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Figure 1: Examples of influential training samples, with prompts displayed below generated image.
(SD 3 Medium with LoRA, v = 216).

ABSTRACT

Identifying the training data samples that most influence a generated image is
a critical task in understanding diffusion models (DMs), yet existing influence
estimation methods are constrained to small-scale or LoRA-tuned models due to
computational limitations. To address this challenge, we propose DMin (Diffusion
Model influence), a scalable framework for estimating the influence of each train-
ing data sample on a given generated image. To the best of our knowledge, it is the
first method capable of influence estimation for DMs with billions of parameters.
Leveraging efficient gradient compression, DMin reduces storage requirements
from hundreds of TBs to mere MBs or even KBs, and retrieves the top-k most
influential training samples in under 1 second, all while maintaining performance.
Our empirical results demonstrate DMin is both effective in identifying influential
training samples and efficient in terms of computational and storage requirements.

1 INTRODUCTION

Diffusion models have emerged as powerful generative models, capable of producing high-quality
images and media across various applications (Croitoru et al., 2023; Yang et al., 2024a; Luo, 2022;
Zhang et al., 2023). Despite their impressive performance, the extremely large scale and complexity
of the datasets used for training are often sourced broadly from the internet (Schuhmann et al., 2022;
Wang et al., 2023; Srinivasan et al., 2021). This vast dataset diversity allows diffusion models to
generate an range of content, enhancing their versatility and adaptability across multiple domains (Li
et al., 2023; Chen et al., 2023). However, it also means that these models may inadvertently generate
unexpected or even harmful content, reflecting biases or inaccuracies present in the training data.

This raises an important question: given a generated image, can we estimate the influence of each
training data sample on this image? Such an estimation is crucial for various applications, such
as understanding potential biases (Kong et al., 2022; Lyu et al., 2023) and improving model trans-
parency by tracing the origins of specific generated outputs (Koh & Liang, 2017; Choe et al., 2024;
Grosse et al., 2023).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Recently, many studies have explored influence estimation in diffusion models (Mlodozeniec et al.,
2024; Kwon et al., 2024; Mlodozeniec et al., 2024; Ogueji et al., 2022; Georgiev et al., 2023). These
methods assign an influence score to each training data sample relative to a generated image, quanti-
fying the extent to which each sample impacts the generation process. For instance, DataInf (Kwon
et al., 2024) and K-FAC (Mlodozeniec et al., 2024) are influence approximation techniques tailored
for diffusion models. However, they are both second-order methods that require the inversion of the
Hessian matrix. To approximate this inversion, they must load all the gradients of training data sam-
ples across several predefined timesteps. Notably, in the case of the full-precision Stable Diffusion
3 medium model (Esser et al., 2024), the gradient of entire model requires approximately 8 GB of
storage. Collecting gradients for one training sample over 10 timesteps would consume 8×10 = 80
GB. Scaling this requirement to a training dataset of 10, 000 samples results in a storage demand of
around 800 TB – far exceeding the capacity of typical memory or even hard drives. Given that dif-
fusion models are often trained on datasets with millions of samples, this storage demand becomes
impractical. Consequently, these methods are limited to LoRA-tuned models or small diffusion
models (Ho et al., 2020; Rombach et al., 2022). Although some prior works have applied gradient
compression, such as SVD (Grosse et al., 2023) and quantization (Mlodozeniec et al., 2024), the
achieved compression rates are insufficient to maintain performance at this scale.

Alternatively, Journey-TRAK (Georgiev et al., 2023) and D-TRAK (Ogueji et al., 2022) are first-
order methods for influence estimation on diffusion models, which are extended from TRAK (Park
et al., 2023) on deep learning models. Both approaches utilize random projection to reduce the
dimensionality of gradients. However, for large diffusion models, such as the full-precision Stable
Diffusion 3 Medium model, the gradient dimensionality exceeds 2 billion parameters. Using the
suggested projection dimension of 32, 768 in D-TRAK, store a such 2B× 32, 768 projection matrix
requires more than 238 TB of storage. Even projection matrix is dynamically generated during
computation, the scale of these operations substantially slows down the overall process. As a result,
they are only feasible for small models or adapter-tuned models.

Challenges. Although these approaches have demonstrated superior performance on certain dif-
fusion models, there are several key challenges remain: (1) Scalability on Model Size: Existing
methods either require computing second-order Hessian inversion or handling a massive projec-
tion matrix, both of which restrict their applicability to large diffusion models. (2) Scalability on
Dataset Size: Diffusion models frequently rely on datasets containing millions of samples, making
the computation of a Hessian inversion for the entire training dataset impractical. Additionally, stor-
ing the full gradients for all training data samples presents a significant challenge. (3) Fragility of
Influence Estimation: Previous studies have demonstrated that the fragility of influence estimation
in extremely deep models (Lin et al., 2024; Basu et al., 2021; Epifano et al., 2023; Ghorbani et al.,
2019). Similarly, we observed this fragility in large diffusion models, regardless of whether they use
U-Net or transformer.

To address these challenges, in this paper, we propose DMin, a scalable influence estimation frame-
work for diffusion models. Unlike existing approaches that are limited to small models or LoRA-
tuned models, the proposed DMin scales effectively to larger diffusion models with billions of pa-
rameters. For each data sample, DMin first computes and collects gradients at each timestep, then
compresses these gradients to MBs or KBs while maintaining performance. Following this compres-
sion, DMin can accurately estimate the influence of each training data sample on a given generated
image or retrieve the top-k most influential samples on-the-fly using K-nearest neighbors (KNN)
search, enabling further speedup based on the specific task.

Contributions. The main contributions of this paper are:

• We introduce DMin, a scalable influence estimation framework for DMs, compatible with archi-
tectures, from small models and LoRA-tuned models to models with billions of parameters.

• To overcome storage and computational limitations, DMin employs a gradient compression tech-
nique, reducing storage from around 40 GB to 80 KB per sample while maintaining accuracy,
enabling feasible influence estimation on large models and datasets.

• DMin utilizes KNN to retrieve the top-k most influential training samples for a generated image
on-the-fly.

• Our experimental results confirm DMin’s effectiveness and efficiency in influence estimation.
• We provide an open-source PyTorch implementation with multiprocessing support1.
1 https://anonymous.4open.science/r/DMin
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Figure 2: Overview of the proposed DMin. (a) In gradient computation, given a training data sample
(a pair of prompt pi and image xi) and a timestep t, the data passes through the diffusion model in
the same manner as during training. After the backward pass, the gradients git at timestep t can
be obtained. (b) For the full model, gradients are collected from the UNet or transformer, whereas
for models with adapters, such as LoRA, gradients are collected only from the adapter. (c) For a
prompt ps and the corresponding generated image xs, the gradients are obtained in the same way
as in Gradient Computation. The influence Iθ(Xs, Xi) is then estimated by aggregating gradients
across timesteps from t = 1 to T . (d) In some cases, only the influential data samples are needed; in
such instances, KNN can be utilized to retrieve the top-k most influential samples within seconds.

