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ABSTRACT

Intelligent perception and interaction with the world hinges on internal represen-
tations that capture its underlying structure (“disentangled” or “abstract” repre-
sentations). Disentangled representations serve as world models, isolating latent
factors of variation in the world along approximately orthogonal directions, thus
facilitating feature-based generalization. We provide experimental and theoretical
results guaranteeing the emergence of disentangled representations in agents that
optimally solve multi-task evidence accumulation classification tasks, canonical in
the neuroscience literature. The key conceptual finding is that, by producing accu-
rate multi-task classification estimates, a system implicitly represents a set of co-
ordinates specifying a disentangled representation of the underlying latent state of
the data it receives. The theory provides conditions for the emergence of these rep-
resentations in terms of noise, number of tasks, and evidence accumulation time,
when the classification boundaries are affine in the latent space. Surprisingly, the
theory also produces closed-form expressions for extracting the disentangled rep-
resentation from the model’s latent state Z(t). We experimentally validate these
predictions in RNNs trained on multi-task classification, which learn disentangled
representations in the form of continuous attractors, leading to zero-shot out-of-
distribution (OOD) generalization in predicting latent factors. We demonstrate the
robustness of our framework across autoregressive architectures, decision bound-
ary geometries and in tasks requiring classification confidence estimation. We find
that transformers are particularly suited for disentangling representations, which
might explain their unique world understanding abilities. Overall, our framework
puts forth parallel processing as a principle for the formation of cognitive maps
that capture the structure of the world in both biological and artificial systems, and
helps explain why ANNs often arrive at human-interpretable concepts, and how
they both may acquire exceptional zero-shot generalization capabilities.

1 INTRODUCTION

The ability to construct representations that capture the underlying structure of the world from data,
is a hallmark of intelligence. Humans and animals leverage their experiences to construct such faith-
ful representations of the world (”world models”), resulting in a near-effortless ability to generalize
to new settings (Lake et al., 2015; 2016). Modern foundation models also display emergent out-of-
distribution (OOD) generalization abilities, in the form of zero- or few-shot learning (Brown et al.,
2020; Pham et al., 2021; Jia et al., 2021; Oquab et al., 2023); however whether artificial systems
learn world models remains unclear. Understanding the conditions under which that occurs is bound
to lead to better generalizable systems, and explain why artificial systems often converge to human
interpretable, aligned representations of the world (Templeton et al., 2024).

A promising direction towards understanding the construction of world models is abstract, or disen-
tangled representations (Higgins et al., 2017; Kim & Mnih, 2018; Johnston & Fusi, 2023). These two
concepts are interrelated yet somewhat distinct (see definitions adapted from Ostojic & Fusi (2024)
in Appendix A.1). Shortly, an abstract representation of x1, . . . , xn represents each xi linearly and
approximately mutually orthogonally. Disentangled representations encode each xi orthogonally,
without the necessity of linearity. Both representations preserve the latent structure present in the
world in their geometry by isolating factors of variation in the data, which facilitates downstream
generalization. When a representation is abstract, a linear decoder (i.e. downstream neuron) trained

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

to discriminate between two categories can readily generalize to stimuli not observed in training, due
to the structure of the representation. Furthermore, the more disentangled the representation is, the
lower the interference from other variables and hence the better the performance. This corresponds
to decomposing a novel stimulus into its familiar features, and performing feature-based generaliza-
tion. For instance, imagine you are at a grocery store, deciding whether a fruit is ripe or not. If the
brain’s internal representation of food attributes (ripeness, caloric content, etc.) is disentangled, then
learning to perform this task for bananas would lead to zero-shot generalization to other fruit (e.g.
mangos, Figure 1a). Crucially, the visual representation of a mango is high-dimensional, non-linear
and noisy, making it particularly challenging to extract a low dimensional latent like ”ripeness”.

Several brain areas including the amygdala, prefrontal cortex and hippocampus encode variables of
interest in an abstract format (Saez et al., 2015; Bernardi et al., 2020; Boyle et al., 2022; Nogueira
et al., 2023; Courellis et al., 2024). This raises the question of under which conditions do such rep-
resentations emerge in biological and artificial agents alike. Previous work showed that feedforward
neural networks develop abstract representations when trained to multitask (Johnston & Fusi, 2023).
However, real-world decisions typically rely on imperfect, noisy information, evolving dynamically
over time (Britten et al., 1992; Krajbich et al., 2010). To account for this important feature of the
world, we train autoregressive models (RNNs, LSTMs, transformers) to multitask canonical neuro-
science tasks involving the accumulation of evidence over noisy streams. The tasks tie closely to
Bayesian filtering theory, and should be solved by any agent that deals with a noisy world.

Contributions. The main contributions of the paper are the following:

• We prove that any optimal multi-task classifier is guaranteed to learn an abstract represen-
tation of the ground truth contained in the noisy measurements in its latent state, if the
classification boundary normal vectors span the input space (Appendix B). Furthermore,
the representations are guaranteed to be disentangled as the number of tasks Ntask greatly
exceeds the input dimensionality D. Intriguingly, noise in the observations is necessary to
guarantee the latent state would compute a disentangled representation of the ground truth.

• We confirm that RNNs trained to multitask develop abstract representations that zero-shot
generalize OOD, when Ntask ≥ D, and orthogonal, disentangled representations for greater
Ntask. The computational substrate of these representations is a 2D continuous attractor
(Amari, 1977) storing a ground truth estimate in a product space of the latent factors. In
addition, the representations are sparse and mixed, attributes of biological neural networks.

• We reproduce these findings in GPT-2 models, which generalize better due to them learning
disentangled representations already from Ntask ≥ D, confirming their appropriateness for
constructing disentangled world models.

• We demonstrate that our setting is robust to a number of manipulations, including correlated
inputs, interleaved learning of tasks and free reaction-time tasks canonical in the cognitive
neuroscience literature (Britten et al., 1992; Krajbich et al., 2010).

• Finally, we discuss implications for generalizable representation learning in biological and
artificial systems, and demonstrate the strong advantage of multi-task learning over previ-
ously proposed mechanisms of representation learning in the brain (Mante et al., 2013).

Despite being framed in the context of canonical cognitive neuroscience tasks, our results are gen-
eral; they apply to any system aggregating noisy evidence over time.

1.1 RELATED WORK

Disentanglement has long been recognized as a promising strategy for generalization (Bengio et al.,
2012) (although note Locatello et al. (2019); Montero et al. (2020) for a contrarian view), yet most
classic work focuses on feedforward architectures (Higgins et al., 2017; Kim & Mnih, 2018; Whit-
tington et al., 2022; Maziarka et al., 2023). In autoregressive models, Hsu et al. (2017); Li & Mandt
(2018) showed that variational LSTMs disentagle representations of underlying factors in sequen-
tial data allowing style transfer; however the underlying representational geometry was not char-
acterised. Other work focuses on fitting RNNs to behavioral data while enforcing disentanglement
for interpretability (Dezfouli et al., 2019; Miller et al., 2023). Work on context-dependent decision
making has shown that RNNs re-purpose learned representations in a compositional manner when
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trained in related tasks (Yang et al., 2019; Driscoll et al., 2022); however, the abstractness of the
resulting representations was not established. Finally John et al. (2018) show that multitasking re-
sults in disentanglement, however unlike us they directly enforce latent factor separation through
their adversarial optimization objectives. Our approach is most closely related to weakly supervised
disentanglement, without comparing across samples (Shu et al., 2019).

Our work relates to previous work on linear identifiability. Roeder et al. (2021) show that repre-
sentations of models trained on the same distribution must be linear transformations of each other;
yet we go beyond their results to show that abstract representations are guaranteed to emerge un-
der moderate conditions, irrespectively of the dimensionality of the input and model architecture.
Lachapelle et al. (2023) proved that disentangled representations emerge in feedforward architec-
tures from multitask learning in sparse tasks when a sparsity regularization constraint is placed on
the predictors; we place no such constraints and still uncover disentangled representations.

Previous neuroscience-inspired work showed that multitasking feedforward networks learn abstract
representations, as quantified by regression generalization (Johnston & Fusi, 2023). We expand
upon these findings in several ways. First, we extend the framework to autoregressive architectures
(RNNs, LSTMs, transformers) that can update their representations as further information arrives.
Second, we prove theorems that guarantee the emergence of abstract representations in any opti-
mal multitask classifier if the number of tasks exceeds the input dimensionality D, and showcase
disentanglement in our trained networks. Third, we rigorously analyze the role of noise in forming
disentangled representations, extending the noise-free regime studied in Johnston & Fusi (2023).
Finally, we explore a range of values for D, providing experimental validation of our theory.

2 PROBLEM FORMULATION

Multi-Task Classification with Evidence-Aggregation: We study the evidence aggregation
multi-task classification paradigm shown in Figure 1b. An agent with latent state Z(t) receives
noisy, non-linearly mapped observations {f

(
X(t)

)
}Tt=1 where each X(t) = x∗ + σN (0, ID) is a

noisy measurement of unknown ground truth vector x∗ ∈ RD(x∗
i ∼ Uniform(−0.5, 0.5)), with N

being Gaussian noise. The noisy measurements are transformed by an injective observation map
function f , which can be non-linear and high dimensional, representing the wide range of sensory
transformations found in real-world scenarios. The agent is tasked with simultaneously solving
Ntask classification problems by aggregating information over time, each defined by a random linear
decision boundary1 in the ground truth space RD i.e.

yi(x
∗) =

{
1 if c⊤i x

∗ > bi
0 otherwise

(1)

where y(x∗) ∈ {0, 1}Ntask represents the Ntask classifications of x∗, {(ci, bi)}Ntask
i=1 are the classi-

fication boundary normal vectors and offsets, and let Ŷ(t) = g(Z(t)) ∈ [0, 1]Ntask represent the
agent’s predicted likelihood of yi(x∗) = 1 over each of the binary classifications i at time t. The
classification lines reflect criteria based on which decisions will be made. Imagine for example that
x1 corresponds to food and x2 to water reward. Depending on the agent’s internal state, one takes
precedence over the other, and the degree of preference is reflected in the slope of the line.

Criterion for Disentangled Representation Learning: We investigate how solving the multi-
task classification problem (Figure 1b) leads to agents learning disentangled representations of the
latent ground truth x∗ in its internal state Z(t). Specifically, we ask whether there exists a linear-
affine transformation (A,b) such that x∗ = AZ(t)+b. Such a mapping would imply Z(t) linearly
represents x∗. If the rows of A are approximately orthogonal, the representation is disentangled.

3 THEORETICAL RESULTS

Here we provide conditions and guarantees for the emergence of disentangled representations in op-
timal multi-task classifiers with latent state Z(t) in the paradigm described in Section 2 and Figure 1.

1Due to the observation map f , the tasks may appear non-linear from the perspective of the multi-task
classification agent.
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Figure 1: Disentangled representations and a framework to learn them. (a) A disentangled
representation directly lends itself to OOD generalization: a downstream linear decoder that can dif-
ferentiate ripe from unripe bananas can readily generalize to mangos, even though it has never been
trained on mangos. (b) Overview of our multi-task classification framework. A ground truth x∗ is
sampled and Gaussian noise is added to arrive at observations {X(1), ...,X(t)}. These observations
are processed by the filter-based model illustrated graphically in Figure S7, maintaining a latent state
Z(t). The latent state Z(t) is then used to produce classification outputs Ŷ1(t), Ŷ2(t). Theorem B.6
proves that Z(t) must encode the optimal estimator of x∗ given the noisy observations, µ(t).

By “optimal multi-task classifier”, we refer to any agent or system whose outputs Ŷ(t) correspond
to the correct posterior classification probabilities given the noisy, non-linearly transformed obser-
vations; that is, for each task i = 1, . . . , Ntask

Ŷi(t) = Pr (yi(x
∗) = 1 | f(X(1)), . . . , f(X(t))) (2)

The notion of optimality allows us to make precise statements about the informational content of
the agent’s internal state since Ŷ(t) = g(Z(t)). Let C ∈ RNtask×D be a matrix where each row is a
decision boundary normal vector. Then

Theorem 3.1 (Disentangled Representation Theorem). If C ∈ RNtask×D is a full-rank matrix and
Ntask ≥ D and noise σ > 0, then

1. Any optimal estimator of y(x∗) must encode a finite-sample, maximum likelihood esti-
mate µ(t) of the ground truth evidence variable x∗ in its latent state Z(t).

2. If the activation function is sigmoid-like, µ(t) will be linearly decodable from Z(t), thus
implying that Z(t) contains an abstract representation of µ(t) (Ostojic & Fusi, 2024).

