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Abstract

Policy iteration (PI) is a fundamental policy search algorithm in standard reinforcement
learning (RL) setting, which can be shown to converge to an optimal policy by policy
improvement theorems. However, the standard PI relies on Bellman’s Principle of Optimality,
which might be violated by some specifications of objectives (also known as time-inconsistent
(TIC) objectives), such as non-exponentially discounted reward functions. The use of standard
PI under TIC objectives has thus been marked with questions regarding the convergence of its
policy improvement scheme and the optimality of its termination policy, often leading to its
avoidance. In this paper, we consider an infinite-horizon TIC RL setting and formally present
an alternative type of optimality drawn from game theory, i.e., subgame perfect equilibrium
(SPE), that attempts to resolve the aforementioned questions. We first analyze standard PI
under the SPE type of optimality, revealing its merits and insufficiencies. Drawing on these
observations, we propose backward Q-learning (bwdQ), a new algorithm in the approximate
PI family that targets SPE policy under non-exponentially discounted reward functions.
Finally, with two TIC gridworld environments, we demonstrate the implications of our
theoretical findings on the behavior of bwdQ and other approximate PI variants.

1 Introduction

Policy iteration (PI) has enjoyed a long history of success in standard reinforcement learning (RL), which can
be attributed to standard PI that combines a dynamic programming (DP)-based policy evaluation1 and a
greedy policy improvement; see Bellman (1957); Howard (1960). Standard PI has been the basis of many
classical RL algorithms, such as value iteration and the popular Q-learning (Watkins & Dayan (1992)), and it
still inspires the design of modern RL algorithms. Despite its prominence in standard RL setting, standard
PI has been deemed incompatible for time-inconsistent (TIC) objectives due to non-monotonicity and the
implied violation of Bellman’s principle of optimality (BPO).

Time inconsistency (also abbreviated as TIC) is prevalent in dynamic choice problems and captures well
human’s tendency to deviate from their current plan at a future time; such deviation arises as a plan of
future course of actions that is optimal for a human agent today, may not be optimal for the same agent
in the future. In the context of RL, TIC often arises as an effort to more closely model human preferences,
resulting in TIC objectives upon which an RL agent is built on, and has been investigated through several
major channels such as hyperbolic discounting and risk-sensitive RL.

1For a formal introduction, readers may refer to Eq (8).
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The idea of questioning the validity of standard PI under TIC was pioneered in risk-sensitive RL by Sobel
(1982). In this seminal work, a counterexample to the monotonicity2 property (also referred to as consistent
choice, temporal persistence, or stationarity across the literature) was posted and attention was raised in how
this property is commonly exploited to prove the convergence of standard policy improvement scheme to an
optimal policy. Two puzzles are then left for answers:

How optimal is the termination policy (the policy obtained at the end of an algorithmic
search) of standard PI?

and

Is it possible to guarantee the update monotonicity (a desirable algorithmic property that will
lead to convergence) of standard PI?

In this paper, we focus on infinite-horizon TIC RL problems and formally present the subgame perfect
equilibrium (SPE) notion of optimality that corresponds to how sophisticated, rational agent acts in the
face of TIC i.e., planning consistently in terms of solving optimizations that take into account the future
deviations. We will then revisit the two questions above to highlight standard PI’s merits and insufficiencies
in achieving the SPE notion of optimality.

The contribution of this paper can be summarized as follows:

• In terms of optimality, we establish that the termination policy of standard PI under TIC achieves
SPE.

• We study the failure of policy improvement theorem (Sutton & Barto (2018)) and highlight some
insufficiencies of standard PI update and the existing analysis tools, in the context of SPE policy
search.

• TIC-adjusted DP formula is established to compute nonexponentially-discounted Q-function, ad-
dressing the insufficiency of standard DP formula.

• Based on the aforementioned analyses, we devise a new PI paradigm for non-exponentially discounted
reward functions: backward Q-learning (bwdQ).

