
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CONAVBENCH: COLLABORATIVE LONG-HORIZON
VISION-LANGUAGE NAVIGATION BENCHMARK

Anonymous authors
Paper under double-blind review

Figure 1: Comparison of single-robot and collaborative multi-robot navigation. (a) In the single-
robot case, the agent must complete all stages sequentially, resulting in long delays and idle waiting.
(b) In the collaborative case, subtasks are distributed across robots and executed in parallel, reducing
overall completion time and enabling the team to accomplish more within the same horizon.

ABSTRACT

Vision-and-Language Navigation (VLN) primarily focuses on a single-agent-
centric approach that executes human instructions step-by-step. In real environ-
ments with high demand or parallel workflows, collaboration VLN offers distinct
benefits including shorter makespan and greater robustness through parallelism
and role specialization. Collaboration VLN also brings new challenges includ-
ing congestion, handoff errors, and rendezvous timing, which single-agent for-
mulations overlook. Current datasets and protocols remain single-agent centered,
which hides opportunities for assistance and ignores inter-robot interference. We
fill this gap with Collaborative Long-Horizon VLN benchmark (CoNavBench),
consisting of 4048 single and collaborative episodes with graph-level annotations
and a collaboration type taxonomy that controls handoff styles and rendezvous
patterns. To generate and evaluate at scale, we build NavCraft, an automated
graph-grounded data generation platform. A two-stage hierarchical agent first
produces a long-horizon base mission for the primary robot and then instantiates
helper robots, allocates subgoals, and specifies validated handoffs and rendezvous.
The agents operate with a scene graph in the loop derived from Habitat-Sim, which
enables reachability checks, travel time, and interference assessment, and iterative
schedule repair via an efficiency tool library. As a reference, we provide a collabo-
rative baseline based on a finetuned Qwen2.5-VL-3B. Trained with CoNavBench,
collaborative policies reduce makespan and improve reliability over strong single
robot counterparts, yielding 18.11% step level success. Anonymous Website.

1 INTRODUCTION

Vision-and-Language Navigation (VLN) (Anderson et al., 2018; Thomason et al., 2019; Hong et al.,
2020) has advanced from stepwise waypoint following to long-horizon, multi-stage settings that de-
mand persistent reasoning and continual re-planning (Khanna et al., 2024). However, most formula-
tions and datasets still assume a single robot agent, suppressing parallelism and ignoring inter-robot

1

https://navcraft.github.io/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Comparison to VLN benchmarks. ∗ The scale of our released benchmark is 4048, however
NavCraft is able to generate unlimited data to be tested.

Benchmark Simulator Task Type Single
Task

Collab Task Total
TaskNum Avg. Gain

R2R Matterport3D Step-by-step Nav 21567 - - 21567
REVERIE Matterport3D Obj Nav 21702 - - 21702
VLN-CE Habitat Step-by-step Nav 4475 - - 4475
FAO Matterport3D Obj Nav 3848 - - 3848
Behavior-1k OmniGibson Complex Housework 1000 - - 1000
IVLN M3D&Habitat Iterative VLN 789 - - 789
Goat-Bench Habitat Iterative VLN 725360 - - 725360
LHPR-VLN Habitat Multi-stage VLN 3260 - - 3260
CoNavBench Habitat Multi-agent VLN 2436∗ 1612∗ 21.08% 4048∗

interference. In contrast, collaborative VLN views multiple robots as a coordinated team that ex-
ploits parallelism, anticipates and mitigates inter-robot interference, and optimizes wall-clock time
and energy, which are central to user experience in real deployments (Puig et al., 2023).

To close this gap, we introduce Collaborative Long-Horizon VLN benchmark CoNavBench, to our
knowledge the first systematic benchmark for collaborative VLN. CoNavBench comprises 4048
single- and multi-robot episodes together with a collaboration type taxonomy controlling handoff
styles and rendezvous patterns. Each episode pairs long-horizon instructions with graph-level anno-
tations, enabling efficient metrics including task success, makespan, and interference time. Given a
long-range instruction, a team must decompose the mission, assign roles, and coordinate handoffs
or rendezvous to minimize time while avoiding congestion.

We identify three escalating challenges for collaborative VLN: (i) Cooperation-ready task synthe-
sis: constructing long-horizon single-robot base tasks with explicit stage boundaries and cross-room
dependencies that create genuine opportunities for assistance (Xu et al., 2022); (ii) Conflict-free
team scheduling: lifting a base task into a multi-robot schedule with role assignments, temporal
ordering, and rendezvous; and (iii) In-loop efficiency optimization: given a feasible schedule, esti-
mating team-level time, anticipating bottlenecks, and issuing actionable guidance.

To address the above challenges, we present NavCraft, a graph-grounded generation platform
for CoNavBench. NavCraft first constructs a semantically augmented scene graph from Habitat-
Sim (Savva et al., 2019) as the planning blueprint (Rana et al., 2023). Each node is labeled via hier-
archical clustering to assign room categories and functional properties, and edges encode topology
and traversability. Over this spatially grounded representation, a two-stage hierarchical agent oper-
ates: NavCraft-S produces a long-horizon single-robot base plan with cross-room scope and explicit
stage structure, and NavCraft-C lifts it into a collaborative schedule by instantiating helper robots,
allocating subgoals, and validating handoffs and rendezvous. Unlike text-only prompting (White
et al., 2023), which lacks spatial grounding, and asset-specific simulators (Yang et al., 2024), which
limit throughput and versatility. NavCraft enables context-aware task generation conditioned on
user profiles (Wang et al., 2025b) and robot capabilities, improving diversity and schedule validity.

We further propose an on-graph efficiency tool library that unifies validation and guidance within
the scene-graph loop. The library translates language intents into numerical constraints over dis-
tances, widths, occlusions, and occupancy; verifies reachability, interference, and estimates time.
It then issues recommendations for subgoal allocation, rendezvous timing, helper deployment, and
route revision. The agent consumes these recommendations in a closed loop, preserving accuracy
while avoiding full-physics rollouts at each step (Wang et al., 2025a).

Finally, we provide a reference stack coupling Qwen-series LLMs (Bai et al., 2025) with a memory-
aware mechanism (Song et al., 2025). Policies trained on CoNavBench achieve 18.11% step level
success than single-robot, indicating a practical path toward deployable collaborative navigation.

2 RELATED WORK

Vision-and-Language Navigation Embodied Vision-and-Language Navigation (VLN) studies
language-conditioned navigation in complex environments. Methods are typically studied in dis-
crete and continuous settings. In discrete VLN (Chen et al., 2022; Zhou et al., 2023), agents move
on a fixed panoramic graph of predefined nodes. The abstraction emphasizes high-level decisions

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: CoNavBench benchmark. (a) Collaborative efficiency by category. Violin plots show the
distribution of category-wise efficiency gain over a single-robot baseline, yielding an average gain of
20% across categories. (b) Category and collaboration-type distribution. The benchmark covers
a broad and balanced set of household target-object categories (outer ring) and two collaboration
types (inner ring), evidencing rich object diversity that supports generalizable evaluation.

while masking metric geometry and collisions. Recent work introduces LLM-augmented planners
with retrieval-augmented memory to improve instruction parsing and subgoal proposal (Chen et al.,
2024; Zheng et al., 2024), yet these systems still assume oracle connectivity and lack low-level
feasibility checks. In continuous environments (Dong et al., 2025), many approaches pretrain way-
point predictors to propose candidate positions for high-level planning (Qiao et al., 2025b; Shi et al.,
2025), but such models often overfit and generalize poorly. End-to-end dual-system alternatives re-
duce this reliance: a high-level planner performs embodied planning with a slow/fast context (Wei
et al., 2025), and a low-level controller utilizes a diffusion-policy (Cai et al., 2025) for local motion,
improving responsiveness without scene-specific priors. However, across both settings, systems and
benchmarks remain predominantly single-agent, with limited modeling of collaboration.

Benchmark for Vision-and-Language Navigation Progress in VLN has been driven by
datasets (Qiao et al., 2025a) that steadily raise task complexity and evaluation fidelity. Early datasets,
such as R2R (Anderson et al., 2018) and R4R (Jain et al., 2019), study step-by-step instruction
following along predefined panoramic trajectories. VLN-CE (Krantz et al., 2020) shifts to contin-
uous control in photorealistic simulators, emphasizing perception and low-level decision making.
More recent datasets, including CVDN (Thomason et al., 2019), REVERIE (Qi et al., 2019), and
SOON (Zhu et al., 2021), introduce dialogue history, object-centric grounding, and complex in-
struction comprehension. OVMM (Yenamandra et al., 2023) and Behavior-1K (Li et al., 2022) cou-
ple navigation with manipulation and interaction to approximate extended real-world workflows.
IVLN (Krantz et al., 2022) and GOAT-Bench (Khanna et al., 2024) enable sequential multi-episode
navigation with memory across independent goals, and LHPR-VLN (Song et al., 2025) targets long-
horizon planning with multi-stage subtasks in complex indoor environments. Despite this progress,
existing benchmarks remain single-agent and lack collaboration primitives (Wang et al., 2023a),
which are necessary to study Collaborative VLN with multiple agents subtasks in highly complex
environments. This gap motivates our collaborative long-horizon benchmark and platform.

LLM Agents for Vision-and-Language Navigation LLM agents are widely used as policies in in-
teractive domains such as the Web (Chae et al., 2024), games (Hu et al., 2024a), robotics (Zitkovich
et al., 2023; Wang et al., 2024b; Cheng et al., 2025), and design (Hu et al., 2024b), where they
parse instructions, perceive scenes, and invoke tools. In VLN, these agents typically serve as nav-
igators, grounding observations to produce subgoals or actions. Representative examples include
VELMA (Schumann et al., 2023) in Street-View and indoor planners such as NaviLLM (Zheng
et al., 2023) via prompts (Saravia, 2022). These systems are single-robot and are evaluated zero-shot
or with fine-tuning on existing datasets. However, prior work treats the agent as a navigator (Wang
et al., 2024a) rather than a generator. Our departure is to utilize the agent as a data generation and
scheduling engine for CoNavBench: NavCraft’s hierarchical agent synthesizes cooperation-ready
long-horizon tasks, allocates roles, and produces team-aware schedules.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 3: NavCraft pipeline for CoNavBench benchmark data generation and scheduling.

3 PLATFORM, BENCHMARK AND METRICS

We introduce NavCraft, a data-generation platform tailored for Collaborative VLN. Using NavCraft,
we construct the CoNavBench benchmark, which enables systematic evaluation of models on long-
horizon, multi-agent planning and execution within vision-language navigation.

3.1 NAVCRAFT

3.1.1 SCENE GRAPH GENERATION

We annotate each node of Habitat connectivity graph G = (V,E) (Wang et al., 2023b) with region
types to obtain a semantic-aware graph. Each node i ∈ V stores a 3D position pi = [xi, yi, zi]

⊤.
And we also know each region object m’s 3D position xm = [xm, ym, zm]⊤ and region type r(m).

Instance Proximal Voting We seed each node by object-centric k-NN plurality to preserve coarse-
grained cues. For node i, we search the k nearest annotated objects on the ground plane and assign
the plurality region:

Nk(i) = arg topk
m∈M

∥pi − xm∥2, r̂
(0)
i = argmax

c

∑
m∈Nk(i)

1[r(m) = c].

whereM is the set of all neighborhood objects, and k=3 by default.

Neighborhood Consensus After seeding node labels with IPV, we observe occasional isolated mis-
labels near narrow passages (e.g., doorways), where object-centric votes can flip a single node at
region boundaries. To address this, we apply a targeted, local correction. A node is eligible for
relabeling only if two guards hold simultaneously: (i) its graph degree is modest, 2 ≤ deg(i) ≤ 4,
and (ii) its provisional label r̂(0)i disagrees with every neighbor C(i) in G. If both conditions are
met, the node adopts the label of the nearest labeled neighbor on the navigation plane:

j⋆ = arg min
j∈C(i)

∥pi − pj∥2, r̂
(1)
i =

{
r̂
(0)
j⋆ , if 2 ≤ deg(i) ≤ 4 and ∀j ∈ C(i) : r̂

(0)
j ̸= r̂

(0)
i ,

r̂
(0)
i , otherwise.

Contiguity Restoration After IPV and NC seeding, we still observe mislabeled regions caused by
structural barriers such as walls, which fragment a class into multiple small, fractured islands. To

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 4: Visualization of the scene graph generation pipeline.

restore semantic contiguity without excessive smoothing, we operate at the connected-component
level. For each class c, form the induced subgraph Gc = G[{i : r̂

(1)
i = c}] and keep its largest

component and process any remaining component C as follows. If C touches no other class, delete
it; otherwise, reassign the entire component to the adjacent class with boundary nodes closest to the
component centroid:

µC =
1

|C|
∑
i∈C

pi, c⋆ = argmin
c′

1

|Bc′ |
∑

j∈Bc′

∥pj − µC∥2, r̂
(2)
i = c⋆ ∀i ∈ C.

where Bc′ are boundary neighbors of C with class c′ in G. As shown in Figure 4, the mislabeled
’5-Kitchen’ island is relabeled into ’6-Bedroom’ via contiguity restoration.

Graph Contextual Typing After the preceding steps, a small fraction of regions may still be typed
as Unknown. Intuitively, these are ambiguous areas where local object votes and connectivity cues
are not confident enough on their own. For any region type still Unknown, we make a single pass
that combines graph context and object inventory. We build a compact summary: (i) the histogram
of adjacent room types in G, and (ii) the top-5 object names in that region and query a lightweight
instruction-following model hϕ for the most plausible type; otherwise, we keep the current label:

r̂final
i =

{
hϕ(adjacent-type hist, top-5 objects), if r̂(2)i = Unknown,

r̂
(2)
i , otherwise.

where hϕ is the GPT4o mini and its output updates the per-scene region dictionary, while node
positions and edges remain unchanged.

