
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DASH: DETERMINISTIC ATTENTION SCHEDUL-
ING FOR HIGH-THROUGHPUT REPRODUCIBLE LLM
TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Determinism is indispensable for reproducibility in large language model (LLM)
training, yet it often exacts a steep performance cost. In widely used attention
implementations such as FlashAttention-3, the deterministic backward pass can
incur up to a 37.9% throughput reduction relative to its non-deterministic coun-
terpart, primarily because gradient accumulation operations must be serialized to
guarantee numerical consistency. This performance loss stems from suboptimal
scheduling of compute and gradient-reduction phases, leading to significant hard-
ware underutilization.
To address this challenge, we formulate the backward pass of deterministic at-
tention as a scheduling problem on a Directed Acyclic Graph (DAG) and derive
schedules that minimize the critical path length. Building on this formulation, we
present DASH(Deterministic Attention Scheduling for High-Throughput), which
encapsulates two complementary scheduling strategies: (i) Descending Q-Tile It-
eration, a reversed query-block traversal that shrinks pipeline stalls in causal atten-
tion, and (ii) Shift Scheduling, a theoretically optimal schedule within our DAG
model that reduces pipeline stalls for both full and causal masks.
Our empirical evaluations on NVIDIA H800 GPUs demonstrate that DASH nar-
rows the performance gap of deterministic attention. The proposed strategies im-
prove the throughput of the attention backward pass by up to 1.28× compared to
the baseline, significantly advancing the efficiency of reproducible LLM training.

1 INTRODUCTION

The pursuit of consistent and verifiable outcomes is a cornerstone of rigorous scientific research and
large-scale engineering. In the domain of large language model (LLM) training (Wu et al., 2024),
where experiments span thousands of GPUs (Grattafiori et al., 2024; DeepSeek-AI et al., 2025)
and incur enormous costs, this principle of reproducibility becomes indispensable. Reproducibility
empowers practitioners to diagnose training instabilities, such as loss divergence, and to evaluate
the impact of architectural modifications. Consequently, deterministic training, which guarantees
bitwise identical results across runs, is increasingly adopted as a standard practice for industry.

The origin of the non-determinism in attention of LLM training can be traced back to a fundamental
yet often overlooked characteristic of computer arithmetic: the non-associativity of floating-point
(FP) operations (Villa et al., 2009). For instance, (108 + 10−6) − 108 evaluates to 0.0 in single-
precision, whereas 108 − 108 + 10−6 yields the correct 10−6. This sensitivity is magnified in the
massively parallel environment of GPUs (Shanmugavelu et al., 2024).

In high-performance attention (Vaswani et al., 2023) mechanisms like FlashAttention (Dao et al.,
2022), the backward pass computation is parallelized across hundreds of GPU Streaming Multipro-
cessors (SMs) (NVIDIA, 2022) to maximize throughput. Each SM, running a Cooperative Thread
Array (CTA), accumulates a partial contribution to gradient tensors (e.g., the gradient for the query
matrix, dQ). The default high-speed approach allows these CTAs to concurrently update the final
gradient in global memory via non-deterministic atomicAdd operations, as shown in Figure 1 mid-
dle. This creates a non-deterministic accumulation order: the final accumulated value depends on
the uncontrolled completion order of the CTAs, leading to bit-wise variations between runs.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

L
o
ca

l
R

ed
u
ct

io
n

Global Reduction

(Inter SMs)

Global Reduction

(I
n

tr
a

 S
M

)

KV0 KV1 KV2 KV3 KV4 KV5 KV6 KV7

Computation of FlashAttention

Backward

𝑄0

𝑄1

𝑄2

𝑄3

𝑄4

𝑄5

𝑄6

𝑄7

Local

Buffers

Global

Buffers

SM0 SM1 SM2 SM3 SM4 SM5 SM6 SM7

SM0 SM1 SM2 SM3 SM4 SM5 SM6 SM7

Reduction with Atomic Operation

Performance Drop

SM0

Reduction with Barrier

SM1 SM5SM2 SM3 SM4 SM6 SM7

Figure 1: Overview of the deterministic FlashAttention. Left: Tiled computation structure of the
backward pass, highlighting the local and global reductions. Middle: Comparison between the
non-deterministic (atomic-based) and deterministic (ordered) global reduction. Right: Performance
degradation under causal and full attention masks, HD stands for head dimension.

To enforce reproducibility, FlashAttention-3 (Shah et al., 2024) provides a deterministic mode. It
enforces a fixed accumulation order by using synchronization barriers to force CTAs to perform their
additions in a serialized order (e.g., ordered by CTA index). However, this guarantee of consistency
imposes a significant performance penalty. As illustrated in Figure 1 right, enabling deterministic
mode may lower throughput by up to 37.9%, leading to severe training costs when scaling LLMs
across hundreds of thousands of GPUs.

This performance gap is not an inherent consequence of serialization itself. Instead, it stems from
a direct conflict between the tile scheduling and a rigid, pre-determined accumulation order. As
illustrated in the middle of Figure 1, the full mask scenario, commonly employed in multi-modal
tasks, highlights a key inefficiency: the naive schedule creates a bottleneck by forcing reductions
to start sequentially. An ideal schedule, however, would parallelize this process, allowing CTAs to
begin reduction on different tiles concurrently. Crucially, this reveals that the computation schedule
and the accumulation order are tightly coupled and cannot be optimized in isolation.

To address this, we introduce Deterministic Attention Scheduling for High-throughput (DASH),
a framework that formulates deterministic attention backward execution as an explicit scheduling
optimization problem. We model the deterministic backward pass as a Directed Acyclic Graph
(DAG), and formalize the objective as minimizing the DAG’s critical path length. Based on this
model, we design two complementary scheduling strategies. The first, Descending Q-Tile Iteration,
is a heuristic that processes query tiles in reverse order to advance dependency resolution and shrink
pipeline bubbles in causal attention. The second strategy, a theoretically optimal algorithm we term
Shift Scheduling is provably optimal under our DAG model. It employs a phase-shifted assignment
of computational tasks to GPU multiprocessors, creating a perfectly staggered execution pattern.
This ensures that the workload is perfectly balanced and that the serialized reduction operations
proceed without contention while approaching the model’s theoretical utilization bound.

Our empirical evaluations on NVIDIA H800 GPUs show that DASH significantly narrows the per-
formance gap relative to the FlashAttention-3 deterministic baseline. The two strategies deliver
up to a 1.28× speedup for the deterministic attention backward pass, significantly improving the
efficiency of reproducible LLM training.

In summary, we made the following contributions in this paper:

• We identify the misalignment between tile execution and accumulation ordering as the principal
source of performance degradation in deterministic attention.

• We provide the first DAG-based formalization of deterministic attention backward scheduling,
enabling principled optimization of critical path length.