• We design toy Gridworld examples to demonstrate the implications of our findings on the behaviour
of bwdQ and other approximate PI variants under TIC.

• The analyses (in Section 5.1 and 4.3) relevant to the advantage of backward conditioning in bwdQ is of
independent interest: the characterization of its termination policy as SPE and its efficiency-related
desirability as an SPE policy learner extend beyond general-discounting objectives.

Note that some lengthy proofs/justifications of our results are deferred to Appendix.

2 Related Works

Non-monotonicity in risk-sensitive RL and solutions. In risk-related context, several follow-up works
since Sobel (1982) address the non-monotonicity issue following the line of reasoning that the search for a
globally-optimal policy in non-monotonic problems are computationally expensive (as one can only enumerate
over the whole policy space that is almost impossible in practice) and hence, new solutions are desired. For
instance, Mannor & Tsitsiklis (2011) formally compares between several policy classes to reduce the search
problem for globally-optimal policy (to a specific policy class) and proposes several practical approximation
algorithms. One important finding in their work is that randomization can improve control performance;

2A formal definition to monotonicity is provided in Eq (15). Intuitively, if a decision-making problem is monotonic, then
delaying the use of any two decision policies will preserve their ordering (in terms of the policies’ values from any states). When
this property holds, we can typically break our problem into subproblems as in BPO and attain computational efficiency.
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this inspires Di Castro et al. (2012); Tamar & Mannor (2013); Prashanth & Ghavamzadeh (2013) to propose
gradient-based algorithms accustomed to mean-variance criteria, which highlighted parameterized stochastic
policy as a manner to deal with non-monotonicity. The latter works are relevant to our case as they also
use TIC adjustment terms to obtain temporal difference (TD)-based policy evaluation (PE) that resembles
the one used in extended DP theory Björk et al. (2014). To distinguish our approach, we note our focus
on using SPE policy itself to deal with non-monotonicity (by modifying our optimality type) as opposed to
randomization or parameterization.

Non-monotonicity in hyperbolic-discounting RL and solutions. In hyperbolic-discounting context,
non-monotonicity have also appeared, independent of Sobel (1982)’s work; see Kurth-Nelson & Redish (2010)
for instance. In this work, several proposals towards computationally practical models are reviewed, with
varying action selection strategies drawn largely from behavioral or neuroscience point of view. A recent follow-
up work by Fedus et al. (2019) extends their distributed micro-agents model (i.e. µAgents) to handle larger
scale problems, utilizing deep neural network to model the different Q-values from a shared representation.
Though such modifications in action selection may have implicitly addressed the non-monotonicity underlying
PIT failure, to the best of our knowledge, an explicit connection between the two (as in Sobel (1982)) has
never been made.

Time-consistent Planning and Control. The idea of locally optimal, time-consistent planning under
TIC was pioneered by Strotz (1955); Pollak (1968). This type of planning corresponds to a sophisticated,
rational agent’s behavior who, when faced with TIC, compromises with their future selves by taking future
disobedience as a constraint in their decision-making. The solution concept is developed as a game-theoretic
framework that builds on backward inductive SPE search in games, thus coining the term SPE plan or
policy. This then leads to an intra-personal equilibria formalism by Björk & Murgoci (2014) which unifies
several task-specific TIC sources through extended DP theory and has attracted a wide array of literature
in TIC stochastic control. The rise of SPE policy as a major contending solution to the globally optimal
(precommitment) policy can then be attributed to two reasons: (i) as a controller, precommitment policy
may lead to some undesirable outcomes since it may lose its optimality as time evolves (for instance, due to
an unpredictable change in environment dynamics), (ii) computationally, there is lack of a pivotal tool to
identify a globally-optimal policy that generalizes naturally to different TIC tasks (for instance, due to its
disconnection to standard DP that requires BPO).