3.1.2 NAVCRAFT-S

Goal Given the room-labeled connectivity graph and per-scene item lists, NavCraft-S selects a fea-
sible triple: start region s, target-object region t, end region e and validates it with graph constraints,
and synthesizes a directed region-to-region path. A user profile π is injected via the prompt as a
light preference when sampling target objects, and it never overrides feasibility.

Profile-conditioned sampling We simulate user demand with a lightweight role profile π that en-
codes age, occupation, and lifestyle. The profile is injected into the prompt to encourage diverse
habits and phrasing, and it is used only as a tie-breaker when multiple objects or destinations are
equally eligible. Following the role templates in NavRAG (Wang et al., 2025b), NAVCRAFT-S
then samples a portable object and compatible start and end regions conditioned on π. This simple
conditioning increases variety without relying on hand-crafted priors.

Feasibility Given a candidate triple (s,t,e), NavCraft-S must first ensure that the underlying naviga-
tion problem is meaningful: each leg should be reachable on the region graph and long enough to
span multiple rooms. As shown in Figure 3, we evaluate the two legs s→ t and t→ e on the region
graph using the skill library. Let L(u, v) = distH(u, v) denote hop distance on the region graph,
conn(u, v) indicate reachability, and adj(u, v) ⇐⇒ L(u, v) = 1. We introduce a hop threshold
τ ≥ 1 to control the minimum cross-room extent (CoNavBench sets τ = 2). A leg is admissible if it
is connected and non-trivial in length. To avoid redundancy with the non-adjacency rule, we enforce

leg ok(u, v) := conn(u, v) ∧ L(u, v) ≥ max{2, τ},
valid := leg ok(s, t) ∧ leg ok(t, e).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

In words, each leg must be reachable and span at least max{2, τ} hops, and larger τ encourages
longer-range plans. Once valid holds, we concatenate hop-shortest paths for the two legs and com-
press consecutive nodes that belong to the same region to obtain region transitions:

Path(s⇝ e) = SPH(s, t) ⊕ SPH(t, e).

3.1.3 NAVCRAFT-C

Given the high-level triple (s, t, e) and the region path produced by NAVCRAFT-S, NAVCRAFT-C
lifts the single agent plan to a collaborative execution on the same semantic and geometric graph.
The module first decides whether collaboration is beneficial. If collaboration is selected, it fixes a
collaboration type and hands off. Details of skill templates appear in the Appendix.

Type abstraction We use two canonical handoff patterns that allow the planner to reason about
cooperation independently of motion primitives. Type A1: the collaborator picks up the object in
region t, hands off at transfer region x, and the main agent delivers from x to e. Type A2: the main
agent picks up in t, hands off at x, and the collaborator delivers from x to e.

Augmented metric graph Let T be the set of region nodes and A = {ae, ax} the set of anchors
(end asset, candidate transfer asset). For any anchor a ∈ A, let c(a) ∈ T denote the region that
contains a. We build an augmented node graph G+ from the Habitat connectivity graph G. Edges
in G+ use 2D Euclidean weights. Each anchor a is inserted at its physical location and linked to the
nearest navigable node. We then use a single distance on G+:

d(x, y) = distG+

(
x, y).

Collaborative Generation We quantify when it is worthwhile to involve a second agent by com-
paring how much travel load the main agent would bear alone versus under different collaboration
patterns. Intuitively, a collaboration is only accepted if bringing in the helper strictly shortens the
main agent’s own route. The single–agent baseline load borne by the main agent is:

Csolo = d(s, o) + d(o, ae).

Given a candidate tuple (type, ax), we evaluate the main agent load under two types of collaboration:

JA1
r1 = d(s, ax) + d(ax, ae), JA2

r1 = d(s, t) + d(t, ax).

Here Jr1 denotes the load borne by the main agent, and the A1/A2 indexes the collaboration types.
We accept collaboration if:

min{JA1
r1 , JA2

r1 } < Csolo,

and we report the improvement ratio α = min{JA1
r1 , JA2

r1 }/Csolo. A candidate must satisfy the
scene-graph guards: (i) x ̸= t and ax exists under x; (ii) both agents can reach x in G+; (iii) the
collaborator’s start follows non-adjacency and connectedness rules to (t, x). The planner iteratively
proposes tuples and records them with α < 1.

3.2 THE CONAVBENCH BENCHMARK AND METRICS

Benchmark Definition The proposed CoNavBench benchmark is designed to evaluate collabora-
tive embodied navigation under multi-agent settings. Unlike conventional single-agent VLN tasks,
where an agent must complete a long-horizon instruction end-to-end, CoNavBench decomposes a
complex instruction into multiple collaborative subtasks (referred to as collab-stages). A typical
high level user command follows the pattern: “Find object A at location X, and deliver it to location
Y”. Instead of requiring a single agent to traverse and manipulate across the entire trajectory, the
task is distributed across two agents. Concretely, one agent is responsible for locating and transport-
ing the target to an intermediate relay point, after which another agent continues the delivery to the
final goal. As shown in Figure 5, this decomposition produces coordinated trajectories with a clear
relay handoff between agents. Compared to the single-agent rollout in Figure 5.(a), the collaborative
setting in Figure 5.(b) reduces backtracking and shortens paths by assigning complementary explo-
ration regions. First-person views in Figure 5.(c) further illustrate the handoff and mutual avoidance
behaviors that enable efficient, reliable delivery. This decomposition mirrors realistic multi-robot co-
operation, mitigates memory overflow issues in long-horizon reasoning, and empirically improves
task success rates. Meanwhile, we also follow (Song et al., 2025) to decompose the high-level tasks
and create step-by-step VLN tasks for each trajectory segment to alleviate the inherent difficulty of
executing the abstract instructions.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 5: (a) Single-agent trajectory visualization: the agent navigates independently following the
given instruction. (b) Collaborative-agent trajectory visualization: two agents cooperate during nav-
igation, showing more efficient and coordinated exploration paths. (c) Collaborative-agent interfer-
ence work: visual examples from the agents’ first-person perspectives, illustrating interaction and
coordination in shared environments.

Evaluation Metrics To rigorously measure performance on CoNavBench, we employ standard
navigation metrics: (i) Success Rate (SR), the percentage of episodes where the agent(s) success-
fully complete the task within a 1.0m goal threshold; (ii) Success weighted by Path Length (SPL),
which normalizes success by the efficiency of the trajectory; and (iii) Navigation Error, computed
as the geodesic distance between the agent’s final position and the goal when the task terminates.
In addition, we extend evaluation with two subtask metrics originally proposed in LH-VLN (Song
et al., 2025): Independent Completion Rate (ICR) quantifies the success of each sub-task individ-
ually, thereby providing insight into the robustness of agents when executing isolated segments of
the collaborative pipeline. Conditional Success Rate (CSR) measures the overall success of the full
multi-agent task, where completion depends on all preceding subtasks being successfully executed.
CSR thus captures interdependencies across collab-stages and reflects the degree to which agents
can coordinate seamlessly over extended task horizons.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTING

Simulator Settings All experiments are conducted in HABITAT3 (Puig et al., 2023), a continuous
3D simulation platform for vision-and-language navigation (VLN). Unless otherwise specified, each
agent is equipped with synchronized RGB and depth sensors mounted in three directions: front, left
(+60◦), and right (−60◦). To ensure comparability with prior work, we adopt the atomic action
space used in LH-VLN (Song et al., 2025): move forward (+0.25m), turn left (+30◦), turn right
(−30◦), and stop. An episode (or sub-episode) is regarded as completed either when the agent issues
stop or when the geodesic distance to the designated target falls below 1.0m.

Embodied We instantiate two articulated robot embodiments from URDF models: the Fetch mo-
bile manipulator and Boston Dynamics Spot. Fetch features a wheeled base with an upper-body
manipulator and structural frame; Spot is a quadruped robot capable of carrying a back-mounted

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison on the Single-Agent Task in CoNavBench. Results are shown
for both high-level tasks and step-by-step subtasks.

Method Type Single Agent Task (High-level/Step-by-step Tasks)
SR↑ SPL↑ ISR↑ CSR↑ NE↓

Random - 0.00/1.26 0.00/1.26 1.61/1.26 1.21/1.26 7.25/7.56

Qwen2.5-VL-3B* Zero-shot 4.30/10.41 0.98/2.55 14.25/10.41 16.10/10.41 6.91/7.80
Finetuned 12.90/29.65 6.08/13.81 23.92/29.65 26.22/29.65 6.40/6.74

Qwen2.5-VL-7B* Zero-shot 0.00/1.26 0.00/1.26 1.84/1.26 1.33/1.26 7.21/7.56
Finetuned 10.22/22.40 4.93/12.57 22.58/22.40 22.45/22.40 6.39/7.46

Table 3: Performance comparison on the Collaborative-Agent Task in CoNavBench. Results are
shown for both high-level tasks and step-by-step subtasks.

Method Type Collaborative Agent Task (High-level/Step-by-step Tasks)
SR↑ SPL↑ ISR↑ CSR↑ NE↓

Random - 0.00/3.43 0.00/3.43 2.30/3.43 1.76/3.43 7.15/6.35

Qwen2.5-VL-3B* Zero-shot 8.67/19.86 2.89/5.44 16.12/19.86 16.12/19.86 6.82/6.50
Finetuned 11.11/35.02 4.82/16.88 20.19/35.02 20.12/35.02 6.55/5.79

Qwen2.5-VL-7B* Zero-shot 0.00/3.61 0.00/3.61 1.90/3.61 1.36/3.61 7.12/6.35
Finetuned 11.65/29.78 6.24/16.56 21.00/29.78 20.93/29.78 6.74/6.20

arm. These embodiments allow us to test navigation and embodied interaction under heterogeneous
morphology and locomotion dynamics, while keeping sensing and policy stacks consistent.

Scene Assets Our environments are primarily drawn from HM3D (Ramakrishnan et al., 2021), com-
prising 216 large-scale, semantically annotated indoor reconstructions. We adopt the scene graph
initialization from SCALEVLN to provide object- and room-level structure. In addition, we develop
a real2sim pipeline that scans real-world indoor spaces and imports them into Habitat, enabling
closed-loop validation of our data generation with NAVCRAFT. More details are in the Appendix.

Baselines and Training Settings We follow a trajectory-supervised learning paradigm. For mul-
timodal reasoning, we employ the Qwen-2.5VL family and report results for both small- and mid-
scale variants (3B/7B), evaluated in zero-shot settings and after fine-tuning on the CoNavBench
corpus. Visual features are extracted by a ViT backbone from EVA-CLIP-02-LARGE; the visual
encoder remains frozen during all training runs to stabilize optimization and reduce compute. Un-
less noted otherwise, we fine-tune the language-conditioned policy and control heads (full-parameter
fine-tuning on the non-visual modules), using Adam with a learning rate of 3 × 10−5. Training is
performed on four NVIDIA A800 GPUs with a per-step batch size of 1; a complete run typically
finishes in about four days. We apply standard practices for reproducibility: fixed random seeds,
gradient clipping, and validation-based early stopping. More details are in the Appendix.

4.2 RESULT AND ANALYSIS

Single Agent Performance Table 2 reports single-agent results under both the high-level tasks and
step-by-step protocols. Random policies fail across all metrics, confirming the benchmark’s non-
trivial difficulty. Zero-shot Qwen2.5-VL models perform slightly above random on SR and ISR yet
remain far from practical utility, with task-level SR below 5%, indicating that high-level instruc-
tions are hard to follow. After finetuning, both Qwen2.5-VL-3B and 7B show clear absolute gains:
SR improves at both the high-level and step-by-step settings, accompanied by consistent increases
in SPL, ISR, and CSR, and a reduction in navigation error. Despite these improvements, abso-
lute performance remains modest, underscoring that CoNavBench poses a challenging single-agent
benchmark and leaving ample headroom for future methods.

Collaborative Agent Performance Table 3 compares collaboration with single-agent execution.
Under the step-by-step protocol, both Qwen2.5-VL-3B and 7B improve: the finetuned 3B model
raises SR from 29.65% to 35.02%, and the finetuned 7B model rises from 22.40% to 29.78% with
SPL increasing from 12.57 to 16.56 and NE decreasing, consistent with CoNavBench’s design that

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Performance, efficiency, cost and latency of NAVCRAFT-powered agents. Higher numbers
are better (↑) except Cost (↓). Note that the success rate represents task generation.

Powered Agent Success Rate ↑ Collab Gain ↑ Cost ($) ↓ Sample Eff.
(s/iter)↓Single Collab Max Avg

Google
2.0-flash 47% 8.51% 29.72% 22.32% 0.265 16.82

2.5-flash-nothink 41% 9.76% 13.18% 9.24% 0.902 18.71

Claude
3-5-haiku 51% 3.90% 50.07% 37.06% 1.142 14.94

OpenAI
4o 77% 46.75% 75.23% 21.07% 5.242 30.85

4o-mini 64% 26.56% 47.32% 25.12% 0.360 21.41
4.1-mini 68% 23.53% 42.80% 19.10% 0.494 17.92

splits a long multi-stage instruction into single-stage subtasks and shortens the decision horizon.
In the high-level end-to-end evaluation, gains are smaller and some metrics slightly regress, partly
because test-time relay planning introduces intermediate handoff points and auxiliary phrasing that
can cause mild vision–language mismatches, and partly because high-level completion is inherently
difficult: success compounds across stages (CSR), early errors propagate, and coordination overhead
from state synchronization and re-localization enlarges the effective search space. Finally, although
the 7B model is competitive, it does not surpass 3B under the current data budget, which suggests
under-training rather than a fundamental limitation; viewed in isolation, the collaborative setting still
benefits 7B (SR 22.40% to 29.78%, SPL 12.57 to 16.56, NE decreases), indicating that multi-agent
decomposition reliably improves local competence even when model capacity is not fully exploited.