3. The representation is guaranteed to be disentangled (orthogonal) as Ntask ≫ D for random
decision boundaries.

Specifically, µ(t) is the maximum likelihood estimate (MLE) of x∗ given observations
f(X(1)), . . . , f(X(t)). A closed-form expression for extracting µ(t) from Z(t) if Ntask ≥ D is:

µ(t) = (C⊤C)−1C⊤
(

σ√
t
Φ−1

(
g(Z(t))

)
+ b

)
(3)

where Φ is the CDF of the normal distribution, σ is the noise magnitude and t the trial duration.
Furthermore, if the activation function g is of the sigmoid family of functions (tanh, sigmoid), then
the term Φ−1

(
g(·)) approximately cancels out, leading to:

µ(t) ≈ ag σ√
t
(C⊤C)−1C⊤Z(t)︸ ︷︷ ︸

Linear Function of Z(t)

+(C⊤C)−1C⊤b︸ ︷︷ ︸
Affine Term

(4)

where we have approximated atanh = 2
√
3

π for g = tanh and aσ = 0.5886 for g = sigmoid. For
Gaussian IID noise, µ(t) is the sample mean of {X(t)}Tt=1, i.e. with non-linearity f removed.
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Proof. Point 1 and Equation 3 are proven in Appendix B in Theorem B.6. Point 2 and Equation 4 are
proven in Corollary B.8 for tanh and Corollary B.9 for sigmoid. Point 3 is proven in Corollary B.10.

The key conceptual insight in the proof of Theorem 3.1 is that each of the multi-task classification
probability estimates Ŷi(t) represents an estimated projection distance between the MLE µ(t) and
the given classification boundary (ci, bi). Once distances to classification boundaries are recovered,
µ(t) can be inferred if the Ntask classification boundaries span the D-dimensional space of x∗.

Robustness While Theorem 3.1 applies to optimal multi-task classifiers, Corollary B.7 shows that
a sub-optimal multi-classifier with zero-mean independent errors will represent µ̃(t) in state Z(t)
(Equation 3) with residual errors w.r.t. optimal µ(t) expected to decrease at a rate of approximately
O(1/

√
Ntask). See Appendix B.4, B.9 for extensions of the theory to anisotropic and non-Gaussian

noise distributions (Elliptical, t-distribution, Laplace distributions). The linear approximation for
decoding µ(t) from Z(t) in Equation 4 is enabled by the remarkable similarity between sigmoid
functions and the Gaussian CDF Φ (Corollary B.8). The sigmoid-like structure of Φ suggests many
similar activations g (e.g., softmax) would exhibit approximate linear decodability.

More general decision boundaries Decision boundaries yi on latents x∗ may appear non-linear
in the image of observation map f , but Theorem 3.1 applies to linear boundaries yi on latent space
(Equation 1). Our results extend naturally to smooth manifold decision boundaries through local
linearization when the manifold yi’s reach τi

2 is must larger than the noise scale σ. Intriguingly,
classification boundary distances are only guaranteed to be recoverable when there is non-zero noise
σ > 0 such that Ŷi(t) does not saturate to 1 or 0, and thus still carries useful decision boundary dis-
tance information (see Lemma B.3) 3. An intriguing open question is what conditions on manifolds
{yi}Ntask

i=1 are necessary and sufficient to preserve the decodability of µ(t). We leave a complete char-
acterization of representation learning with multiple manifold decision boundaries for future work.

4 METHODS

Figure 2: Data generation and architecture. (a)
For each trial, we sample a ground truth vector
x∗, and add IID noise to arrive at X(t). The
task is to report whether x∗ lies above (1) or
below (0) each of the classification lines (color
matches corresponding boolean variable in y),
given the noisy and non-linearly transformed sam-
ples f(X(1)), . . . , f(X(t)). (b) Models (RNN
depicted) are trained to report the outcome of all
the binary classifications in a at the end of the trial
(indicated by the fixation input turning 0).

We trained autoregressive models (RNNs,
LSTMs, GPT-2 transformers) with latent
state z(t), to output multi-task classifications
y(x∗) ∈ {0, 1}Ntask given noisy and non-
linearly mapped inputs f(X(1)), . . . , f(X(t))
(Figure 2). We subsequently trained linear
probes A on z(t) to estimate x∗, denoted
µ̂(t) = Az(t). We here focus on leaky RNNs,
representing a brain area making decisions; for
more details on GPT-2 experiments see Ap-
pendix A.6. The networks contain Nneu neu-
rons, and their activations z(t) obey:

τ ż = −z+ [Wrec z+Win xin + b ]+ (5)

where Wrec is the recurrent weight matrix, Win
is the matrix carrying the input vector xin, b is a
unit-specific bias vector, τ is the neuronal time
constant, [.]+ is the ReLU applied element-wise
and time dependencies have been dropped for
brevity. We discretize Equation 5 using the for-
ward Euler method for T = 20 timesteps of
duration ∆t = τ = 100ms, which we find to

2“Reach”: maximum distance at which each point on a manifold has a unique closest point on the manifold
3In fact, Equations 3 and 4 do not hold for σ → 0, as they were derived by means of Bayesian estimation

which assumes the presence of noise.
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be stable. The RNN’s output ŷ(t) ∈ RNtask is given by ŷ(t) = g(Wout z(t)), where Wout is a read-
out matrix and g = sigmoid the output activation function applied elementwise. The encoder f is a
3-layer MLP with hidden dimensions 100, 100, 40 and ReLU non-linearities, and it is randomly ini-
tialized and kept fixed during training as it represents a static mapping from latents to observations
(observation map). An additional fixation input is directly passed to the hidden layer. It is 1 during
the trial and turns 0 at the end of the trial, indicating that the network should report its decisions
(Figure 2b). The fixation input is concatenated with f(X(t)) to form xin, and it precludes the RNN
from learning a specific timing in its response. We refer to this kind of tasks as fixed reaction-time
(RT). The network is trained with a cross-entropy loss and Adam default settings, except learning
rate η0 = 10−3, to produce the target outputs y(x∗). By minimizing loss across trials, the network
is incentivized to estimate Ŷ(t) = Pr{yi(x∗) = 1}. Table S1 summarizes all hyperparameters and
their values, which are shared across all architectures.

5 EXPERIMENTS

5.1 MULTI-TASK LEARNING LEADS TO DISENTANGLED REPRESENTATIONS

We train RNNs to do simultaneous classifications for Ntask linear partitions of the latent space for
D = 2 (Figure 2a, 6 partitions shown). To quantify the disentanglement of the representations after
learning, we evaluate regression generalization by training a linear decoder to predict the ground
truth x∗ while network weights are frozen. We perform out-of-distribution 4-fold crossvalidation,
i.e. train the decoder on 3 out of 4 quadrants and test in the remaining quadrant (Appendix A.2 for
details). We also evaluate in-distribution (ID) performance by training the decoder in all quadrants.
An example of train and test losses is shown in Figure S11f. We find that the network’s OOD and ID
generalization performance are excellent (median r2 = 0.96, 0.97 respectively across 5 example net-
works); therefore the network has learned an abstract representation that zero-shot generalizes OOD.
In addition, ID performance increases with the number of tasks Ntask, and the OOD generalization
gap decreases (Figure 3a). Performance is identical when choosing a more nonlinear, power-law
nonlinearity for the encoder (Appendix A.5). Therefore we conclude that multi-task learning leads
to abstract representations in the RNN’s hidden layer, when tasks span the latent space.

Since x∗ can be decoded by this representation in unseen (by the decoder) parts of the state space,
it follows that the representation can be used to solve any task involving the same latent variables,
without requiring further pretraining. In other words, to solve any other task we do not need to
deal with the denoising and unmixing of the latent factors x1, x2; we would just need to learn the
(potentially non-linear) mapping from x1, x2 to task output. Furthermore, the representation scales
linearly with input dimensionality D (see Figure 5b). This marks a significant improvement from
previously proposed models for representation learning in the brain where one task is executed at
a time (Mante et al., 2013; Yang et al., 2019), which scale linearly with Ntask, and exponentially
with D (see Appendix A.8 for details). Crucially, these findings are architecture-agnostic: they hold
for non-leaky (”vanilla”) RNNs, which outperform leaky ones for small Ntask, LSTMs which per-
form the best, and GPT-2 transformers (details in Appendix A.6) which have excellent performance
already from Ntask = 2 (Figure 3b). Note that state-space models have superior asymptotic perfor-
mance, which is expected due to the nature of the task. We focus on leaky RNNs because of their
closer correspondence to biological neurons, which have a membrane voltage that decays over time.

So far we showcased abstractness, but not disentanglement. For disentanglement, it is crucial that
the latents lie in orthogonal subspaces. Looking at the angles between the decoders of the latents, we
find that they become orthogonal as Ntask ≫ D for RNNs (Figure 3c), as predicted by our theory.
Intriguingly, this already occurs from Ntask ≥ D in transformers, showcasing their superior ability
to separate latent factors. Furthermore, orthogonality strongly correlates with OOD generalization
performance, which emphasizes the close link between disentanglement and abstractness: the more
orthogonal the representations are, the cleaner the readout of the latent factors by linear decoders.

We further demonstrate the robustness of our setting by showing that abstract representations
emerge for different noise distributions and correlated inputs (Appendix A.9), non-linear bound-
aries (Appendix A.10), and for cognitive neuroscience integrate-to-bound tasks where the agent can
make their decision whenever confident enough, not at a fixed time (Krajbich et al., 2010) (Ap-
pendix A.11).
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Figure 3: Learning disentangled representations. (a) ID and OOD generalization performance
for networks trained in different number of tasks Ntask. We report the 25, 50 and 75 percentile of r2
for each network size (see Appendix A.2). ID and OOD performance increase with Ntask, and the
generalization gap decreases, indicating that the networks have learned abstract representations. (b)
The results hold for other autoregressive architectures, including LSTMs and GPT-2 transformers.
(c) Angles between latent factor decoders (see Appendix A.3 for how they were estimated). The
angles approach 90 degrees as Ntask ≫ D for RNNs, but already fror Ntask ≥ D for transformers.
Remaining errors around 90 degrees are attributed to variability in the linear decoder fits. (d) Top 3
PCs of RNN activity (Ntask = 24, D = 2), capturing 85% of variance (see inset). Each line is a trial,
while color saturation indicates time. All trials start from the center and move outwards, towards
the location of x∗ in state space. We color the last timepoint in each trial (squares) according to the
quadrant this trial was drawn from. Red x’s correspond to attractors (see Appendix A.7). Here we re-
move input noise so that trajectories can be visualized easier. The network learns a two-dimensional
continuous attractor that provides a disentangled representation of the 2D state space. (e) Spectral
plot resulting from linearizing RNN dynamics around every fixed point (Appendix A.7). First two
eigenvalues of the difference system are near 0, while the rest decay much faster, indicating marginal
stability across two dimensions for every fixed point, a signature of a 2D continuous attractor.

5.2 REPRESENTATIONAL STRUCTURE IN RNNS AND TRANSFORMERS

In this section, we open the black box and investigate the representations learned by the networks,
starting with RNNs. Figure 3d shows the top 3 PCs (capturing ∼ 85% of the variance) of network
activity after training (final accuracy ∼ 95%) for multiple trials, along with the fixed points of net-
work dynamics. To find the fixed points, we follow a standard procedure outlined in Sussillo &
Barak (2013) (see Appendix A.7 for details). Looking at Figure 3d the fixed points span the entire
two-dimensional manifold that the trials evolve in, which corresponds to a continuous attractor with
stable states across a 2D ”sheet”. Linearizing the dynamics around each fixed point and computing
the eigenvalues of the linearized system (Appendix A.7 for details), reveals marginal stability across
two eigenvectors, i.e. near-0 eigenvalues which correspond to slow, integration dimensions in net-
work dynamics, therefore confirming the continuousness of the attractor (Figure 3e). This implies
that the network can store a short-term memory (Wang, 2001) of the current amount of accumulated
evidence in a product space of the latent variables, and update it as further evidence arrives.

Furthermore, compared to the representations after the encoder which are non-linearly mixed, high-
dimensional and overlapping (Figure S11a), the representation in Figure 3d looks disentangled as
we would expect from the theory and metrics above. Individual trials with noise show how the rep-
resentation maintains a sense of metric distances in the RNN representation space (Figure S11b).
Figure S11c demonstrates how this representation comes about during learning, and Figure S11d
that the short-term memory persists when a delay period is included before the decision. Therefore,
multi-task learning has led to disentangled, persistent representations of the latent variables. Impor-
tantly, and in line with our theory, this only happens when noise is present in the input, which forces
the network to learn a notion of distance from classification boundaries (Lemma B.3). Indeed, when
the network is trained without input noise, it does not learn a 2D continuous attractor (Figure S11e).
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Figure 4: RNN and GPT representations and relation to latent variables. (a) Hidden layer
activations of RNN in Figure 2b (left) and GPT-2 transformer (right), while systematically varying
the latent factors x1 and x2 from -0.5 to 0.5. Activations are plotted in 8*8 grids, one for each value
of x1 and x2. Each grid contains firing rates for a total of 64 neurons for the RNN, and activations for
8 units for each of the 8 heads from the final embedding of the sequence for GPT-2. (b) Correlation
coefficient of activations for both models with x1 and x2, respectively.