2 INFLUENCE ESTIMATION FOR DIFFUSION MODELS

For a latent diffusion model, data x0 is first encoded into a latent representation z0 using an encoder
E by z0 = E(x0). The model then operates on z0 through a diffusion process to introduce Gaussian
noise and iteratively denoise it. The objective is to learn to reconstruct z0 from a noisy latent zt at
any timestep t ∈ {1, 2, · · · , T} in the diffusion process, where T is the number of diffusion steps.
Let ϵt ∼ N (0, I) denotes the Gaussian noise added at timestep t. We define the training objective
at each timestep t as follow:

θ∗ = argmin
θ

Ez0,t

[
L
(
fθ(zt, t), ϵt

)]
(1)

where θ represents the model parameters, zt is the noisy latent representation of z0 at timestep t,
fθ(zt, t) represent the model’s predicted noise at timestep t for the noisy latent zt. L(·) is the loss
function between the predicted noise and actual Gaussian noise.

Given a test generation xs, where xs is generated by a well-trained diffusion model with param-
eters θ∗, the goal of influence estimation is to estimate the influence of each training data sample
xi(1 ≤ i ≤ N) on generating s, where N is the size of training dataset. Let zit represents the
latent representation of xi on timestep t, zst denotes the latent representation of test generation s on
timestep t.

Considering in the α-th training iteration, the model parameter θα+1 are updated from θα by gradient
descent on the noise prediction loss for batch B = (Bz, Bt, Bϵ):

θα+1 = θα − ηα
1

|B|
∑

(zt,t,ϵt)∈B

∇θαL(fθα(zt, t), ϵt) (2)

where ηα denotes the learning rate in the α-th iteration, (zit, t
i, ϵit) ∈ B, and the contribution of

(zit, t
i, ϵit) to batch gradient is 1

|B|∇θαL(fθα(zit, ti), ϵit). The influence of this training iteration zit
with respect to zst on timestep t can be quantified as the change in loss:

Iθα+1,t(x
s, xi) = L

(
fθα(z

s
t , t), ϵ

i
t

)
− L

(
fθα+1(z

s
t , t), ϵ

i
t

)
(3)

where zst = E(xs) + ϵit, denoting the latent representation of s adding the Gaussian noise ϵit, and
Iθα+1,t(x

s, xi) represents the influence of xi with respect to s at the α-th iteration with timestep t.

Then L
(
fθα+1

(zst , t), ϵ
i
t

)
can be expanded by Taylor expansion:

L
(
fθα+1(z

s
t , t), ϵ

i
t

)
= L

(
fθα(z

s
t , t), ϵ

i
t

)
+ (θα+1 − θα)∇θαL

(
fθα(z

s
t , t), ϵ

i
t

)
+O(||θα+1 − θα||2)
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Given the small magnitude of the learning rate η, we disregard the higher-order term O(||θα+1 −
θα||2), as it scales with O(||ηα||2) and is therefore negligible. Then we have:

Iθα+1,t(x
s, xi) = L

(
fθα+1(z

s
t , t), ϵ

i
t

)
− L

(
fθα(z

s
t , t), ϵ

i
t

)
(4)

⇒ ηα∇θαL
(
fθα(z

i
t, t), ϵ

i
t

)
∇θαL

(
fθα(z

s
t , t), ϵ

i
t

)
To estimate the influence of training data sample xi, we can summing up all the training iteration
training on xi and timesteps on t ∈ {1, 2, · · · , T}:

Iθ∗(x
s, xi) =

∑
θa:xi

T∑
t=1

ηα∇θαL
(
fθα(z

i
t, t), ϵ

i
t

)
∇θαL

(
fθα(z

s
t , t), ϵ

i
t

)
where θa:xi denotes the iteration training on xi. However, it is impractical to store model parameters
and the Gaussian noise for each training iteration. Thus, for a diffusion model with parameter θ,
given a test generation s, we estimates the influence of a training data sample xi with respect to test
generation s by:

Iθ(x
s, xi) = eη̄

T∑
t=1

∇θL
(
fθ(z

i
t, t), ϵ

)
∇θL

(
fθ(z

s
t , t), ϵ

)
(5)

where e is the number of epochs, η̄ is the average learning rate during training, ϵ corresponds to the
Gaussian noise used in the training process. However, storing all Gaussian noise from the training
process is impractical. Therefore, we randomize the Gaussian noise following the same distribution
as in the training process for influence estimation.

Similarly, for a text-to-image model, the influence of a training data sample Xi = (pi, xi) with
respect to test generation Xs = (ps, xs) can be estimated by:

Iθ(X
s, Xi) = eη̄

T∑
t=1

∇θL
(
fθ(z

i
p, z

i
t, t), ϵ

)
∇θL

(
fθ(z

s
p, z

s
t , t), ϵ

)
(6)

where pi is the prompt of training data sample, ps denotes the prompt of test generation, zip, zsp is
the embedding of prompt pi and ps, respectively.

3 DMIN : SCALABLE INFLUENCE ESTIMATION

For a given generated image xs and the corresponding prompt ps, the objective of DMin is to
estimate an influence score Iθ(Xs, Xi) for each training pair Xi = (pi, xi), where Xs = (ps, xs).
Based on Equation 6, the Iθ(Xs, Xi) can be expressed as the summation of the inner product
between the loss gradients of the training sample and the generated image, computed with respect
to the same noise ϵ across timesteps t ∈ {1, 2, · · · , T}. Since the training dataset is fixed and
remains unchanged after training, a straightforward approach is to cache or store the gradients of
each training sample across timesteps. When estimating the influence for a given query generated
image, we only need to compute the gradient for the generated image and perform inner product
with the cached gradients of each training sample.

However, as the size of diffusion models and training datasets grows, simply caching the gradients
becomes infeasible due to the immense storage requirements. For instance, for a diffusion model
with 2B parameters and 1, 000 timesteps, caching the loss gradient of a single training sample would
require over 7, 450 GB of storage, making the approach impractical when scaled to large datasets.

In this section, we explain how we reduce the storage requirements for caching large gradients
from gigabytes to kilobytes (Gradient Computation) and how we perform influence estimation for
a generated image on the fly (Influence Estimation), as shown in Figure 2. We use stable diffusion
with text-to-image task as an example; similar procedures can be applied to other models.

3.1 GRADIENT COMPUTATION

Since the training dataset remains fixed after training, we can cache the loss gradient of each training
data sample, as illustrated in Figure 2(a). For a given training pair Xi = (pi, xi), and a timestep
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t, the training data is processed through the diffusion model in the same way as during training,
and a loss is computed between the model-predicted noise and a Gaussian noise ϵ, where ϵ ∼
N (0, I). Back-propagation is then performed to obtain the gradient git for the training data pair
Xi at timestep t. Once all gradients {gi1, gi2, · · · , giT } for Xi at all timesteps are obtained, we
apply a compression technique to these gradients and cache the compressed versions for influence
estimation. Furthermore, for tasks where only the top-k most influential samples are required, we
can construct a KNN index on the compressed gradients to enable efficient querying.