SPE Policy in TIC-RL. Some works in the general-discounting space have investigated TIC-RL from a
purely behavioral lens, focusing particularly on the property of target policy rather than a computational aspect.
For instance, Lattimore & Hutter (2014) proposes rational agents that act according to history-dependent
SPE policies. In this work, the authors cover some theoretical aspects of policies such as characterization of
different policy types, existence results connecting discounting and policy types, and comparative study in
some example scenarios. In another work, Evans et al. (2016) proposes sophisticated agents that act according
to Markovian SPE policies and are modelled with delay-augmented Q-learning algorithms. Though relevant,
these algorithms are proposed in the context of generative models that aids human-like preference inferences;
thus, algorithmic properties are not covered. A recent work by Lesmana & Pun (2021) considers the search
of Markovian SPE policy under finite-horizon task-invariant TIC objectives. Drawing inspiration from the
extended DP theory, the authors propose Backward Policy Iteration (BPI), which has lex-monotonicity
guarantee in place of the standard policy improvement theorem. This work is the closest to ours where our
backward conditioning can be viewed as an infinite-horizon extension to BPI. We distinguish our contribution
by noting our main focus on analyzing standard PI, that motivates our infinite-horizon, Markovian SPE
policy formalism and the corresponding drop of time-dependency, shifting definition of players from times
to states. Relative to finite-horizon case, such formalism introduces technical challenges in both aspects of
policy evaluation and improvement, which we will remark on the respective sections of this paper.
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3 Problem Formulation and the SPE Concept

In this section, we introduce the class of TIC RL problems of our interest and formally present the solution
concept of SPE policy. We then cast the general-discounting objective as a TIC RL problem and construct a
few examples in this context that we will quote frequently throughout the paper.

3.1 TIC RL Problem Formulation

We consider the policy search in an infinite-horizon TIC-MDP, which consists of the standard MDP tuple
(S,A,P,R) and a specific TIC source. The state space S and action spaces As ⊆ A,∀s ∈ S, are assumed to
be discrete and finite with stationary probabilities pa

s(·) := P[Rt+1 = ·, St+1 = · |St = s, At = a] governing the
transitions from a current state St = s to the next state St+1 and reward Rt+1 for s ∈ S, given a particular
action At = a. To define a stopping criterion, it is convenient to augment a so-called absorbing state, denoted
by s̄void, which incurs no reward. Then, we define a stopping action ā as an action that drives a transition to
s̄void from any states s ∈ S and boundary states s̄ ∈ S̄ as rewarding states with specific action space As̄ or
Ā := {ā}, i.e. once the boundary state is reached, we conclude with reward as there is only action ā that will
transit us from s̄ to s̄void and then make us stay at s̄void forever. This setup is to complete the mathematical
framework of the environment for analyses, where the problem of interest has certain stopping criteria, e.g.,
after receiving a target reward.

Let us next denote by ΠMD the set of all Markovian, deterministic policies π := {π(s) : s ∈ S} with
π : S → As. To aid presentation in subsequent sections, we define a · π as a policy that prescribes the use of
action a ∈ A for a current one-step decision and policy π for all remaining decisions. Similarly, we denote
by δτ · π a policy that fixes the first τ > 0 steps decisions to δτ := {δ(Sw) : t ≤ w < t + τ}, with a map
δ : S → As and a current time t, and follows π afterwards.

TIC reward structures and criterion We first note that by our assumption on stationary transitions,
we are limiting our TIC scope to those that arise from reward structures and criterion, described as follows.
Let us consider a general criterion V π(s) (with form not restricted at this point) for any π ∈ ΠMD and
s ∈ S. Given an initial state s0 ∈ S, a standard notion of optimality aims to solve the global problem
P0,s0

.= maxπ V π(s0) and obtain the corresponding globally-optimal (precommitment) policy denoted by
π∗0. Next, let us define for each delay τ > 0, the local problem Pτ,sτ

.= maxπ V π(sτ ), where sτ represents
any realization of Sτ following the sequence of policies

