£0.04 93.05%0.17

B (Adam) 41 90.11£0.08  91.25+0.09 90.73+0.19

VGG-16QCIFAR-10 B (Adagrad) 27 90.17+0.10  91.04£0.12  89.55:0.22

B (RMSprop) 88 87.35+0.09 87.86+0.16 88.10+0.24

E How universal is the EB for adversarial initialization?

we also detect EB tickets with the adversarial initialization (Liu et al.,
Tab. 7 demonstrate that our EB tickets can consistently be found under the adversarial initialization and

2019a).

perform on par with their corresponding unpruned dense networks after being retrained.

Table 7: EB tickets detection using adversarial initialization.

The results shown in the

Retrain Accuracy (%)

Setting Methods EB Emerge Epoch Unpruned p=30% p=50%
EB (Random Init.) 61 93.66+£0.04 93.67+0.08 93.18+0.13
PreResNet-101QCIFAR-10 EB (Adv. Tnit) 81 93.33+0.06  93.38+0.10 93.36+0.11
B (Random Init.) 24 92.71£0.07 93.28£0.04 93.05+0.17
VGG-16QCIFAR-10 B (Adv. Init) 40 92.20£0.05 92.63+0.04 91.66+0.14
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F Background of MASQO and its ties with our method

The entire CPA /max-affine spline formulation of deep networks (DNs) has been extensively studied before
(Balestriero & Baraniuk, 2018). However the prior published works merely focus on studying the various
spline properties that one can obtain on a DN from the MASO formulation. Those works did not study
the contributions that we propose in this paper, i.e., (1) bridging the connection between spline theory
and network pruning techniques, (2) discovering that a DN’s spline mappings exhibit an early-bird (EB)
phenomenon whereby the spline’s partition converges at early training stages, and (3) leveraging the afore-
mentioned EB finding to develop a principled pruning strategy that focuses on a tiny fraction of DN nodes
whose corresponding spline partition regions actually contribute to the final decision boundary.

Needless to say that, we do not claim that the MASO formulation is one of our contribution. In fact, we
refer the readers to those prior works in Sec. 2. Instead, we propose to build-upon the MASO formulation to
in-turn study pruning in deep networks, and this (as far as we are aware) has not been done (even succinctly)
previously.

G Analysis about the connection between LTH and Spline theory

At the lowest level, LTH and spline theory are connected as follows. A DN partitions its input space according
to a power diagram subdivision that is formed by a recursive subdivision process through the layers. Each
subdivision is analytically known and involves the layer weights of each unit and the biases. When pruning

a unit at layer [, the subdivisions of layers 1,---,l — 1 are unchanged, the power diagram of layer [ is altered
only by removal of a single hyperplane from its boundary, and all the subdivisions of layers [ + 1,---, L are
altered.

Additionally, in classification tasks, the decision boundary is constrained to be linear within each region of
this input space partition. Hence, for the decision to be nonlinear in a part of the space, the input space
partition at that location must contain at least two regions. The LTH, in terms of splines, states that
it is possible to obtain an input space partition obtained by a power diagram subdivision each containing
significantly less regions, that can still be positioned such that the decision boundary solves the task at hand.
This is the exact phenomenon we tried to highlight in Fig. 2 and Fig. 3 where we depicted that the same
(or similar) decision boundary (in red) could be obtained from a much reduced input space partition.

While we have limited ourselves to mostly empirical evaluations and validations as an important first step, we
agree that an in-depth theoretical study would be immensely beneficial for the community. This is something
we are hoping to achieve in a next study as this theoretical question is incredibly challenging, for which this
work can provide critical insights and inspirations.

H Additional Visualization

We supply the additional visualization of spline trajectories to Fig. 8.