Finally, we examined RNN and GPT unit activations, and their relation to the latent variables. In
Figure 4a we plot activations for all 64 units for both networks, while regularly sampling x1 and
x2. RNNs representations are sparse, with only ∼ 10% of neurons active at any time, which is in
line with sparse coding in the brain (see Appendix A.12 for quantification of sparsity as a function
of Ntask, D and RNN architecture). In addition, the average firing rate is ∼ 1 spike/s, which is sur-
prisingly close to cortical values. Transformers on the other hand, do not have these features, shared
by RNNs and their biological counterparts. Furthermore, we find that both networks display mixed
selectivity, i.e. neurons are tuned to both variables, which is a known property of cortical neurons
(Rigotti et al., 2013) (Figure 4b). This suggests that metrics of disentanglement that assume that
individual neurons encode distinct factors of variation (Higgins et al., 2017; Kim & Mnih, 2018;
Chen et al., 2018; Hsu et al., 2023; Eastwood et al., 2022) might be insufficient in detecting disen-
tanglement in networks that generalize well. While recent work incorporates such axis-alignment in
the definition of disentaglement, our work along with others (Johnston & Fusi, 2023) showcases the
advantages of approaching disentanglement from a mixed representations perspective. Importantly,
these properties were not imposed during training, nor was there any parameter fine tuning involved;
they emerged from task and optimization objectives.

5.3 EXPERIMENTS CONFIRM AND EXTEND THEORETICAL PREDICTIONS

Here we expore the relation between the theory in Section 3 and Appendix B and experiments in
Section 5 in more depth. First, we wondered why performance saturates in our networks to a high
yet non-1 r2. The central limit theorem predicts that the estimate of the ground truth x∗ in any
optimal multi-task classifier becomes more accurate with

√
t, providing a theoretical maximum r2

given trial duration T (Appendix A.4). Since the RNNs trained on the free reaction-time (free RT)
task in Appendix A.11 are required to output their decision confidence at any time in the trial,
we can compute OOD r2 of free RT network predictions at any timepoint t, and compare that to
the theoretical prediction. Figure 5a shows that indeed the highest RNN r2 falls in the vicinity of
or just short of the theoretical maximum. This indicates that RNNs trained with BPTT on these
tasks behave like near-optimal multi-task classifiers that create increasingly accurate predictions
with time, tightening the relation between our theoretical and experimental results.

An important prediction of our theory is that to learn abstract representations, Ntask should exceed
D. To test this, we increase D (adding more inputs to Figure 2b), while varying Ntask. Sampling
classification hyperplanes homogeneously (similar to Figure 2a, center) in high-dimensional spaces
is non-trivial; therefore we resort to randomly sampling them. Figure 5b shows OOD generalization
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Figure 5: Experiments confirm theoretical predictions. (a) OOD r2 for free RT RNN required
to report its estimate of x∗ at different times (see Appendix A.11 for details, Ntask = 24, D = 2).
Maximum network r2 matches optimal multi-task classifier theory predictions (Equation 7 in Ap-
pendix A.4). (b) OOD r2 as a function of input dimensionality D and number of tasks Ntask. Good
values of r2 are obtained when Ntask ≥ D, especially for GPT models, confirming our theoretical
results. (c) Increasing amounts of noise in pretraining results in better OOD generalization (D = 2).

performance for various combinations of D and Ntask. We observe that performance is bad when the
Ntask < D, but it increases when Ntask ≥ D. For RNNs, this increase is abrupt for smaller D and
more gradual for higher, which is in line with remarks by Johnston & Fusi (2023) that it is easier
to learn abstract representations when D is high. Transformers on the other hand display higher
generalization performance than RNNs, and always perform almost perfectly when Ntask ≥ D,
demonstrating their superior performance in learning abstract representations. Looking at the angles
between latents for higher D (Figure S12), we find that transformers have excellent disentanglement
as long as Ntask ≥ D, which might explain their superior generalization performance to RNNs for
lower Ntask. These results, together with Figure 3c demonstrate the superior ability of transformers
in disentangling latent factors. Overall, our findings confirm our theory that abstract representations
emerge when Ntask ≥ D, and even go beyond to suggest that disentangled representations emerge
earlier than the theoretical condition Ntask ≫ D, as long as the architecture is appropriate. These
results are remarkable, especially for high D, because they go against our intuition that Ntask should
scale exponentially with D to fill up the space adequately; instead it need only scale linearly.

Importance of noise for generalization Our theory and experiments provide insight on the im-
portance of noise for developing efficient, abstract representations (Figure S11e). The closer to a
classification boundary the ground truth x∗ is, the more likely noise will cross over the boundary.
Since, as our theory shows, any optimal multi-task classifier has to estimate Pr{yi(x∗) = 1}, and
said probability directly relates to the actual distance from the boundary, it follows that noise allows
the model to learn distances from boundaries (Lemma B.3)), leading to efficient localization. We
reasoned that additional noise might be even more beneficial, as it would allow more accurate esti-
mation of Pr{yi(x∗) = 1}, especially when x∗ is far from the boundary. To test this, we increase
noise strength σ when pretraining RNNs, while testing with the same σ = 0.2. Indeed, increasing
amounts of noise consistently result in better OOD generalization (Figure 5c). This benefit comes
for smaller numbers of tasks, allowing us to consider less supervised tasks (e.g. 3), train on them
with more noise, and achieve the same performance as more tasks (e.g. 12). So even though net-
works with more noise perform worse in pretraining (low 90%s classification accuracy), they learn
more abstract representations. These findings are highly non-trivial, and have informed our thinking
about generalization and inherent variability of the underlying latent factors.

6 DISCUSSION

In this work, we proved that disentangled, generalizable representations must emerge in agents
optimally solving multi-task evidence accumulation tasks canonical in the neuroscience literature.
We also conducted experiments in a suite of autoregressive models (RNNs, LSTMs, transformers)
which confirmed all of the main theoretical predictions. A key takeaway is that transformers more
readily disentangle representations, which may explain their unique world understanding abilities.
Here we discuss the broader impact of this work for representation learning and neuroscience alike.
Limitations of this study and how it can be extended in the future are discussed in Appendix A.15.
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6.1 IMPLICATIONS FOR REPRESENTATION LEARNING

Topology-preserving representation learning Our work has profound implications for learning
representations that inherit the topological structure of the world. We prove this naturally happens as
long as there are enough tasks to uniquely identify the location of x∗. Crucially, the constraints from
different tasks should be placed simultaneously on the representation, which explains why represen-
tations from context-dependent computation (Mante et al., 2013) are typically not disentangled.

Representational alignment across individuals Our results provide a new perspective on the
Platonic representation hypothesis (Huh et al., 2024), which suggests that the convergence in deep
neural network representations is driven by a shared statistical model of reality, like Plato’s concept
of an ideal “Platonic” reality. Theorem 3.1 suggests that the key factor driving convergence is the
diversity and comprehensiveness of the tasks being learned. As long as individuals are faced with
similar day-to-day tasks that collectively span the space of the underlying data representation, con-
vergence to a shared, reality-aligned representation can occur. This could explain why for example
modern LLMs come to encode high-level, human-interpretable concepts (Templeton et al., 2024).

Manifold hypothesis While our problem is framed in terms of arbitrary injective observation map
f , the formulation encompasses many scenarios relevant to the manifold hypothesis (Fefferman
et al., 2013). The function f can represent a smooth manifold embedded in a high dimensional
space, directly modelling the manifold hypothesis of deep learning. In neuroscience, f could be
a non-linear encoding of stimuli in a neural population response, connecting our work to neural
manifold research (Langdon et al., 2023). By developing and testing theoretical guarantees for
the emergence of disentangled representations in this multi-task problem formulation, we provide
insight on how neural networks can inherently discover and linearize low-dimensional manifolds
within high-dimensional, non-linear observations, enhancing our understanding of how complex
data structures are captured and represented in deep learning models and biological systems alike.

Interplay between number of tasks and fine-grainness of representations Finally, the theorem
and experimental results provided here are not a one-way-street from dimensionality D of the latents
to how many tasks Ntask are required to uncover them. Instead, there is a fundamental interplay
between richness of tasks performed and detail of the representation learned. In a high-dimensional
world, the richness of the tasks at hand directly affects the dimensionality D of the latents that can
be extracted, allowing for ”ground truths” x∗ at different levels of granularity to be explored. The
richer the label information available, the more fine-grained the resulting world model will be.

6.2 IMPLICATIONS FOR NEUROSCIENCE

The brain encodes variables of interest in a disentangled format, in processes as disparate as memory
(Boyle et al., 2022), emotion (Saez et al., 2015), and decision making (Bongioanni et al., 2021).
Furthermore, performance in tasks has been shown to degrade once abstract representations collapse
(Saez et al., 2015), supporting their role in guiding generalizable behavior. Given our findings, and
that the cortical architecture is uniquely suited for parallel processing (Hawkins et al., 2019), the
cortex is a prime candidate area for the construction of disentangled world models. Another such
area is the thalamus; it is posited that thalamocortical loops operate in parallel, and combined with
internal state-dependent mechanisms lead to state-dependent action selection (e.g. prioritizing water
when thirsty), while evidence integration occurs in corticostriatal circuits (Rubin et al., 2020). The
representations discovered here (continuous attractors, CANs) have been widely found in the brain
when solving similar tasks, highlighting their role as a general computational substrate for cognitive
functions in the brain (for relations of our work to the neuroscience literature, see Appendix A.13).
Notably, the receipt of rich supervisory signals from the environment is not a requirement for our
setting, as it can leverage the output of previously learned tasks (see Appendix A.14 on the biological
plausibility of multi-task learning). The algorithmic efficiency of multi-task learning compared to
alternatives (“context-dependent computation”, Mante et al. (2013), Appendix A.8), makes us think
that it is no coincidence that the cortex can support parallel processing; all the pieces are there, and
we feel that the brain has to leverage this feature to construct faithful models of the world, as it does.
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REPRODUCIBILITY STATEMENT

All code used to generate the results is provided with the submission, and will be made publicly
available upon acceptance. The experiments are seeded, ensuring exact reproducibility of results.
Five networks have been trained for every configuration shown, to provide sufficient statistics to
support our conclusions. To ensure full clarity of the theoretical results in the main text, a full proof
is provided in Appendix B.
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A SUPPLEMENTARY MATERIALS

A.1 DEFINITIONS

In the main text we used the terms ”abstractness” and ”disentanglement”. Since there exists some
ambivalence about their meaning in the literature, we would like to strictly define them here. We
will be using definitions adapted from Ostojic & Fusi (2024):

• Abstract representation of x1, . . . , xn represents each xi linearly and approximately mu-
tually orthogonally. Thus, abstractness ensures a simple linear map can decode each xi

regardless of variation in xj ̸=i.
• Disentangled representations of x1, . . . , xn encode each xi orthogonally, without the ne-

cessity of linearity.

Note that under this definition, axis-alignment is not a requirement for disentanglement (also see
Higgins et al. (2018)). Our work suggests that the computer science and neuroscience communities
should adopt this broader definition of disentanglement, because otherwise we might be missing
cases where the factors are not axis-aligned, but they are still orthogonal and can still be isolated
by a linear decoder. Our argument is that there is nothing special about individual factors being
encoded by individual neurons. Rather, we think that allowing for mixed representations within the
definition of disentanglement leads to a more holistic view of disentanglement. A contribution of
this work, along with others (Johnston & Fusi, 2023), is to bring this argument to the forefront.

A.2 QUANTIFICATION OF GENERALIZATION PERFORMANCE

To assess OOD generalization performance, we keep the trained networks fixed and train a linear
decoder A to predict the ground truth x∗ from network activity at the end of the trial. We train the
decoder in 3 out of 4 quadrants and test OOD in the remaining quadrant, repeating this process 5
times for each quadrant, which results in a total of 20 OOD r2 values for each network. To account
for randomness in initialization and sythetic generation of datasets, we train 5 networks for each
combination of number of tasks Ntask and dimensionality D, resulting in a total of 100 OOD r2

values for each pair of (Ntask, D). We report the 25, 50 (median) and 75 percentiles of those values
in Figure 3a,b and throughout the text. For ID generalization performance, we train on all quadrants
and test in one quadrant at a time. For input dimensionality D > 2, we keep the same logic by
choosing every 4-th quadrant to be sampled only in testing, repeating the process for every mod 4
group of quadrants.