4.3 ABLATION STUDIES

Table 4 evaluates representative off-the-shelf agents from Google, Claude, and OpenAI under both
single and collaborative settings, revealing clear capability and cost–efficiency trade-offs. Collab-
oration generally improves performance but with varying magnitude across families. Claude-3.5-
haiku shows the second relative collaboration gain 50.07% despite very low absolute collaborative
task generation success rate 3.90%, suggesting that weaker agents can benefit from task decomposi-
tion but still fail to achieve reliable success. OpenAI’s 4o achieves the strongest absolute results with
77% in the single-agent and 46.75% success rate in the collaborative task generation, while Google’s
models provide lower cost per sample but limited task generation success rate, which indicates that
efficiency alone cannot compensate for weak grounding ability. Among these choices, GPT-4o-
mini offers the most favorable balance: it reaches 26.56% collaborative task generation SR and the
highest average collaboration gains among the OpenAI variants 25.12% at substantially lower cost,
about 0.360 per sample compared to 5.242 for 4o. Based on this analysis, we adopt GPT-4o-mini as
the data generation agent for CoNavBench, allowing us to scale instruction and trajectory synthesis
while maintaining a strong balance between quality and price efficiency.

Limitation Our framework still has several limitations. First, the data generation pipeline relies on
GPT API models, which can introduce stylistic bias and make reproducibility sensitive to backend
updates; a natural next step is to train or distill an open LLM specialized for CoNavBench and to
improve throughput with batching, caching, and on-graph pruning. Second, NavCraft-C currently
targets two-agent relay patterns in indoor HM3D-style scenes, so coverage of richer collaboration
and three or more robots remains limited, partly due to scene size.

5 CONCLUSION

We introduced CoNavBench, a collaborative vision-and-language navigation benchmark with 4048
episodes, a collaboration type taxonomy, and graph-level annotations that enable team-aware evalu-
ation (success, makespan, energy, and interference time). To populate and study this setting, we pre-
sented NavCraft, a graph-grounded generation platform built on a semantically augmented scene-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

graph substrate, along with a two-stage agent (NavCraft-S and NavCraft-C) and an on-graph effi-
ciency tool library for closed-loop validation and guidance. Beyond establishing the benchmark, we
provide a reference stack that couples Qwen-series LLMs. Policies trained on CoNavBench achieve
18.11% step-level task success rate compared to single-robot, indicating a practical path toward
deployable collaborative vision-and-language navigation.

REFERENCES

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid,
Stephen Gould, and Anton Van Den Hengel. Vision-and-language navigation: Interpreting
visually-grounded navigation instructions in real environments. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp. 3674–3683, 2018.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Wenzhe Cai, Jiaqi Peng, Yuqiang Yang, Yujian Zhang, Meng Wei, Hanqing Wang, Yilun Chen,
Tai Wang, and Jiangmiao Pang. Navdp: Learning sim-to-real navigation diffusion policy with
privileged information guidance. arXiv preprint arXiv:2505.08712, 2025.

Hyungjoo Chae, Namyoung Kim, Kai Tzu-iunn Ong, Minju Gwak, Gwanwoo Song, Jihoon Kim,
Sunghwan Kim, Dongha Lee, and Jinyoung Yeo. Web agents with world models: Learning and
leveraging environment dynamics in web navigation. arXiv preprint arXiv:2410.13232, 2024.

Jiaqi Chen, Bingqian Lin, Ran Xu, Zhenhua Chai, Xiaodan Liang, and Kwan-Yee K. Wong. Mapgpt:
Map-guided prompting with adaptive path planning for vision-and-language navigation. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics, 2024.

Shizhe Chen, Pierre-Louis Guhur, Makarand Tapaswi, Cordelia Schmid, and Ivan Laptev. Think
global, act local: Dual-scale graph transformer for vision-and-language navigation. 2022
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16516–16526,
2022.

An-Chieh Cheng, Yandong Ji, Zhaojing Yang, Zaitian Gongye, Xueyan Zou, Jan Kautz, Erdem
Bıyık, Hongxu Yin, Sifei Liu, and Xiaolong Wang. Navila: Legged robot vision-language-action
model for navigation. In RSS, 2025.

Yifei Dong, Fengyi Wu, Qi He, Heng Li, Minghan Li, Zebang Cheng, Yuxuan Zhou, Jingdong
Sun, Qi Dai, Zhi-Qi Cheng, et al. Ha-vln: A benchmark for human-aware navigation in discrete-
continuous environments with dynamic multi-human interactions, real-world validation, and an
open leaderboard. arXiv preprint arXiv:2503.14229, 2025.

Michael Hahsler, Matt Piekenbrock, and Derek Doran. dbscan: Fast density-based clustering with
r. Journal of Statistical Software, 2019.

Yicong Hong, Qi Wu, Yuankai Qi, Cristian Rodriguez-Opazo, and Stephen Gould. Vln-bert: A
recurrent vision-and-language bert for navigation. 2021 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1643–1653, 2020.

Sihao Hu, Tiansheng Huang, Gaowen Liu, Ramana Rao Kompella, Fatih Ilhan, Selim Furkan Tekin,
Yichang Xu, Zachary Yahn, and Ling Liu. A survey on large language model-based game agents.
arXiv preprint arXiv:2404.02039, 2024a.

Ziniu Hu, Ahmet Iscen, Aashi Jain, Thomas Kipf, Yisong Yue, David A Ross, Cordelia Schmid, and
Alireza Fathi. Scenecraft: An llm agent for synthesizing 3d scenes as blender code. In Forty-first
International Conference on Machine Learning, 2024b.

Vihan Jain, Gabriel Ilharco, Alexander Ku, Ashish Vaswani, Eugene Ie, and Jason Baldridge. Stay
on the path: Instruction fidelity in vision-and-language navigation. In Annual Meeting of the
Association for Computational Linguistics, 2019.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Mukul Khanna, Ram Ramrakhya, Gunjan Chhablani, Sriram Yenamandra, Théophile Gervet,
Matthew Chang, Zsolt Kira, Devendra Singh Chaplot, Dhruv Batra, and Roozbeh Mottaghi.
Goat-bench: A benchmark for multi-modal lifelong navigation. 2024 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 16373–16383, 2024.

Jacob Krantz, Erik Wijmans, Arjun Majumdar, Dhruv Batra, and Stefan Lee. Beyond the nav-
graph: Vision-and-language navigation in continuous environments. In European Conference on
Computer Vision, pp. 104–120. Springer, 2020.

Jacob Krantz, Shurjo Banerjee, Wang Zhu, Jason J. Corso, Peter Anderson, Stefan Lee, and Jesse
Thomason. Iterative vision-and-language navigation. 2023 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 14921–14930, 2022.

Chengshu Li, Ruohan Zhang, Josiah Wong, Cem Gokmen, Sanjana Srivastava, Roberto Martı́n-
Martı́n, Chen Wang, Gabrael Levine, Michael Lingelbach, Jiankai Sun, Mona Anvari, Minjune
Hwang, Manasi Sharma, Arman Aydin, Dhruva Bansal, Samuel Hunter, Kyu-Young Kim, Alan
Lou, Caleb R. Matthews, Ivan Villa-Renteria, Jerry Huayang Tang, Claire Tang, Fei Xia, Silvio
Savarese, Hyowon Gweon, C. Karen Liu, Jiajun Wu, and Li Fei-Fei. Behavior-1k: A benchmark
for embodied ai with 1, 000 everyday activities and realistic simulation. In Conference on Robot
Learning, 2022.

Xavi Puig, Eric Undersander, Andrew Szot, Mikael Dallaire Cote, Ruslan Partsey, Jimmy Yang,
Ruta Desai, Alexander William Clegg, Michal Hlavac, Tiffany Min, Theo Gervet, Vladimir Von-
drus, Vincent-Pierre Berges, John Turner, Oleksandr Maksymets, Zsolt Kira, Mrinal Kalakr-
ishnan, Jitendra Malik, Devendra Singh Chaplot, Unnat Jain, Dhruv Batra, Akshara Rai, and
Roozbeh Mottaghi. Habitat 3.0: A co-habitat for humans, avatars and robots, 2023.

Yuankai Qi, Qi Wu, Peter Anderson, Xin Eric Wang, William Yang Wang, Chunhua Shen, and
Anton van den Hengel. Reverie: Remote embodied visual referring expression in real indoor
environments. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 9979–9988, 2019.

Yanyuan Qiao, Haodong Hong, Wenqi Lyu, Dong An, Siqi Zhang, Yutong Xie, Xinyu Wang, and
Qi Wu. Navbench: Probing multimodal large language models for embodied navigation. ArXiv,
abs/2506.01031, 2025a.

Yanyuan Qiao, Wenqi Lyu, Hui Wang, Zixu Wang, Zerui Li, Yuan Zhang, Mingkui Tan, and Qi Wu.
Open-nav: Exploring zero-shot vision-and-language navigation in continuous environment with
open-source llms. In 2025 IEEE International Conference on Robotics and Automation (ICRA),
pp. 6710–6717. IEEE, 2025b.

Santhosh Kumar Ramakrishnan, Aaron Gokaslan, Erik Wijmans, Oleksandr Maksymets, Alexander
Clegg, John M Turner, Eric Undersander, Wojciech Galuba, Andrew Westbury, Angel X Chang,
Manolis Savva, Yili Zhao, and Dhruv Batra. Habitat-matterport 3d dataset (HM3d): 1000 large-
scale 3d environments for embodied AI. In Thirty-fifth Conference on Neural Information Pro-
cessing Systems Datasets and Benchmarks Track, 2021. URL https://arxiv.org/abs/
2109.08238.

Krishan Rana, Jesse Haviland, Sourav Garg, Jad Abou-Chakra, Ian D. Reid, and Niko Sünderhauf.
Sayplan: Grounding large language models using 3d scene graphs for scalable task planning. In
Conference on Robot Learning, 2023.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Va-
sudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollár, and Christoph Fe-
ichtenhofer. Sam 2: Segment anything in images and videos. arXiv preprint arXiv:2408.00714,
2024. URL https://arxiv.org/abs/2408.00714.

Elvis Saravia. Prompt Engineering Guide. https://github.com/dair-ai/Prompt-Engineering-Guide,
12 2022.

11

https://arxiv.org/abs/2109.08238
https://arxiv.org/abs/2109.08238
https://arxiv.org/abs/2408.00714

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain,
Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform for embodied
ai research. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
9339–9347, 2019.

Raphael Schumann, Wanrong Zhu, Weixi Feng, Tsu-Jui Fu, Stefan Riezler, and William Yang Wang.
Velma: Verbalization embodiment of llm agents for vision and language navigation in street view.
In AAAI Conference on Artificial Intelligence, 2023.

Xiangyu Shi, Zerui Li, Wenqi Lyu, Jiatong Xia, Feras Dayoub, Yanyuan Qiao, and Qi Wu. Smart-
way: Enhanced waypoint prediction and backtracking for zero-shot vision-and-language naviga-
tion. ArXiv, abs/2503.10069, 2025.

Xinshuai Song, Weixing Chen, Yang Liu, Weikai Chen, Guanbin Li, and Liang Lin. Towards long-
horizon vision-language navigation: Platform, benchmark and method. In Proceedings of the
Computer Vision and Pattern Recognition Conference, pp. 12078–12088, 2025.

Jesse Thomason, Michael Murray, Maya Cakmak, and Luke Zettlemoyer. Vision-and-dialog navi-
gation. In Conference on Robot Learning, 2019.

Jiawei Wang, Renhe Jiang, Chuang Yang, Zengqing Wu, Makoto Onizuka, Ryosuke Shibasaki, and
Chuan Xiao. Large language models as urban residents: An llm agent framework for personal
mobility generation. ArXiv, abs/2402.14744, 2024a.

Liuyi Wang, Xinyuan Xia, Hui Zhao, Hanqing Wang, Tai Wang, Yilun Chen, Chengju Liu, Qijun
Chen, and Jiangmiao Pang. Rethinking the embodied gap in vision-and-language navigation: A
holistic study of physical and visual disparities. arXiv preprint arXiv:2507.13019, 2025a.

Shihao Wang, Zhiding Yu, Xiaohui Jiang, Shiyi Lan, Min Shi, Nadine Chang, Jan Kautz, Ying Li,
and José M. Álvarez. Omnidrive: A holistic llm-agent framework for autonomous driving with
3d perception, reasoning and planning. ArXiv, abs/2405.01533, 2024b.

Tianhang Wang, Guang Chen, Kai Chen, Zhengfa Liu, Bo Zhang, Alois Knoll, and Changjun Jiang.
Umc: A unified bandwidth-efficient and multi-resolution based collaborative perception frame-
work. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8187–
8196, 2023a.

Zihan Wang, Yaohui Zhu, Gim Hee Lee, and Yachun Fan. Navrag: Generating user demand instruc-
tions for embodied navigation through retrieval-augmented llm. arXiv preprint arXiv:2502.11142,
2025b.

Zun Wang, Jialu Li, Yicong Hong, Yi Wang, Qi Wu, Mohit Bansal, Stephen Gould, Hao Tan, and
Yu Qiao. Scaling data generation in vision-and-language navigation. In ICCV 2023, 2023b.

Meng Wei, Chenyang Wan, Xiqian Yu, Tai Wang, Yuqiang Yang, Xiaohan Mao, Chenming Zhu,
Wenzhe Cai, Hanqing Wang, Yilun Chen, et al. Streamvln: Streaming vision-and-language navi-
gation via slowfast context modeling. arXiv preprint arXiv:2507.05240, 2025.

Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry Gilbert, Ashraf El-
nashar, Jesse Spencer-Smith, and Douglas C Schmidt. A prompt pattern catalog to enhance
prompt engineering with chatgpt. arXiv preprint arXiv:2302.11382, 2023.