I DN initialization: an alternative to pruning

The initialization dilemma and the importance of overparameterization. In the case of DNs,
most initialization techniques focus on maintaining feature maps statistics bounded through depth to avoid
vanishing of exploding gradient (Glorot & Bengio, 2010; Sutskever et al., 2013; Mishkin & Matas, 2015).
However, incorporating data information into the DN weights initialization as is done in Kmeans with
say kmeans+-+ remains to be developed for DNs. Hence, overparametrization allows successful training,
and a posteriori, one can remove the redundant parameters and obtain a final model with much better
performances versus the non-overparametrized and non-pruned counterpart. This is the key motivation of
Early Bird tickets. Furthermore, the parallel between DNs and K-means is most relevant as it has been shown
in (Balestriero et al., 2019) that the DN decision process relies on an input space partition based on centroids
that is very similar to the one of K-means and which thus benefit in the same way to overparametrization.
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Figure 8: Additional visualization of the partitioning and subdivision layer after layer, where each node
introduces a spline in the input space which is depicted under the current partitioning with a highlighted
path linked via a dotted line.

Beyond this geometric aspect, overparametrization has been proven to facilitate optimization (Arpit &
Bengio, 2019) and to position the initial parameters close to good local minima (Allen-Zhu et al., 2019; Zou
& Gu, 2019; Kawaguchi et al., 2019) reducing the number of updates needed during training.

Remark 1. Winning tickets are the result of employing overly parametrized DNs which are simpler to
optimize and produce better performances, as current optimization techniques can not escape from poor local
minima and advanced DN initialization (near good local minima) is unknown.

We further support the above remark in the following paragraphs where we demonstrate how the absence
of good initialization coupled with non-optimal optimization problems impacts performances unless over-
parametrization is used, in which case winning tickets naturally emerge.

DN initialization alternative: layerwise pretraining. We saw in the previous section that the concept
of winning tickets emerges from the need to overparametrize DNs which in turn emerges naturally from
architecture search and cross-validation as overparametrizing greatly facilitates training and improves final
results. We now show that if a better initialization of DNs existed, one would have the ability to train a
minimal DN directly and thus would not resort to the entire pruning pipeline.

We convey the above point with a carefully designed experiment. We consider three cases. First, the
case of employ a minimal DN with random weights initialized from random Kaiming initialization (He
et al., 2015). Second, we consider the same minimal DN architecture but with weights initialized based on
unsupervised layerwise pretraining which we consider as a data-aware initialization (no label information is
used) (Belilovsky et al., 2019). In both cases, training is done on the classification task in the same manner.
Third, we consider an overparametrize DN trained with the lottery ticket (LT) method (training, pruning,
and re-training). The final models of the three cases have the same architecture (but different weights based
on their own training method). We report their classification results in Table 8, from which we can see that
especially for very small final DNs (high pruning ratios) LT models outperform a randomly initialized DN;,
but in turn a well initialized DN is able to outperform LT training. From this, we see that the ability of
pruning methods and, in particular, LT to produce better-performing minimal DNs than directly training the
same minimal DN lies in the lack of good initialization for Deep Networks.
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Table 8: Accuracies of layerwise (LW) pretraining, structured pruning with random and lottery ticket ini-

tialization.

Setting Pruning Ratio Random Init. Lottery Init. LW Pretrain
30% 93.33+£0.01 93.57+0.01 93.08+0.00
50% 93.07+0.03 93.55+0.03 93.08+0.01
VGG-16 on CIFAR-10 70% 92.68+0.02 93.44+0.01 92.81+0.02
90% 90.48+0.06 90.41+0.23 90.88+0.02
10% 71.49+0.03 71.70+0.09 71.14+0.02
30% 71.34+0.10 71.24+1.18 71.35+0.01
VGG-16 on CIFAR-100 50% 67.74+1.05  69.73+1.15 70.19+0.01
70% 60.44+4.98 66.61+0.95 67.40+0.83
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Figure 9: Accuracy vs. efficiency trade-offs of lottery initialization and layerwise pretraining.