A.3 ESTIMATION OF ANGLES BETWEEN LATENT FACTORS

To estimate the angles between latent factors in the representation, we obtain the normal vectors of
the decoders A for each of the latents, and compute pairwise angles for all of them. To account for
variability in the decoder fits, we repeat the decoder fit 5 times for each out-of-distribution region
(see Appendix A.2 for details). We also repeat this process across 5 trained networks for each
combination of (Ntask, D), and report the 25, 50 (median) and 75 percentiles of all values for each
(Ntask, D) combination in Figure 3c and Figure S12.

A.4 DERIVATION OF THEORETICAL r2 FOR OPTIMAL MULTI-TASK CLASSIFIERS

Here we derive the theoretical r2 for the estimation of ground truth x∗ from noisy data for a discrete
time optimal multi-task classifier at time t. r2 is defined as:

r2 = 1− MSE(x∗, µ)

Var(x∗)
(6)

where µ, the mean of X(1), . . . ,X(t), is the prediction of the multi-task classifier (see Ap-
pendix B). The optimal estimator of x∗ given observations X(1), . . . ,X(t) is denoted X̂(t) ∼
N (µ(t), t−1σ2ID) where σ is the noise strength. Note that µ(t) → x∗ as t → ∞ by the central
limit theorem, and µ(t) is the optimal estimator of x∗ given Gaussian-noised observations. Since
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the dimensions in both noise and ground truth are independent, we can focus on one dimension at a
time i.e.:

r2 = 1− MSE(x∗
i , µi(t))

Var(x∗
i )

= 1− E[(x∗
i − x∗

i +N (0, t−1σ2))2]

V ar(x∗
i )

= 1− σ2

t V ar(x∗
i )
. (7)

Remembering that x∗
i ∼ Uniform(−0.5, 0.5) it follows that V ar(x∗

i ) =
2
30.5

3, and replacing σ =

0.2 from Table S1 we arrive to r2 = 1− 0.48
T for given trial duration T which we compare to RNN

OOD generalization performance in Figure 5a.

A.5 MORE NONLINEAR ENCODING

Figure S1: OOD generaliza-
tion is robust to choice of en-
coder nonlinearity.

In the main text we used ReLU nonlinearities for the encoder f .
Here we extend our findings to more nonlinear observation maps
which are likely to be encountered in the real world, like e.g. ones
with power-law nonlinearities. This is relevant, since recent work
showed that the choice of activation function influences the geom-
etry of representations (Alleman et al., 2024). Figure S1 shows that
replacing ReLUs in the encoder with a quadratic nonlinearity results
in virtually identical OOD generalization performance compared to
Figure 3a. Therefore we conclude that our setting is robust to the
choice of encoder nonlinearity, even when the nonlinearity is not
injective, going beyond our theoretical proofs (Appendix B.3).

A.6 GPT-2 EXPERIMENTS

We train GPT-2 causal transformers with dmodel = Nneu = 64, Nlayer = 1, Nhead = 8 in
the multi-task classification task of the main text. The networks receive continuous, noisy and
non-linearly mapped inputs f(X(1)), . . . , f(X(t)), and should output multi-task classifications
y(x∗) ∈ {0, 1}Ntask . The output of the network is Ŷ(t) := g(Z(t)), where Z(t) is the last em-
bedding of the sequence in the last layer and g = sigmoid. Since the input is continuous, we omit
the tokenization and embedding steps, and project the input directly to the hidden state with a linear
map. Furthermore, since the inputs are IID, we do not include positional encodings. The networks
are trained with binary cross-entropy loss for Nbatch = 2 ∗ 104 batches, while the rest of the param-
eters are identical to the fixed RT networks of the main text (Table S1).

A.7 FINDING FIXED POINTS AND LINEARIZATION OF DYNAMICS

To find approximate fixed points of RNN dynamics after training, we follow a standard procedure
outlined in Sussillo & Barak (2013). Specifically, we keep network weights fixed, provide no inputs
to the network, and instead optimize over hidden activity. Specifically, we penalize any changes in
the hidden activity, motivating the network to find stable states of the dynamics in the absence of
input, i.e. attractors of the dynamics. This process finds all states of accumulated evidence that can
be stored in this network as short-term memory. Network dynamics could then leverage these states
to maintain and update the internal representation of the ground truth x∗ on a single trial level, and
drive downstream decisions.

Then for every approximate fixed point zf , we linearize RNN dynamics around it and estimate the
eigenmodes which describe how the system behaves in a small region δz around zf . Specifically,
following Sussillo & Barak (2013); Mante et al. (2013) we take the difference system δz(t+ t0) =
z(t+ t0)− z(t0) and linearize it, i.e.

δ̇z = F′(zf ) δz (8)

where ż = F(z) is the function describing the RNN dynamics and M ≡ F′(zf ) is its Jacobian
at zf . To estimate F′(zf ), we let network dynamics run in the absence of inputs for one time
step ∆t starting from zf , i.e. δz(∆t) = z(∆t) − zf , and autodifferentiate δz(∆t). We then
perform eigendecomposition of M and report the eigenvalues around each approximate fixed point.
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Eigenvalues near 0 indicate that the difference system δz(t) = z(t)− zf changes slowly over time,
i.e. they correspond to ”slow” dimensions in network dynamics which can integrate inputs and
maintain them over time (continuous attractors) (Amari, 1977; Mante et al., 2013).

A.8 STATE-SPACE EFFICIENCY OF CONTEXT-DEPENDENT COMPUTATION

The workhorse model for computational neuroscience has been context-dependent computation,
where tasks are carried out one at a time and task identity is cued to the RNN by a one-hot vector
Mante et al. (2013). However, this approach can be algorithmically inefficient, because as we show
here it scales linearly with the number of tasks Ntask, and exponentially with input dimensionality D.
This is because context-dependent computation utilizes different parts of the state space for different
tasks, and the resulting representations collapse to what is minimally required for each task (also see
(Mante et al., 2013; Yang & Wang, 2020)). This can be detrimental for brains, which need to pack
a lot of computation within a large yet limited neural substrate. In contrast, abstract representations
are general, compact (Ma et al., 2022), can be used for any downstream task involving the same
variables, scale linearly with D, and as we show readily emerge from relatively simple tasks.

To compare context-dependent decision making, where one task is performed at a time (Mante et al.,
2013), to multitasking, in terms of state-space usage efficiency, we train RNNs to perform context-
dependent decisions on the same tasks encountered in the main text. Compared to the network in the
main text (Figure 2b), the RNN now also receives a one-hot task rule vector indicating the current
task, and it outputs the decision for that task only (Figure S2b). We have also omitted the non-linear
encoder, making the tasks easier. We train the RNN for two tasks, one task at a time, in interleaved
batches (Figure S2a). In one task, the RNN is required to decide which stream has more evidence,
and at the other whether the sum of evidence across streams exceeds a certain decision threshold
(here 0).

Figure S2: Representations in an RNN trained in context-dependent decision making. (a)
We trained RNNs for two classification tasks: two-alternative forced choice (where the decision
boundary is the x1 = x2 line) and evidence integration (corresponding to the x1 = −x2 line). Each
task corresponds to a different one-hot task rule vector. (b) Network architecture. In addition to
the inputs in Figure 2b, the network also a one-hot vector indicating the current task. (c), Top 3
PCs of RNN activity example trials (40 in total). The task rule biases the network towards learning
separate solutions in different parts of the state space for different tasks, in the form of separate line
attractors; red x’s for two-alternative forced choice and orange x’s for evidence integration.

We find that in this setting the network is not incentivized to learn abstract representations. Instead
a separate line attractor is present in the dynamics for each task (red and orange x’s in Figure S2c);
one of them is presumably tracking the difference of evidence (similar to Yang & Wang (2020) but
for independent evidence streams) and the other the sum of evidence. That is to say, the task rule
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biases the network to learn different computations in separate regions of state space, as in Mante
et al. (2013). As a result, the 2D latent space has collapsed and cannot be decoded from network
activity; therefore generalization to any task that involves these two variables is not possible.

It follows that the network can be inefficient in terms of state space usage, because instead of com-
pressing all of its activity around the same region, it spreads it across multiple regions, one for each
task, which scales badly (linearly with the number of tasks Ntask and exponentially with input di-
mensionality D). To demonstrate the latter, imagine a family of tasks with classification boundaries
of the form ⊕x1⊕x2⊕ ..⊕xD = 0, where ⊕ ∈ {+1,−1, 0} is an operator indicating contribution
with a positive sign, negative sign or absence of contribution for a factor to a specific task, respec-
tively. As just shown, each one of this tasks will require its own line attractor, resulting in a total of
3D line attractors lying in separate regions of the state space, just for this simple family of tasks. As
mentioned in the main text, such inefficiency can be detrimental for brains, which need to pack a
lot of computation within a large yet limited neural substrate. Compare that to multitasking, which
builds representations that can serve any task that involves the same latent variables, scaling linearly
with D (as we saw that we only need Ntask ≥ D to learn them). Note that context-dependent compu-
tation can still be efficient, if tasks have a compositional structure where the solution for one task is
part of the solution for another (Yang et al., 2019; Driscoll et al., 2022); in this case, representations
developed for the former can act as a scaffold for representations for the latter.

Overall, we believe that multitasking may present a paradigm swift for generalizable representation
learning in biological and artificial systems alike. That is not to say that context-dependent rep-
resentations are not useful; they are great at leveraging the compositional structure of tasks (Yang
et al., 2019; Driscoll et al., 2022), but tend to overfit to the specifics of the task, while multitask
representations serve as world models applicable to various scenarios. Both types of representations
are likely to be found in the brain. One possibility is that context-dependent representations may
emerge as a first quick solution to a task, while disentangled representations come about with more
experience or when more tasks are performed over time to support better generalization.

A.9 ROBUSTNESS TO OTHER NOISE DISTRIBUTIONS AND CORRELATED INPUTS

We here show that our setting is robust to Gaussian anisotropic and autocorrelated noise, and other
asymmetric distributions of noise (Gumbel) whose CDF no longer matches the sigmoid functions in
shape, with almost no drop in performance, and correlated inputs. This demonstrates that abstract
representations are also learned outside of the specific assumptions made by our theory.

Starting from anisotropic noise, we observe that doubling the standard deviation of noise across one
dimension (σ = 0.4) does not result in a reduction in OOD generalization performance (median
r2 = 0.96 for Ntask = 24, D = 2). This is in line with our theory that can be extended to cover
anisotropic noise (Lemma B.11). Non-IID noise should not be a problem either, since we are training
our network for many samples and the effects of correlations will cancel out over long ensembles.
Indeed, we find that including autocorrelated AR(1) noise with an AR coefficient of 0.7 results in
only minor reduction in performance (median r2 = 0.95 for Ntask = 24, D = 2).

We were also curious to see the impact of correlated inputs. A problem with high correlations is
that they render parts of the state space virtually invisible to the network (Figure S3a). Surprisingly,
OOD generalization performance is very weakly affected by input correlations, even though the state
space is sampled uniformly in test (Figure S3b). The behavior is highly non-linear: performance is
great until ρ = 0.97, but for perfectly correlated inputs (ρ = 1), the performance drop is sharp.

Finally, our theory pointed out sigmoid functions as a choice for activation function because of
their close resemblance to the Gaussian CDF, resulting in the best OOD r2. Still we find that for
an asymmetric noise distribution (Gumbel) whose CDF does not match sigmoid functions well,
there is only a slight drop in performance (median r2 = 0.95 from 0.96). Therefore the conditions
for the activation function/CDF should be quite lax; any monotonic bijective function should work
with small performance drop. This drop in performance is because the representation would be
“stretched out” and “compressed” in a non-linear manner in regions where there is discrepancy
between the noise CDF and the activation function. But this nonlinear squishing (determined by the
term Φ−1(g(Z(t)))) would be geometrically inoffensive — no cutting or gluing together would be
required to map from Z(t) to a linear representation of µ(t). As a result, the representations would
remain approximately linearly decodable.
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Figure S3: Disentanglement and factor correlations. (a) We introduce strong correlations in
the latent factors, rendering parts of the state space virtually invisible to the network during pre-
training (trained for a total of 24 classification tasks). (b) Despite that, generalization performance
is excellent for correlations very close to 1. Once the factors are perfectly correlated, performance
drops significantly. This implies that the network can learn an abstract representation from correlated
inputs, as long as there is some signal about the factors independently. This finding goes beyond
(Johnston & Fusi, 2023) to show that the multi-task learning setting allows OOD generalization
when the distribution during training the RNN itself is vastly different that the one during testing.

A.10 NONLINEAR CLASSIFICATION BOUNDARIES AND INTERLEAVED LEARNING

In the main text we trained networks on linear classification boundaries. The tasks are still non-
linear, since the encoder renders these boundaries non-linear to the network. However, there are
cases where the latent factors themselves might need to be combined non-linearly, to make decisions.
For instance, if the two factors represent the amount and probability of reward respectively, an agent
needs to multiply the two and decide whether the expected value exceeds a certain (metabolic) cost
γ of performing an action to obtain said reward. Figure S4a shows the classification lines for the
multiplicative task, where the network should decide whether the ground truth x∗ lies above or below
the curve x1 x2 = γ, for multiple values of γ. This family of tasks is not covered by Theorem B.6,
because they violate the injectivity condition. Hence, we wondered how the representation would
look like if the network was trained on both the linear and multiplicative boundaries, as animals do.