{
π∗0(St) : 0 ≤ t < τ |S0 = s0

}
, and denote by π∗τ (sτ )

its solution. Bellman’s Principle of Optimality (BPO) then states that

∀τ, sτ , π∗τ (sτ ) = π∗0(sτ ) (1)

By the BPO definition above, the standard RL criteria belong to the time-consistent (TC) class that does not
violate (1). While in this paper, we consider criteria V π(s) that violate (1); these include general-discounting,
risk-related, and more (cf. Björk & Murgoci (2014)). Given any criteria V π(s), one can verify whether it
belongs to the TIC class through a counterexample (which will be illustrated with Example 3.7 below).

It is noteworthy that our way in defining TIC criterion is unlike most MDPs that specify the criterion V π(s)
up to the expectation of cumulative rewards. We aim to maintain generalities up to the formalism of SPE
optimality (in Section 3.2) that is valid for different forms of TIC reward structures and criterion. For
instance, while general-discounting objectives still admit an expectation form, risk-sensitive objectives involve
non-linearity in expectations. That said, to fully define a TIC-MDP, we need the exact specifications of
reward structures R and the corresponding TIC sources. We will further discuss on this topic in Section 3.3
with general-discounting specifications.

3.2 SPE Notion of Optimality

In the previous subsection, we have established our focus on the objectives that violate BPO in (1). Once
BPO is violated, π∗0 ̸= π∗τ for some τ, sτ and we will have a collection of competing optimization problems
{Pτ,sτ : ∀τ ∈ [0,∞), sτ ∈ S} to solve. We then have two options. Firstly, we can focus on only a
single agent corresponding to (0, s0), denoted by Agent-s0, and solve for a globally optimal or so-called
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precommitment policy. However, as we have noted in Section 2, this is expensive to obtain in general and
more importantly, it has been known to suffer from the two puzzles in Section 1. Secondly, we can consider
{Pτ,sτ : ∀τ ∈ [0,∞), sτ ∈ S} as a multi-agent problem, where each Agent-sτ is associated with the problem
Pτ,sτ

, and solve for the Nash equilibrium of this (sub-)game, i.e. SPE.

In this subsection, we will formalize such SPE notion of optimality in an infinite-horizon setting. Let us
consider any TIC criterion V π(s) and define the corresponding action-value or Q-function Qπ(s, a) := V a·π(s).
Our aim is then to find an (stationary) SPE policy π̂, defined as follows.
Definition 3.1 (SPE Policy). A policy π̂ ∈ ΠMD is an SPE policy if it satisfies

Qπ̂(s, π̂(s)) ≥ Qπ̂(s, a),∀a ∈ As,∀s ∈ S (2)

In other words, our game consists of Players, indexed by the states s ∈ S, and we search for an SPE, where
Player s takes into account the strategies of other Players s′ ∈ S \ {s} in its decision making as s will be
transited to an s′. In particular, Definition 3.1 implies that any state s′ does not have incentive to deviate
from its strategy π̂(s′) when everyone else plays π̂; note that this is how SPE takes into account future
deviations, as we mentioned in Section 1.
Remark 3.2. It is important to note that in standard RL, the policy that realizes Definition 3.1 (or so-called
non-positive advantage) is the optimal policy. However, such equivalence draws on BPO, which does not apply
in TIC RL. Once BPO is violated, the optimal policy (one that solves P0,s0 := maxπ V π(s0), that we refer to
as globally-optimal/precommitment policy π∗0) is no longer equivalent to the one that realizes non-positive
advantage (one that solves the game induced by competing local optimizations Pτ,sτ

:= maxπ V π(sτ ), that
we refer to as SPE policy π̂). As we will see later in Section 3.3, an SPE policy (cf. Figure 1(c)) can be
neither equal or equivalent in value to the globally-optimal/precommitment policy (cf. Figure 1(b)).