Forward and Backward Passes. In forwarding, following the same process as training, for a
training pair (pi, xi) and a timestep t, the prompt pi is passed through the encoder to obtain a
prompt embedding, while the image xi is passed through a VAE to obtain a latent representation zi0.
Gaussian noise is then generated from ϵ ∼ N (0, I) and added to the latent representation to obtain
a noisy latent presentation. Then input the timestep t, noisy latent presentation zit = zi0 + ϵ, and the
embedding zip are then fed into the model for the forward pass.

After the forward pass, a loss is computed between the Gaussian noise ϵ and the predicted noise
ϵ̂. Subsequently, back-propagation is performed to calculate the gradients for each parameter that
requires a gradient. It is important to note that for models with adapters as illustrated in Figure 2(b),
only the parameters associated with the adapters require gradients. After obtaining the gradients,
we concatenate all of them and flatten them into a single vector. For a diffusion model with 2B
parameters, this resulting gradient vector will have a length of 2B.

The number of training timesteps is typically 1,000, depending on the model training configura-
tion. For a single training data sample, using a diffusion model with 2B parameters as an example,
computing gradients for all 1, 000 timesteps is computationally intensive and costly, requiring over
7, 450 GB of storage. To mitigate this, similar to the inference process in diffusion models, we
can sample a subset of timesteps from t ∈ {1, 2, · · · , T} instead of computing gradients for all
timesteps, substantially reducing the computational and storage burden.

Gradient Compression. However, even storing the gradient vector for a single training data sample
at just one timestep requires approximately 7 GB of storage. This becomes impractical for extremely
large training datasets containing millions of samples. Therefore, gradient compression techniques
are essential to enable caching gradients at this scale efficiently.

As previously discussed, some prior studies employ random projection to compress gradient vectors.
However, for a diffusion model with 2B parameters, such compression requires a projection matrix
of size 2B × v, where v is the dimension after compression. Even with a modest v = 4096, this
matrix would require over 29 TB of storage. This makes these approaches feasible only for small
models or LoRA-tuned models, substantially limiting their scalability.

Inspired by the prior works on vector compression (Li & Li, 2023; Lin et al., 2024), we compress
the gradient vector through four steps: (1) padding, (2) permutation, (3) random projection, and
(4) group addition. In the gradient compression process, we first pad the gradient vector to the
smallest length Lpad that can be evenly divided by v. Padding can be achieved by appending 0s to
the original gradient vector until the desired length is reached. Next, we permute the gradient vector
using a random permutation to disrupt any inherent structure in the vector representation. We then
perform an element-wise multiplication of the permuted gradient vector with a random projection
vector. The random projection vector is of the same length as the gradient vector and consists of
elements randomly set to either -1 or 1 with equal probability. This step projects the gradient onto
a randomized basis, reducing redundancy while preserving essential information. Finally, we divide
the Lpad elements of the gradient vector into Lpad

v groups, summing up the elements within each
group to produce the compressed vector of dimension v.

With this compression, we only need to store two components: a permutation vector that records the
indices of the permutation (4 bytes per element) and a binary projection vector (1 bit per element).
As a result, the storage requirement is significantly reduced, occupying just 7.45 GB for the gradients
plus an additional 238 MB for the projection vector. This reduction makes it feasible to store and
cache the gradients for influence estimation at scale.

Normalization. Some prior studies have highlighted the inherent instability of gradients in deep
learning (Lin et al., 2024; Basu et al., 2021; Epifano et al., 2023; Ghorbani et al., 2019) particularly
in extremely large models. This instability arises from the potential for unusually large weights and
gradients in the model. In our experiments, we encountered this issue: the magnitude of some gradi-
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ent values is found to be extremely large. Such large gradient values can dominate the inner product,
leading to incorrect results. To address this, we apply L2 normalization to the gradient vector be-
fore compression, which effectively mitigates the impact of unusually large gradient magnitudes.
Consequently, Equation 6 can be reformulated as:

Iθ(X
s, Xi) = eη̄

T∑
t=1

∇θL
(
fθ(z

i
p, z

i
t, t), ϵ

)
∥∥∇θL

(
fθ(zip, z

i
t, t), ϵ

)∥∥
2

·
∇θL

(
fθ(z

s
p, z

s
t , t), ϵ

)
∥∥∇θL

(
fθ(zsp, z

s
t , t), ϵ

)∥∥
2

Index Construction for KNN. To further enhance the scalability of DMin, we introduce KNN
search for tasks requiring only the top-k most influential samples. After gradient compression, as
shown in Figure 2(d), we concatenate all the compressed gradients across timesteps to construct a
KNN index, enabling efficient querying during influence estimation. This approach is well-suited
for large datasets, allowing for the retrieval of the top-k most influential samples on the fly.

3.2 INFLUENCE ESTIMATION

After caching the compressed gradients, for a given generated image and its corresponding prompt,
we compute and compress the gradient in the same way as for the training data samples to obtain
the compressed gradient for the given sample. For exact influence estimation, we calculate the inner
product between the compressed gradient of the given sample and the cached compressed gradients
of each training sample across timesteps to obtain the influence scores. For KNN retrieval, we
concatenate the compressed gradients across timesteps to query the KNN index and identify the
top-k most relevant training samples efficiently.

4 EXPERIMENTS
Table 1: Sub-datasets used in experi-
mental evaluation. (Full dataset is listed
in Appendix C.2.)

Subset # Train % of Training Data # Test

Flowers 162 1.74% 34
Lego Sets 40 0.43% 21
Magic Cards 1541 16.59% 375

In this section, we present our experiments conducted on
various models and settings to validate the effectiveness
and efficiency of the proposed DMin.

Datasets. For the conditional diffusion model, we com-
bine six datasets from Huggingface and randomly select
80% of the data samples as the training dataset, resulting in 9,288 pairs of images and prompts. Due
to page limitations, we list three datasets used for evaluation in Table 1: (1) Flowers, which includes
162 training pairs of flower images and corresponding descriptive prompts in our experiments, ac-
counting for only 1.74% of the training dataset. (2) Lego Sets: This subset consists of 40 training
pairs, where each image represents a Lego box accompanied by a description of the box, accounting
for only 0.43% of the training dataset. (3) Magic Cards, which contains magic card images from
scryfall with captions generated by Fuyu-8B (Bavishi et al., 2023) and BLIP (Li et al., 2022). For
unconditional diffusion models, we mainly focus on MNIST and CIFAR-10. We include a detailed
explanation of datasets in Appendix C.2.