• We introduce two complementary scheduling strategies, Descending Q-Tile Iteration and Shift
Scheduling, that achieve up to a 1.28× speedup over the FlashAttention-3 deterministic baseline
on H800 GPUs.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 BACKGROUND

2.1 DETERMINISTIC FLASHATTENTION BACKWARD PASS

We first outline the core gradient computations in the FlashAttention backward pass: dQ, dK, and
dV (Figure 1, left). During backpropagation, the gradients dK and dV are accumulated across all
queries for each key (or value) position, i.e., they are reduced along the Q axis. In contrast, dQ
requires a reduction across all key–value (KV) positions for each query, i.e., along the KV axis. To
expose parallelism, the implementation partitions the KV dimension across SMs, allowing dK and
dV to be computed within each SM via a local reduction. However, this strategy distributes partial
contributions to dQ over multiple SMs, necessitating a global reduction to produce the final gradient.
A conventional implementation performs this reduction using atomic additions (Figure 1, middle),
which induces run-to-run variation because floating-point addition is non-associative. The resulting
numerical nondeterminism undermines strict reproducibility in large-scale training. To guarantee
determinism, one must enforce a prescribed accumulation order. FlashAttention-3 achieves this by
performing a tile-wise sequential accumulation of dQ along the KV dimension.

2.2 GPU ARCHITECTURE

On modern GPUs, the memory hierarchy comprises registers, shared memory, L2 cache, and global
memory (NVIDIA, 2022), reflecting a fundamental capacity–latency trade-off: smaller and faster
storage resides closer to the compute units. Shared memory is private to each SM, enabling low-
latency intra-SM data reuse, whereas the L2 cache is globally shared, mediating inter-SM data ex-
change and coherence. In datacenter-class GPUs, the L2 cache may be physically segmented, with
each segment preferentially serving a subset of SMs; remote-segment accesses typically incur higher
latency than local ones. This hierarchical organization materially shapes the attainable performance
and the efficiency of memory-bound GPU kernels.

2.3 DETERMINISM IN OTHER OPERATIONS OF THE TRANSFORMER

Other components, such as GEMMs, attention forward and normalization, also involve reduc-
tion operations; however, the computational cost of enforcing determinism in these cases is gen-
erally minimal during typical LLM training. GEMMs may exhibit nondeterministic behavior only
when the reduction axis (i.e., the K-dimension) is partitioned across multiple blocks, as in split-
K (NVIDIA Corporation, 2025) or stream-K (Osama et al., 2023) parallelization modes. In large-
batch LLM training, parallelism along the M and N dimensions is typically sufficient to fully utilize
the GPU, rendering split-K or stream-K modes unnecessary; therefore, disabling these modes gener-
ally results in only a minor reduction in throughput. Similarly, other operations involving reduction,
such as attention forward passes and normalizations, typically perform reductions within a single
block, thereby ensuring a deterministic reduction order. Purely elementwise operations, including
activation functions and bias additions, are inherently deterministic.

3 DASH: SCHEDULING STRATEGIES FOR DETERMINISTIC ATTENTION

In this section, we introduce optimized scheduling strategies for deterministic attention. Without
loss of generality, we assume that the number of KV tiles equals the number of SMs, denoted by
n. When the actual number of KV tiles differs from the number of SMs, we conceptually refine or
aggregate attention heads so that all SMs remain fully utilized under the same analytical framework.

3.1 PROBLEM FORMULATION

We formalize the deterministic attention backward scheduling problem as an optimization over a
directed acyclic graph (DAG), as shown in Figure 2. The DAG’s structure is constrained jointly by
the dataflow of FlashAttention and the architectural characteristics of the target GPU. Our model
represents a simplified abstraction of actual GPU execution; its primary purpose is to offer insights
into more effective scheduling decisions, rather than to accurately predict real execution times. As
such, there remain significant differences between our theoretical model and the complexities of
real-world GPU behavior.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

𝐶 i, j

𝑅 i, j

SM0

SM1

Critical Path Length = 2c + 3r

Idle

𝐶 0,0 𝑅 0,0 𝐶 0,1 𝑅 0,1

𝐶 1,1 𝑅 1,1

S T

Compute

Reduction

Dependency

Critical Path

Compute

Reduction

Dependency

Critical Path

c

r

0

Figure 2: Visualization of the Deterministic Scheduling Problem. The Gantt chart (left) shows a
naive execution schedule for a problem with two KV-tiles (i-index) and two Q-tiles (j-index). Each
task consists of a compute phase C(i, j) and a reduction phase R(i, j). Local reductions enforce
contiguous execution on a single SM (e.g., all tasks for i = 0 on SM0). A deterministic global
reduction order introduces a cross-SM dependency (red arrow), forcing SM1 to idle and creating
a pipeline bubble. The corresponding DAG (right) abstracts this schedule, where the critical path
determines the end-to-end latency.

Graph Construction. Each tile-processing task is modeled as a linear path of nodes connected by
edges that encode two successive phases: (i) the tile’s computation and (ii) the subsequent global re-
duction. These phase edges are weighted by their respective execution times, which are assumed to
be constants. To encode legal accumulation orderings and data dependencies across tiles, we insert
zero-weight dependency edges between nodes of different task paths. In this way, edge weights
capture quantitative duration, while the topology captures qualitative ordering constraints. The
scheduling objective is to minimize the critical-path length of the resulting DAG, thereby reduc-
ing end-to-end latency and improving overall execution efficiency.

Optimization Constraint. Data movement across different memory levels incurs substantial over-
head, while registers provide the fastest storage in GPUs. To leverage fast register-resident accumu-
lation of dK and dV , all operations for a given KV tile must run contiguously on a single SM.
Consequently, the edges associated with this tile form an unbroken chain, which imposes a key
constraint on our optimization.

3.2 ANALYSIS OF FLASHATTENTION-3 DETERMINISTIC BACKWARD SCHEDULE

SM0

SM1

SM2

SM3

c0

c0

c0

c0

r0

r0

r0

r0

c1

c1

c1

c1

r1

r1

r1

r1

c2

c2

c2

c2

r2

r2

r2

r2

c3

c3

c3

c3

r3

r3

r3

r3

(a) Schedule for Full Mask

SM0

SM1

SM2

SM3

c0

c1

c2

c3

r0 c1 r1

r1

c2

c2

r2

r2

r2

c3

c3

c3

r3

r3

r3

r3

(b) Schedule for Causal Mask

Figure 3: Backward scheduling of FlashAttention-3 for both mask shapes. Each colored segment
denotes one block’s computation (cost c) followed by a reduction (cost r). Idle gaps correspond to
pipeline bubbles. For clarity, since we assume the number of KV tiles equals the number of SMs,
each SM processes exactly one KV tile; thus we omit the KV index in the visualization and show
only the query index for each block.