Runsheng Xu, Hao Xiang, Xin Xia, Xu Han, Jinlong Li, and Jiaqi Ma. Opv2v: An open benchmark
dataset and fusion pipeline for perception with vehicle-to-vehicle communication. In 2022 IEEE
International Conference on Robotics and Automation (ICRA), 2022.

Yue Yang, Fan-Yun Sun, Luca Weihs, Eli VanderBilt, Alvaro Herrasti, Winson Han, Jiajun Wu,
Nick Haber, Ranjay Krishna, Lingjie Liu, et al. Holodeck: Language guided generation of 3d
embodied ai environments. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 16227–16237, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Sriram Yenamandra, A. Ramachandran, Karmesh Yadav, Austin S. Wang, Mukul Khanna,
Théophile Gervet, Tsung-Yen Yang, Vidhi Jain, Alexander Clegg, John Turner, Zsolt Kira, Mano-
lis Savva, Angel X. Chang, Devendra Singh Chaplot, Dhruv Batra, Roozbeh Mottaghi, Yonatan
Bisk, and Chris Paxton. Homerobot: Open-vocabulary mobile manipulation. In Conference on
Robot Learning, 2023.

Duo Zheng, Shijia Huang, Lin Zhao, Yiwu Zhong, and Liwei Wang. Towards learning a generalist
model for embodied navigation. 2024 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 13624–13634, 2023.

Duo Zheng, Shijia Huang, Lin Zhao, Yiwu Zhong, and Liwei Wang. Towards learning a generalist
model for embodied navigation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 13624–13634, 2024.

Gengze Zhou, Yicong Hong, and Qi Wu. Navgpt: Explicit reasoning in vision-and-language navi-
gation with large language models. In AAAI Conference on Artificial Intelligence, 2023.

Fengda Zhu, Xiwen Liang, Yi Zhu, Xiaojun Chang, and Xiaodan Liang. Soon: Scenario oriented
object navigation with graph-based exploration. 2021 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 12684–12694, 2021.

Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
to robotic control. In Conference on Robot Learning, pp. 2165–2183. PMLR, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

APPENDIX LISTS

• Real2Sim ToolBox

• Experimental Setup

• Supplementary Experiments

• Discussion

• Large Language Models Usage Statement

• Ethics statement

• Human vs. NavCraft Case Study

• User Profile

• Real Robot Demo

• Implementation details of NavCraft-S

• Implementation details of NavCraft-C

• Prompts for Graph contextual Typing

• Ablation for Prompts

A.1 REAL2SIM TOOLBOX

Figure 6: Pipeline of Real-world into NavCraft data generation.

Algorithm 1 Real2Sim ToolBox

Require: MiOS, {It,Kt, Rt, tt}Tt=1
Ensure: Object list O, navigable graph N , scene graph G, tasks from NavCraft-S/C

1: Malign ← Talign ·MiOS; [Rt|tt]← Talign · [Rt|tt], ∀t
2: for t = 1 to T do
3: Bt ← SegmentAnything(It) ▷ 2D instance masks & boxes
4: for each b ∈ Bt do
5: Pt,b ← BackProjectToMesh(b,Kt, Rt, tt,Malign)
6: ôt,b ← Fit3DBox(Pt,b) ▷ provisional 3D proposal
7: end for
8: end for
9: O ← DBSCAN Merge({ôt,b}t,b) ▷ merge across views using 3D position/size + 2D IoU cues

10: N ← GenerateNavmeshAndNodes(Malign) ▷ via scaleVLN scripts
11: G ← BuildSceneGraph(N ,O) ▷ rooms/objects/portals; topology & traversability attributes
12: PlanS ← NavCraft-S(G) ▷ single-robot base plan with stages
13: PlanC ← NavCraft-C(G,PlanS) ▷ collaborative schedule with validated handoffs/rendezvous
14: return O,N ,G,PlanS ,PlanC

Goal Lift a real indoor scene into a NavCraft-ready, semantics-geometry-aware scene graph that
supports task generation and collaborative scheduling.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 7: (a) Batch vs. task length information across different data splits. Each boxplot illustrates
the distribution of task lengths within a specific batch (1–11). (b) Task length vs. instruction lengths
across different domains, showing their joint distribution with density overlays.

Inputs (i) An iOS LiDAR scan (triangle mesh MiOS) with keyframe RGB images {It}, camera
intrinsics {Kt}, and extrinsics (world-to-camera) {[Rt| tt]}; (ii) optional room labels or user notes.
Outputs (i) An object list O = {oj} with category, 3D bounding boxes, and size; (ii) a navigable
graphN ; (iii) a semantics-geometry-aware scene graph G = (V,E); (iv) NavCraft-S base tasks and
NavCraft-C collaborative schedules.

Pipeline 1) Scan & coordinate alignment. We import MiOS from 3D Scanner App and align to Habi-
tat’s Y-up, right-handed convention via a fixed transform Talign (empirically, ARKit’s (x, y, z) maps
to Habitat’s (x, z,−y); we apply the same transform to all camera poses). 2) Keyframe segmentation
and 2D proposals. For each keyframe It, we run Segment-Anything2 (Ravi et al., 2024) to obtain
instance masks and 2D bounding boxes Bt. 3) 2D→3D projection on mesh. Using (Kt, Rt, tt), each
2D mask is back-projected to Malign with z-buffering and visibility checks, yielding per-proposal
3D points and a provisional 3D box. 4) Cross-view proposal merging. We cluster multi-view pro-
posals with DBSCAN (Hahsler et al., 2019) in a joint space (3D centroid, size) augmented by 2D
IoU agreement across overlapping views, producing deduplicated objects O. Categories come from
majority vote over views; sizes from robust box fitting. 5) Navigability and scene-graph construc-
tion. We generate a walkable navmesh and sample navigable nodes with ScaleVLN (Wang et al.,
2023b) scene scripts, then build G: room nodes (via proposed hierarchical clustering over spatial
layout), object nodes (from O), and portal or doorway nodes; edges encode topology, traversabil-
ity, doorway width, clearance, and occlusion statistics. 6) Task and schedule generation. On G,
NavCraft-S synthesizes long-horizon single-robot base plans with explicit stages; NavCraft-C lifts
them to collaborative schedules by instantiating helpers, allocating subgoals, and validating handoffs
and rendezvous with our on-graph efficiency tools.

A.2 EXPERIMENTAL SETUP

Training We train the model via supervised fine-tuning on the CoNavBench trajectory corpus. Dur-
ing training, the agent consumes observations, location cues, and action annotations from the dataset
without being executed in the simulator. We use gradient accumulation steps = 2 with 1,000 warm-
up steps. Due to GPU memory constraints, we froze the first five layers of the model’s language
layers. Data are randomly shuffled and partitioned into 11 splits; splits 1–9 serve as training data,
while splits 10–11 are held out for testing.

Qwen-series with memory-aware mechanism To adapt the collaborative long-horizon VLN, we
follow the LH-VLN’s two-level memory structure (Song et al., 2025) with short-term memory and
long-term memory. The short-term memory stores temporally ordered observation–action sum-
maries with associated confidence scores. Once the memory size exceeds a threshold, a pooling
or forgetting strategy compresses older entries while preserving essential information. The long-
term memory serves as a retrieval database, where the agent retrieves top-k observation–action pairs
based on the current state to support decision-making.

15

https://3dscannerapp.com/

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 8: (a) Single-agent step-by-step tasks. (b) Collaborative step-by-step tasks. We observe
that both settings exhibit a positive correlation between trajectory length and instruction complexity,
while collaborative tasks generally involve denser instructions for similar path lengths, reflecting
richer linguistic interactions and higher coordination demands.

Figure 9: Training loss curves of Qwen2.5-VL models. Comparison of training dynamics for (a)
Qwen2.5-VL 7B and (b) Qwen2.5-VL 3B. The x-axis denotes training steps, and the y-axis shows
training loss. Both models exhibit a general downward trend in loss with fluctuations, demonstrating
stable convergence. Note that the blue curve represents the long-horizon loss, while the red curve
represents the step-by-step loss.

A.3 SUPPLEMENTARY EXPERIMENTS

To further illustrate the effectiveness of our collaborative setting, we visualize both single-agent and
multi-agent trajectories. As shown in Figure 10, a single agent typically follows a longer and less
flexible route, whereas collaborative agents can coordinate their paths and achieve more efficient
navigation. In addition, we provide qualitative examples from the agents’ first-person perspectives,
which highlight how collaboration helps reduce redundancy and improves coverage of the environ-
ment. These visualizations confirm that multi-agent cooperation is beneficial for long-horizon VLN
tasks, especially in complex indoor scenes.

As shown in Table 5, in the Single-Agent Task, both Qwen2.5-VL-3B and Qwen2.5-VL-7B demon-
strate clear improvements over the random baseline once finetuned. While zero-shot performance
remains relatively weak, supervised finetuning leads to significant gains in SR, SPL, and step-level
success metrics (ISR, CSR), particularly under the Spot robot configuration. Notably, Qwen2.5-
VL-3B achieves higher gains in SR compared to its 7B counterpart, suggesting that smaller models
can still adapt effectively in constrained single-agent navigation. In contrast, Table 6 highlights the
benefits of collaborative-agent settings. Across both Fetch and SPOT robots, collaborative agents
consistently achieve higher SR and SPL compared to the single-agent case, indicating that coop-
eration facilitates more efficient path planning and execution. Finetuned models again outperform
zero-shot ones by a large margin, and the advantage of collaboration is especially pronounced in
step-level subtasks (ISR, CSR).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 10: Visualization of cooperative navigation in CoNavBench. Robot 1 and Robot 2 traverse
a residential environment along the floor-plan map (left). Colored bounding boxes mark salient
landmarks; the same colors are used in the instruction text to denote aligned references. The partner
robot can help retrieve visual evidence and disambiguate targets, yielding more efficient progress.

Table 5: Performance comparison on the Single-Agent Task in CoNavBench. Results are shown
for both high-level tasks and step-by-step subtasks under different robot configurations.

Method Type Fetch SPOT
SR↑ SPL↑ ISR↑ CSR↑ NE↓ SR SPL↑ ISR↑ CSR↑ NE↓

Random - 0.00 0.00 2.87 2.01 7.11 0.00 0.00 0.51 0.51 7.36

Qwen2.5-VL-3B* Zero-shot 4.60 1.25 14.37 14.37 7.14 4.04 0.73 14.14 13.89 6.72
Finetuned 6.90 3.45 17.82 17.82 6.71 18.18 9.89 29.29 29.29 6.13

Qwen2.5-VL-7B* Zero-shot 0.00 0.00 2.87 2.01 7.09 0.00 0.00 1.01 0.76 7.30
Finetuned 4.60 2.51 13.22 13.22 6.90 15.15 7.07 30.81 30.56 5.93

A.4 DISCUSSION

Planned vs. realized efficiency Our planning-time analysis shows that fine-tuned Qwen-series plan-
ners synthesize shorter planned makespans by decomposing missions and exploiting parallelizable
subgoals. This upper bound is informative about the capacity of the task generator and scheduler.
However, the realized wall-clock on-policy execution depends on downstream VLN controllers
whose single-agent success and path optimality remain imperfect. Detours, re-localization, oscil-
lations near ambiguous landmarks, and occasional dead-ends inflate step counts; multi-robot in-
terference (blocking, contention at narrow passages) and coordination overhead (handoffs, waits,
communication latency) further erode the theoretical speedup. Consequently, despite better plans,
multi-robot deployments may not yet outperform a strong single robot in measured time.

Why we did not foreground time-efficiency gains for Qwen-series Emphasizing planning-time
savings without corresponding gains in realized makespan risks over-claiming. In our setting, the
gap between planned and executed trajectories is dominated by (i) suboptimal path-following under
partial observability, (ii) schedule slippage due to local replanning, and (iii) interference not fully
captured by static scene-graph checks. We therefore reported time improvements primarily as an up-
per bound from task generation, while centering evaluation on completion-centric metrics (success
rate, SPL, navigation error), which are more stable under current VLN reliability.

Future Bridging the plan–execution gap will likely require tighter closed-loop integration:
uncertainty-aware scheduling, online replanning with interference prediction, traffic rules for nar-
row corridors, stronger low-level navigation, and learning cost models that penalize contention. In
short, collaborative VLN remains a long-term agenda: the planners can already propose efficient
cooperation, but reliably realizing those gains in-the-loop is still work in progress.

A.5 LARGE LANGUAGE MODELS USAGE STATEMENT

We used large language models for two purposes. First, to polish writing by improving grammar,
wording, and clarity of text drafted by the authors. Second, we implemented an LLM based agent
to generate collaborative Long-horizon VLN benchmark. All prompts, generation procedures are
documented. The authors designed the approach, reviewed and edited all LLM outputs.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 6: Performance comparison on the Collaborative-Agent Task in CoNavBench. Results are
shown for both high-level tasks and step-by-step subtasks under different robot configurations.

Method Type Fetch SPOT
SR↑ SPL↑ ISR↑ CSR↑ NE↓ SR SPL↑ ISR↑ CSR↑ NE↓

Random - 0.00 0.00 2.39 2.00 6.92 0.00 0.00 2.21 1.52 7.39

Qwen2.5-VL-3B* Zero-shot 9.04 2.53 17.82 17.82 6.58 8.29 3.26 14.36 14.36 7.06
Finetuned 11.70 4.65 20.74 20.61 6.37 10.50 4.99 19.61 19.61 6.74

Qwen2.5-VL-7B* Zero-shot 0.00 0.00 2.13 1.60 6.89 0.00 0.00 1.66 1.10 7.36
Finetuned 9.04 6.21 19.41 19.28 6.62 14.36 6.26 22.65 22.65 6.86

A.6 ETHICS STATEMENT

All procedures in this paper were conducted in accordance with the ICLR Code of Ethics.