In fact, for high pruning ratios, layerwise pretraining even offers a more energy efficient method overall
(including the pretraining phase) than LT training, As shown in Fig. 9, we further compare the required
FLOPs when networks are initialized using lottery initialization and layerwise pretraining, respectively. We
observer that (1) when the pruning ratio is low (i.e., < 50%), networks with lottery initialization require
a smaller number of computational FLOPs to provide a good initialization for the pruned network, while
leading to a comparable or even higher retraining accuracy; and (2) when the pruning ratio is higher,
layerwise pretraining requires a much smaller number of computational FLOPs as compared to training
highly overparametrized dense networks. Such a phenomenon opens a door for investigating the following
two questions, which we leave as our further works.

Is there a clear boundary/condition to show whether we should start from overparametrization or consider
pretraining as a good initialization for samll DNs instead?

e How much overparametrization do we need to maintain better trade-offs between accuracy and efficiency,
as compared to other initialization ways (e.g., layerwise pretraining)?

As the amount of different architectures grows rapidly and the specificity of those architectures can vary
drastically, simple layerwise pretraining falls short of providing an advanced initialization solution. For
example, it is not clear how layerwise pretraining can be used with a DenseNet Huang et al. (2017) where
some parameters connect layers that are far apart in the architecture. Hence, while we believe in searching
for improved initialization strategies, we now focus on studying LT training and DN pruning as they provide
a universal solution.

J Analysis about why there are redundant partition boundaries
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Figure 11: Left: Depiction of a simple (toy) univariate regression task with target function being a sawtooth
with two peaks. Right: The {5 training error (y-axis) as a function of the width of the DN layer (2 layers
in total). In theory, only 4 units are requires to perfectly solve the task at hand with a ReLU layer, however
we see that optimization in narrow DNs is difficult and gradient based learning fails to find the correct
layer parameters. As the width is increased as the difficulty of the optimization problem reduces and SGD
manages to find a good set of parameters solving the regression task.

Network pruning literature follows the chaining of (i) over- 08
parametrization, (i) training, and (i) pruning to obtain
a small but critical subnetwork, i.e., “winning ticket” that
achieve high accuracies. This offers a powerful alternative to
training a small network from scratch as good initialization for
such sparse network is not known (Frankle & Carbin, 2019a;
Blalock et al., 2020) making the optimization challenging. This
strategy finds benefits not only with DN but also with tradi-
tional methods such as K-means, in which case pruning re-
moves centroids (Kanungo et al., 2002; Hamerly & Elkan, 2002;
Celebi et al., 2013). We propose to briefly employ K-means 80 100 120
to demonstrate the superiority of such pruning strategies. As Number of Initial Clusters
shown in Fig. 10, we consider K-means++ (Arthur & Vas-
silvitskii, 2006) as a ground-truth method to represent good
initialization (denoted as kmeans++), where we know a priori
the number of clusters (64) for artificial data generated from a Gaussian Mixture Model (GMM) (Reynolds,
2009) with spherical and identical covariances. Against that baseline, we perform the three-step pruning
strategy over multiple runs and with varying numbers of initial clusters to generate winning initialization
(denoted as tickets). In all case the clusters will be pruned to 64 (true number of Gaussians) from the
initial number that varies from 64 to 128 (z-axis of Fig. 10). We observe that the winning initialization
perform near-optimal results (i.e., closer to kmeans++) when starting from overparameterization (i.e., initial
clusters = 100), otherwise suffer from large accuracy drops. We highlight that employing overparameter-
ization facilitate finding winning tickets. From the above experiments it is clear that in the absence of
“optimal” initialization of small DNs, pruning is the current preferred solution to obtain performing minimal
architectures.
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Figure 10: K-means experiments on a toy
mixture of 64 Gaussian.