Under a full attention mask, the FlashAttention-3 backward schedule achieves reasonable pipeline
utilization (Figure 3a). Observable bubbles (SM idle periods) arise only during the startup phase
of the first computation stage, before steady-state overlap is established. Let each stage incur a
computation cost c followed by a reduction cost r. After the initial fill, each attention head sustains
n sequential (computation + reduction) pairs, giving Tsteady = n · (c+ r) where n is the number of
SMs. The startup overhead contributes an additional (n−1)·r due to staggered completion of the first
sequence of reductions. Hence, for m heads, Tfull = mTsteady+Tstartup = m·n·(c+r)+(n−1)·r,
up to negligible control and synchronization overhead.

In contrast, when a causal mask is applied, the data dependencies inherent in the schedule lead to
significant inefficiencies. As shown in Figure 3b, this schedule introduces a substantial bubble within
the execution of each attention head, preventing effective pipelining. The critical path for a single

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

head becomes Thead causal = n · (c+ r)+ (n− 1) · r. Since this inefficient pattern repeats for every
head, the total execution time for m heads is approximately Tcausal = m ·Thead causal+Tstartup ≈
m · n · (c+ r) + (n− 1) · r.

3.3 DESCENDING Q-TILE ITERATION: A ROBUST HEURISTIC FOR CAUSAL MASKS

SM0

SM1

SM2

SM3

c3

c3

c3

c3

r3

r3

r3

r3

c2

c2

c2

r2

r2

r2

c1

c1

r1

r1

c0 r0 c3

c3

c3

c3 r3

r3

c2

r3

c2

r2

r3

c2

r2

c1

r2

c1

r1

r1

c0 r0

Figure 4: Descending (reverse-order) query tile schedule for the causal mask. Reversing the Q-block
traversal accelerates dependency resolution. Colors distinguish attention heads in the pipeline.

To mitigate the pipeline bubbles caused by causal masking, we propose a simple yet effective mod-
ification: reversing the processing order of the query (Q) blocks. As illustrated in Figure 4, this
reversed schedule allows most SMs to begin their computation earlier by resolving dependencies
more quickly.

The crucial advantage of this approach is its impact on pipeline efficiency for subsequent atten-
tion heads. By reversing the order, the short tasks are completed first, freeing up their SMs
much earlier. Consequently, the second head can immediately begin to utilize these available re-
sources, creating a tightly coupled pipeline that almost eliminates the idle gaps between heads.
This sustained high utilization across an even number of m heads yields a total execution time of:
Treversed ≈ m·(n+1)(c+r)

2 + (n− 1) · r.

3.4 SHIFT SCHEDULING

Reduction

Compute

Dependency

Critical Path Length = 2c + 2r

S ST T

Proceeding dependency Reverse dependency

Critical Path Length = 2c + 3r

c

r

0

Figure 5: Illustrative example for Lemma 1. Left: Added dependency (zero-weight) edges pre-
serve non-decreasing depth order and do not lengthen the critical path. Right: A backward (depth-
decreasing) dependency edge violates the lemma’s condition and increases the critical path.

Although the Descending Q-Tile Iteration significantly improves performance, it is natural to ask
whether a theoretically optimal schedule exists. To address this, we examine the impact of introduc-
ing reduction-induced inter-SM dependencies on the computation DAG’s critical path.

Disregarding (for the moment) the accumulation edges required for dQ updates, the graph decom-
poses into n independent chains whose total time is minimized when their cumulative workloads
are perfectly balanced. In this idealized scenario, all chains are also isomorphic, as they share an
identical task structure and number of tasks. The core challenge is thus to insert the necessary
zero-weight dependency edges without lengthening the original critical path. The lemma below
characterizes precisely when this is possible; its proof is deferred to Appendix B for brevity.

lemma 1. Let G0 = (V,E0) be a DAG consisting of a single source node s, a single sink node t, and
n ≥ 1 parallel, isomorphic chains connecting s to t. All edge weights in E0 are strictly positive. Let
the depth of a node v, denoted depth(v), be the number of edges on the unique path from s to v within
its chain in G0. Let a sequence of graphs G1, . . . , Gk be generated such that Gi = (V,Ei−1∪{ei}),
where each ei = (ui, vi) is a zero-weight edge. We add the explicit condition that every new graph
Gi in the sequence must remain a DAG.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

SM0 SM1 SM2 SM3
Assigned SM ID

Q0
Q1
Q2
Q3

Qu
er

y
Ti

le

0 3 2 1

1 0 3 2

2 1 0 3

3 2 1 0

KV0 KV1 KV2 KV3
Key-Value Tile

SM0

SM1

SM2

SM3

c0

c1

c2

c3

r0

r1

r2

r3

c1

c2

c3

c0

r1

r2

r3

r0

c2

c3

c0

c1

r2

r3

r0

r1

c3

c0

c1

c2

r3

r0

r1

r2

Figure 6: Optimal full-mask schedule via cyclic shifting. Left: Cyclic visiting order of Q tiles
per SM; distinct timestamps (i.e., the value in each box) on each row induce a natural, conflict-
free reduction sequence for every dQ block. Right: Simulated timeline showing fully balanced
utilization without additional bubbles.

Under this condition, the critical path length of Gk is equal to that of G0 if and only if for every
added edge ei = (ui, vi) for i ∈ {1, . . . , k}, the condition depth(ui) ≤ depth(vi) holds.

As illustrated in Figure 5, Lemma 1 dictates that to preserve the original critical path length, any
added dependency edge (u, v) must satisfy the condition depth(u) ≤ depth(v). This formal con-
straint translates to a critical physical limitation: for any given query tile Qj , the tasks involving it
cannot be executed in parallel.

A schedule that assigns two tiles contributing to the same dQj—say (KVi, Qj) and (KVk, Qj)—to
execute concurrently on different SMs would create a resource conflict during their reduction phases.
Resolving this conflict requires serializing the reductions, for instance, forcing the reduction for
(KVk, Qj) to wait for the one from (KVi, Qj) to complete, or vice versa. Because the conflicting
reduction tasks would otherwise start at the same depth in the DAG, this forced serialization in-
troduces a dependency edge (u, v) where depth(u) > depth(v)—from the completion of the first
reduction to the start of the second. This directly violates the lemma’s condition and sub-optimally
extends the critical path.

Our objective is thus twofold: first, to balance the workload across SMs, and second, to devise a
conflict-free reduction order that adheres to the lemma’s constraint.

Optimal Schedule for Full Masks Under a full mask, per-KV-tile workloads are uniform, allow-
ing for immediate balancing. To satisfy the second objective, we employ a Shift Scheduling, as
illustrated in Figure 6. In this schedule, SMi processes KV blocks in the order (i, i + 1, . . . , n −
1, 0, . . . , i − 1). This cyclical assignment inherently creates a conflict-free, sequential ordering for
the reductions on any given dQ block, directly satisfying the lemma’s condition. As both workload
balancing and conflict-free reduction are achieved, this schedule is theoretically optimal.

Symmetric Shift Scheduling for Causal Masks Causal masking induces a strongly imbalanced
workload: early KV blocks participate in the full set of query interactions, whereas later blocks
contribute progressively fewer operations, yielding workloads that decrease linearly across the se-
quence.