Models. For conditional text-to-image diffusion model, we use three different models: (1) SD 1.4
with LoRA, (2) SD 3 Medium with LoRA and (3) SD 3 Medium (Full parameters). For uncondi-
tional diffusion model, we conduct experiments on two Denoising Diffusion Probabilistic Models
(DDPM) trained on MNIST and CIFAR-10. The detailed settings of models are included in Ap-
pendix C.1. We fine-tune models on the combined training dataset mentioned above and evaluate
them on the testing dataset. During gradient collection, we collect only the gradients of the param-
eters in the LoRA components for the LoRA-tuned model, whereas for the fully fine-tuned model,
we collect the gradients of all parameters (Figure 2(b)).

Baselines We compare the proposed DMin against the following baselines: (1) Random Selec-
tion: Assigns an influence score to each training sample randomly. (2) SSIM (Brunet et al., 2012)
Structural Similarity Index Measure (SSIM) between the training image and the generated image.
(3) CLIP Similarity (Radford et al., 2021): Cosine similarity of embeddings computed by CLIP be-
tween the training image and the generated image. (4) LiSSA (Agarwal et al., 2017): A second-order
influence estimation method that uses an iterative approach to compute the inverse Hessian-vector
product. (5) DataInf (Kwon et al., 2024): An influence estimation method based on a closed-form
expression for computational efficiency. We also evaluate a variant of DataInf where the Hessian
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Table 2: Average detection rates of top-k most influential training data samples. Detection rate =
# Samples from Same Subset among Top-k Training Samples

k where k = {5, 10, 50, 100}, indicating the average pro-
portion of samples from the same subset appearing in the top-k influential samples. “Ours (w/o
Comp.)” indicates that the gradient vectors are not compressed, while “w/o Norm.” signifies that
the gradient vectors are not normalized. “Excatly” denotes exact inner product computation. The
results for LiSSA, DataInf and D-TRAK on SD3 Medium (Full) are omitted due to hundreds of TB
of cache. Moreover, at this scale, it is impractical for LiSSA and DataInf to approximate the Hessian
inversion and for D-TRAK to compute a large random projection matrix.

Model Method Flowers Lego Sets Magic Cards
Top 5 Top 10 Top 50 Top 100 Top 5 Top 10 Top 50 Top 100 Top 5 Top 10 Top 50 Top 100

SD 1.4
(LoRA)

Random Selection 0.0000 0.0000 0.0200 0.0100 0.0000 0.0000 0.0000 0.0000 0.2000 0.2000 0.0800 0.1300
SSIM 0.2000 0.1000 0.0220 0.0130 0.0400 0.0400 0.0340 0.0240 0.2800 0.3500 0.4480 0.4290
CLIP Similarity 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4444 0.4005 0.3565 0.3830
LiSSA 0.5143 0.4571 0.3486 0.2929 0.0000 0.0000 0.0040 0.0080 0.9667 0.9500 0.9600 0.9483
DataInf (Identity) 0.4125 0.4062 0.3188 0.2687 0.0000 0.0000 0.0067 0.0100 0.9667 0.9500 0.9600 0.9483
DataInf (Hessian Inversion) 0.4125 0.4062 0.3188 0.2687 0.0000 0.0000 0.0067 0.0100 0.9667 0.9500 0.9600 0.9483
Ours (w/o Comp. & Norm.) 0.1333 0.1154 0.1138 0.1028 0.0000 0.0000 0.0047 0.0065 0.9637 0.9585 0.9402 0.9280
Ours (w/o Comp.) 0.8872 0.8359 0.5836 0.3969 0.5647 0.4412 0.1435 0.0894 0.9778 0.9778 0.9911 0.9933
Ours (v = 212, Exactly) 0.8667 0.8154 0.5713 0.3836 0.5176 0.3882 0.1435 0.0865 0.9778 0.9889 0.9933 0.9944
Ours (v = 216, Exactly) 0.8615 0.8231 0.5718 0.3813 0.5529 0.4353 0.1447 0.0894 0.9778 0.9778 0.9911 0.9933
Ours (v = 220, Exactly) 0.8667 0.8154 0.5713 0.3836 0.5647 0.4412 0.1435 0.0894 0.9778 0.9778 0.9911 0.9933
Ours (v = 212, KNN) 0.8615 0.8128 0.5405 0.3585 0.5059 0.3647 0.1365 0.0824 0.9778 0.9889 0.9933 0.9944
Ours (v = 216, KNN) 0.8615 0.8231 0.5723 0.3808 0.5412 0.4176 0.1388 0.0847 0.9778 0.9889 0.9889 0.9944

SD 3 Medium
(LoRA)

Random Selection 0.0000 0.0000 0.0200 0.0100 0.0000 0.0000 0.0000 0.0000 0.2000 0.2000 0.0800 0.1300
SSIM 0.1800 0.0900 0.0200 0.0160 0.0000 0.0000 0.0160 0.0190 0.0000 0.0067 0.0180 0.0347
CLIP Similarity 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0352 0.0363 0.0421 0.0438
LiSSA 0.8889 0.8889 0.8622 0.8222 0.1111 0.1111 0.1244 0.1044 0.9091 0.9091 0.9091 0.9082
DataInf (Identity) 0.8556 0.8556 0.7878 0.6683 0.1647 0.1176 0.0576 0.0424 0.8833 0.8917 0.8900 0.8883
DataInf (Hessian Inversion) 0.8556 0.8556 0.7878 0.6683 0.1647 0.1176 0.0576 0.0424 0.8833 0.8917 0.8900 0.8883
Ours (w/o Comp. & Norm.) 0.8974 0.8769 0.8010 0.6738 0.2588 0.1765 0.1024 0.0765 0.7935 0.7951 0.7965 0.7986
Ours (w/o Comp.) 0.9128 0.8974 0.8390 0.7605 0.6118 0.5059 0.2318 0.1488 1.0000 1.0000 1.0000 0.9700
Ours (v = 212, Exactly) 0.8974 0.8846 0.8318 0.7608 0.6000 0.5235 0.2306 0.1529 0.9837 0.9835 0.9751 0.9703
Ours (v = 216, Exactly) 0.9077 0.8872 0.8405 0.7659 0.5765 0.5118 0.2224 0.1482 0.9848 0.9840 0.9761 0.9718
Ours (v = 220, Exactly) 0.9077 0.8872 0.8385 0.7651 0.6000 0.5235 0.2294 0.1506 0.9848 0.9840 0.9762 0.9720
Ours (v = 212, KNN) 0.9026 0.8949 0.8415 0.7641 0.7294 0.6529 0.3094 0.1924 0.9854 0.9851 0.9771 0.9717
Ours (v = 216, KNN) 0.9128 0.9051 0.8472 0.7721 0.7059 0.6353 0.3035 0.1871 0.9864 0.9862 0.9785 0.9736

SD 3 Medium
(Full)