K Additional results on initialization and pruning

Next we extend the overparametrization-pruning vs. initialization insights to univariate DNs on a carefully
designed dataset. Considering a simple unidimensional sawtooth as displayed in Fig. 11 with P peaks (here
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P = 2). In the special case of a single hidden layer with a ReLU activation function, one must have at
least 2P units to perfectly fit this function with the weight configuration being [Wi]y, = 1,[b1]x = —k
with £ = 1,...,D; and [W3]; = 1,[W2]1’k(—2)(k_1)%2,k = 2,...,D;. Note that these weights are not
unique (other ones can identically fit the function) and are given as an example. At initialization, if the DN
has only 2P units, the probability that a random weight initialization arranges the initial splines in a way
to allow effective gradient based training is low. Increasing the width of the initial network will increase
the probability that some of the units are advantageously initialized throughout the domain and aligned
with the natural input space partitioning of the target function (different regions for different increasing or
decreasing sides of the sawtooth). This is what empirically illustrated in Fig. 11 (right) where one can see
that even repeating multiple initializations of a DN without overparametrization does not allow to solve the
task, while overparametrizing, training, and then pruning that together preserve only the correct number of
units allow for better approximation.

L Relation between activation patterns and spline partition of input space

Subdivision Lines. Every layer in deep networks (DNs) with piecewise non-
linearities (e.g. ReLU activation) can be viewed as subdivision lines for parti-
tioning the given input space (Balestriero et al., 2019). For example, suppose

the DNs’ input space is shaped as a square grid with N X N data points, we
extract the activations from one intermediate layer of k& hidden nodes, then  Z
each node corresponds one subdivision line to distinguish non-zero activations =
in the input grid, thus we have k subdivision lines in this layer, same as the >0
number of hidden nodes. From such geometry perspective, there are two good
characteristics to leverage: (1) Subdivision lines in the first layer are linear
affine functions taking layer parameters as slopes and biases, following subdi- N

vision lines are piecewise linear, whose turning points are exactly located at

the subdivision lines in previous layers; (2) The derived subdivision lines at Figure 12: Visualize one
the final classification layer are exactly the network decision boundary. Such subdivision line on grid.
connection provides us a new perspective to analyze how the decision boundary are gradually formulated and
what network compression methods (e.g., pruning, quantization) really mean from such geometry perspective.

M  Early-bird visualization on test and random samples

To investigate what happens to the partitioned regions that do not contain any training data, we redraw
Fig. 5 (early-bird visualization) on test samples, and show the visualization of early-bird phenomenon at
Fig. 13.

N Spline trajectory and EB tickets with Leaky ReLU activation

We redraw Fig. 4 (spline trajectory) and Fig. 5 (early-bird visualization) when using Leaky ReLU as
activation functions, and show the corresponding spline trajectory at Fig. 14 and the visualization of
early-bird phenomenon at Fig. 15. From these figures, we can consistently observe that the splines will
adapt during the early phase while converging at later training stages, demonstrating that the early-bird
phenomenon still holds under the Leaky ReLU activation functions. In addition, we supply the pruning
experiment comparisons using networks with Leaky-ReLU activation functions to Table 9, from which we
see that the spline pruning consistently outperforms all baselines in terms of both accuracy and efficiency,
leading to -0.44% ~ +1.38% accuracy improvement and up to 4X training flops savings.
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Figure 13: visualization of the early-bird (EB) phenomenon when using training samples, testing samples,
and random samples, respectively.
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Figure 14: Visualization of spline trajectories using FCNet with Leaky ReLU activation functions.

Table 9: Evaluating our spline pruning method over baselines when using Leaky ReLU activation functions.

Retrain Accuracy (%) FLOPs (P)
Setting Methods p=30% p=50% p=70% p=30% p=50% p=T0%
NS 93.54+0.08% 93.18+0.12%  90.89+0.23% 13.9P 12.7P 11.0P
ThiNet 92.18+0.09% 91.57+£0.15%  90.25+£0.25% 13.2P 10.6P 8.65P
Spline 93.56+0.06% 92.74+0.16% 91.11+£0.21% 13.6P 12.1P 10.1P
PreResNet-101 on CIFAR-10 pp'q ) o 92.76+40.07% 92.13+0.13% 90.66+0.25%  6.00P  4.26P  2.74P
Spline Improv. -0.44% ~ +1.38% 1.1x ~ 4.0x
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Figure 15: Visualization of the early-bird (EB) phenomenon when training PreResNet-101 with Leaky ReLU
activation functions.