We address this by Symmetric Shift Scheduling. Its core is a symmetric pairing principle: SMs
jointly handle KV blocks i and n − 1 − i, pairing the longest with the shortest, the second-longest
with the second-shortest, and so forth. This pairing equalizes task chain lengths per SM, restoring
near-perfect balance.

We operationalize symmetric pairing via a two-phase schedule. In Phase 1, a cyclic shift is applied to
the dense lower-left rectangle, efficiently filling the pipeline. Phase 2 addresses the residual triangles
using a purely analytical model of workload folding, where tasks from the lower-right are logically
mapped to the upper-left’s masked slots to form a conceptual square without any data movement.
The operational sequence—a top-down traversal of the left triangle and a bottom-up traversal of the
right—is algebraically equivalent to a diagonal-initialized shift schedule on this conceptual square.
This equivalence is key: it preserves workload balance, ensures contiguous computation for each
KV block, enforces depth-monotone accumulation to satisfy Lemma 1, and ultimately eliminates all
pipeline bubbles.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

SM0 SM1 SM2 SM3 SM3 SM2 SM1 SM0
Paired SM Alloc

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Qu
er

y
Ti

le

5

6 5

7 6 5

0 4 3 2

1 0 4 3 8

2 1 0 4 7 8

3 2 1 0 6 7 8

4 3 2 1 5 6 7 8

Phase 1
Phase 2

KV0 KV1 KV2 KV3 KV4 KV5 KV6 KV7
Key-Value Tile

Figure 7: Optimal causal-mask sched-
ule using symmetric shift and two-phase
workload folding. Phase 1 processes
the dense lower-left rectangle; Phase
2 folds the remaining triangles into a
logical square and traverses it starting
from the main diagonal, first covering
the upper-left portion before the lower-
right, ensuring each KV block is exe-
cuted contiguously.

Summary of Optimal Performance In summary, the
proposed scheduling strategies achieve theoretical opti-
mality for both scenarios. By perfectly balancing work-
loads and eliminating pipeline bubbles, the total execu-
tion time for m heads is: Full Mask: Tfull opt = m · n ·
(c+ r); Causal Mask: Tcausal opt =

m·(n+1)·(c+r)
2

4 EXPERIMENTS

In this section, we empirically evaluate the performance
of our proposed scheduling strategies under full and
causal masks. We measure throughput under various se-
quence lengths and analyze how architectural factors in-
teract with different scheduling choices.

4.1 EXPERIMENTAL SETUP

Hardware and Software. All experiments are con-
ducted on a server equipped with NVIDIA H800 GPUs,
CUDA version 12.6 and Triton (Tillet et al., 2019) ver-
sion 3.4. All kernels are implemented by extending the
FlashAttention-3 implementation.

Baseline and Proposed Methods. We compare our
methods against the deterministic backward pass of
FlashAttention-3, which serves as our primary baseline.
We also benchmark against the Triton tutorial’s imple-
mentation for causal attention, as its public version lacks a full-mask counterpart. We omit
FlashAttention-2 because prior published benchmarks (Shah et al., 2024) on Hopper-class GPUs
show it is consistently outperformed by FlashAttention-3, and thus it no longer constitutes a com-
petitive baseline. The methods under evaluation are:

• Descending Q-Tile Iteration (for both masks)

• Shift Scheduling (for full masks)

• Symmetric Shift Scheduling (for causal masks)

Benchmark Settings Following the methodology of the FlashAttention-3 study, we evaluate per-
formance by fixing the total number of tokens at 16,384 while varying the sequence length from 512
to 16,384. Similarly, we fix the hidden dimension to be 2,048, and test different head dimensions in
64 and 128. All the results are tested using BF16 precision random inputs.

4.2 PERFORMANCE ON FULL ATTENTION MASKS

51
2

10
24

20
48

40
96

81
92

16
38

4

Sequence Length (seqlen)

200

300

400

500

600

Pe
rfo

rm
an

ce
 (T

FL
OP

S)

Baseline
Descending
Shift Scheduling
Non-deterministic

(a) Full mask, headdim = 64.

51
2

10
24

20
48

40
96

81
92

16
38

4

Sequence Length (seqlen)

200

300

400

500

600

Pe
rfo

rm
an

ce
 (T

FL
OP

S)

Baseline
Descending
Shift Scheduling
Non-deterministic

(b) Full mask, headdim = 128

Figure 8: Backward-pass throughput under full attention masks.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 8 presents the throughput comparison for the full attention mask scenario. Our Shift Schedul-
ing consistently outperforms the FlashAttention-3 baseline across most sequence lengths, demon-
strating the effectiveness of our theoretically optimal approach. However, a notable exception occurs
at the maximum sequence length of 16,384, where its performance slightly degrades relative to the
baseline.

This phenomenon highlights a divergence between our theoretical model and practical hardware
execution. Our model assumes zero-cost dependency edges, but in reality, inter-SM communication
for synchronizing reduction operations is mediated by the L2 cache. This incurs significant latency,
ranging from approximately 200 cycles for accesses to the local L2 cache segment to over 500 cycles
for remote segment accesses on H800-class GPUs (Luo et al., 2025). This latency differential is a
direct consequence of the distributed L2 cache architecture described in Section 2.

At a sequence length of 16,384 and a KV block size of 128, the computation for a single head is dis-
tributed across 128 blocks, often mapped to 128 SMs. This high degree of parallelism necessitates
frequent cross-SM communication to signal task completion. Given the large number of partici-
pating SMs, a substantial portion of these synchronization signals must traverse the higher-latency
links to a remote L2 cache segment. The Shift Scheduling, with its more intricate dependency graph
compared to the simpler, linear dependency of the baseline, becomes more sensitive to this com-
munication overhead at extreme parallelism. This increased synchronization cost, dominated by
remote L2 accesses, ultimately outweighs the computational benefits of the schedule in this specific
high-parallelism, long-sequence scenario, leading to the observed performance degradation.

4.3 PERFORMANCE ON CAUSAL ATTENTION MASKS

51
2

10
24

20
48

40
96

81
92

16
38

4

Sequence Length (seqlen)

0

100

200

300

400

500

600

Pe
rfo

rm
an

ce
 (T

FL
OP

S)

Triton
Baseline
Descending
Symmetric Shift Scheduling
Non-deterministic

(a) Causal mask, headdim = 64

51
2

10
24

20
48

40
96

81
92

16
38

4

Sequence Length (seqlen)

0

100

200

300

400

500

600

Pe
rfo

rm
an

ce
 (T

FL
OP

S)

Triton
Baseline
Descending
Symmetric Shift Scheduling
Non-deterministic

(b) Causal mask, headdim = 128

Figure 9: Backward-pass throughput under causal attention masks.

The performance evaluation for causal attention masks, presented in Figure 9, confirms the efficacy
of our proposed methods. Both the Descending Q-Tile Iteration and our theoretically optimal Sym-
metric Shift Scheduling demonstrate a throughput improvement over the FlashAttention-3 baseline
across all tested configurations.