Random Selection 0.0000 0.0000 0.0200 0.0100 0.0000 0.0000 0.0000 0.0000 0.2000 0.2000 0.0800 0.1300
SSIM 0.1800 0.0967 0.0200 0.0117 0.0235 0.0176 0.0282 0.0206 0.0000 0.0000 0.0020 0.0160
CLIP Similarity 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2938 0.3412 0.4583 0.4982
Ours (v = 212, Exactly) 0.9487 0.9000 0.5385 0.3567 0.5529 0.4412 0.1906 0.1165 0.9882 0.9882 0.9420 0.9063
Ours (v = 216, Exactly) 0.9590 0.9308 0.5564 0.3690 0.5765 0.4765 0.2047 0.1282 0.9961 0.9902 0.9514 0.9220
Ours (v = 220, Exactly) 0.9641 0.9333 0.5590 0.3708 0.5647 0.4765 0.2071 0.1306 0.9922 0.9922 0.9498 0.9202
Ours (v = 212, KNN) 0.9282 0.8641 0.5354 0.3518 0.6125 0.5062 0.2025 0.1288 0.9880 0.9820 0.9472 0.9046
Ours (v = 216, KNN) 0.9622 0.9108 0.5622 0.3695 0.6250 0.5437 0.2213 0.1419 0.9960 0.9960 0.9640 0.9308

Inversion matrix is replaced with an identity matrix. (6) D-TRAK (Ogueji et al., 2022): A first-order
influence estimation method extended from TRAK (Park et al., 2023). (7) Journey-TRAK (Georgiev
et al., 2023): An estimation method focusing on the sampling path in diffusion models. For the pro-
posed DMin, we evaluate DMin under different scenarios, including exact estimation of influence
scores for each training sample and KNN-based approximate searches for the top-k most influen-
tial samples. Additionally, we experiment with varying compression levels: no compression, and
v = {212, 216, 220}. The detailed information of baselines are reported in Appendix D.1.

KNN. We utilized hierarchical navigable small world (HNSW) algorithm (Malkov & Yashunin,
2020) for KNN in our experiment, and provide the results of ablation study in Appendix D.

4.1 PERFORMANCE ON CONDITIONAL DIFFUSION MODELS

The goal of this experiment is to confirm the effectiveness of different methods in identifying influ-
ential training samples within the training dataset.

Visualization. Figure 1 illustrates several examples, showing the generated image and its corre-
sponding prompt in the first column, followed by the training samples ranked from highest to low-
est influence, arranged from left to right. These examples demonstrate that the proposed DMin
method successfully retrieves training image samples with content similar to the generated image
and prompt. Additional visualizations are provided in Appendix E.

Qualitative Analysis. Unlike prior studies focusing on small diffusion models, the diffusion models
used in our experiments are substantially larger, making it impractical to retrain them for leave-one-
out evaluation. Consequently, we assess the detection rate in our experiments, as shown in Table 2,
which reflects the average proportion of similar content from the training dataset retrieved by the
top-k most influential samples.

Datasets. As mentioned earlier, our training dataset is a combination of six datasets. As shown
in Table 1, we report evaluations on three subsets: Flowers, Lego Sets, and Magic Cards, as these
subsets are more distinct from the others. For example, given a prompt asking the model to generate
a magic card, the generated image should be more closely related to the Magic Cards subset rather
than the Flowers or Lego Sets subsets, as the knowledge required to generate magic cards primarily

7
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Generated
Image

Generated
Image

Most Influential Samples Most Influential SamplesLeast Influential Samples Least Influential Samples
a) MNIST b) CIFAR-10

High Influence Low Influence High Influence Low Influence

Figure 3: Examples of generated images alongside the most and least influential samples (from left
to right) as estimated by DMin for unconditional DDPM models on the MNIST and CIFAR-10.

Table 3: Storage requirements for caching per-sample and dataset gradients (9,288 samples), com-
paring compressed and uncompressed methods across models. The table shows storage and com-
pression ratios of our method across levels, with LiSSA and DataInf storing gradients uncompressed.

Mehod SD 1.4 (LoRA, 10 Timesteps) SD 3 Medium (LoRA, 10 Timesteps) SD 3 Medium (Full, 5 Timesteps)
Size

(Per Sample)
Size

(Training Dataset)
Compression

Ratio
Size

(Per Sample)
Size

(Training Dataset)
Compression

Ratio
Size

(Per Sample)
Size

(Training Dataset)
Compression

Ratio

Gradient w/o Comp. 30.41 MB 275.82 GB 100% 45 MB 408.16 GB 100% 37.42 GB 339.39 TB 100%
Ours (v = 212) 160 KB 1.45 GB 0.53% 160 KB 1.45 GB 0.36% 80 KB 726 MB 0.00017%
Ours (v = 216) 2.5 MB 22.68 GB 8.22% 2.5 MB 22.68 GB 5.56% 1.25 MB 11.34 GB 0.0028%
Ours (v = 220) - - - - - - 20 GB 181.41 GB 0.044%

originates from the Magic Cards subset. Similarly, the knowledge for generating images containing
Lego comes predominantly from the Lego Sets subset. Therefore, for a prompt belonging to one
of the test subsets – Flowers, Lego Sets, or Magic Cards – the most influential training samples are
highly likely to originate from the same subset. This implies that a number of training samples from
the corresponding subset should be identified among the top-k most influential samples.

We begin by generating images using the prompts from the test set of each subset – Flowers,
Lego Sets, and Magic Cards. For each test prompt and its generated image, we estimate the in-
fluence score for every training data sample and select the top-k most influential training sam-
ples with the highest influence score. We then calculate the detection rate as Detection Rate =
# Samples from Same Subset among top-k Training Samples

k .

Results. We report the average detection rate for each test set of subsets in Table 2. Compared to
the baselines, our proposed DMin obtains the best performance on all subsets. Compared to the
baselines, our proposed DMin achieves the best performance across all subsets. The detection rates
for top-50 and top-100 on Lego Sets are lower because the Lego Sets training dataset contains only
40 samples (0.43% of the total). Across all subsets and different values of k, v = 216 achieves the
best performance in most cases, whether using KNN or exact inner product computation. Addition-
ally, compared to our method without compression, removing normalization substantially decreases
performance, confirming that normalization mitigates the instability of gradients in extremely deep
models. Interestingly, KNN search often outperforms exact inner product computation in our experi-
ments across all models and subsets. This improvement is likely due to KNN’s ability to approximate
the search process, capturing a broader and more representative subset of neighbors.

4.2 TIME AND MEMORY COST

The computational cost of both time and memory is critical for evaluating the scalability of influence
estimation methods, especially when applied to large diffusion models.

Time. Table 4 demonstrates the time consumption on estimate the influence score for every train-
ing sample in the training dataset for a single test sample. The gradient computation and caching
times for two LoRA-tuned models are nearly identical due to the small model size across different
methods: (1) SD 1.4 (LoRA): around 8 GPU hours, (2) SD 3 Medium (LoRA): around 24 GPU

8
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Table 4: Time cost comparison and speedup relative to our method without compression. Time cost
refers to the time to estimate influence scores for all training samples per test sample (in seconds).