A.7 HUMAN VS. NAVCRAFT CASE STUDY

Figure 11: User case study question template.

Figure 12: Visualization of top-down bird’s eye view of three scenes.

We invite three volunteers. For three randomly selected HM3D scenes (IDs 00712, 00539, 000732,
shown in Figure 12), we provided each participant with the same scene graph and high-level single-
robot mission (shown in Figure 11) as used by NavCraft, along with a bird’s-eye-view rendering of
the environment. For each scene, participants were asked to (i) choose an ideal transfer region and
(ii) select a collaboration type (Type-A1 vs. Type-A2) that they considered most reasonable for a
two-robot execution. We compared their choices to NavCraft-C’s automatically generated transfer
region and collaboration type.

We observe that i) Scene 00712: NavCraft and all three participants chose the same transfer region
and the same Type-A1 pattern; ii) Scene 00539: NavCraft’s transfer region and type matched the
choices of two participants (User A and User C). The remaining participant (User B) deliberately
selected a relay region closer to the main robot, preferring a design where the helper robot completes

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 13: Visualization of NavCraft and three User (A, B and C) collaborative plans.

as much of the physical delivery as possible so that the main robot can spend more time near the
user for interaction. Interestingly, this “user-interaction–prioritized” preference also appears in User
B’s choice for scene 000732, suggesting a consistent personal strategy rather than disagreement with
the task semantics; iii) Scene 000732: Both NavCraft and the human annotators favored parallelism-
first strategies, but they diverged on the exact relay region: human participants, with access to the
BEV image, tended to select the wider kitchen bar as a safer, more spacious handoff location, while
NavCraft—operating only on the symbolic scene graph without asset footprint information, selected
a narrower bar table near the window as the transfer region. This mismatch is therefore attributable to
geometric detail (asset size / usable surface) that is not represented in the current graph abstraction,
rather than a failure of logical reasoning about the task.

A.8 USER PROFILE

We utilize five distinct roles: Role 1: 25-year-old single male PhD student; Role 2: 33-year-old mar-
ried female lawyer; Role 3: 65-year-old married retired male; Role 4: 9-year-old single male student;
Role 5: 20-year-old single female undergraduate.

For comparison, we also include a no-profile baseline. On a set of 20 scenes, we fix the random seed
and scene configuration, and only vary whether a user profile is provided (and, if so, which role).
NavCraft therefore receives identical environment inputs, and the difference comes solely from the
presence and type of user profile. I) Overall diversity. As shown in Figure 14, adding user profiles
increases both instruction and object diversity. Across the 20 scenes, the total number of unique in-
structions grows from 316 (no profile) to 367 (with profiles), a 16.14% increase. The total number of

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

unique pickup objects increases from 98 to 115, a 17.35% increase. On a per-scene basis, the aver-
age number of unique instructions rises from 18.22 to 21.11, corresponding to a 15.86% increase. II)
Role-specific task demand. With profiles enabled, different roles exhibit clearly different object-de-
mand patterns in the same scene, reflecting their underlying persona. As illustrated in Figure 15,for
example in scene 00495-CQWES1bawee, Role 3 (retired) tends to request practical items such as
hand soap for cleaning, Role 4 (child) prefers playful or visually attractive objects such as pictures,
and Role 5 (young female undergraduate) is more likely to request decorative items like flowers.

These results indicate that conditioning on user profiles not only increases overall instruction and
object diversity, but also induces meaningful, role-dependent variations in task demand, which we
believe makes CoNavBench more realistic for user-centric multi-robot navigation.

Figure 14: Visualization of NavCraft under no-user profile vs profile setting.

Figure 15: Visualization task object demand categories with NavCraft under different user profile
settings on five scenes.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

A.9 REAL ROBOT DEMO

Figure 16: Visualization of real exhibition hall scene under single vs. collaborative agents setting.

We conducted the real robot collaboration case study in the exhibition hall. The process can be sum-
marized as following: I) 3D Reconstruction of the Real Exhibition Hall and BEV View, we first
capture multi-view images of the real exhibition hall and perform 3D scene reconstruction using
a COLMAP with 3DGS pipeline. This yields a high-fidelity 3D model of the environment and a
top-down BEV (bird’s-eye view), which facilitates intuitive visualization and inspection of the ex-
hibition space. II) Demand-Oriented Navigation for a Single-Robot Water-Fetching Task. During
the exhibition tour, the user reports feeling thirsty and requests water, triggering a demand-oriented
navigation task. After receiving the ‘fetch water’ command, the single robot must navigate to the
target object, a bottle of water, located far away on the opposite side of the hall and perform the
fetching operation. III) User Waiting Problem Caused by Long Round-Trip Paths. After picking up
the water, the robot has to traverse the long path back to the user’s location. Because the overall
round trip is time-consuming, the user can only passively wait during this period, leading to poor
user experience and boredom. IV) NavCraft-C High-Level Task Planner and Multi-Robot Relay De-
sign. To address the low efficiency and unsatisfying user experience in long-horizon single-robot
tasks, we propose the NavCraft-C high-level task planner. It introduces a second robot and defines a

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

transfer region in the exhibition hall, enabling task relay and parallel execution, thereby improving
overall task efficiency and user experience. V) Multi-Robot Task Relay and Improved User Interac-
tion. While robot 2 is heading to fetch the water, robot 1 stays with the user, continuously providing
explanations and interaction to maintain engagement. When robot 2 approaches the transfer region,
robot 1 proactively moves to this region to receive the bottle and then hands the water to the user,
achieving efficient multi-robot collaboration and an enhanced human-robot interaction experience.
And we have update the corresponding real robot demo video section in the Anonymous Website:
https://navcraft.github.io for better understanding.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

A.10 IMPLEMENTATION DETAILS OF NAVCRAFT-S

A.10.1 PROMPTS SETTING

PHASE 1: Single Long Horizion Navigation Task Generation:

System:
You are proficient in single-agent spatial planning and task design. Your goal is to generate a meaningful
single-robot task consisting of navigation and interaction subtasks, based on the provided scene graph
(which contains spatial layout, room connections, and object distributions).
Rules:
You will receive two types of input to design a single-robot task:
scene graph:

- ”region”: A list of region identifiers: RegionType RegionID (e.g., ”Bedroom 2”).

- ”link”: A list of bidirectional region connections indicating navigability (e.g., ”Kitchen 1 ↔ Bed-
room 2”).

- ”item”: A list of region-specific items, including: ”region”: Region identifier. ”asset”: Non-movable,
fixed furniture such as tables, shelves, or counters. These serve as reference locations or delivery
targets. ”object”: Movable, portable items that robots can manipulate. Only objects may be picked up
or released.

user profile:

- ”Age”: Integer representing user’s age (e.g., 33).

- ”Gender”: String specifying user’s gender (e.g., ”Female”).

- ”Marital Status”: String indicating user’s marital status (e.g., ”Married”).

- ”Occupation”: String describing user’s occupation (e.g., ”Lawyer”).

- ”Lifestyle Description”: A natural language sentence summarizing the user’s habits, environment, or
values (e.g., “You work from home on various freelance projects, often on tight deadlines. You have a
flexible schedule but prefer a clean and quiet environment to focus.”).

PHASE 1: Single-Robot Long-Range Task Planning (robot 1):
1 - Objective:
2 - Maximize travel distance and task complexity for robot_1.
3 - Ensure all spatial constraints and planning rules are satisfied.
4 - Planning constraints:
5 - robot_1 must:
6 - There is no constraint that the start region must have

RegionID=0 or any fixed ID.↪→
7 - Start in a region far from the target object's region and end

region.↪→
8 - Not start in a region adjacent to the object.
9 - Target object's region and end region are not adjacent.

10 - Move only along graph-connected regions.
11 - Manipulate only portable objects.
12 - The target object must exist in the "object" field of the target

region in the scene graph.↪→
13 - The end asset must exist in the "asset" field of the end region in

the scene graph.↪→
14 - Output keys (Phase 1):
15 - "Single robot start region": Starting region of robot_1.
16 - "Single robot target object region": Region where the target

object is located.↪→
17 - "Target object": target object.
18 - "Single robot end region": Region where the target object is

delivered.↪→
19 - "Single robot travel path": Ordered region-to-region path followed

by robot_1. (From step 5: Build the full travel path)↪→
20 - "Task instruction": Natural language description of the task for

robot_1.↪→
21 """
22 You can call function to help validate and reason:

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

23 """
24 - check_two_path_and_adjacency(start_region, target_region,

end_region):↪→
25 - Purpose: To validate whether the selected regions for a

single-robot task (start → target → end) satisfy connectivity,
adjacency, and path length constraints.

↪→
↪→

26 - INPUT:
27 - start_region (string): Proposed starting region of robot_1

(RegionType_RegionID).↪→
28 - target_region (string): Region containing the portable object to

pick up (RegionType_RegionID).↪→
29 - end_region (string): Region to deliver and place the object

(RegionType_RegionID).↪→
30 - OUTPUT:
31 - start_2_target: {
32 "connect": true/false,
33 "adjacency": true/false,
34 "path_length": int,
35 "path": list of transitions like ["Kitchen_4 ->

Living_room_5", ...]↪→
36 }
37 - target_2_end: {
38 "connect": true/false,
39 "adjacency": true/false,
40 "path_length": int,
41 "path": list of transitions like ["Living_room_5 ->

Hallway_2", ...]↪→
42 }
43 - s2t_valid (bool): Whether start → target path is connected, not

adjacent, and path_length >= 2↪→
44 - t2e_valid (bool): Whether target → end path is connected, not

adjacent, and path_length >= 2↪→
45 - valid (bool): True only if both path segments (s2t and t2e) are

valid↪→
46 """
47 Use the following step-by-step reasoning process to ensure the plan

satisfies all constraints and is meaningful:↪→
48 """
49 1. Randomly sample a portable object from all regions:
50 - Random sample object listed under the object field of each region

(these are portable). Do not select assets.↪→
51 - Do not weight sampling by the frequency of an object type, every

portable object has equal probability.↪→
52 - Record the object’s region in format: RegionType_RegionID as

target object region.↪→
53 - Ensure the selected object actually exists in the object list of

the target region.↪→
54 - Example independence: examples in the prompt are **demonstrative

only**. The sampling logic must not imitate or bias toward the
specific objects used in those examples.

↪→
↪→

55 - When multiple objects are equally eligible, prefer items that
align with the user's "Occupation" and "Lifestyle Description"
to boost contextual relevance, while still preserving overall
randomness and diversity.

↪→
↪→
↪→

56 2. Randomly select a start region for robot_1:
57 - Must NOT be adjacent to the target object region.
58 - Must be connected to the target object region.
59 - Must have a long path to the target object region (prefer

path_length >= 2).↪→
60 3. Randomly select an end region to deliver the object:
61 - Must NOT be adjacent to the target object region.
62 - Must be connected to the target object region.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

63 - Must contain a valid asset to place the object (e.g., table,
shelf, counter).↪→

64 - Randomize among qualified candidates while maximizing path
diversity.↪→

65 - Must have a long path from the target object's region (prefer
path_length >= 2).↪→

66 4. Validate the region combination using the function
`check_two_path_and_adjacency(start_region, target_region,
end_region)`:

↪→
↪→

67 - If both path segments are valid:
68 - The combination is accepted.
69 - LOCK all three regions: start, target, and end.
70 - Proceed to generate path and output phase_1.
71 - If only the first segment (start → target) is valid:
72 - Keep the start and target region fixed (from Step 1 and 2).
73 - Retry sampling a new end region only (go back to Step 3).
74 - Then call the function again to validate.
75 - If only the second segment (target → end) is valid:
76 - Keep the target and end region fixed (from Step 1 and 3).
77 - Retry sampling a new start region only (go back to Step 2).
78 - Then call the function again to validate.
79 - If neither segment is valid:
80 - All three regions are invalid.
81 - Restart from Step 1 to sample a new target object.
82 5. Build the full travel path:
83 - From the start region to the target object region;
84 - Then from the target object region to the end region.
85 - The travel path must be a concatenation of these two segments,

maintaining correct directionality.↪→
86 - The last region in the path must be the end region.
87 - This list becomes the "Single robot travel path".
88 6. Output the result as a structured JSON in this format:
89 {
90 "phase_1": {
91 "Single robot start region": {"robot_1": "RegionType_RegionID"},
92 "Single robot target object region": {"robot_1":

"RegionType_RegionID"},↪→
93 "Target object": "object",
94 "Single robot end region": {"robot_1": "RegionType_RegionID"},
95 "Single robot travel path": {"robot_1": [
96 "RegionType_RegionID -> RegionType_RegionID",
97 ...
98]},
99 "Task instruction": "Take the [object] from [target object region]

to the [asset] in [end region]."↪→
100 }
101 }
102 """
103 GENERAL CONSTRAINTS:
104 """
105 - Always respect scene graph connectivity ("link" field).
106 - Avoid adjacency in robot start regions where specified.
107 - You are not allowed to infer adjacency or connectivity from the text

alone.↪→
108 - You MUST use the function `check_path_and_adjacency` to verify:
109 - whether two regions are connected,
110 - whether they are adjacent,
111 - and to obtain the path and its length.
112 - Only return the JSON object. Do not explain your reasoning in the

final answer.↪→
113 - You may use internal reasoning and function calls during planning,

but your final output must contain only the JSON.↪→
114 """