An interesting trade-off emerges when comparing our two proposed methods at different head di-
mensions (headdim). At headdim = 64, the Symmetric Shift Scheduling achieves the highest
performance, validating the benefits of its superior workload balancing. However, the descending
schedule does not perform very well in this case. This is because in the FlashAttention-3 causal
backward kernel, the L2-aware LPT scheduler interleaves multiple heads across SMs. When head-
dim = 64 and the sequence length is short, each head’s L2 footprint remains small, allowing many
heads to reside in cache with only 1–2 tiles in flight per head. Consequently, the causal stalls tar-
geted by Descending Q-Tile Iteration are largely masked by cross-head interleaving, resulting in
only marginal net performance gains.

However, at headdim = 128, Symmetric Shift Scheduling’s performance is surpassed by the sim-
pler Descending Q-Tile Iteration. This performance inversion is attributable to a critical interaction
between algorithmic complexity and GPU resource limitations, specifically register pressure. The
Symmetric Shift Scheduling, while algorithmically optimal, requires a more complex implementa-
tion to manage the state of the folded task space. This complexity translates to higher register usage
per thread to maintain additional loop counters and intermediate states.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

When headdim = 128, the base register requirement for storing accumulators and other interme-
diate values is already substantial. The additional overhead (around 10 registers) from our optimal
schedule can push the total register count per thread beyond the hardware’s physical limit, as shown
by Nsight Compute (NVIDIA Corporation, 2024). This forces the compiler to generate code that
spills registers, offloading their contents to the much slower local memory. The high latency incurred
by these spill-induced memory operations introduces significant execution stalls, which negate the
algorithmic benefits of the more balanced workload and lead to degraded performance. In con-
trast, the simpler Descending Q-Tile Iteration operates below this critical register pressure threshold,
thereby avoiding spilling and achieving better effective performance in this high-resource-demand
scenario. Therefore, the two schedules for causal masks are complementary: Symmetric Shift is
theoretically optimal under our DAG model, while Descending is the practically preferred choice
for large head dimensions on current GPUs.

In the future, Symmetric Shift’s theoretical advantages are expected to be fully realized on newer
architectures with greater on-chip resources (such as Blackwell GPUs with TMEM, or devices
equipped with larger register files), or under kernel designs that are less constrained by register
allocation than the present FlashAttention-3 implementation.

4.4 END-TO-END PERFORMANCE

LLaMA3-8B Qwen2.5-7B Mistral-8x7B
1.000
1.025
1.050
1.075
1.100

Sp
ee

du
p

LLMs Seq Len
8k 16k 32k

LLaDA-1b

SAM-ViT-Huge
SD3.5-Large

SD3.5-Medium
1.00

1.02

1.04

1.06
Full Mask Models

(a) Speedup for an entire transformer block.

Llama3-8B
Qwen2.5-7B

Mistral 8x7B
LLaDA-1b

SAM-ViT-Huge
SD3.5-Large

SD3.5-Medium
0.00

0.25

0.50

0.75

1.00
Ra

tio

Attn-fwd Attn-bwd FFN (fwd+bwd) Others
Baseline Ours

(b) Time breakdown.

Figure 10: End-to-end performance of a transformer block.

To assess the performance gains delivered by DASH during training, we measured the runtime
required to process an entire transformer block, accounting for both forward and backward passes.

We evaluated DASH across a range of widely adopted models. For causal mask scenarios, we
selected famous LLMs: LLaMA3-8b (Grattafiori et al., 2024), Qwen2.5-7b (Qwen et al., 2025), and
Mistral-8×7b (Jiang et al., 2024). For full mask scenarios, we included the vision model SAM-
huge (Kirillov et al., 2023), the diffusion models StableDiffusion3.5 (medium and large) (AI, 2024),
and the diffusion-based language model LLaDA-1b (Nie et al., 2025).

For LLMs, we employ a batch size of 1 with sequence lengths of 8k, 16k, and 32k. In the case of full
mask models, a batch size of 16 is used, with the training sequence length fixed at 4k in accordance
with standard architectural configurations. The relative speedup achieved by our approach compared
to the baseline is illustrated in Figure 10a. For causal models, we observe end-to-end performance
improvements ranging from 2% to 10%. Full mask models also exhibit a speedup of approximately
4%. In summary we achieved an average speedup of around 5%, which aligns with our internal
training experience on thousands of GPUs. Additionally, Figure 10b provides a detailed breakdown
of computation time across different kernel operations, with causal models evaluated at a sequence
length of 16k.

4.5 IMPACT OF DETERMINISM ON NUMERICAL STABILITY

Table 1: Max gradient deviation averaged over 10 identical backward passes; Mr = max |gr− gref|.

Masking Scheme Non-deterministic Deterministic
Full 2.4× 10−4 0
Causal 4.9× 10−4 0

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Our analysis of backward passes indicates that non-deterministic kernels cause run-to-run gradient
deviations of O(10−4), while deterministic ones guarantee bitwise identical outcomes (Table 1).
Although small, this variability can accumulate, so determinism is key to achieving reproducibility.

5 RELATED WORKS

FlashAttention and Kernel-Level I/O Optimization Early optimization of attention focused on
mitigating the I/O bottleneck imposed by the quadratic attention matrix. FlashAttention (Dao et al.,
2022) introduced an I/O-aware tiled and fused kernel that avoids materializing the full attention
matrix in HBM. FlashAttention-2 and 3 (Dao, 2023; Shah et al., 2024) further improved utilization
via refined work partitioning and leveraged specialized hardware for asynchronous data movement.

Low-Precision Attention Low-precision methods further reduce bandwidth and memory cost.
The SageAttention series (Zhang et al., 2025b;a;c) systematically explores progressively lower for-
mats while maintaining accuracy.

Inference-Oriented Attention Kernels Inference-specialized kernels include FlashDecoding and
FlashDecoding++(Dao et al., 2023; Hong et al., 2024) for autoregressive decoding, PodAtten-
tion(Kamath et al., 2025) for mixed prefilling/decoding, and DeFT (Yao et al., 2025) and Fast-
Tree (Pan et al., 2025) for tree-structured generation.

Distributed Cyclic Scheduling Our shift-based scheduling is inspired by cyclic (ring-
style) phase-shift patterns long used in distributed systems. Distributed attention algo-
rithms—RingAttention (Liu et al., 2023), StripedAttention (Brandon et al., 2023), and Loong-
Train (Gu et al., 2024)—adopt related cyclic schemes to overlap communication and computation
across devices, whereas we apply a shift strategy intra-GPU to co-optimize deterministic accumula-
tion and work balance.

Deterministic Implementations Existing deterministic implementations either split dK,dV and
dQ calculation into different passes (e.g., Triton tutorials (Tillet et al., 2019))—forcing a second K/V
read—or materialize per-tile dQ partials for later consolidation (FlashAttention-2), adding memory
footprint and an extra reduction kernel. These designs trade bandwidth or memory rather than co-
optimizing execution and accumulation order, which is the focus of our approach.