Figure S4: Interleaved learning of linear and non-linear boundaries. (a) Classification lines
for the multiplicative task. There is a total of 48 classification lines, 12 per quadrant. (b) The
network learns an abstract representation when trained for the linear and multiplicative boundaries
in interleaved batches.

For that we perform interleaved training of both tasks (i.e. train in batches sampled from one of the
tasks at a time), a setting where neural networks excel at, compared to humans who excel at blocked
training, where tasks are learned sequentially (but see Flesch et al. (2022)). Figure S4b shows that the
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network still learns an abstract, two-dimensional continuous attractor. OOD generalization for this
network is excellent, and almost identical to ID performance (median r2 = 0.94, 0.97 respectively).
Overall, we conclude that our framework extends to interleaved learning of a mixture of linear and
nonlinear boundaries, which better reflects the challenges encountered by agents in the real world.
Note that during interleaved training, linear and non-linear tasks are not performed simultaneously;
yet they are in immediate succession which can also place pressure to the network to gradually learn
representations that satisfy all tasks. The relation between multi-task and interleaved learning is a
promising topic for future research.

A.11 ABSTRACT REPRESENTATIONS ARE LEARNED FOR A FREE REACTION TIME,
INTEGRATE TO BOUND TASK

In the main text we trained networks to produce a response at the end of the trial. However, in many
situations agents are free to make a decision whenever they are certain enough. Therefore, we here
seek to extend our framework to free reaction time (RT) decisions. A canonical model accounting
for choices and reaction times in humans and animals is the drift-diffusion model (Krajbich et al.,
2010; Brunton et al., 2013). It is composed of an accumulator that integrates noisy evidence over
time, until a certain amount of certainty, represented by a bound, is reached, triggering a decision.
In the linear classification task setting, the accumulated amount of evidence at time t for a line with
slope α, Aα(t) is given by:

Aα(t) = Aα(t− 1) +X1(t)− αX2(t) (9)

Figure S5: Free reaction time task. (a) Data generating process. Every classification line from
Figure 2a now corresponds to an accumulator (see corresponding colors), and the desired output for
the RNN is the accumulator values for the entire trial. The accumulator is quantized to integer values
between ±5. (b) Representation for RNN trained on free reaction time task. The network learns a
two-dimensional continuous attractor, similar to Figure 3d. A 3D rotating figure to better visualize
this representation is provided in the Supplementary Material. (c) OOD generalization performance
for the free reaction time (RT) task. Free RT outperforms fixed RT for a small number of tasks.

Intuitively, Aα(t) reflects the amount of confidence at time t that the ground truth x∗ lies above or
below the classification line with slope α. Essentially, the network has to explicitly report distance
from the classification lines, not just in which side of the line x∗ lies for that trial. We set the decision
bound to ±5, and plot the accumulators Aα for all lines in Figure 2a. Note that once the bound is
reached a decision is effectively made and Aα is kept constant. Also, instead of using continuous
values, we quantize Aα, because it is going to be used as target signal to train the network, and we
do not want to introduce a strong inductive bias towards integrating the evidence streams.

We then train the RNN to reproduce confidence estimates from Figure S5a for the entire trial. Com-
pared to previous experiments, the fixation input is no longer available to determine when to produce
a decision. Instead, decisions evolve dynamically throughout the trial. We also use a MSE loss,
change the activation function to g = 5 tanh, and the Adam learning rate η0 = 3 ∗ 10−3, but all
other parameters remain the same as in the main text. To have a closer correspondence to the free
RT experiments here, we also train the fixed RT task from the main text with MSE loss, symmet-
ric labels y(x∗) ∈ {−1,+1}Ntask and output non-linearity g = tanh. We find that the change of
objective and loss only has minor effects on generalization performance.
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Figure S5b shows that in this setting the network still learns a two-dimensional continuous attrac-
tor of the latent space. Furthermore, the free RT outperforms the fixed RT network from the main
text (Figure S5c) for a small number of tasks, since it is explicitly required to report distance from
the classification lines. However, as our theory shows (Lemma B.3)) the fixed RT network is also
implicitly reporting distance from the boundaries, when behaving like an optimal multi-task classi-
fier, which explains the similar performance for a larger number of tasks. Overall, we showed that
our setting accounts for naturalistic free RT decisions, and provides theoretical justification for the
importance of confidence signals in the brain (Rutishauser et al., 2018; Masset et al., 2020).

A.12 QUANTIFICATION OF SPARSITY

In the main text, we observed that RNN representations are sparse. We here seek to more precisely
quantify the sparsity in these networks, and investigate how it is affected by the number of tasks
Ntask, latent dimensionality D, and specific recurrent architecture. To do so, we sample n = 1000
ground truth vectors x∗ randomly for every network, and compute the sparseness (Vinje & Gallant,
2000) of a neuron in the hidden layer as:

S =

1−
(∑

(zi/n)
2∑

(z2
i /n)

)
1− 1

n

∗ 100% (10)

where zi is the steady-state response of the neuron to ground-truth stimulus i. Sparseness ranges
from 0 to 100%, with greater sparseness indicating greater selectivity of the neuron to stimuli. Then,
the sparsity of a network is given as the average of the sparseness of all its neurons.

Figure S6: Quantification of sparsity as a function of Ntask, D and recurrent architecture
choice. (a) Sparsity of a recurrent network as a function of number of tasks and network archi-
tecture. Five networks trained for each network configuration. Greater levels of sparsity indicate
that the network activations are more sparse. (b) Sparsity of RNNs as a function of number of tasks
and latent dimensionality D. Five network are trained for each combination of (Ntask, D).

Figure S6a shows that RNNs and non-leaky RNNs are very sparse, with sparsity values around
90% for different values of Ntask, supporting the claim in the main text. LSTMs on the other hand,
which are less brain-like4, have lower sparsity values, although interestingly sparsity increases with
Ntask. Notably, we did not do anything to promote sparsity (e.g. regularization) in these networks.
Therefore we conclude that sparsity naturally emerges from the optimization objective of multitask
learning, particularly in architectures that are more brain-like.

Next we wondered how latent space dimensionality D would affect sparsity in our trained RNNs.
Figure S6b shows that networks remain very sparse for the whole range of dimensionality D tested
in the main text, with sparsity values above 75%. Greater dimensionality results in less sparsity on
average, which is expected since Nneu = 64 in our networks, therefore a significant amount of their
capacity must be used as D increases. This effect plays in only as Ntask increases, as networks will

4LSTMs architecturally enforce intricate, high-capacity multiplicative gating mechanisms, while in biologi-
cal neural networks gating has to be learned. For other aspects of biological implausibility of LSTMs compared
to RNNs, see Appendix B in (Soo et al., 2023).
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only learn to disentangle the input dimensions that are spanned by the tasks, as our theory predicts.
Overall, there seems to be a proportional relationship between the number of active neurons and
dimensionality D, as long as there are enough tasks to uncover the D latents.

A.13 RELATION TO NEUROSCIENCE LITERATURE

An ongoing debate in the brain sciences is whether to solve tasks the brain learns abstracts represen-
tations, or simple input-output mappings. Here we show that training RNNs to multitask results in
shared, disentangled representations of the latent variables, in the form of continuous attractors. In
this multitask setting, one task acts as a regularizer for the others, by not letting the representation
collapse, or overfit, to specific tasks (Zhang & Yang, 2017).

Our findings directly link to two important neuroscientific findings: spatial cognition and value-
based decision-making. First, the tasks here bear close resemblance to path-integration, i.e. the
ability of animals to navigate space only relying on their proprioceptive sense of linear and angular
velocity (Mittelstaedt & Mittelstaedt, 1980; Burak & Fiete, 2009; Vafidis et al., 2022). In path-
integration animals integrate velocity signals to get location, while here we integrate noisy evidence
to get rid of the noise. In path-integration, networks have to explicitly report distances, while in our
setting distances are estimated implicitly (Lemma B.3)). We learn abstract representations in the
form of a 2D ”sheet” continuous attractor, while the computational substrate for path integration is
a 2D toroidal attractor (Gardner et al., 2022; Sorscher et al., 2023) – not an abstract representation.
The conditions under which a 2D sheet vs. toroidal continuous attractor is learned is a potential
area of future research. Second, decision making experiments in monkeys result in a 2D abstract
representation in the medial frontal cortex, which supports novel inferential decisions (Bongioanni
et al., 2021). Likewise, context-dependent decision-making experiments in humans also resulted in
orthogonal, abstract representations (Flesch et al., 2022).

A.14 BIOLOGICAL PLAUSIBILITY OF MULTI-TASK LEARNING

While our theory stems from parallel processing, i.e. multi-task learning, it is not contingent upon
the parallel execution of multiple tasks, i.e. multitasking, or the receipt of rich supervisory feedback
in parallel. Behaviorally, the agent need only perform one action, the one most appropriate to its
current internal state (e.g. its level of thirst vs. hunger might control the slope of the decision
boundary in the 2D latent space of water & food). What we posit is that tasks that have been
performed by the agent before and rely on the same input are still resolved somewhere in the brain,
by the brain circuits (e.g. cortical columns Hawkins et al. (2019)) previously responsible for them,
instead of the entire decision-making brain area focusing only on the current task (Mante et al.,
2013). Therefore, the output of these tasks is still placing pressure on the representation, even
though they are not actively driving behavior. In other words, our theory assumes competence at
Ntask tasks, independently of when and how that competence was achieved. We feel that this is a
more natural way of thinking about how the brain manages different tasks, with older tasks still
leaving traces somewhere in the brain (Losey et al., 2024); after all biological agents are remarkable
because they achieve high performance on many tasks. This theory is also closely related to the
widely observed phenomenon of memory replay (Foster & Wilson, 2006), or mental simulation of
counterfactuals (Jensen et al., 2024). A future direction to further enhance the biological relevance
of our work would be to investigate the relation between multi-task learning and slow, interleaved
learning (see Appendix A.10).

A.15 LIMITATIONS

A limitation of the present work is that factorization is assumed. Yet not all problems are factoriz-
able, or should be factorized. For instance, a more coarse-grained understanding of the world, that
doesn’t disentangle all factors, might be more suitable in many cases, and that might be reflected
in the nature of the tasks. Furthermore, we focus on canonical cognitive neuroscience tasks which
are somewhat removed from standard ML benchmarks. Normally, disentanglement methods would
be tested against a benchmark such as dSprites (Matthey et al., 2017); however to the best of our
knowledge no such benchmark exists for sequential tasks where evidence has to be aggregated over
time. Future work could endeavor to apply our setting to richer tasks, like extracting latent item
attributes from item embeddings when sequential decisions are made in online retailer settings.
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B THEORETICAL DERIVATIONS

Here we prove our main theoretical result outlined in Section 3.

Notation: lower case variables denote scalars (e.g., x), upper case variables denote random
variables (e.g., X), and boldfaced variables denote vector quantities (e.g., x,X). We denote the
D ×D identity matrix as ID.

Figure S7: Bayesian graphical model framework representing our theoretical framework for multi-
task classification. The agent with latent state Z(t) estimates the ground truth decision output
y(x∗) ∈ {0, 1}Ntask from noisy observations X(t) transformed by injective observation map f .
We prove that latent state Z(t) must encode an optimal, linearly decodable estimate of the de-noised
environment state x∗ when the decision boundary normal vectors {ci}Ntask

i=1 span RD.

Variable Glossary:

• x∗ ∈ RD : Ground truth (un-noised) input variable of dimension D.

• X(t) ∼ x∗ + σN (0, ID) are i.i.d. noisy measurements of x∗, where

– σ is the amount of equivariant Gaussian noise, and
– t is the discrete time index within a trial.

• f : RD → Z : An injective observation map that transforms the noisy measurements X(t)
before they reach the latent state Z(t) of the optimal estimator. The map f is injective,
meaning that it preserves the uniqueness of the input, i.e., if f(x1) = f(x2), then x1 = x2.
The codomain Z can be any suitable space, such as CM , R∞, or other spaces.

• Ntask is the number of classification tasks,

• {(ci, bi)}Ntask
i=1 are the classification boundary normal vectors and offsets respectively, with

ci ∈ RD and bi ∈ R. We assume each ∥ci∥ = 1.

• (C,b) are a matrix and vector representing each of the Ntask classification tasks where
C ∈ RNtask×D

• y(x∗) ∈ {0, 1}Ntask : Ground truth classification outputs, where each ground truth classifi-
cation yi(x

∗) is given by

yi(x) =

{
1 if c⊤i x > bi
0 otherwise

(11)

• Z(t) : Latent variable of a multi-task classification model, conditional on X(1), . . . ,X(t).