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Here is an example of the INPUT and OUTPUT:
INPUT:

scene graph: {"floor_1": {"region": [{"id": "Bedroom_1"}, {"id": "
Bathroom_2"}, {"id": "Kitchen_4"}, {"id": "Living_room_5"}, {"id":
"Hallway_6"}, {"id": "Bathroom_7"}, {"id": "Laundry_room_8"}, {"

id": "Lounge_Waiting_Room_9"}, {"id": "Entryway_Foyer_10"}, {"id":
"Bedroom_11"}, {"id": "Bathroom_12"}, {"id": "Bedroom_13"}], "

link": ["Bedroom_1 <-> Bathroom_2", "Bedroom_1 <-> Kitchen_4", "
Kitchen_4 <-> Living_room_5", "Kitchen_4 <-> Hallway_6", "
Kitchen_4 <-> Bathroom_7", "Kitchen_4 <-> Laundry_room_8", "
Living_room_5 <-> Hallway_6", "Living_room_5 <->
Lounge_Waiting_Room_9", "Living_room_5 <-> Entryway_Foyer_10", "
Hallway_6 <-> Laundry_room_8", "Hallway_6 <->
Lounge_Waiting_Room_9", "Hallway_6 <-> Entryway_Foyer_10", "
Hallway_6 <-> Bedroom_11", "Hallway_6 <-> Bathroom_12", "
Bathroom_12 <-> Bedroom_13"], "item": [{"region": "Bedroom_1", "
asset": ["bed", "coffee_table", "door"], "object": ["vase", "
ottoman", "lamp"]}, {"region": "Bathroom_2", "asset": ["
bathroom_counter", "sink", "bathroom_cabinet"], "object": ["
shower_cabin", "rug", "lamp"]}, {"region": "Kitchen_4", "asset":
["dishwasher", "oven", "stove"], "object": ["flower", "flower_vase
", "bowl"]}, {"region": "Living_room_5", "asset": ["shelf", "couch
", "tv"], "object": ["magazine", "box", "cushion"]}, {"region": "
Hallway_6", "asset": ["door"], "object": ["lamp", "vent", "rack
"]}, {"region": "Bathroom_7", "asset": ["toilet", "toilet_paper",
"sink"], "object": ["towel", "soap_dish", "dustbin"]}, {"region":
"Laundry_room_8", "asset": ["counter", "door", "bench"], "object":
["basket", "coat_hanger", "lamp"]}, {"region": "

Lounge_Waiting_Room_9", "asset": ["chair", "table"], "object": ["
flower_vase", "rack", "flatware"]}, {"region": "Entryway_Foyer_10
", "asset": ["door", "table"], "object": ["lamp"]}, {"region": "
Bedroom_11", "asset": ["door", "bed", "dresser"], "object": ["
plant", "lamp", "box"]}, {"region": "Bathroom_12", "asset": ["
bathroom_counter", "toilet", "toilet_paper"], "object": ["
shower_handle", "rug", "towel_bar"]}, {"region": "Bedroom_13", "
asset": ["nightstand", "door", "bed"], "object": ["rug", "vent", "
lamp"]}]}}

user profile: {"Age": 33, "Gender": "Female", "Marital Status": "
Married", "Occupation": "Lawyer", "Lifestyle Description": "You
maintain the good habit of going to bed early and waking up early.
Besides working in the study, you often do yoga and other

exercises in the living room and enjoy cooking your own meals."}

OUTPUT:

{
"phase_1": {
"Single robot start region": {
"robot_1": "Bedroom_1"

},
"Single robot target object region": {
"robot_1": "Bedroom_13"

},
"Target object": "rug",
"Single robot end region": {
"robot_1": "Bathroom_2"

},
"Single robot travel path": {
"robot_1": [
"Bedroom_1 -> Kitchen_4",
"Kitchen_4 -> Living_room_5",
"Living_room_5 -> Hallway_6",
"Hallway_6 -> Bathroom_12",

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

"Bathroom_12 -> Bedroom_13",
"Bedroom_13 -> Bathroom_12",
"Bathroom_12 -> Hallway_6",
"Hallway_6 -> Living_room_5",
"Living_room_5 -> Kitchen_4",
"Kitchen_4 -> Bedroom_1",
"Bedroom_1 -> Bathroom_2"

]
},
"Task instruction": "Take the rug in bedroom to the bathroom

counter in Bathroom."
}

}

A.10.2 SKILL FUNCTION

1 def check_two_path_and_adjacency(start_region, target_region, end_region,
G, G_regionid):↪→

2 res = {
3 "start_2_target": None,
4 "target_2_end": None,
5 "s2t_valid": False,
6 "t2e_valid": False,
7 "valid": False
8 }
9

10 s2t = check_path_and_adjacency(start_region, target_region, G,
G_regionid)↪→

11 res["start_2_target"] = s2t
12 if s2t["connect"] and not s2t["adjacency"] and s2t["path_length"] >=

2:↪→
13 res["s2t_valid"] = True
14

15 t2e = check_path_and_adjacency(target_region, end_region, G,
G_regionid)↪→

16 res["target_2_end"] = t2e
17 if t2e["connect"] and not t2e["adjacency"] and t2e["path_length"] >=

2:↪→
18 res["t2e_valid"] = True
19

20 res["valid"] = res["s2t_valid"] and res["t2e_valid"]
21

22 return res
23

24 def check_path_and_adjacency(region_a, region_b, G, G_regionid):
25 """
26 Simultaneously determine whether two regions are connected and

adjacent, and return the path length and path.↪→
27 """
28 region1_num = region_a.split("_")[-1]
29 region2_num = region_b.split("_")[-1]
30

31 start_nodes = [node for node in G.nodes if node.split("_")[0] ==
region1_num]↪→

32 target_nodes = [node for node in G.nodes if node.split("_")[0] ==
region2_num]↪→

33

34 # adjacency
35 adjacency = any(G.has_edge(na, nb) for na in start_nodes for nb in

target_nodes)↪→
36

37 #Search for the shortest path

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

38 #Find the shortest path among all combinations
39 shortest_path = None
40 shortest_length = float('inf')
41

42 for s in start_nodes:
43 for t in target_nodes:
44 try:
45 path = nx.shortest_path(G, source=s, target=t)
46 if len(path) < shortest_length:
47 shortest_length = len(path)
48 shortest_path = path
49 except nx.NetworkXNoPath:
50 continue
51

52 if shortest_path is None:
53 return {
54 "connect": False,
55 "adjacency": adjacency,
56 "path_length": 0,
57 "path": []
58 }
59

60 region_steps = []
61 prev_region_id = None
62 for node in path:
63 region_id = node.split("_")[0]
64 if region_id != prev_region_id:
65 region_type = G_regionid[region_id].replace(" ", "_")
66 region_step = f"{region_type}_{region_id}"
67 region_steps.append(region_step)
68 prev_region_id = region_id
69

70 transitions = [f"{region_steps[i]} -> {region_steps[i+1]}" for i in
range(len(region_steps) - 1)]↪→

71

72 return {
73 "connect": True,
74 "adjacency": adjacency,
75 "path_length": len(transitions),
76 "path": transitions
77 }
78

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

A.11 IMPLEMENTATION DETAILS OF NAVCRAFT-C

A.11.1 PROMPTS SETTING

PHASE 2: Cooperative Multi-Robot Navigation Task Generation:

System:
You are proficient in multi-agent collaborative planning and task design. Your goal is to generate a prac-
tical collaborative task consisting of multiple navigation and interaction subtasks, based on the provided
scene graph (which contains spatial layout, room connections, and object distributions) and the single
agent task.
Rules:
You will receive two types of input to design a multi-robot collaborative task:
scene graph:

- ”region”: A list of region identifiers: RegionType RegionID (e.g., ”Bedroom 2”).

- ”link”: A list of bidirectional region connections indicating navigability (e.g., ”Kitchen 1 ↔ Bed-
room 2”).

- ”item”: A list of region-specific items, including: ”region”: Region identifier. ”asset”: Non-movable,
fixed furniture such as tables, shelves, or counters. These serve as reference locations or delivery
targets. ”object”: Movable, portable items that robots can manipulate. Only objects may be picked up
or released.

single agent task:

- ”Single robot start region”: Starting region of robot 1.

- ”Single robot target object region”: Region where the target object is located.

- ”Target object”: target object.

- ”Single robot end region”: Region where the target object is delivered.

- ”Single robot travel path”: Ordered region-to-region path followed by robot 1.

- ”Task instruction”: Natural language description of the task for robot 1.

PHASE 2: Cooperative Multi-Robot Task Replanning (robot 1 and robot 2):

1 - Objective:
2 - Divide robot_1’s long-range task into subtasks shared between

robot_1 (main agent) and robot_2 (collaborative agent).↪→
3 - Optimize spatial and logical collaboration using scene graph

connectivity and task flow.↪→
4 - Determine whether collaboration is necessary, and choose a best

suitable collaborative type based on spatial and logical
conditions.

↪→
↪→

5 - Planning constraints:
6 - robot_2’s start position must be:
7 - Must randomly select a valid start region.
8 - Non-adjacent to robot_1’s start region.
9 - Connected via the scene graph to both the object region and the

transfer region.↪→
10 - Collaborative type must be chosen from the following:
11 - Type-A1: robot_2 helps deliver target object to a transfer

region, robot_1 completes delivery.↪→
12 - Type-A2: robot_1 brings target object to a transfer region,

robot_2 completes delivery.↪→
13 - The transfer region must:
14 - Be accessible to both robots.
15 - Contain a valid asset suitable for object handoff.
16 - Not be **same as** the target object region.
17 - The transfer asset must exist in the "asset" field of the

transfer region in the scene graph.↪→
18 - Subtasks must follow:
19 - Type-A1 or A2: use a transfer region with valid assets.
20 - For Type-A1:
21 - robot_1 must:
22 - Move_to(transfer_asset RegionID)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

23 - Grab(object)
24 - Move_to(end_asset RegionID)
25 - Release(object)
26 - robot_2 must:
27 - Move_to(object RegionID)
28 - Grab(object)
29 - Move_to(transfer_asset RegionID)
30 - Release(object)
31 - For Type-A2:
32 - robot_1 must:
33 - Move_to(object RegionID)
34 - Grab(object)
35 - Move_to(transfer_asset RegionID)
36 - Release(object)
37 - robot_2 must:
38 - Move_to(transfer_asset RegionID)
39 - Grab(object)
40 - Move_to(end_asset RegionID)
41 - Release(object)
42 - Subtask instruction must follow these exact sentence templates

based on the collaborative type:↪→
43 - For Type-A1:
44 - robot_1: "Take the [object] from the [transfer asset] in

[transfer region] to the [end asset] in [end region]."↪→
45 - robot_2: "Take the [object] from [target region] to the

[transfer asset] in [transfer region]."↪→
46 - For Type-A2:
47 - robot_1: "Take the [object] from [target region] to the

[transfer asset] in [transfer region]."↪→
48 - robot_2: "Take the [object] from the [transfer asset] in

[transfer region] to the [end asset] in [end region]."↪→
49 - Strict constraints:
50 - You MUST NOT alter the sentence structure.
51 - You MUST NOT swap robot roles or change task flow logic.
52 - The instruction MUST clearly and unambiguously describe where

the object is taken from and where it is delivered.↪→
53 - The instruction MUST align exactly with the Subtask list in

logic and sequence.↪→
54 - Output keys (Phase 2):
55 - "Collaborative robot start region": Starting region of robot_1 and

robot_2.↪→
56 - "Collaborative type": Collaborative type.
57 - "Transfer region": Region where the object handoff occurs.
58 - "Subtask instruction": Natural language instructions for robot_1

and robot_2.↪→
59 - "Subtask list": Ordered action lists for robot_1 and robot_2, with

primitives:↪→
60 - Move_to("object_RegionID")
61 - Move_to("asset_RegionID")
62 - Grab("object")
63 - Release("object")
64 """
65 You can call function to help validate and reason:
66 """
67 - check_collab_path_efficient_sim_graph(robot_2_start_region,

transfer_region, collab_type):↪→
68 - Purpose: Check whether a given collaborative plan achieves better

execution efficiency than robot_1 executing the full task alone↪→
69 - INPUT:
70 - robot_2_start_region: robot_2's start region

(RegionType_RegionID).↪→
71 - transfer_region: transfer region (RegionType_RegionID).

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

72 - transfer_asset: a valid asset suitable for handoff in transfer
region.↪→

73 - collab_type: collaborative type (Type-ID).
74 - OUTPUT:
75 - efficient: True/False
76 """
77 Use the following step-by-step reasoning process to ensure the plan

satisfies all constraints and results in a valid cooperative
execution plan.

↪→
↪→

78 """
79 1. Randomly select a valid start region for robot_2:
80 - Randomize among qualified candidates while maximizing path

diversity.↪→
81 - Must NOT be adjacent to robot_1’s start region.
82 - Must be connected via the scene graph to the target object region.
83 2. Determine whether collaboration is necessary, and choose the most

suitable collaborative type from the following, based on robot_1
and robot_2's spatial distance and task logic:

↪→
↪→

84 - Type-A1: robot_2 picks up the object and delivers it to a transfer
region; robot_1 takes over and completes the task.↪→

85 - Type-A2: robot_1 brings the object to a transfer region; robot_2
takes over and completes the task.↪→

86 - If multiple types are valid, sample one to improve task diversity.
87 3. Based on the chosen collaborative type and robot_2’s region, decide

whether a transfer region is required. If required:↪→
88 - It must be reachable by both robot_1 and robot_2.
89 - It must **not same as** the target object region.
90 - It must contain a valid asset suitable for handoff (e.g., shelf,

table, desk).↪→
91 4. Validate all pairwise constraints using tool calls:
92 - You MUST call `check_collab_path_efficient_sim_graph()` with:
93 - robot_2’s proposed start region,
94 - the selected transfer region,
95 - the selected transfer asset,
96 - and the chosen collaborative type.
97 - If the returned `efficient` is True:
98 - Must not re-call `check_collab_path_efficient_sim_graph()`.
99 - you MUST remember the exact triplet of: robot_2_start_region,

transfer_region, transfer_asset, collab_type to finish the
plan.