Determinism in Inference Determinism for inference has also been examined: He & Lab (2025)
attribute non-reproducibility to lack of “batch invariance,” where outputs depend on batch size, and
design batch-invariant kernels. Their goal differs from ours: we target training time run-to-run
determinism, where batch configurations are fixed to ensure reproducibility.

6 CONCLUSION

In this work, we addressed the significant performance penalty associated with the deterministic
backward pass in modern attention mechanisms. By formulating the computation as a scheduling
problem on a DAG, we introduced DASH, a framework featuring two distinct and complementary
strategies. The first, Descending Q-Tile Iteration, provides a simple yet remarkably effective heuris-
tic that accelerates causal attention. The second, derived from our conflict-free scheduling lemma,
represents a theoretically optimal solution.

Our empirical evaluation not only demonstrates that DASH significantly narrows the performance
gap, improving throughput by up to 1.28× over the baseline, but more importantly, it reveals a
crucial insight: theoretical optimality does not always translate to practical superiority. We iden-
tified hardware realities, such as register pressure and inter-SM communication latency, as critical
factors that can override the benefits of a more complex, algorithmically perfect schedule. By pro-
viding a suite of solutions catering to different scenarios, DASH enables practitioners to achieve
high throughput attention in reproducible LLM training.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Stability AI. Stable diffusion 3.5, 2024. URL https://github.com/Stability-AI/sd3.
5. Accessed: Nov. 2025.

William Brandon, Aniruddha Nrusimha, Kevin Qian, Zachary Ankner, Tian Jin, Zhiye Song, and
Jonathan Ragan-Kelley. Striped attention: Faster ring attention for causal transformers, 2023.
URL https://arxiv.org/abs/2311.09431.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning, 2023. URL
https://arxiv.org/abs/2307.08691.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness, 2022. URL https://arxiv.org/abs/
2205.14135.

Tri Dao, Daniel Haziza, Francisco Massa, and Grigory Sizov. Flash-decoding for long-
context inference. PyTorch Blog, October 2023. URL https://pytorch.org/blog/
flash-decoding/.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi
Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li,
Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang,
Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun
Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan
Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J.
Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang,
Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng
Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shut-
ing Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao,
Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue
Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xi-
aokang Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin
Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang
Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui
Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying
Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu,
Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan
Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F.
Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan, Zhihong Shao,
Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan. Deepseek-v3 technical report, 2025. URL
https://arxiv.org/abs/2412.19437.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco

11

https://github.com/Stability-AI/sd3.5
https://github.com/Stability-AI/sd3.5
https://arxiv.org/abs/2311.09431
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135
https://pytorch.org/blog/flash-decoding/
https://pytorch.org/blog/flash-decoding/
https://arxiv.org/abs/2412.19437

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
soo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,
Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng
Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vı́tor Albiero, Vladan Petrovic, Weiwei
Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smoth-
ers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
son Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
driguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
mar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,
Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-
duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

Diandian Gu, Peng Sun, Qinghao Hu, Ting Huang, Xun Chen, Yingtong Xiong, Guoteng Wang,
Qiaoling Chen, Shangchun Zhao, Jiarui Fang, Yonggang Wen, Tianwei Zhang, Xin Jin, and Xu-
anzhe Liu. Loongtrain: Efficient training of long-sequence llms with head-context parallelism,
2024. URL https://arxiv.org/abs/2406.18485.

Horace He and Thinking Machines Lab. Defeating nondeterminism in llm infer-
ence. Thinking Machines Lab: Connectionism, 2025. doi: 10.64434/tml.20250910.
https://thinkingmachines.ai/blog/defeating-nondeterminism-in-llm-inference/.

Ke Hong, Guohao Dai, Jiaming Xu, Qiuli Mao, Xiuhong Li, Jun Liu, Kangdi Chen, Yuhan Dong,
and Yu Wang. Flashdecoding++: Faster large language model inference on gpus, 2024. URL
https://arxiv.org/abs/2311.01282.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts, 2024. URL https://arxiv.org/abs/2401.04088.

Aditya K. Kamath, Ramya Prabhu, Jayashree Mohan, Simon Peter, Ramachandran Ramjee, and
Ashish Panwar. Pod-attention: Unlocking full prefill-decode overlap for faster llm inference. In
Proceedings of the 30th ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Volume 2, ASPLOS ’25, pp. 897–912. ACM, March
2025. doi: 10.1145/3676641.3715996. URL http://dx.doi.org/10.1145/3676641.
3715996.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick.
Segment anything, 2023. URL https://arxiv.org/abs/2304.02643.

Hao Liu, Matei Zaharia, and Pieter Abbeel. Ring attention with blockwise transformers for near-
infinite context, 2023. URL https://arxiv.org/abs/2310.01889.

13

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2406.18485
https://arxiv.org/abs/2311.01282
https://arxiv.org/abs/2401.04088
http://dx.doi.org/10.1145/3676641.3715996
http://dx.doi.org/10.1145/3676641.3715996
https://arxiv.org/abs/2304.02643
https://arxiv.org/abs/2310.01889

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Weile Luo, Ruibo Fan, Zeyu Li, Dayou Du, Hongyuan Liu, Qiang Wang, and Xiaowen Chu. Dis-
secting the nvidia hopper architecture through microbenchmarking and multiple level analysis,
2025. URL https://arxiv.org/abs/2501.12084.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin,
Ji-Rong Wen, and Chongxuan Li. Large language diffusion models, 2025. URL https://
arxiv.org/abs/2502.09992.

NVIDIA. NVIDIA H100 Tensor Core GPU Architecture. Technical report, NVIDIA,
mar 2022. URL https://www.nvidia.com/content/dam/en-zz/Solutions/
gtc22/data-center/h100/gtc22-whitepaper-hopper.pdf. White paper.

NVIDIA Corporation. NVIDIA Nsight Compute, 2024. URL https://developer.nvidia.
com/nsight-compute. Version 2022.4.

NVIDIA Corporation. Split-k gemm. https://github.com/NVIDIA/cutlass/tree/
main/examples/06_splitK_gemm, 2025.

Muhammad Osama, Duane Merrill, Cris Cecka, Michael Garland, and John D. Owens. Stream-
k: Work-centric parallel decomposition for dense matrix-matrix multiplication on the gpu. In
Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel
Programming, PPoPP ’23, pp. 429–431, New York, NY, USA, 2023. Association for Computing
Machinery. ISBN 9798400700156. doi: 10.1145/3572848.3577479. URL https://doi.
org/10.1145/3572848.3577479.

Zaifeng Pan, Yitong Ding, Yue Guan, Zheng Wang, Zhongkai Yu, Xulong Tang, Yida Wang, and
Yufei Ding. Fasttree: Optimizing attention kernel and runtime for tree-structured LLM inference.
In Eighth Conference on Machine Learning and Systems, 2025. URL https://openreview.
net/forum?id=BwvHcHZ3kJ.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL https://arxiv.org/abs/2412.15115.