O Comparison under 90% pruning ratios

As shown in the Table 10, the proposed spline pruning outperforms the baselines across two models
(PreResNet-101 and VGG-16) and two datasets (CIFAR-10 and CIFAR-100), leading to -0.35% ~ +63.87%
accuracy improvements. Note that the network slimming (NS) method suffers from bottleneck layers due to

the “over-pruning” channels on specific layers.

Table 10: Evaluating our spline pruning method over baselines under 90% pruning ratios.

Datasets Model Methods Accuracy (p=90%)
NS 77.63+1.21%
ThiNet 87.80+1.10%
Spline 87.96+£0.95%

PreResNet-101

EB Spline 88.15+0.87%
Spline Improv. +0.35% ~ +10.52%
NS 89.13%0.76%
CIFAR-10 ThiNet 86.90+0.89%
Spline 89.11+0.67%
VGG-16 EB Spline 89.2440.71%
Spline Improv. +0.11% ~ +2.34%
NS 28.90+2.56%
ThiNet 60.66+1.98%
Spline 58.97+1.75%
PreResNet-101 - ppg e 60.31+1.92%
Spline Improv. -0.35% ~ +31.41%
NS %
CIFAR-100 ThiNet 56.31+2.35%
Spline 59.37+1.67%
VGG-16 - BB Spline 64.87+1.93%

Spline Improv.

+8.56% ~ 63.87%

P Comparison with iterative pruning methods

We further supply the comparison with network slimming with the mentioned iterative pruning method
(NS-IP). As shown in the Table 11, our spline pruning again outperforms those methods in terms of both
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accuracy and efficiency, leading to -0.47% ~ +1.11% accuracy improvement and up to 7.1X training flops
savings. We will add this set of experiments and discussion in our revision.

Table 11: Evaluating our spline pruning method over iterative pruning baseline.

Retrain Accuracy (%) FLOPs (P)
Setting Methods p=30% p=50% p=70% p=30% p=50% p=70%

NS-IP 93.744£0.06% 92.72+0.13%  92.53+0.24% 23.6P 21.6P 18.7P

Spline 94.13+£0.04%  93.92+0.12%  92.06£0.25% 13.6P 12.1P 10.1P

PreResNet-101 on CIFAR-10  EB Spline 93.67+0.08% 93.18+0.13%  92.32+0.28% 6.00P 4.26P 2.74P
Spline Improv. +0.39% +1.20% -0.47% 1.7x ~ 6.8x

NS-IP 72.68+0.18%  71.82+0.26% 69.86+0.31% 23.3P 21.3P 17.5P

Spline 73.79+£0.22%  72.04+0.24% 68.24+0.37% 12.6P 10.9P 9.36P

PreResNet-101 on CIFAR-100 EB Spline 72.67£0.21%  71.99+0.25% 69.74+0.33% 5.44P 3.84P 2.46P
Spline Improv. +1.11% +0.22% -0.12% 1.8x ~ 7.1x

Q Quantitative distances of different layers along training trajectory

As shown in the Table 12, the quantitative distance of early layers converges faster than later layers, indicating
that the base partition regions divided by first few layers will not change too much since the very early epochs.

Table 12: Record of the quantitative distance between input space partitions of different layers, i.e., early,
middle, or later layers, along the training trajectory.

Quantitative Distances

Datasets Models Layers 10th epoch 40th epoch 80th epoch 120th epoch 160th epoch
Early (1st) 0.247 0.197 0.061 0.021 0.003
VGG-16 Medium (8th) 0.538 0.424 0.183 0.024 0.003
Late (16th) 0.579 0.512 0.236 0.027 0.004
CIFAR-100 Early (1st) 0.621 0.562 0.296 0.023 0.002
PreResNet-101 Medium (16th) 0.704 0.612 0.273 0.025 0.003
Late (32th) 0.781 0.728 0.376 0.038 0.005
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