↪→
↪→

100 - If the returned `efficient` is False:
101 - You MUST restart the planning process:
102 - Re-sample a new robot_2 start region and/or a new transfer

region.↪→
103 - You MUST discard the previous inefficient regions.
104 - Then, you MUST re-call `check_collab_path_efficient_sim_graph()`

on the new setup.↪→
105 - Repeat until a valid (efficient: True) combination is found.
106 5. Output the result in the following strict JSON format:
107 {
108 "phase_2": {
109 "Collaborative robot start region": {
110 "robot_1": "RegionType_RegionID",
111 "robot_2": "RegionType_RegionID"
112 },
113 "Collaborative type": "Type-ID",
114 "Transfer region": "RegionType_RegionID",
115 "Subtask instruction": {
116 "robot_1": "...",
117 "robot_2": "..."
118 },
119 "Subtask list": {
120 "robot_1": [

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

121 "Move_to('..._RegionID')",
122 "Grab('object_name')",
123 "Move_to('..._RegionID')",
124 "Release('object_name')"
125],
126 "robot_2": [
127 "Move_to('..._RegionID')",
128 "Grab('object_name')",
129 "Move_to('..._RegionID')",
130 "Release('object_name')"
131]
132 }
133 }
134 }
135 """
136 GENERAL CONSTRAINTS:
137 """
138 - Always respect scene graph connectivity ("link" field).
139 - Use region function and assets to determine pickup and dropoff

points.↪→
140 - Once a function call to `check_collab_path_efficient_sim_graph()`

returns `efficient: true`, you MUST remember the exact triplet of:↪→
141 - robot_2_start_region
142 - transfer_region
143 - transfer_asset
144 - collab_type
145 - Your final output MUST use exactly the same triplet that was

confirmed as efficient.↪→
146 - You MUST NOT generate new combinations without validating them

again.↪→
147 - Output JSON must include "phase_2" key with the described structure.

Do not explain your reasoning in the final answer.↪→
148 - Additional strict naming rules (Move_to arguments):
149 - Format must be Move_to('<entity>_<RegionID>'), **must not** use

the RegionType (eg. Hallway, Bedroom, Tie) as <entity>.↪→
150 - transfer region **must not** be same as target object region.

Here is an example of the INPUT and OUTPUT: INPUT:

scene graph: {"floor_1": {"region": [{"id": "Bedroom_1"}, {"id": "
Bathroom_2"}, {"id": "Kitchen_4"}, {"id": "Living_room_5"}, {"id":
"Hallway_6"}, {"id": "Bathroom_7"}, {"id": "Laundry_room_8"}, {"

id": "Lounge_Waiting_Room_9"}, {"id": "Entryway_Foyer_10"}, {"id":
"Bedroom_11"}, {"id": "Bathroom_12"}, {"id": "Bedroom_13"}], "

link": ["Bedroom_1 <-> Bathroom_2", "Bedroom_1 <-> Kitchen_4", "
Kitchen_4 <-> Living_room_5", "Kitchen_4 <-> Hallway_6", "
Kitchen_4 <-> Bathroom_7", "Kitchen_4 <-> Laundry_room_8", "
Living_room_5 <-> Hallway_6", "Living_room_5 <->
Lounge_Waiting_Room_9", "Living_room_5 <-> Entryway_Foyer_10", "
Hallway_6 <-> Laundry_room_8", "Hallway_6 <->
Lounge_Waiting_Room_9", "Hallway_6 <-> Entryway_Foyer_10", "
Hallway_6 <-> Bedroom_11", "Hallway_6 <-> Bathroom_12", "
Bathroom_12 <-> Bedroom_13"], "item": [{"region": "Bedroom_1", "
asset": ["bed", "coffee_table", "door"], "object": ["vase", "
ottoman", "lamp"]}, {"region": "Bathroom_2", "asset": ["
bathroom_counter", "sink", "bathroom_cabinet"], "object": ["
shower_cabin", "rug", "lamp"]}, {"region": "Kitchen_4", "asset":
["dishwasher", "oven", "stove"], "object": ["flower", "flower_vase
", "bowl"]}, {"region": "Living_room_5", "asset": ["shelf", "couch
", "tv"], "object": ["magazine", "box", "cushion"]}, {"region": "
Hallway_6", "asset": ["door"], "object": ["lamp", "vent", "rack
"]}, {"region": "Bathroom_7", "asset": ["toilet", "toilet_paper",
"sink"], "object": ["towel", "soap_dish", "dustbin"]}, {"region":
"Laundry_room_8", "asset": ["counter", "door", "bench"], "object":

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

["basket", "coat_hanger", "lamp"]}, {"region": "
Lounge_Waiting_Room_9", "asset": ["chair", "table"], "object": ["
flower_vase", "rack", "flatware"]}, {"region": "Entryway_Foyer_10
", "asset": ["door", "table"], "object": ["lamp"]}, {"region": "
Bedroom_11", "asset": ["door", "bed", "dresser"], "object": ["
plant", "lamp", "box"]}, {"region": "Bathroom_12", "asset": ["
bathroom_counter", "toilet", "toilet_paper"], "object": ["
shower_handle", "rug", "towel_bar"]}, {"region": "Bedroom_13", "
asset": ["nightstand", "door", "bed"], "object": ["rug", "vent", "
lamp"]}]}}

single agent task: {"phase_1": {"Single robot start position": {"
robot_1": "Bedroom_1"}, "Single robot target object position": {"
robot_1": "Bedroom_13"}, "Target object": "rug", "Single robot end
position": {"robot_1": "Bathroom_2"}, "Single robot travel path":
{"robot_1": ["Bedroom_1 -> Kichen_4", "Kichen_4 -> Living_room_5

", "Living_room_5 -> Hallway_6", "Hallway_6 -> Bathroom_12", "
Bathroom_12 -> Bedroom_13", "Bedroom_13 -> Bathroom_12", "
Bathroom_12 -> Hallway_6", "Hallway_6 -> Living_room_5", "
Living_room_5 -> Kichen_4", "Kichen_4 -> Bedroom_1", "Bedroom_1 ->
Bathroom_2"]},"Task instruction": "Take the rug in bedroom to the
bathroom counter in Bathroom."}}

OUTPUT:

{
"phase_2": {

"Collaborative robot start region": {
"robot_1": "Bedroom_1",
"robot_2": "Hallway_6"

},
"Collaborative type": "Type-A1",
"Transfer region": "Kitchen_4",
"Subtask instruction": {
"robot_1": "Take the rug from shelf in Kitchen to the bathroom

counter in Bathroom.",
"robot_2": "Take the rug in bedroom to the shelf in Kitchen."

},
"Subtask list": {
"robot_1": [
"Move_to('shelf_4')",
"Grab('rug')",
"Move_to('bathroom_counter_2')",
"Release('rug')"

],
"robot_2": [
"Move_to('rug_13')",
"Grab('rug')",
"Move_to('shelf_4')",
"Release('rug')"

]
}

}
}

A.11.2 SKILL FUNCTION

1 def check_collab_path_efficient_sim_graph(
2 robot_2_region,
3 transfer_nodes,
4 transfer_asset,
5 collab_type,
6 solo_cost, #
7 r1_nodes,

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

8 target_nodes,
9 end_nodes,

10 region_objects,
11 G):
12 r2_nodes = cluster_center_node('_'+robot_2_region.split("_")[-1],

nx.nodes(G), nx.get_node_attributes(G, 'position'))↪→
13

14 if r2_nodes == None:
15 return {"efficient": False}
16

17 print("r2_nodes:", r2_nodes)
18

19 if transfer_nodes:
20 print("transfer_asset: ", transfer_asset)
21 transfer_asset_pos = find_target_position(region_objects,

'_'+transfer_nodes.split("_")[-1], '
'.join(transfer_asset.split('_')))

↪→
↪→

22 if transfer_asset_pos != None:
23 transfer_nodes, _, _ =

nearest_navpoint_to_object_vec(transfer_asset_pos,
'_'+transfer_nodes.split("_")[-1], nx.nodes(G),
nx.get_node_attributes(G, 'position'))

↪→
↪→
↪→

24 insert_temp_point("transfer_"+transfer_asset, G,
transfer_asset_pos, transfer_nodes)↪→

25 transfer_nodes = "transfer_"+transfer_asset
26

27 if transfer_nodes != None:
28 print("transfer_nodes", transfer_nodes)
29 else:
30 return {"efficient": False}
31 else:
32 return {"efficient": False}
33 else:
34 return {"efficient": False}
35

36 if collab_type == "Type-A1":
37

38 try:
39 r2_to_target = nx.shortest_path_length(G,
40 source=r2_nodes,
41 target=target_nodes,
42 weight='weight')
43 except (nx.NetworkXNoPath, nx.NodeNotFound):
44 return {"efficient": False}
45

46 try:
47 target_to_transfer = nx.shortest_path_length(G,
48 source=target_nodes,
49 target=transfer_nodes,
50 weight='weight')
51 except (nx.NetworkXNoPath, nx.NodeNotFound):
52 return {"efficient": False}
53

54 robot2_first_leg = r2_to_target + target_to_transfer
55

56 try:
57 r1_to_transfer = nx.shortest_path_length(G,
58 source=r1_nodes,
59 target=transfer_nodes,
60 weight='weight')
61 except (nx.NetworkXNoPath, nx.NodeNotFound):
62 return {"efficient": False}
63

64 parallel_leg = max(robot2_first_leg, r1_to_transfer)
65

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

66 try:
67 transfer_to_end = nx.shortest_path_length(G,
68 source=transfer_nodes,
69 target=end_nodes,
70

71 except (nx.NetworkXNoPath, nx.NodeNotFound):
72 return {"efficient": False}
73

74 g_parallel_cost = parallel_leg + transfer_to_end
75 r1_parallel_cost = r1_to_transfer + transfer_to_end
76

77 path_infor = {
78 "r2_to_target": r2_to_target,
79 "target_to_transfer": target_to_transfer,
80 "robot2_first_leg": robot2_first_leg,
81 "r1_to_transfer": r1_to_transfer,
82 "parallel_leg": parallel_leg,
83 "transfer_to_end": transfer_to_end,
84 "type": collab_type
85 }
86

87 print("g_rate: ", g_parallel_cost / solo_cost)
88 print("r1_rate: ", r1_parallel_cost / solo_cost)
89

90 return {
91 "g_efficient": g_parallel_cost < solo_cost,
92 "r1_efficient": r1_parallel_cost < solo_cost,
93 "efficient": True if g_parallel_cost < solo_cost or

r1_parallel_cost < solo_cost else False,↪→
94 "g_rate": g_parallel_cost / solo_cost,
95 "r1_rate": r1_parallel_cost / solo_cost,
96 'path_info': path_infor
97 }
98

99

100 elif collab_type == "Type-A2":
101

102 try:
103 r1_to_target = nx.shortest_path_length(G,
104 source=r1_nodes,
105 target=target_nodes,
106 weight='weight')
107 except (nx.NetworkXNoPath, nx.NodeNotFound):
108 return {"efficient": False}
109

110 try:
111 target_to_transfer = nx.shortest_path_length(G,
112 source=target_nodes,
113 target=transfer_nodes,
114 weight='weight')
115 except (nx.NetworkXNoPath, nx.NodeNotFound):
116 return {"efficient": False}
117

118 robot1_first_leg = r1_to_target + target_to_transfer
119

120 try:
121 r2_to_transfer = nx.shortest_path_length(G,
122 source=r2_nodes,
123 target=transfer_nodes,
124 weight='weight')
125 except (nx.NetworkXNoPath, nx.NodeNotFound):
126 return {"efficient": False}
127

128 parallel_leg = max(robot1_first_leg, r2_to_transfer)
129

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

130 try:
131 transfer_to_end = nx.shortest_path_length(G,
132 source=transfer_nodes,
133 target=end_nodes,
134 weight='weight')
135 except (nx.NetworkXNoPath, nx.NodeNotFound):
136 return {"efficient": False}
137

138 g_parallel_cost = parallel_leg + transfer_to_end
139 r1_parallel_cost = r1_to_target + target_to_transfer
140

141 path_infor = {
142 "r1_to_target":r1_to_target,
143 "target_to_transfer": target_to_transfer,
144 "robot1_first_leg": robot1_first_leg,
145 "r2_to_transfer": r2_to_transfer,
146 "parallel_leg": parallel_leg,
147 "transfer_to_end": transfer_to_end,
148 "type": collab_type
149 }
150

151 print("g_rate: ", g_parallel_cost / solo_cost)
152 print("r1_rate: ", r1_parallel_cost / solo_cost)
153

154 return {
155 "g_efficient": g_parallel_cost < solo_cost,
156 "r1_efficient": r1_parallel_cost < solo_cost,
157 "efficient": True if g_parallel_cost < solo_cost or

r1_parallel_cost < solo_cost else False,↪→
158 "g_rate": g_parallel_cost / solo_cost,
159 "r1_rate": r1_parallel_cost / solo_cost,
160 'path_info': path_infor
161 }
162

163 else:
164 return {
165 "efficient": False
166 }

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

A.12 PROMPTS FOR GRAPH CONTEXTUAL TYPING

Room Type Reasoning

System:
You are an AI assistant that specializes in spatial reasoning and semantic scene understanding. Your task
is to infer the most likely type of a room (e.g., Bedroom, Bathroom, Kitchen, Laundry room, Living room,
Hallway, Tie, Balcony, Terrace, etc.) based on the provided contextual clues.
Rules: There are two part of the input: neighbors and objects. The neighbors part includes information
about the number and types of adjacent rooms. This gives spatial and functional context, which helps
narrow down the likely use of the unknown room. The objects part lists the items found in the unknown
room. These object types and frequencies are strong indicators of the room’s function.

1 When inferring the type of an unknown room, your reasoning must be
guided by both the semantic distribution of objects and the
spatial context of neighboring rooms.