Mehod
SD 1.4 (LoRA) SD 3 Medium (LoRA) SD 3 Medium (Ful)

Time
(seconds/test sample)

Speedup
(vs. w/o Comp.)

Time
(seconds/test sample)

Speedup
(vs. w/o Comp.)

Time
(seconds/test sample)

LiSSA 2,939.283 0.02x 2,136.701 0.19x -
DataInf (Identity) 206.385 0.34x 201.923 2.02x -
DataInf (Hessian Inversion) 1,187.841 0.06x 932.762 0.44x -
D-TRAK 345.223 0.20x 833.850 0.49x -

Ours (w/o Comp.) 70.590 1x 407.511 1x -
Ours (v = 212, Exact) 8.193 8.62x 14.238 28.62x 9.866
Ours (v = 216, Exact) 41.026 1.72x 135.462 3.01x 18.900
Ours (v = 220, Exact) 99.307 0.71x 623.610 0.65x 100.880

Ours (v = 212, KNN, Top-5) 0.004 18,100.51x 0.004 101,877.75x 0.009
Ours (v = 212, KNN, Top-50) 0.018 3,921.78x 0.010 40,751.10x 0.014
Ours (v = 212, KNN, Top-100) 0.033 2,139.15x 0.019 21,447.95x 0.131

Ours (v = 216, KNN, Top-5) 0.073 967.01x 0.065 6,269.40x 0.097
Ours (v = 216, KNN, Top-50) 0.393 179.62x 0.227 1,792.04x 0.485
Ours (v = 216, KNN, Top-100) 0.736 95.91x 0.406 1,003.72x 0.784

hours, and (3) SD 3 Medium (full): 330 GPU hours. Additionally, the index construction process
only takes a few minutes. Our proposed methods demonstrate substantial efficiency improvements,
particularly with KNN search. For instance, on the smallest subset—Lego Sets, which contains
only 21 test samples—estimating the influence score for the entire training dataset takes 17 hours
with LiSSA, 7 hours with DataInf (Hessian Inversion), and 2 hours with D-TRAK. In contrast, our
method with v = 212 and k = 5 requires only 0.084 seconds, and even for k = 100, it takes only
0.69 seconds while achieving the best performance.

Memory. Table 3 compares the storage requirements for caching per-sample gradients and the entire
training dataset (9,288 samples) across different models, with and without compression. Without
compression, gradient storage is substantially large, reaching 339.39 TB for SD 3 Medium (Full). In
contrast, our method achieves drastic reductions in storage size with various compression levels. For
example, using v = 212, the storage for SD 3 Medium (Full) is reduced to just 726 MB, achieving
a compression ratio of 0.00017%, demonstrating the scalability and efficiency of our approach for
handling large-scale models.

4.3 UNCONDITIONAL DIFFUSION MODELS

We evaluate the performance of the proposed DMin on unconditional diffusion models using DDPM
on the MNIST and CIFAR-10 datasets. Figure 3 illustrates examples of generated images and the
corresponding most and least influential training samples as identified by our method. On MNIST
(Figure 3(a)), the most influential samples for each generated digit closely resemble the generated
image, validating the effectiveness of our approach. Similarly, for CIFAR-10 (Figure 3(b)), our
method retrieves relevant training samples with similar content. These results highlight the scalabil-
ity and reliability of our method for detecting influential samples in unconditional diffusion models.

Table 5: Detection Rate compared with Journey-
TRAK and D-TRAK for the unconditional DM
(DDPM) on MNIST.

Method Top 5 Top 10 Top 50 Top 100

Journey-TRAK 0.2560 0.2190 0.1732 0.1513
D-TRAK 0.1264 0.1410 0.1382 0.1272
Ours (v = 212, Exact) 0.4376 0.4315 0.4094 0.4027
Ours (v = 216, Exact) 0.8006 0.7901 0.7408 0.7098

Table 5 reports the detection rate compared
to baseline methods Journey-TRAK and D-
TRAK. Our method consistently outperforms
both baselines across all metrics, achieving sub-
stantially higher detection rates. For instance,
with v = 216, our method achieves a de-
tection rate of 0.8006 for Top-5 on MNIST,
while Journey-TRAK and D-TRAK achieve
only 0.2560 and 0.1264, respectively.

5 CONCLUSION

In this paper, we introduce DMin, a scalable framework for estimating the influence of training
data samples on images generated by diffusion models. The proposed DMin scales effectively to
diffusion models with billions of paramters by substantially reducing storage requirements from
hundreds of TBs to MBs or KBs for SD 3 Medium with full parameters. Additionally, DMin can
retrieve the top-k most influential training sample in 1 second by KNN, demonstrating the scalability
of the proposed DMin. Our empirical results further confirm DMin’s effectiveness and efficiency.
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ETHICS STATEMENT

All authors have read and will adhere to the ICLR Code of Ethics. This work studies influence
estimation for diffusion models without involving human subjects or personally identifiable infor-
mation. We use only publicly available datasets (e.g., MNIST, CIFAR-10, and image–text datasets
from Hugging Face) and model checkpoints, respecting their licenses and terms of use; for third-
party assets we provide pointers or scripts rather than redistributing restricted content. Our experi-
ments fine-tune models and synthesize images programmatically; we took care to avoid harmful or
offensive content in examples. Because influence estimation could be misinterpreted as certifying
provenance, we emphasize that our scores are diagnostic signals, not legal attribution.

REPRODUCIBILITY STATEMENT

We provide a code repository with complete evaluation code, configuration files. Model versions
and training/fine-tuning settings are documented, as are software/hardware details; random seeds
are fixed where applicable, and nondeterministic components are noted. Upon publication, we will
open-source both the codebase and the dataset artifacts after acceptance.

REFERENCES

Naman Agarwal, Brian Bullins, and Elad Hazan. Second-order stochastic optimization for machine
learning in linear time. J. Mach. Learn. Res., 18:116:1–116:40, 2017.

Samyadeep Basu, Phillip Pope, and Soheil Feizi. Influence functions in deep learning are fragile. In
9th International Conference on Learning Representations, ICLR, Virtual Event, Austria, 2021.
OpenReview.net.

Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani,
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B RELATED WORK

Influence estimation has been a critical area of research in understanding the impact of individual
training samples on machine learning models (Schioppa et al., 2022; Park et al., 2023; Yang et al.,
2024b; Chhabra et al., 2024). Early work by Koh & Liang (2017); Agarwal et al. (2017) proposed
second-order Hessian-based methods to approximate the effect of a training sample. However, ap-
proximating a Hessian inversion becomes computationally prohibitive for large-scale datasets and
modern models containing billions of parameters. To address this issue, some studies proposed first
order approaches for influence estimation (Pruthi et al., 2020; Park et al., 2023). However, even with
first-order methods, scaling to large datasets still encounter storage challenges. For example, storing
the gradient of a 2B diffusion model for 10,000 data samples across 10 timesteps requires over 700
TB of storage.