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
Flashattention-3: Fast and accurate attention with asynchrony and low-precision, 2024. URL
https://arxiv.org/abs/2407.08608.

Sanjif Shanmugavelu, Mathieu Taillefumier, Christopher Culver, Oscar Hernandez, Mark Coletti,
and Ada Sedova. Impacts of floating-point non-associativity on reproducibility for hpc and deep
learning applications, 2024. URL https://arxiv.org/abs/2408.05148.

Philippe Tillet, H. T. Kung, and David Cox. Triton: an intermediate language and compiler for
tiled neural network computations. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages, MAPL 2019, pp. 10–19, New
York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450367196. doi:
10.1145/3315508.3329973. URL https://doi.org/10.1145/3315508.3329973.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.
org/abs/1706.03762.

Oreste Villa, Daniel Chavarrı́a-Miranda, Vidhya Gurumoorthi, Andres Marquez, and Sriram Kr-
ishnamoorthy. Effects of floating-point non-associativity on numerical computations on mas-
sively multithreaded systems. Pacific Northwest National Laboratory (PNNL), Richland, WA
(US), Cray User Group, Inc., Corvallis, OR, United States(US)., 05 2009. URL https:
//www.osti.gov/biblio/976992.

14

https://arxiv.org/abs/2501.12084
https://arxiv.org/abs/2502.09992
https://arxiv.org/abs/2502.09992
https://www.nvidia.com/content/dam/en-zz/Solutions/gtc22/data-center/h100/gtc22-whitepaper-hopper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/gtc22/data-center/h100/gtc22-whitepaper-hopper.pdf
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://github.com/NVIDIA/cutlass/tree/main/examples/06_splitK_gemm
https://github.com/NVIDIA/cutlass/tree/main/examples/06_splitK_gemm
https://doi.org/10.1145/3572848.3577479
https://doi.org/10.1145/3572848.3577479
https://openreview.net/forum?id=BwvHcHZ3kJ
https://openreview.net/forum?id=BwvHcHZ3kJ
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2407.08608
https://arxiv.org/abs/2408.05148
https://doi.org/10.1145/3315508.3329973
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://www.osti.gov/biblio/976992
https://www.osti.gov/biblio/976992

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Tongtong Wu, Linhao Luo, Yuan-Fang Li, Shirui Pan, Thuy-Trang Vu, and Gholamreza Haffari.
Continual learning for large language models: A survey, 2024. URL https://arxiv.org/
abs/2402.01364.

Jinwei Yao, Kaiqi Chen, Kexun Zhang, Jiaxuan You, Binhang Yuan, Zeke Wang, and Tao Lin.
Deft: Decoding with flash tree-attention for efficient tree-structured llm inference, 2025. URL
https://arxiv.org/abs/2404.00242.

Jintao Zhang, Haofeng Huang, Pengle Zhang, Jia Wei, Jun Zhu, and Jianfei Chen. Sageattention2:
Efficient attention with thorough outlier smoothing and per-thread int4 quantization, 2025a. URL
https://arxiv.org/abs/2411.10958.

Jintao Zhang, Jia Wei, Haofeng Huang, Pengle Zhang, Jun Zhu, and Jianfei Chen. Sageatten-
tion: Accurate 8-bit attention for plug-and-play inference acceleration, 2025b. URL https:
//arxiv.org/abs/2410.02367.

Jintao Zhang, Jia Wei, Pengle Zhang, Xiaoming Xu, Haofeng Huang, Haoxu Wang, Kai Jiang,
Jun Zhu, and Jianfei Chen. Sageattention3: Microscaling fp4 attention for inference and an
exploration of 8-bit training, 2025c. URL https://arxiv.org/abs/2505.11594.

15

https://arxiv.org/abs/2402.01364
https://arxiv.org/abs/2402.01364
https://arxiv.org/abs/2404.00242
https://arxiv.org/abs/2411.10958
https://arxiv.org/abs/2410.02367
https://arxiv.org/abs/2410.02367
https://arxiv.org/abs/2505.11594

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, the authors employed a large language model (LLM) for
two primary purposes. First, the LLM was used as a tool to improve the grammar, spelling, and
overall clarity of the text. Second, it was used to assist in the initial stages of the literature search.
The role of the LLM was strictly that of an assistant. All language suggestions were reviewed and
edited by the authors to ensure they accurately reflected the intended scientific meaning. Further-
more, any literature identified with the assistance of the LLM was independently retrieved, reviewed,
and vetted for relevance and accuracy by the authors. All intellectual contributions, including the
conception of the research, methodology, and final conclusions, are the exclusive work of the human
authors, who take full responsibility for the final content of this paper.

B PROOF OF LEMMA 1

Proof. Let LPi(x) denote the length of the longest path from the source node s to node x in graph
Gi. The critical path length of Gi is CP (Gi) = LPi(t).

Due to the isomorphic structure of the chains in G0, all nodes at the same depth j have the same
longest path length from s. Let’s denote this common length as Lj = LP0(v) for any node v with
depth(v) = j. Since all original edge weights in E0 are strictly positive, it follows that for any two
depths j1 and j2, if j1 < j2, then Lj1 < Lj2 . This implies j1 ≤ j2 ⇐⇒ Lj1 ≤ Lj2 .

The proof proceeds by induction on the number of added edges, k.

Base Case (k=1): We prove the statement for the addition of a single edge e1 = (u, v) to G0 to
form G1.

Sufficient Condition (=⇒): Assume depth(u) ≤ depth(v). By the lemma’s premise, we are
given that adding e1 results in G1 being a DAG. We must show that CP (G1) = CP (G0).

The longest path to any node x in G1 is given by the recurrence LP1(x) = max(w,x)∈E1
{LP1(w)+

weight(w, x)}. For node v, this becomes:

LP1(v) = max(LP0(v), LP0(u) + 0)

By definition, LP0(v) = Ldepth(v) and LP0(u) = Ldepth(u). The condition depth(u) ≤ depth(v)
implies Ldepth(u) ≤ Ldepth(v). Thus, LP1(v) = max(Ldepth(v), Ldepth(u)) = Ldepth(v) =
LP0(v). Since the longest path to v is unchanged, and this is the only modification, the longest
paths to all successors of v also remain unchanged. Therefore, LP1(x) = LP0(x) for all x ∈ V ,
which implies CP (G1) = CP (G0).

Necessary Condition (⇐=): Assume CP (G1) = CP (G0) and (as per the lemma’s premise) G1 is
a DAG. We prove the contrapositive: if depth(u) > depth(v), then CP (G1) > CP (G0).

Since G1 is a DAG, adding the edge (u, v) did not create a cycle. The longest path to v becomes:

LP1(v) = max(LP0(v), LP0(u) + 0) = max(Ldepth(v), Ldepth(u))

Since we assume depth(u) > depth(v) and all original edge weights are strictly positive, we have
Ldepth(u) > Ldepth(v). This leads to LP1(v) = Ldepth(u) > Ldepth(v) = LP0(v). The longest
path to v has strictly increased. This increase propagates to all successors of v, including the sink t.
Therefore, LP1(t) > LP0(t), which means CP (G1) > CP (G0). This contradicts our assumption.
Thus, the condition depth(u) ≤ depth(v) is necessary.