↪→
↪→

2 """
3 - Always prioritize distinctive, functionally indicative objects over

generic decorative ones.↪→
4 - Use neighboring room types to constrain plausible options (e.g., a

room between two Bathrooms is unlikely to be a Kitchen).↪→
5 - Avoid inferring ambiguous multifunctional rooms unless object

diversity strongly supports it.↪→
6 - Room type must be one from the predefined category list (e.g.,

Bedroom, Bathroom, Kitchen, etc.).↪→
7 - In cases where the object list is sparse, weigh neighbor consistency

more heavily.↪→
8 """
9 Below is the full list of supported room types, each with a brief

description of its primary function.↪→
10 """
11 - Bedroom | used for sleeping and personal rest.
12 - Bathroom | supports hygiene tasks like bathing and toileting.
13 - Kitchen | designed for cooking and food preparation.
14 - Dining Room | a place for eating meals, often next to the kitchen.
15 - Living Room | used for leisure, social interaction, or

entertainment.↪→
16 - Study / Office | a workspace for reading, writing, or computer use.
17 - Laundry Room | contains appliances and tools for washing clothes.
18 - Closet / Storage Room | used to store clothes, tools, or household

items.↪→
19 - Hallway / Corridor | connects other rooms; mainly transitional.
20 - Garage | for parking vehicles or storing tools and equipment.
21 - Kids Room / Nursery | a bedroom tailored for children, often with

toys.↪→
22 - Balcony / Terrace | a semi-outdoor area for air, light, or drying.
23 - Media Room / Home Theater | equipped for movies or audio-visual

activities.↪→
24 - Gym / Fitness Room | contains equipment for exercise and physical

training.↪→
25 - Library | a quiet space for reading or storing books.
26 - Meeting Room | a formal area for group discussions or presentations.
27 - Lounge / Waiting Room | a rest area in public or semi-public

buildings.↪→
28 - Pantry / Bar | a compact space for storing or serving drinks/snacks.
29 - Dressing Room | dedicated to changing clothes or grooming.
30 - Entryway / Foyer | the front entrance space where people enter the

home↪→
31 """
32 Output format constraints:
33 """
34 - Only output the final predicted room type.
35 - The output must be a single Python dictionary with the format:
36 {"Unknown room type": "<Room Name>"}

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

37 - Do NOT include any reasoning, explanation, or analysis in the
output.↪→

38 - Do NOT output multiple room types or probabilities|only the most
likely one.↪→

39 - Do NOT include any commentary, bullet points, or markdown
formatting.↪→

40 """
41 Here is an example of the INPUT and OUTPUT:
42 INPUT:
43 ```
44 neighbors: "There are 2 neighboring rooms, belonging to 1 type,

including 2 Kitchens."↪→
45 objects: "The unknown room contains 77 objects, belonging to 30 types.

The top 5 most frequent items are: 22 photos, 11 chairs, 3 plants,
3 vases, and 3 shelfs."

↪→
↪→

46 ```
47 OUTPUT:
48 ```
49 {"Unknown room type": "Living room"}
50 ```

A.13 ABLATION FOR PROMPTS

A.13.1 DIRECTLY TWO-AGENT TASK GENERATION

Figure 17: Common failure case of directly generating a two-agent task.

In fact, the initial versions of CoNavBench were exactly based on directly generat-
ing two-agent tasks, as you suggested, and our current “single-agent task then split”
pipeline is the result of several iterations driven by empirical observations. Concretely,
we implemented and tested three major versions of the data-generation pipeline on
a fixed test set of HM3D environments(00087-YY8rqV6L6rf,00299-bdp1XNEdvmW,00323-
yHLr6bvWsVm,00324-DoSbsoo4EAg,00444-sX9xad6ULKc,00612-GsQBY83r3hb) to allow con-
trolled comparisons under identical prompts. However, after extensive testing, we found that both
V1 and V2 suffered from very low-quality multi-robot collaboration, mainly due to the difficulty of
long-horizon spatial reasoning with two agents at once. Typical failure modes included: I) Little or
no true parallelism: the LLM often produced plans where one robot did almost all the work while
the other remained idle, so executing the plan with a single robot sequentially was actually more

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

efficient, as shown in Figure 17. II) Inconsistent or invalid coordination: mismatches between the
transfer region and the subtask descriptions, missing handover steps, or paths that did not align with
the scene layout. Hence, motivated by these observations, we adopt the two-stage NavCraft design.
We have added this discussion in the Supplements Section for more details.

Directly Two-agent Task Rule Prompt Version 1

1 Important rules regarding the scene graph:
2 """
3 - You must leverage the scene graph topology to design meaningful

multi-robot cooperation.↪→
4 - The connectivity between regions (provided in the "link" field of

the scene graph) must be used to ensure:↪→
5 - Robots do not start in adjacent regions.
6 - Task handoffs (e.g., object relay between robots) happen in

regions that are connected.↪→
7 - The selection of regions and object transfer paths should reflect

realistic spatial planning based on the graph.↪→
8 - Encourage designs where the first robot delivers an object to an

intermediate node (transfer zone), and the second robot continues
from there. This creates natural cooperation patterns.

↪→
↪→

9 """
10 There are something you need to pay attention to:
11 """
12 - A robot should not start in the same region where it needs to pick

up or drop off objects.↪→
13 - Each robot's contribution should reduce the overall task cost:
14 - Avoid assigning tasks that could be completed more efficiently

by a single robot.↪→
15 - Only use multi-robot handoff when it significantly reduces

travel distance or enables parallelism.↪→
16 - The multi-robot plan you generate should not be less efficient than

a single-robot plan for the same task. Cooperation should lead to
either reduced execution time or more balanced workload across
agents.

↪→
↪→
↪→

17 - The objects involved must be portable and must appear in the input
scene.↪→

18 - The task must involve only 1 to 2 different regions.
19 - The region IDs (e.g., "Kitchen_1", "Bedroom_3") do not imply spatial

proximity or connectivity. Only the "link" field in the scene
graph provides valid region-to-region connections. Do not assume
regions with similar names or IDs are connected.

↪→
↪→
↪→

20 - The full task must contain 4 to 6 subtasks total (across all
robots).↪→

21 - The task you generate should be similar to instructions like "Take
an object in one region to a certain place in one region."↪→

22 - Subtasks must follow logical ordering: a robot must Move_to before
Grab or Release; it cannot Release without having grabbed the
object first.

↪→
↪→

23 - The region mentioned in Move_to() should match the region mentioned
in the high-level instruction.↪→

24 - The task must reflect multi-robot cooperation, such as transporting
an object to a place where another robot picks it up and
continues.

↪→
↪→

25 - Do not use low-level action terms like "grab", "release", or
"move_to" in "Task instruction" or "Subtask instruction".↪→

26 """
27 Your output should be a Python dictionary with the following keys:
28 """
29 - "Robots position": A dictionary assigning each robot to a starting

region. Each robot must start in a different region, and the
regions must be at least one hop apart in the scene graph.

↪→
↪→

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

30 - "Task instruction": A conversational high-level instruction
describing the overall collaborative task.↪→

31 - "Transfer position": A list of intermediate regions (e.g., region
IDs) that serve as **handover zones** between robots. These
positions should be selected from the scene graph and must be
reachable by both the sender and the receiver robot. Use them to
support collaborative efficiency: for example, Robot A may carry
an object from Region X to a transfer position, where Robot B
picks it up and delivers it to the final destination. When
selecting a transfer position, prefer regions that minimize the
total travel distance between participating robots.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

32 - "Subtask instruction": A dictionary giving each robot a
natural-language description of its individual role in the task.
Avoid technical terms like "grab" or "release".

↪→
↪→

33 - "Subtask list": A dictionary mapping each robot to a list of
low-level subtasks. These subtasks should be composed of the
following actions:

↪→
↪→

34 - Move_to("object_region_id"): Walk to an object or location in a
region. The "object_region_id" must combine the object name and
its region ID from the input scene (e.g., "lamp_1").

↪→
↪→

35 - Grab("object"): Pick up the object. The robot must first move to
the object's location. The object must exist in the "objects"
list of the input scene.

↪→
↪→

36 - Release("object"): Place the object in the target asset or
location. The robot must first move to the target. The object
must exist in the input scene.

↪→
↪→

37 """
38 Make sure the task instruction conversational enough, and the task

should reasonable.↪→

Directly Two-agent Task Rule Prompt Version 2

1 Important rules regarding scene and task planning:
2 """
3 - Use the region connectivity graph ("link") to determine all movement

and transfer feasibility.↪→
4 - Robots must start in **different**, **non-adjacent** regions.
5 - A robot cannot start in the same region where it will pick up or

drop off an object.↪→
6 - Task handoff must happen in a region reachable from both the sender

and receiver.↪→
7 - A robot must Move_to a region before performing Grab or Release.
8 - A robot must Grab an object before it can Release it.
9 - The region specified in Move_to() must match the one implied in the

instruction (no teleportation).↪→
10 - Subtasks must follow this logical order: Move_to → Grab → Move_to →

Release.↪→
11 - The objects involved must:
12 - Be listed in the input scene’s "object" field (i.e., exist and be

portable).↪→
13 - Be manipulated **only**, not assets.
14 - Subtasks must not violate logical flow or act on unavailable

objects/assets.↪→
15 - The overall plan must involve **1 to 2 regions total** (e.g., task

origin, destination, or transfer area).↪→
16 - Tasks must be split into **4 to 6 total low-level subtasks**, across

all robots.↪→
17 - Task planning should reflect genuine cooperation:
18 - Prefer parallelism or reduced path cost through collaboration.
19 - Avoid plans where a single robot could complete the task more

efficiently.↪→

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

20 - Multi-robot plans **must not be less efficient** than single-robot
alternatives.↪→

21 - The task must exhibit **explicit collaboration**, such as robot_1
transporting an object to an intermediate location, and robot_2
completing delivery.

↪→
↪→

22 - Avoid assuming proximity based on region name:
23 - Region IDs (e.g., "Kitchen_1", "Kitchen_2") **do not imply spatial

adjacency**.↪→
24 - Use only "link" data to determine connectivity.
25 - Task instruction and subtask instructions should:
26 - Be natural-language (e.g., "Take the object from A to B").
27 - **Avoid technical terms** like "grab", "release", or "move_to".
28 """
29 Region Symbol Definitions (used in output and reasoning):
30 """
31 - Region_A: Initial position of robot_1
32 - Region_B: Location of the portable object
33 - Region_X: Handoff region (object relay from robot_1 to robot_2)
34 - Region_Y: Initial position of robot_2
35 - Region_C: Final destination for object delivery
36 """
37 Spatial Constraints:
38 """
39 - Region_A and Region_Y must NOT be adjacent.
40 - Region X and Region B must NOT be adjacent.
41 - Region X and Region C must NOT be adjacent.
42 - Among Region_A, Region_X, Region_Y, and Region_C, Region_B must be

the closest to Region_A based on the region connectivity graph
(i.e., shortest path length from Region_A).

↪→
↪→

43 - Among Region_A, Region_X, Region_Y, and Region_B, Region_C must be
the closest to Region_Y based on the region connectivity graph
(i.e., shortest path length from Region_Y).

↪→
↪→

44 """
45 Output Format:
46 """
47 {
48 "Robots start position": {"robot_1": "Region_A", "robot_2":

"Region_Y"},↪→
49 "Transfer position": "Region_X",
50 "Robot travel path": {
51 "robot_1": ["Region_A -> Region_B", "Region_B -> Region_X"],
52 "robot_2": ["Region_Y -> Region_X", "Region_X -> Region_C"]
53 },
54 "Task instruction": "Take the [object_B] from Region_B to the

[asset_C] in Region_C.",↪→
55 "Subtask instruction": {
56 "robot_1": "Take [object_B] in Region_B to the [asset_X] in

Region_X.",↪→
57 "robot_2": "Take [object_B] from [asset_X] in Region_X to the

[asset_C] in Region_C."↪→
58 },
59 "Subtask list": {
60 "robot_1": ["Move_to('object_B')", "Grab('object')",

"Move_to('asset_X')", "Release('object')"],↪→
61 "robot_2": ["Move_to('asset_X')", "Grab('object')",

"Move_to('asset_C')", "Release('object')"]↪→
62 }
63 }
64 """
65 Output field explanation:
66 """
67 - "Robots start position": Dict mapping each robot to its starting

region (must follow spatial constraints).↪→

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

68 - "Transfer position": Region ID (or list of region IDs) where object
is passed from robot_1 to robot_2.↪→

69 - "Robot travel path": Dict showing robot movement as ordered
region-to-region transitions.↪→

70 - "Task instruction": Natural description of full multi-robot delivery
task.↪→

71 - "Subtask instruction": A dictionary giving each robot a
natural-language description of its individual role in the task.
Avoid technical terms like "grab" or "release".

↪→
↪→

72 - "Subtask list": Dict of robot action sequences using these
primitives:↪→

73 - Move_to("object_region_id")
74 - Grab("object")
75 - Release("object")
76 """
77 Make sure the task instruction conversational enough, and the task

should reasonable.↪→

42

	Introduction
	Related Work
	Platform, Benchmark and Metrics
	NavCraft
	Scene Graph Generation
	NavCraft-S
	NavCraft-C

	The CoNavBench benchmark and Metrics

	Experiment
	Experimental setting
	Result and Analysis
	Ablation Studies

	Conclusion
	Appendix
	Real2Sim ToolBox
	Experimental Setup
	Supplementary Experiments
	Discussion
	Large Language Models Usage Statement
	Ethics statement
	Human vs. NavCraft Case Study
	User Profile
	Real Robot Demo
	Implementation details of NavCraft-S
	Prompts Setting
	Skill function

	Implementation details of NavCraft-C
	Prompts Setting
	Skill function

	Prompts for Graph contextual Typing
	Ablation for Prompts
	Directly Two-agent Task Generation