To reduce the storage and computational demands, some studies leverage dimension reduction tech-
niques (Park et al., 2023; Ogueji et al., 2022; Georgiev et al., 2023; Hammoudeh & Lowd, 2024),
such as random projection. However, while random projection can substantially reduce the dimen-
sion of gradient vector, the projection matrix itself becomes a scalability bottleneck in large models.
For instance, in a model with 2B parameters, a projection matrix mapping gradients to a compressed
dimension of 32,768 would require over 500 GB of storage. These constraints highlight the need for
more efficient and scalable approaches.

C EXPERIMENTAL SETTINGS.

In this section, we report the detailed setting and environments for our experiments.

Implementation Details. We provide an open-source PyTorch implementation with multiprocess-
ing support2. We leverage Huggingface, Accelerate, Transformers, Diffusers and Peft in our imple-
mentation.

Experimental Environments. Our experiments are conducted on four different types of servers: (1)
Servers running Red Hat Enterprise Linux 7.8, equipped with Intel(R) Xeon(R) Platinum 8358 pro-
cessors (2.60GHz) with 32 cores, 64 threads, 4 A100 80G GPUs, and 1TB of memory. (3) Servers
running Red Hat Enterprise Linux 7.8, containing Intel(R) Xeon(R) Gold 6226R CPUs @ 2.90GHz
with 16 cores, 32 threads, 2 A100 40G GPUs, and 754GB of memory. (4) A server running Ubuntu
20.04.6 LTS, featuring 2 H100 GPUs, dual Intel(R) Xeon(R) Gold 6438N processors (3.60GHz)
with 32 cores, 64 threads, and 1.48TB of memory. To ensure a fair comparison, all experiments
measuring time cost and memory consumption are conducted on server 1, while other experiments
are distributed across the different server types.

C.1 MODELS

This study evaluates the performance of the following models: (1) SD 1.4 with LoRA: This model
integrates Stable Diffusion 1.4 (SD 1.4) with Low-Rank Adaptation (LoRA), a technique that fine-
tunes large models efficiently by adapting specific layers to the target task while maintaining most
of the original model’s structure. (2) SD 3 Medium with LoRA: Utilizing the Stable Diffusion 3
Medium (SD 3 Medium) base model, this configuration applies LoRA for task-specific adaptation.
The medium-sized architecture of SD 3 balances computational efficiency with high-quality gener-
ation performance. (3) SD 3 Medium: A standalone version of Stable Diffusion 3 Medium, serving
as a baseline for comparison against the LoRA-enhanced models. This version operates without
any additional fine-tuning, showcasing the model’s capabilities in its default state. Additionally, we
include the hyperparameter settings in Table 7.

C.2 DATASETS

In this section, we introduce the datasets used on our experiments of conditional diffusion models
and unconditional diffusion models.

Dataset Combination. For conditional diffusion models, We combine six datasets from Hug-
gingface: (1) magic-card-captions by clint-greene, (2) midjourney-detailed-prompts by Mohame-
2 https://anonymous.4open.science/r/DMin
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dRashad, (3) diffusiondb-2m-first-5k-canny by HighCWu, (4) lego-sets-latest by merve, (5)
pokemon-blip-captions-en-ja by svjack, and (6) gesang-flowers by Albe-njupt. Additionally, we
introduced noise to 5% of the data, selected randomly, and appended it to the dataset to enhance
robustness. Finally, we split the data, allocating 80% (9,288 samples) for training and the remaining
20% for testing. For unconditional diffusion models, we use two classic datasets: (1) MNIST and
(2) CIFAR-10.

Dataset Examples. Figure 4 showcases randomly selected examples from each dataset. For clarity,
prompts are excluded from the visualizations. The original prompts can be accessed in the corre-
sponding Huggingface datasets.

Table 6: Average detection rate on different efconstruction, M and ef in HNSW implementation.

ef Subset M
efconstruction

50 100 200 300 400 500

200

Flowers

4 0.8405 0.8349 0.8405 0.8405 0.8405 0.8405
8 0.8410 0.8410 0.8415 0.8415 0.8415 0.8415

16 0.8410 0.8415 0.8415 0.8415 0.8415 0.8415
32 0.8410 0.8415 0.8415 0.8415 0.8415 0.8415
48 0.8410 0.8415 0.8415 0.8415 0.8415 0.8415

Lego Sets

4 0.2800 0.3035 0.3094 0.3094 0.3082 0.3082
8 0.3082 0.3082 0.3094 0.3094 0.3094 0.3094

16 0.3082 0.3082 0.3094 0.3082 0.3094 0.3094
32 0.3082 0.3082 0.3094 0.3094 0.3094 0.3094
48 0.3082 0.3082 0.3094 0.3094 0.3094 0.3094

Magic Cards

4 0.9770 0.9772 0.9772 0.9772 0.9772 0.9772
8 0.9772 0.9772 0.9772 0.9771 0.9771 0.9771

16 0.9771 0.9771 0.9771 0.9771 0.9771 0.9771
32 0.9771 0.9771 0.9771 0.9771 0.9771 0.9771
48 0.9771 0.9771 0.9771 0.9771 0.9771 0.9771

1000

Flowers

4 0.8415 0.8415 0.8415 0.8415 0.8415 0.8415
8 0.8415 0.8415 0.8415 0.8415 0.8415 0.8415

16 0.8415 0.8415 0.8415 0.8415 0.8415 0.8415
32 0.8415 0.8415 0.8415 0.8415 0.8415 0.8415
48 0.8415 0.8415 0.8415 0.8415 0.8415 0.8415

Lego Sets

4 0.2847 0.3035 0.3094 0.3094 0.3094 0.3094
8 0.3094 0.3094 0.3094 0.3094 0.3094 0.3094

16 0.3094 0.3094 0.3094 0.3094 0.3094 0.3094
32 0.3094 0.3094 0.3094 0.3094 0.3094 0.3094
48 0.3094 0.3094 0.3094 0.3094 0.3094 0.3094

Magic Cards

4 0.9770 0.9771 0.9771 0.9771 0.9771 0.9771
8 0.9771 0.9771 0.9771 0.9771 0.9771 0.9771

16 0.9771 0.9771 0.9771 0.9771 0.9771 0.9771
32 0.9771 0.9771 0.9771 0.9771 0.9771 0.9771
48 0.9771 0.9771 0.9771 0.9771 0.9771 0.9771

Table 7: Hyperparameter settings for model training.
Method Learning Rate Batch Size # Epochs Image Size LoRA Rank LoRA Alpha LoRA Target Layers Precision

SD 1.4 (LoRA) 0.001 64 150 512× 512 4 8 [to k, to q, to v, to out.0] float32
SD 3 Medium (LoRA) 0.001 64 150 512× 512 4 8 [to k, to q, to v, to out.0] float32
SD 3 Medium (Full) 0.0001 64 150 512× 512 - - - float32

D ABLATION STUDY

To better understand the impact of key parameters on the performance of the HNSW implementation,
we conducted an ablation study by varying the graph-related parameters M and ef, as well as the
construction parameter efconstruction. Table 6 summarizes the average detection rates across three
subsets: Flowers, Lego Sets, and Magic Cards, under a range of settings on SD 3 Medium with
LoRA (v = 212).