Throughout this paper, we will adopt several technical assumptions to address the technical challenges of
such infinite-horizon SPE, particularly those that arise from the derivations of TIC-adjusted DP in Section
4.2 and backward conditioning update in Section 5.1.
Assumption 3.3. ∀s ∈ S,∀ϵ > 0, there exists a truncation step T̄ <∞ s.t. ∀π ∈ ΠMD, π̈ : S → Ā,∣∣∣V π(s)− V πT̄ ·π̈(s)

∣∣∣ ≤ ϵ. (3)

Denote by T̄s,ϵ the smallest such T̄ .
Assumption 3.4. ∃s0 ∈ S s.t. ∃T̂s0 <∞

∀s ∈ S \ {s0},∃π ∈ ΠMD,

T̂s0∑
t=0

P[Sπ
t = s|S0 = s0] > 0.

Intuitively, Assumption 3.3 asserts that starting from any s and following any policy π, any rewards generated
after T̄ steps are negligible as the policy π̈ incurs 0 rewards3. Then, Assumption 3.4 ensures the existence
of at least one state s0 from which all other states s ∈ S \ {s0} can be reached in finite time, with positive
probability. Combining these two, we fix s0 and set T̄ϵ := max{T̂s0 + 1, T̄s0,ϵ} to obtain our last assumption.

Assumption 3.5. Let us define Ss0,ΠMD

0 := {s0} and ∀t ∈ (0,∞),

Ss0,ΠMD

t := {s ∈ S : ∃τ ∈ [0, t), sτ ∈ Ss0,ΠMD

τ s.t. ∃π ∈ ΠMD,P[Sπ
t−τ = s|S0 = sτ ] > 0} (4)

Then, ∀ϵ > 0,∀t ∈ [0, T̄ϵ],∀st ∈ Ss0,ΠMD

t , and ∀π ∈ ΠMD with P[Sπ
t = st|s0] > 0, ∃κ(ϵ) = κ(ϵ, t, st, π; s0) > 0

s.t.
∣∣∣V π(st)− V πT̄ϵ−t·π̈(st)

∣∣∣ ≤ ϵ
κ(ϵ) and limϵ↓0

ϵ
κ(ϵ) = 0.

3We note one important implication of Assumption 3.3: bounded value functions, which proof can be found in Appendix A.2.
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Intuitively, Assumption 3.5 ensures the negligibility of rewards under π from any intermediate states
st ∈ Ss0,ΠMD

t when there is a path connecting it to s0 under the same policy π. In Appendix A.1, we show
that these assumptions are reasonable in practice through a set of sufficiency conditions (in general-discounting
context, in terms of restrictions on MDP and discounting function).

3.3 General-discounting Criterion

As a major concern of this paper, we consider the following infinite-horizon criterion

V π(sτ ) .= E

[ ∞∑
t=τ

φ(t− τ)R(Sπ
t , π(Sπ

t ))
∣∣∣Sτ = sτ

]
(5)

defined for any τ ≥ 0, with a general discounting function φ : N→ (0, 1]. The intermediate (possibly random)
reward function R : S ×A → R+ follows the standard MDP formulation, with emphasis on its boundedness
and non-negativity. We further note our use of notation Sπ

t for the (random) state visited at time t on a
trajectory generated by following policy π and initialized at Sτ = sτ .

Next, we define action-value or Q-function that relates to the value function in (5).
Definition 3.6 (Q-function). For each state-action pair (s, a) ∈ S × A and a fixed policy π ∈ ΠMD, we
define Q-function as

Qπ(s, a) .= E

[ ∞∑
t=0

φ(t)R(Sa·π
t , π(Sa·π

t ))
∣∣∣S0 = s

]
(6)

Note that to emphasize on the stationarity of our problem, we have avoided any explicit appearance of τ
in the Definition 3.6 above by performing a simple change of variable drawn from the Markov property
P[Sπ

t = st|Sτ = sτ ] = P[Sπ
t−τ = st|S0 = sτ ]. Later in Section 4.2, τ will be re-introduced as our RL agent’s

parameter that keeps track of nonstationarity changes.