• g : Map from latent state Z(t) to multi-task classification estimates Ŷ(t). For most of our
experiments, readout map g = sigmoid, for instance.
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Figure S8: An overview of the classification process using an RNN with Gaussian noisy observa-
tions. The ground truth x∗ generates the noisy observations {X(1), ...,X(t)}. These observations
are processed by the filter-based model illustrated graphically in Figure S7, maintaining a latent
state Z(t). The latent state Z(t) is then used to produce classification outputs Ŷ1(t) and Ŷ2(t). The-
orem B.6 proves that Z(t) must encode an estimate of x∗, visualized in this figure, shown as X̂∗,
including its mean µ(t), which is the optimal estimator for x∗ given the noisy observations.

• Ŷ(t) := g(Z(t)) ∈ [0, 1]Ntask : Output vector of the multi-task classification model at time
t, where each Ŷi(t) is a Bernoulli random variable estimator, estimating the conditional
probability Pr{yi(x∗) = 1} given the noisy observations (via latent variable Z(t) – see
Equation 12).

• X̂(t) = N (µ(t),Σ(t)) : Optimal estimate of x∗ given measurements X(1), . . . ,X(t),
derived in Lemma B.1.

Problem Statement: We consider optimal estimators of y(x∗) in the multi-classification
paradigm in Equation 12, shown graphically in Figure S7.

x∗ → X(1), . . . ,X(t)
f→ Z(t)

g→ Ŷ(t) (12)

Contribution: We prove in Theorem B.6 (“Optimal Representation Theorem”) that any optimal
estimator of y(x∗) described above will represent an optimal estimate of x∗ in latent state Z(t). We
begin by proving results on optimal estimators in Sections B.1, B.2 with identity observation map
f , developing the linear case of the optimal representation theorem (Theorem B.5) showing that
the latent state Z(t) must encode an estimate of x∗ (visualized in Figure S8). We generalize this
result any injective observation map f in Section B.3 and derive closed-form solutions for extracting
the estimate of x∗ from Z(t). We derive approximation results for g = tanh in Corollary B.8
and g = sigmoid in Corollary B.9 that show the representation of x∗ in Z(t) will be linear-affine
decodable if g is in the sigmoid family of functions.

B.1 SINGLE DECISION BOUNDARY

First, we will derive Ŷ (t) for a single decision boundary with parameters (c, b). We focus on
P (Ŷ (t)|X(1), . . . ,X(t)), reintroducing the latent variable Z(t) later on.

Since y(x∗) is a deterministic function of non-random variable x∗, we will derive the probability
distribution over P (x∗|X(1), . . . ,X(t)) – denoted X̂(t) – to determine Ŷ = y(X̂(t)). 5

5Note that the intermediate computation of X̂(t) does not imply that a system must compute this value to
predict Ŷ , as the full computation of X̂(t) may not be necessary to determine Ŷ (t).
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Lemma B.1. Assuming no prior on x∗, the conditional probability distribution X̂(t) ∼
P (x∗|X(1), . . . ,X(t)) is given by

X̂(t) = N (µ(t),Σ(t)) (13)

where µ(t) = mean(X(1), . . . ,X(t)) and Σ(t) = t−1σ2ID.

Proof. Since X(1), . . . ,X(t) are i.i.d. from a Gaussian distribution with mean x∗ and identity
covariance, the sample mean is known to be distributed normally centered at the ground truth x∗.
We apply the known standard deviation of the underlying distribution (identity covariance scaled by
σ) to arrive at Σ(t) = t−1σ2ID as the variance on the sample mean (derived from the central limit
theorem).

We can use estimator X̂(t) to construct Ŷ(t) by expanding Ŷ(t) = y(X̂(t)) via Equation 11.

In essence, we are interested in the amount of the probability density of X̂ that lies on each side of
the decision boundary. Deriving this probability is simplified by the fact that X̂ is isotropic – i.e., it
inherits the spherical covariance of the underlying data generation process (Lemma B.2).

Lemma B.2. X̂(t) = N (µ(t),Σ(t)) with isotropic covariance Σ(t) = t−1σ2ID and mean µ(t) ∈
RD. The probability density of X̂(t) on the positive side of the decision boundary {x : c⊤x > b}
can be expressed as

Ŷ (t) ≜ Pr{c⊤x∗ > b} = Φ(k
√
t/σ) (14)

where Φ is the CDF of the normal distribution and k = c⊤µ(t)− b is the signed projection distance
between the decision boundary and the mean µ(t) of X̂(t).

Proof. Since the X̂(t) is isotropic, the variance on every axis is equal and independent. We may
rotate our coordinate system such that the projection line between the plane and the mean of X̂(t)
aligns with an axis we denote as “axis 0”. The rest of the axes must be orthogonal to the plane. Since
each component of an isotropic Gaussian is independent, the marginal distribution of X̂(t) on axis
0 is a univariate Gaussian with variance t−1σ2 mean at distance k from the boundary. Equation 14
applies the normal distribution CDF Φ to determine the probability mass on the positive side of the
boundary.

Observe that Ŷ (t) in Equation 14 monotonically scales with the signed distance k between the
hyperplane and µ(t) (CDFs are monotonic).

Lemma B.3. Knowledge of time t and optimal classification estimate Ŷ (t) is sufficient to determine
the projection distance k between µ(t) = mean

(
X(1), . . . ,X(t)

)
and the decision boundary (c, b).

Proof. Recall Equation 14 from Lemma B.2. We may solve for projection distance k separating the
decision boundary and the mean µ(t) of observations X(1), . . . ,X(t) as

k =
σ√
t
Φ−1(Ŷ (t)) (15)

Since Φ is the CDF of the normal distribution, and the normal distribution is not zero except at ±∞,
the inverse Φ−1 is well-defined.

Note that non-zero noise is required for Lemma B.3 to hold, as zero noise would yield zero proba-
bility mass on one side of each decision boundary, meaning that no distance information would be
recoverable from Ŷ (t) (and Equation (15) would lead to a 0 · ∞ indeterminacy).
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B.2 TRILATERATION VIA MULTIPLE DECISION BOUNDARIES

To recap Section B.1 : We derived an optimal estimator of x∗ (denoted X̂(t)) based on noisy
i.i.d. measurements X(1), . . . ,X(t) ∼ N (x∗, σ2ID) in Lemma B.1. In Lemma B.2 we derived the
equation for Bernoulli variable estimator Ŷ (t) to estimate a single classification output y(x∗) based
on the same noisy measurements via X̂(t). Finally, we showed in Lemma B.3 that the uncertainty in
Ŷ (t) and the time t is sufficient to determine the projection distance between the decision boundary
and µ(t) = mean(X(1), . . . ,X(t)) via Equation 15.

Let Ŷ(t) denote the vector of classification estimates Ŷ (t) from Equation 15. We now have the
tools to prove our final result via trilateration. Much like distance information from cell towers can
be used to trilaterate6 one’s position, we will leverage Lemma B.3 and use distances from decision
boundaries {(ci, bi)}i∈[Ntask] to constrain the positions.

Theorem B.4 (Trilateration Theorem). If C is full-rank, then Ŷ(t), t, b, and C are sufficient to
reconstruct the exact value of µ(t), the mean of X(1), . . . ,X(t), which is also the optimal estimator
for x∗.

Proof. We may prove this claim by providing an algorithm to reconstruct µ(t) =

mean(X(1), . . . ,X(t)) from Ŷ(t),C, and t. Invoke Lemma B.3 to compute the signed projec-
tion distance between µ(t) and each decision plane (ci, bi). Let k = [k1, . . . , kM ]⊤ where each ki
corresponds to decision boundary ci. Then the mean µ(t) must satisfy

Cµ(t) = k+ b (16)

Thus, for full rank C, we will have a uniquely determined µ(t) value.

Theorem B.5 (Optimal Representation Theorem, Linear Case). Any system that optimally estimates
Ŷ based on noisy measurements {X(1), . . . ,X(t)} must implicitly encode a representation of opti-
mal estimator µ(t) = mean(X(1), . . . ,X(t)) in its latent state Z(t) if decision boundary matrix C
is full rank.

Proof. This follows from the data processing inequality. We begin with the following Markov chain:

x∗ → {X(1), . . . ,X(t)} → Z(t) → Ŷ(t) → µ(t) (17)

Put more simply, we have x∗ → Z(t) → µ(t). Applying the data processing inequality, we obtain

I
(
x∗;Z(t)

)
≥ I
(
x∗;µ(t)

)
(18)

where I(·; ·) denotes the mutual information between two variables.

Since µ(t) is the optimal estimator of x∗ given measurements {X(1), . . . ,X(t)}, I
(
x∗;µ(t)

)
=

H(µ(t)). Therefore I(x∗;Z(t)) ≥ H(µ(t)), implying that I(Z(t);µ(t)) = H(µ(t)). In other
words, Z(t) must contain all the information of µ(t), and µ(t) must be expressible as a deterministic
function of Z(t).

Theorem B.5 boils down to the observation that the confidence associated with each Ŷi in Ŷ(t) are
measures of distance between an implied estimate of x∗ (denoted µ(t)) and classification boundary
i (denoted (ci, b)). Ŷ specifies the position of X̂ = µ via “coordinates” defined by decision
boundary normal vectors c1, . . . , cNtask .

For sub-optimal estimators of Ŷ, we may still obtain an understanding of the implied estimate X̂
using the same methods. In fact, the machinery of least-squares estimation for Ax = b provides

6Trilateration differs from triangulation, and it is more frequently used in practice. Triangulation is when
one has angle information w.r.t. the cell towers. Usually, this is not available – so one trilaterates their position
Oguejiofor et al. (2013). This more closely matches our setting, where we just have distances information w.r.t.
the decision boundaries and must determine the position.
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a readily accessible formula for µ̃ in sub-optimal estimators of Ŷ (Equation 16) in the form of the
Moore-Penrose pseudoinverse:

µ̃ = (C⊤C)−1CT (k+ b) (19)

Conveniently, if the estimation errors in sub-optimal Ŷ have a mean of zero, additional decision
boundaries in C (e.g., beyond the minimum D linearly independent boundaries) result in improved
estimation of x∗ by the central limit theorem, thus generalizing our results to sub-optimal estimators.

B.3 OPTIMAL REPRESENTATION THEOREM (GENERAL CASE)

We extend the results from the linear case (Theorem B.5) to the general case where observations are
transformed by an injective observation map f in Theorem B.6.

Theorem B.6 (Optimal Representation Theorem). Let x∗ ∈ RD be a latent representation for linear
binary classification task y(x∗) ∈ {0, 1}Ntask and X(t) = f(x∗+σN (0, ID)) be noisy observations
transformed by an injective observation map f .

If C ∈ Ntask ×D is a full-rank matrix representing the decision boundary normal vectors in RD

and Ntask ≥ D, then any optimal estimator of y(x∗) must encode an optimal representation of
the latent variable x∗ in its latent state Z(t). Furthermore, the mutual information between x∗ and
Z(t) is at least as great as the entropy of the theoretically optimal estimator µ(t), ensuring that all
the information of µ(t) is contained in Z(t). Consequently, µ(t) – the optimal estimate of x∗ based
on f(X(1)), . . . , f(X(t)) – can be written as a deterministic function (Equation 20) of latent state
Z(t).

µ(t) = (C⊤C)−1C⊤
(

σ√
t
Φ−1

(
g(Z(t))

)
+ b

)
(20)

Proof. We use proof by contradiction to extend the linear case of the general representation the-
orem to account for injective observation maps f that map X(t) before they are input to Z(t).
Assume toward a contradiction that there exists a superior way of computing Ŷ based on injectively
mapped f(X(t)) other than learning f−1 and following the same procedure as when X(t) was fed
in directly (which we derived the optimal estimator for in Lemma B.1 and Lemma B.2). This as-
sumption implies there is some additional information in f(X(t)) that is not in X(t), violating the
data processing inequality.

Formally, consider the following Markov chain:

x∗ → {X(1), . . . ,X(t)} → Z(t) → Ŷ(t) → µ(t). (21)

Since f is injective, f−1 exists, making f(X(t)) → X(t) an equivalent transformation in terms of
information content. Hence, any optimal estimator that processes f(X(t)) can only perform as well
as if it had directly processed X(t).

Applying the data processing inequality, we have:

I
(
x∗;Z(t)

)
≥ I
(
x∗;µ(t)

)
, (22)

where I(·; ·) denotes the mutual information between two variables. Since X̂(t) is the opti-
mal estimator of x∗ given measurements {X(1), . . . ,X(t)}, I

(
x∗;µ(t)

)
= H(µ(t)). Therefore,

I(x∗;Z(t)) ≥ H(µ(t)), implying that I(Z(t);µ(t)) = H(µ(t)). In other words, Z(t) must contain
all the information of µ(t), and µ(t) must be expressible as a deterministic function of Z(t).