The parameter M determines the maximum number of connections for each node in the graph.
A larger M leads to denser graphs, which can improve accuracy at the cost of increased memory
and computational overhead. The parameter efconstruction controls the size of the dynamic list of
candidates during graph construction, influencing how exhaustive the neighborhood exploration is
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HighCWu/diffusiondb_2m_first_5k_canny

clint-greene/magic-card-captions

MohamedRashad/midjourney-detailed-prompts

Albe-njupt/gesang_flowers

svjack/pokemon-blip-captions-en-ja

merve/lego_sets_latest

Figure 4: Examples of each dataset used in experiments.

during index creation. Lastly, the query-time parameter ef defines the size of the candidate list used
during the search operation, directly affecting the trade-off between accuracy and efficiency.

Across the three datasets, the Magic Cards consistently exhibited high detection rates, exceeding
97.7% in all configurations, indicating that it is less sensitive to parameter tuning. In contrast, the
Lego Sets showed significant variability. For ef = 200, the detection rate improved notably with
higher values of M (e.g., from 28% at M = 4 to 30.82% at M = 8 in ef = 200 and efconstruction =
50), but beyond efconstruction = 100, further increases in efconstruction provided diminishing returns.
This suggests that while denser graphs and more exhaustive index construction improve accuracy
for complex datasets, the benefits plateau at a certain point. For the Flowers, the detection rates
remained stable at approximately 84.1% across all parameter settings, indicating that this dataset is
robust to variations in M and ef .

D.1 BASELINES

We compare the proposed DMin with seven baselines:

• Random Selection: Serves as a simple yet essential baseline where data points are selected ran-
domly. This approach tests the performance against non-informed selection methods and ensures
fairness in evaluation.

• SSIM: A widely-used metric for assessing the similarity between two images or signals. This
baseline tests the performance of similarity measures rooted in visual or structural fidelity.

• CLIP Similarity: Exploits the feature embeddings generated by the CLIP, comparing their cosine
similarity. It assesses how well general-purpose visual-language models can capture meaningful
data relationships.

• LiSSA: Measures the influence of training points on the model’s predictions by linearizing the
loss function. This baseline provides a data-centric perspective on sample selection based on their
impact on model training.

• DataInf: Employs data influence techniques to prioritize training samples that most strongly influ-
ence specific predictions. It represents methods that utilize influence diagnostics in data selection.

• D-TRAK: Focuses on tracking data’s training impact using gradient information. This baseline
evaluates approaches that harness gradient dynamics for data importance measurement.
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• Journey-TRAK: Similar to D-TRAK but extends it to capture cumulative training effects over ex-
tended iterations. It benchmarks the ability of methods to consider long-term training trajectories
in sample importance.

E SUPPLEMENTAL VISUALIZATION FOR CONDITIONAL DIFFUSION MODELS

We provide additional visualizations for unconditional models on the MNIST dataset in Figure 5
and for conditional models in Figure 6. Examples for other methods are omitted as they are nearly
identical.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Generated
Image

Most Influential Samples Least Influential Samples

High Influence Low Influence

Figure 5: Additional visualization for unconditional diffusion model on the MNIST dataset.
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A bold, digital portrait, partial woman's face, framed by a large green leaf, mysterious, with bright yellow background.

A solemn figure worshipping at a magnificent stained-glass window.

a portrait painting of meagan riesselman 

purple and white flowers in a field with a blue sky, flowerfield, field of pink flowers

cute fluffy baby giraffe lion hybrid mixed creature character concept, with long flowing mane blowing in the wind, wearing headdress of tribal peacock feathers and flowers, detailed painting, renaissance, 4 k 

a mechanical arm reaching out of the earth, covered in flowers and vines. rays of light shinning down, dust specks, unreal engine 

A foreboding skeletal figure, shrouded in blue and yellow, stands amidst a eerie forest.

ancient japanese fantasy garden at night, beautiful woman caring for peonies, beautiful face, natural pose, spotlight on the woman, ethereal warm light, mist, shallow depth of field, fantasy world, coherent composition, detailed fantasy painting, yuumei, noriyoshi ohrai, ( ( rolf armstrong ) ) 

cosmic horror!!!! cute fluffy grey tabby cthulhu!!! and tan lop eared bunny hybrid mixed creature concept, with long flowing fur, wearing headdress of tribal peacock feathers and flowers, detailed painting, renaissance, 4 k lovecraft!! dark omnious atmosphere!! tentacles!! hr giger! infinite eyes!!!, shoggoth decal 

photo of a maple forest in fall color. paint detailed digital artstation, portrait hd 4 k, y greg rutkowski and gaston bussiere and craig mullins and j. c. leyendecker, hd 

A digital art portrait: a woman with blue hair, starred halo, and piercing gaze.

studio shot of biomechanical!!! emerald tree frog au naturel, hyper detailed, digital art, trending in artstation, cinematic lighting, studio quality, smooth render, unreal engine 5 rendered, octane rendered, art style by klimt and nixeu and ian sprigger and wlop and krenz cushart 

A vibrant, patterned robe contrasts a dark, energy-filled background, framing a meditating figure with long white hair, centered.

A minimalist's Japanese garden, with a large circular window, a serene portal to a world of nature.

a drawing of a pink pokemon pokemon character

A detailed and vibrant illustration of Spawn, a character of mystery and power.

synthwave astronaut tabby cat, golden hour, fantasy, vivid colors, sharp focus, digital art, hyper - realistic, 4 k, unreal engine, highly detailed, hd, dramatic lighting by brom, trending on artstation 

A futuristic portrait: A serious blonde woman in a sleek black suit pausing amidst cosmic hues.

photo cartoon illustration comic manga painting of super market environement : 6 fantasy environement, digital painting, volumetric lighting by feng zhu, 3 d alejandro alvarez alena aenami artworks in 4 k beeple, by thomas kinkade hearstone league of legends dofus overwatch 

house of the dragon, beautiful landscape, dreamy, environment, colors, film, dramatic, cinematic, highly detailed, mid day, large scale, realistic lighting, octane render, by wlop, artgerm, by vladimir motsar, high quality, trending on artstation, hd, 8 k, clear, sharp 

gundam 3 d photo cgi rtx robot ninja mask combinaison suit character design beeple, by thomas kinkade hearstone league of legends dofus overwatch and heartstone, art gta 5 cover, official behance hd artstation by jesper ejsing, by rhads, makoto shinkai and lois van baarle, ilya kuvshinov, ossdraws 

A close-up photograph of a woman with striking blue eyes, showcasing her serene expression and sleek ponytail against a deep black background.

Figure 6: Examples of the top-25 most influential training data samples for the generated image (the
1-st column) on SD 3 Medium with LoRA, shown from high to low influence from left to right.
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