Inductive Hypothesis (IH): Assume for some k ≥ 1, the lemma holds. That is, given that Gk

is a DAG, CP (Gk) = CP (G0) if and only if the condition depth(ui) ≤ depth(vi) held for all
i ∈ {1, . . . , k}. We make the stronger hypothesis that if the condition held, then LPk(x) = LP0(x)
for all nodes x ∈ V .

Inductive Step: We prove the lemma for the addition of the (k + 1)-th edge, ek+1 = (u, v), to Gk

to form Gk+1.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Sufficient Condition (=⇒): Assume depth(u) ≤ depth(v). By the lemma’s premise, we are
given that Gk+1 is a DAG. We must show CP (Gk+1) = CP (Gk).

The longest path to v in Gk+1 is LPk+1(v) = max(LPk(v), LPk(u)+0). By the IH, since the con-
ditions held for the first k edges, we have LPk(v) = LP0(v) = Ldepth(v) and LPk(u) = LP0(u) =
Ldepth(u). The calculation is identical to the base case: LPk+1(v) = max(Ldepth(v), Ldepth(u)) =
Ldepth(v) = LPk(v). The longest path to v is unchanged, and by propagation, LPk+1(x) = LPk(x)
for all x ∈ V . This maintains our strong hypothesis and proves CP (Gk+1) = CP (Gk) = CP (G0).

Necessary Condition (⇐=): Assume CP (Gk+1) = CP (Gk) and (as per the lemma’s premise)
Gk+1 is a DAG. We prove the contrapositive: if depth(u) > depth(v), then CP (Gk+1) >
CP (Gk).

Since Gk+1 is a DAG, adding (u, v) did not create a cycle. We compute LPk+1(v):

LPk+1(v) = max(LPk(v), LPk(u) + 0)

Using the IH (CP (Gk) = CP (G0) implies the conditions held for the first k edges, so LPk(x) =
LP0(x) for all x):

LPk+1(v) = max(LP0(v), LP0(u)) = max(Ldepth(v), Ldepth(u))

Since we assume depth(u) > depth(v), we have Ldepth(u) > Ldepth(v). This leads to LPk+1(v) =
Ldepth(u) > Ldepth(v) = LP0(v) = LPk(v). The longest path to v strictly increases. This in-
crease propagates to the sink node t, so CP (Gk+1) > CP (Gk). This contradicts our assumption.
Therefore, the condition is necessary.

By the principle of induction, the lemma holds for any k ≥ 1.

C EXACT ALGORITHM AND MODIFICATIONS

We present the exact algorithm in Algorithm 1 in this section. The following pseudocode is adapted
from the original FlashAttention-3 paper (Shah et al., 2024), with our unique modifications clearly
highlighted.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 1 DASH algorithm

Require: Matrices Q,K,V,O,dO ∈ RN×d in HBM, logsumexp vector L ∈ RN in HBM, block
sizes Bc, Br.

1: In a preprocessing kernel, compute D = rowsum(dO ◦O) ∈ Rd (pointwise multiply), write
D to HBM and divide it into Tr blocks D1, . . . , DTr of size Br each.

2: Divide Q into Tr =
⌈

N
Br

⌉
blocks Q1, . . . ,QTr of size Br × d each, and divide K,V in to

Tc =
⌈

N
Bc

⌉
blocks K1, . . . ,KTc

and V1, . . . ,VTc
, of size Bc × d each.

3: Divide dO into Tr blocks dOi, . . . ,dOTr of size Br × d each, and divide L into Tr blocks
Li, . . . , LTr

of size Br each.
4: Initialize pipeline object to manage barrier synchronization with s-stage circular SMEM buffer.

5: if in producer warpgroup then
6: Deallocate predetermined number of registers.
7: Issue load Kj and Vj from HBM to shared memory.
8: Upon completion, commit to notify consumer of the load of Kj and Vj .
9: for i in assigned Q-tile schedule do

10: Wait for the (i% s)th stage of the buffer to be consumed.
11: Issue loads of Qi,dOi from HBM to shared memory at the (i% s)th stage of the buffer.
12: Upon completion, commit to notify consumers of the loads of Qi,dOi.
13: end for
14: else if in consumer warpgroups then
15: Reallocate predetermined number of registers as function of number of consumer warps.
16: On-chip, Initialize dKj = (0)Bc×d,dVj = (0)Bc×d .
17: Wait for Kj and Vj to be loaded in shared memory.
18: for i in assigned Q-tile schedule do
19: Wait for Qi to be loaded in shared memory.
20: Load Li, Di from HBM to on-chip SRAM.
21: On chip, compute S

(j)
i = QiK

T
j ∈ RBr×Bc (SS-GEMM). Commit.

22: Wait for dOi to be loaded in shared memory.
23: On chip, compute dP

(j)
i = dOiV

⊤
j ∈ RBr×Bc (SS-GEMM). Commit.

24: On chip, wait for S(j)
i , then compute P

(j)
i = exp(Sij − Li) ∈ RBr×Bc .

25: On chip, wait for dP(j)
i , then compute dS

(j)
i = P

(j)
i ◦ (dP

(j)
i −Di) ∈ RBr×Bc .

26: On chip, compute dVj ← dVj + (P
(j)
i)⊤dOi ∈ RBc×d (RS-GEMM). Commit.

27: On chip, compute dKj ← dKj + dS
(j)
i

⊤
Qi ∈ RBc×d (RS-GEMM). Commit and wait

for both dVj and dKj .
28: On chip, compute dQ

(local)
i = dS

(j)
i Kj ∈ RBr×d (SS-GEMM), and write dQ

(local)
i to

smem. Notify the dQ-writer.
29: end for
30: else if in dQ-writer warp then
31: for i in assigned Q-tile schedule do
32: Wait for dQ(local)

i to be ready in smem.
33: Wait until the global order grants this block its turn to reduce.
34: Using a semaphore, atomically add dQ

(local)
i to dQi in global memory.

35: Advance the global order.
36: end for
37: end if

18

	Introduction
	Background
	Deterministic FlashAttention Backward Pass
	GPU Architecture
	Determinism in Other Operations of the Transformer

	DASH: Scheduling Strategies for Deterministic Attention
	Problem Formulation
	Analysis of FlashAttention-3 Deterministic Backward Schedule
	Descending Q-Tile Iteration: A Robust Heuristic for Causal Masks
	Shift Scheduling

	Experiments
	Experimental Setup
	Performance on Full Attention Masks
	Performance on Causal Attention Masks
	End-to-end Performance
	Impact of Determinism on Numerical Stability

	Related Works
	Conclusion
	The Use of Large Language Models
	Proof of lemma 1
	Exact Algorithm and Modifications