To complete the proof, we show that µ(t) can be reconstructed from Z(t). Given the full-rank matrix
C, we can use the same trilateration process as in the linear case. The optimal estimate µ(t) can be
written as:

µ(t) = (C⊤C)−1C⊤
(

σ√
t
Φ−1

(
g(Z(t))

)
+ b

)
, (23)

where g(Z(t)) represents the transformation from the latent state to the classification probabilities.
This completes the proof by showing that µ(t) is a deterministic function of Z(t).
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Corollary B.7 (Recovery of µ(t) for Sub-Optimal Classifiers). Let Ŷ(t) ∈ [0, 1]Ntask represent the
output of a sub-optimal classifier with zero-mean independent errors, i.e., Ŷi(t) = Pr{yi(x∗) =
1}+ ϵi, where E[ϵi] = 0 and Var[ϵi] = σ2

ϵ for all i ∈ {1, . . . , Ntask}.

If C ∈ RNtask×D is a full-rank and well-conditioned matrix of decision boundary normal vectors
with Ntask ≥ D, the estimated mean µ̃(t) of
colortext(x∗ can be recovered using the Moore-Penrose pseudoinverse:

µ̃(t) = (C⊤C)−1C⊤(k+ b),

where k = σ√
t
Φ−1(Ŷ(t)) and Φ−1 is the inverse CDF of the standard normal distribution.

For sub-optimal classifiers, as the number of tasks Ntask increases:

• The redundancy in C reduces sensitivity to classification errors.

• Under the assumption of independent, zero-mean errors in Ŷ(t), the residual error in µ̃(t)
is expected to decrease at a rate of approximately O(1/

√
Ntask), driven by the averaging

effect of least-squares estimation.

Motivated by the similarity between Φ(z) and sigmoid-like activation functions g(z), we show that
the two can be approximately canceled in Equation 20, implying that µ(t) can be reconstructed
with high accuracy with a linear-affine transformation (e.g., linear decoding) when g = tanh or
g = sigmoid. This implies that Z(t) contains an abstract representation of µ(t) (Ostojic & Fusi,
2024).
Corollary B.8. If the readout function g is tanh, then the reconstruction equation for µ(t) from
Z(t) can be simplified using the approximation Φ(z) ≈ 1

2 tanh(z) +
1
2 . Consequently, µ(t) can be

expressed directly in terms of Z(t) without the need for the inverse CDF.

µ(t) ≈ 2
√
3σ

π
√
t
(C⊤C)−1C⊤Z(t) + (C⊤C)−1C⊤b (24)

Proof. Consider the readout function g given by g(Z(t)) = Ŷ(t) = 1
2 tanh(Z(t))+

1
2 . To show that

this function allows for linear decoding of x∗ from Z(t), we need to leverage the similarity between
tanh and Φ.

The normal distribution CDF Φ(z) and the function 1
2 tanh(z) +

1
2 are known to be very similar, as

both functions are sigmoid-like, centered at zero, and asymptotically approach 0 and 1 (Choudhury,
2014).

Page (1977) proposed a simple approximation of Φ via tanh. Eliminating higher order terms, their

approximation is Φ(x) ≈ 1
2 tanh(

√
2
πx) +

1
2 . We found the following approximation yielded a

superior mean squared error:

Φ(z) ≈ 1

2
tanh

(
π

2
√
3
z

)
+

1

2
.

Using this approximation, we can express Φ−1 in terms of tanh:

Φ−1

(
1

2
tanh(z) +

1

2

)
≈ 2

√
3

π
z.

Substituting this approximation into the reconstruction equation for µ(t) from Theorem B.6:

µ(t) = (C⊤C)−1C⊤
(

σ√
t
Φ−1

(
1
2 tanh(Z(t)) +

1
2

)
+ b

)
≈ (C⊤C)−1C⊤

(
σ√
t

(
2
√
3

π Z(t)
)
+ b

)
=

2
√
3σ

π
√
t
(C⊤C)−1C⊤Z(t) + (C⊤C)−1C⊤b.
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Figure S9: Sigmoid (σ(·)) and tanh approximations of the normal distribution CDF Φ via horizontal
scaling.

Therefore, we have shown that µ(t) can be expressed as a linear transformation of Z(t) when the
readout function g is sigmoid-like. This confirms the corollary.

Corollary B.9. For g = sigmoid, linear scaling by aσ = 0.5886 yields a mean absolute error of
0.0038699 from Z(t) in the range [−10, 10], enabling the following accurate linear-affine approxi-
mation of µ(t) from Z(t) given g = sigmoid:

µ(t) ≈ aσ σ√
t
(C⊤C)−1C⊤C⊤Z(t) + (C⊤C)−1C⊤b (25)

Proof. We found aσ = 0.5886 by computationally minimizing the mean squared error between
Φ(aσz) and σ(z) (see sigmoid approx gaussianCDF.m in supporting code). Upon comput-
ing aσ on successively larger optimization bounds T = 1, 10, 100, ..., we found that aσ converged
to 0.5886. We note that sigmoid approximations to the Gaussian distribution CDF have existed in
the literature for some time (Waissi & Rossin, 1996).

Corollary B.8 and B.9 are visualized in Figure S9, showing the close approximations to the Gaussian
CDF.
Corollary B.10. Ntask ≫ D implies orthogonal representations in latent Z(t).

Proof. Recall Equation (3) from the disentangled representation theorem:

µ(t) = (C⊤C)−1C⊤
(

σ√
t
Φ−1

(
g(Z(t))

)
+ b

)
For sigmoid-like g, we can approximate

µ(t) ≈ ag σ√
t
(C⊤C)−1C⊤Z(t) + (C⊤C)−1C⊤b

The orthogonality of the representations in Z(t) is therefore governed by the orthogonality of the
rows in the matrix A := (C⊤C)−1C⊤ ∈ RD×Ntask . If AA⊤ ∈ RD×D is diagonal, then the rows of
A are orthogonal.

AA⊤ =
(
(C⊤C)−1C⊤)((C⊤C)−1C⊤)⊤
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=
(
(C⊤C)−1C⊤)(C((C⊤C)−1)⊤

)
= (C⊤C)−1(C⊤C)((C⊤C)−1)⊤

= ((C⊤C)−1)⊤

B⊤B is a symmetric matrix for any matrix B. Recall that the inverse of a symmetric matrix is also
symmetric. So (C⊤C)−1 is also symmetric. Therefore

AA⊤ = (C⊤C)−1

As the columns of C are high-dimensional randomly sampled vectors, their probability of being
non-orthogonal vanishes as the dimensionality Ntask increases. We can also state the condition in
terms of the singular value decomposition (SVD) of C = UΣVT where U ∈ RNtask×D, Σ =
diag(σ1, ..., σD), V ∈ RD×D, and σi is the ith singular value of C and U,V are orthonormal.
Then

AA⊤ = VΣ−2VT

If the singular values are approximately uniform σ1 . . . σD ≈ σ then

AA⊤ ≈ V(
1

σ2
ID)VT

AA⊤ ≈ 1

σ2
VVT =

1

σ2
ID

Therefore, uniform singular values in C is a sufficient condition to guarantee an orthogonal, disen-
tangled representation of µ(t) in Z(t)7.

As a sidenote, we would like to point out that the setting here relates to the Marchenko-Pastur
law while noting important caveats: while the law typically applies to matrices with i.i.d. entries
N(0, σ), our C matrix consists of random row vectors in RD of unit norm. This structure, while not
strictly meeting the law’s conditions, still supports our conclusions about orthogonalization.

B.4 SUITABLE NOISE DISTRIBUTIONS

While the original proof leverages Gaussian noise due to its mathematical convenience, the key
property required for the proof is more general. Specifically, the essential requirement is that the
marginal posterior distributions along the decision boundary normals ci have invertible cu-
mulative distribution functions (CDFs), allowing us to recover the distances from the observed
classification probabilities.

We will now provide a precise mathematical description of the class of noise distributions where this
key property holds, generalizing the disentangled representation theorem beyond Gaussian noise.

Key Noise Property Required for Proof: Invertibility of the Marginal Posterior CDFs Along
Decision Boundary Normals. For each decision boundary normal vector ci, the marginal posterior
distribution of x∗ projected onto ci must have an invertible CDF. This allows us to map the observed
classification probabilities to unique distances between the estimated mean µ(t) and the decision
boundaries.

Mathematical Description of Suitable Noise Distributions : Let us define a class of noise dis-
tributions ϵ(t) where the key property holds and is straight forward to solve analytically.

Definition: The proof is immediately generalizable to noise distribution ϵ(t) if it satisfies the fol-
lowing conditions:

1. Additive noise model:
X(t) = x∗ + ϵ(t)

where ϵ(t) are i.i.d. random vectors.

7This uniformity condition in the singular value decomposition is analogous to the outcome of the LM
damping technique (Levenberg, 1944; Marquardt, 1963), used for least squares inversion problems in various
applications.
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2. Posterior Distribution Tractability: The posterior distribution P (x∗|{X(s)}ts=1 must be
analytically tractable or well-approximated, allowing us to compute the posterior mean or
maximum a posteriori estimate µ(t) of x∗ and understand its properties.

3. Existence of Invertible Marginal Posterior CDFs: For each decision boundary normal
vector ci, the marginal posterior distribution of c⊤i x

∗ has a continuous and strictly increas-
ing CDF Fi(k), which is invertible.

4. Support over X : Let X ⊆ RD be the connected subset of allowable x∗ values. The noise
distribution must have full support over X , ensuring that any real-valued x∗ is possible to
trilaterate. For our proof, we assume support over the maximally permissible RD is used.

Implications: Any suitable noise distribution allows classification task probability Ŷi(t) to be
expressed as

Ŷi(t) = Pr{c⊤i x∗ > bi|[X(s)]Ts=1}

= 1− Fi(bi − c⊤i µ(t))

where Fi is the marginal distribution of c⊤i x
∗.

Since Fi is invertible, we can solve for distance ki = c⊤i µ(t)− bi as

ki = F−1
i (1− Ŷi(t)).

This equation allows us to reconstruct decision boundary distances ki from optimal classification
probabilities Ŷi(t). Thus the proof via trilateration for the disentangled representation theorem is
feasible for any suitable noise distribution ϵ(t) as described above.

B.5 EXAMPLES OF SUITABLE NOISE DISTRIBUTIONS

B.5.1 ELLIPTICAL DISTRIBUTIONS

Definition: A multivariate distribution (Fang (2018)) is elliptical if its density function f(x) can
be expressed as:

f(x) = |Σ|−1/2g
(
(x− µ)⊤Σ−1(x− µ)

)
where g : [0,∞) → [0,∞) is a non-negative function, µ ∈ RD is the location parameter, and
Σ ∈ RD×D is the scale matrix.

Properties:

• Symmetric and unimodal around µ.
• Projections onto any direction ci yield univariate elliptical distributions.
• Marginal distributions along ci have invertible CDFs if g leads to such marginals.

Examples of Suitable Elliptical Distributions:

• Multi-variate Gaussians with Full-Rank Covariance Matrix (Lemma B.11).
• Multi-variate T-distributions with Full-Rank Scale Matrix: Heavy-tailed alternative to

the Gaussian.
• Multivariate Laplace Distribution With Full-Rank Scale Matrix: Has exponential tails.

B.5.2 EXPONENTIAL POWER DISTRIBUTIONS

Definition: Also known as the generalized Gaussian distribution, defined by the density:

f(x) =
β

2αΓ(1/β)
exp

(
−
(
|x− µ|

α

)β
)
,

where β > 0 controls the kurtosis (Box & Tiao (2011)). Properties:
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• For β = 2, it reduces to the Gaussian distribution.

• For β = 1, it becomes the Laplace distribution.

• Symmetric and unimodal.

• Marginal distributions are of the same form and have invertible CDFs.

Generalizing the Proof

Given the above, the proof can be generalized to any noise distribution ϵ(t) satisfying the conditions
stated. The key steps are as follows:

1. Compute the Posterior Distribution:

• Since ϵ(t) is i.i.d., the likelihood function is:

P ({X(s)}ts=1 | x∗) =

t∏
s=1

fϵ(X(s)− x∗).

• Without a prior (uniform prior), the posterior is proportional to the likelihood.
• The posterior distribution P (x∗ | {X(s)}ts=1) can be found (or approximated) based

on the noise distribution.

2. Marginalize Along Decision Boundary Normals:

• For each ci, compute the marginal posterior distribution of c⊤i x
∗.

• Due to the symmetry and unimodality of the noise distribution, this marginal will also
be symmetric and unimodal.

3. Compute Classification Probabilities: The classification probability is:

Ŷi(t) = Pr{c⊤i x∗ > bi | {X(s)}ts=1} = 1− Fi(bi − c⊤i µ(t)),

where Fi is the marginal posterior CDF of c⊤i x
∗.

4. Invert Marginal CDFs to Find Distances: Since Fi is invertible, we can solve for ki:

ki = F−1
i (1− Ŷi(t)).

5. Set Up Linear System to Recover µ(t):

• The distances ki relate to µ(t) via:

c⊤i µ(t) = ki + bi.

• Collecting all Ntask equations:

Cµ(t) = k+ b.

6. Solve for µ(t): If C is full rank, we can solve for µ(t):

µ(t) = (C⊤C)−1C⊤(k+ b).

Implications

• Optimal Estimator Must Encode µ(t):

• The latent state Z(t) must contain sufficient information to recover µ(t), as it is essential
for optimal classification across all tasks.

• The theorem holds for any noise distribution satisfying the stated conditions, not just Gaus-
sian noise.
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B.5.3 EXAMPLE WITH MULTIVARIATE T-DISTRIBUTION

Suppose ϵ(t) follows a multivariate t-distribution (Kotz & Nadarajah (2004)) with degrees of free-
dom ν > 2:

1. Posterior Distribution: The posterior P (x∗ | {X(s)}ts=1) is also a multivariate t-
distribution.

2. Marginal Posterior Distributions: Projections onto ci yield univariate t-distributions.
3. Invertible Marginal CDFs: The CDF of the t-distribution is known and invertible.
4. Recover Distances: Use the inverse t-CDF to find ki:

ki = st · T−1
ν (1− Ŷi(t)),

where st is the scale parameter, and T−1
ν is the inverse CDF of the t-distribution with ν

degrees of freedom.
5. Proceed with the proof: Follow the same steps as before to reconstruct µ(t).

B.5.4 EXAMPLE WITH ANISOTROPIC GAUSSIAN NOISE

Lemma B.11. Suppose ϵ(t) follows an anisotropic multi-variate Gaussian distribution with full-
rank covariance matrix Σ and zero mean. Then we can update Equation 14 from Lemma B.2 as

Ŷ (t) ≜ Pr(c⊤x∗ > b) (26)

= Φ
(

k
√
t√

c⊤Σc

)
(27)

Proof. Anisotropic noise results in the quadratic form c⊤Σc in the denominator representing the
variance of the marginalized anisotropic noise distribution along decision boundary normal vector
ci. As long as Σ is non-singular, the remainder of the disentangled representation proof may proceed
substituting Equation 14 with Equation 27.

B.5.5 CONCLUSION

The key property enabling us to recover distances from classification probabilities is the invertibility
of the marginal posterior CDFs along the decision boundary normals. This property is not exclusive
to Gaussian noise but is shared by a broader class of noise distributions, including but not limited to:

• Elliptical distributions (e.g., multivariate t-distributions, Laplace distributions).
• Exponential power distributions.
• Other symmetric and unimodal distributions with invertible marginals.

Therefore, the proof of the Disentangled Representation Theorem generalizes to any noise distribu-
tion satisfying the conditions outlined above. The essential requirement is that we can uniquely map
the observed classification probabilities to distances along the normals, allowing us to reconstruct
the posterior mean µ(t) and establish that any optimal estimator must encode this information in its
latent state Z(t).

Correspondence in the structure of noise distribution CDF along marginals Fi and point-wise acti-
vation functions g (the activation function Ŷ(t) = g(Z(t))).

B.6 DISCUSSION

The theoretical results presented in this appendix, particularly the Optimal Representation Theorem
(Theorem B.6), provide insights into the factors driving representational convergence and alignment
in neural networks and, more generally, any optimal multi-task classifier in the setup shown in
Figure S7. This theorem establishes a clear connection between the latent representations learned
by optimal multi-task classifiers and the true underlying data representation, offering a principled
explanation for the emergence of disentangled representations aligned with the intrinsic structure of
the data.
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Connection to Manifold Hypothesis: Our theoretical results have important implications for
the manifold hypothesis, which posits that real-world high-dimensional data tend to lie on or near
low-dimensional manifolds embedded in the high-dimensional space (Fefferman et al., 2016; Olah,
2014). The key insight is that our proofs show an optimal multi-task classifier must encode an esti-
mate of the disentangled coordinates of the true underlying environment state in its latent represen-
tation. Consider the disentangled space in which x∗ resides, denoted X ∗. The injective observation
map f : X ∗ → X , where decision boundaries yi : X ∗ → {0, 1} are linear. Our results imply that an
optimal classifier’s latent state Z(t) must encode disentangled coordinates in X ∗ rather than ambient
coordinates X .

The injective observation map f aligns closely to the typical conception of a data manifold (e.g.,
if f ∈ C1 or f ∈ Cn, as described in Tu (2017)). The disentangled space X ∗ can be seen as the
intrinsic coordinate system of the manifold, while f maps these coordinates to the high-dimensional
observation space X . Our findings suggest that an optimal classifier will implicitly learn to invert
this mapping to recover the disentangled coordinates. Moreover, for natural data where the manifold
hypothesis holds, the learned latent representation would plausibly capture the manifold structure,
as this is essential for disambiguating noisy observations and estimating the true underlying state.
The low-dimensional manifold structure is a key prior that an optimal classifier can (and in our case
must) exploit to improve its performance.

Relation to Autoregressive Language & Multi-Modal Transformers: Consider an analogy
with masked autoencoder vision foundation models, where x∗ is the “ground truth” of a scene (ob-
jects, positions, states, and relationships), the measurement variable X is an image with missing
patches (Dosovitskiy et al., 2020; He et al., 2021), and the model predicts the missing patch data
y(x∗). The model’s latent variable Z exhibits some “understanding” of x∗ in the form of abstract
representations useful for downstream tasks. This analogy extends to masked language models (De-
vlin et al., 2018) and autoregressive language models (Radford et al., 2019), where x∗ is “meaning”
in a semantic space, X(t) are words, and y is the next word. Localizing x∗ from Z(t) relates to
constructing a world model, showing that Z represents x∗ abstractly and with high fidelity.

Ordering of Noise and Observation Map: The ordering of the noise and the non-linear ob-
servation map matters for the latent space representation. When the noise is applied before the
observation map, the noisy observations are constrained to lie on a manifold with the same intrinsic
dimension as the true latent space X ∗. In contrast, when the noise is applied after the observation
map, the noisy observations can deviate from the low-dimensional manifold, potentially introducing
degeneracy where two noised observations arising from different x∗ may appear identical (i.e., non-
injective). Imagine X ∗ as a 2D piece of paper. An injective, smooth, continuous observation map
f : X ∗ → X where X is a 3-dimensional space “crumples” the sheet of paper X ∗ into a crumpled
ball in X . If you add noise after the mapping, a point on one corner of the paper could get “popped
out” of the 2D manifold by the noise and end up very far away on the crumpled surface if you were
to examine it flattened out (illustrated in Figure S10).

The curvature of the observation map f and the level of noise σ are fundamental factors influencing
the extent of the degeneracy introduced by the noise after the observation map. High curvature
in f can make the intrinsic geometry of the data more challenging to identify (e.g., more tightly
crumpled paper). Large noise levels can push observations further from the underlying manifold,
similarly worsening the potential degeneracy in the observations. The reach of the manifold f
(Aamari et al. (2019)) can be used as an immediate loose bound for post-observation map noise
ϵ2(t) to ensure that the derived theorems still hold. Interestingly, this observation map degeneracy is
a key concern in work on visual predictive coding for map learning by Gornet & Thomson (2024).
They demonstrate that a predictive coding network can learn to map a Minecraft environment with
visually degenerate states by integrating information to perform predictive coding along trajectories
within the environment.

Connection to the Platonic Representation Hypothesis: Our results provide a new perspective
on the Platonic representation hypothesis (Huh et al., 2024). The Platonic representation hypothesis
suggests that the convergence in deep neural network representations is driven by a shared statistical
model of reality, like Plato’s concept of an ideal reality. Convergence of representations is analyzed
in terms of similarity of distances between embedded datapoints among AI models trained on var-

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Figure S10: (A) x∗ is noised before being transformed by injective observation map f , resulting
in observations f(X(t)) lying on the image of f (here f is a 2D folded surface). (B) x∗ is first
transformed by injective observation map f and noise is added afterward, resulting in observations
f(x∗) + σN (0, I) that do not lie on the image of f .

ious modalities. While the authors of the hypothesis argue that energy constraints might lead to
divergence from a shared representation for specialized tasks, our Optimal Representation Theorem
suggests that the key factor driving convergence is the diversity and comprehensiveness of the tasks
being learned. As long as the tasks collectively span the space of the underlying data representation,
convergence to a shared, reality-aligned representation can occur, even in the presence of energy
or computational limitations. Our theoretical results amount to a necessary condition for optimal
multi-task classifiers to represent a disentangled representation of the data within their latent state.
With energy constraints, extraneous network activity may be regularized out of the model, resulting
in greater alignment between disentangled representations in energy constrained models that “under-
stand” the Platonic nature of reality. The very energy constraints Huh et al. (2024) suggest may lead
to divergence could actually facilitate convergence of the platonic representations, as they may en-
courage the learning of simple, generalizable features that capture the essential structure of the data.
This insight opens up interesting avenues for future research on the interplay between task diversity,
energy constraints, and the emergence of shared representations. Finally, energy constraints have
been shown to naturally lead to predictive coding Rao & Ballard (1999); Ali et al. (2022), tightening
the relationship between energy efficiency, prediction, and cognitive map learning. A relationship
between predictive coding and optimal Bayesian estimation has also been established (Rao, 1999).

Implications and Future Directions: The theoretical analysis presented in this appendix sheds
light on the factors driving the emergence of disentangled representations in neural networks and
their alignment with the intrinsic structure of the data. By formalizing the conditions under which
learned representations recover the true underlying data manifold, our work provides a foundation
for understanding the remarkable success of representation learning across diverse domains. Av-
enues for future research include exploring the sample complexity of learning under different obser-
vation maps and noise levels, and empirically validating the convergence of representations across
models and modalities in the context of task diversity and energy constraints.
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C SUPPLEMENTARY FIGURES & TABLES

Table S1: Hyperparameter values for RNN training. These values apply to all simulations, unless
otherwise stated. τ = 100ms was chosen as a conservative estimate of membrane time constant. σ
was varied in some simulations (e.g. Figure 5c). We found that free RT tasks benefited from a higher
learning rate. Other hyperparameters worked out of the box.

PARAMETER VALUE EXPLANATION

∆t 100 MS EULER INTEGRATION STEP SIZE
τ 100 MS NEURONAL TIME CONSTANT
Nneu 64 NUMBER OF HIDDEN NEURONS
σ 0.2 INPUT NOISE STANDARD DEVIATION
T 20 TRIAL DURATION (IN ∆tS)
η0 0.001/0.003 ADAM LEARNING RATE FIXED/FREE RT
B 16 BATCH SIZE
Nbatch 105 NUMBER OF TRAINING BATCHES
D 2 DIMENSIONALITY OF LATENT SPACE
Nlayer 1 RNN/LSTM NUMBER OF LAYERS
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Figure S11: Details of learned representations and of learning. (a) Representation after the
decoder. 3 out of 40 features were chosen randomly to be displayed. Compared to Figure 3d the
representations wrap around non-linearly, and the quadrants are overlapping. The RNN needs to
invert the non-linear mapping and remove the noise to arrive at disentangled representations. (b)
Individual trial examples from network in Figure 2b. Plotting conventions same as in Figure 3d,
except here every trial has been mapped to a separate color (lines and final dot). The ground truth x∗

for these example trials is shown in the bottom right, and the attractors have been made transparent
for better visibility. Note that these trials include noise, like the ones the network has been trained on.
As can be seen, the network maintains a sense of metric distances in the 2D space: examples close in
state space are also close in representation space. (c) Representation early in learning, for a network
trained with 1/4 of the examples compared to Figure 3d. The representation is not disentangled yet,
however it is visible how the quadrants start separating and the attractors start spreading in the 2D
manifold. (d) Same as in b, but for network with a delay period of 500 ms (5 darker dots at the end
of trajectories). Activity remains localized after the removal of the evidence streams, maintaining
a short-term memory of the joint evidence with only minor leaks. (e) Representation learned in a
network trained without input noise (σ = 0). Trajectories separate from the beginning, and there is
no pressure to learn a 2D continuous attractor anymore. (f) Train and test errors for linear decoder
for the OOD generalization task. Transparent lines correspond to different quadrants while opaque
lines to the average across quadrants for one network.
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Figure S12: Angles between latent factor decoders in higher dimensions. Angles converge to 90
degrees as Ntask ≫ D for RNNs, and as early as Ntask ≥ D for transformers (see Appendix A.3 for
angle estimation details). This confirms that multi-task learning leads to orthogonal, disentangled
representations, in some cases even earlier than our theoretical guarantees.
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