We may now revisit the TIC concept by witnessing how criterion (5) violates BPO through a Gridworld
counterexample.
Example 3.7 (BPO Violation). Consider a Gridworld environment as described in Figure 1(a) and a
hyperbolically-discounted criterion, i.e., setting φ(t− τ) = 1/(1 + k(t− τ)) in (5). Given s0 = 21, we can
compute (by trajectory enumeration) the globally-optimal, precommitment policy π∗0 as in Figure 1(b). After
applying delay τ = 3 and following the delaying policy δτ = π∗0, we reach sτ = 9, at which the locally-optimal
policy suggests π∗τ .= {π∗τ (9)} = {←} and accrues rewards V π∗τ (sτ ) = 10/(1 + 1) > 19/(1 + 3) = V π∗0(sτ );
see Figure 1(d). This violates BPO at τ = 3 and sτ = 9.

Here onwards, we will use the general-discounting TIC value function and Q-function as defined in (5)-(6) for
any appearance of V π(s) and Qπ(s, a), unless specified otherwise. We then denote by V π

T C(s) and Qπ
T C(s, a)

the exponential-discounting (i.e., φ(t) = γt) time-consistent (TC) value function and Q-function to exemplify
any standard RL formulations in the subsequent sections.

4 An Analysis of Standard PI

In this section, we analyze standard PI under the SPE optimality type, revealing its merits and insufficiencies.

4.1 SPE Optimality of Termination Policy

We first present the standard PI update,

π′(s)← arg max
a∈As

Qπ(s, a),∀s ∈ S (7)
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(a) (b)

(c) (d)

Figure 1: (a) Deterministic, Hyperbolic (k = 1) Gridworld. S comprises 2 absorbing states S̄ = {2̄, 8̄}
emitting rewards R(2̄) = 19, R(8̄) = 10. Each action in A = {↑,→, ↓,←} drives transition through
deterministic P ; transitions to WALL or outside the grid will spawn the agent back to its original location.
(b) Globally-optimal, precommitment policy π∗0 and its corresponding path, accruing accumulated
rewards V π∗0(s0) = 19

1+6 . This path exhibits TIC at τ = 3 and sτ = 9 as shown in Example 3.7. (c) SPE
policy π̂ and its corresponding path, accruing rewards V π̂(s0) = 19

1+8 < V π∗0(s0). One could refer back to
Definition 3.1 and verify that no states sτ on this path have the incentive to deviate from its current policy
π̂(sτ ). (d) Delusional policy δτ ·π∗τ and its corresponding path, with τ, δτ , and π∗τ specified in Example
3.7, accruing rewards of V δτ ·π∗τ (s0) = 10

1+4 < V π̂(s0). The term ’delusional’ is used to reflect how state 21
presumes 9 will go up, unaware of the TIC issue.

where π′, π represent new (at current iteration) and old policies (at previous iteration) in any two consecutive
iterations. Next, we will show the merit of standard PI in Proposition 4.1: its termination policy achieves
SPE optimality.

Proposition 4.1. If π′ = π and update follows the rule in (7), then π, π′ are SPE policy.

Proof. By (7) and π′ = π, we obtain that ∀a ∈ As,∀s ∈ S,

Qπ(s, π′(s)) ≥ Qπ(s, a) ⇒ Qπ(s, π(s)) ≥ Qπ(s, a).

Thus, by Definition 3.1, π, π′ are SPE policy.

4.2 Policy Evaluation

The update rule (7) requires the computation of the true TIC Q-function Qπ(s, a), which is not straightforward.
In standard RL setting, there is a DP formula to efficiently compute TC Q-function,

Qπ
T C(st, at) = ER,S′∼p

at
st

[R(st, at) + γV π
T C(S′)], (8)

where V π
T C(s) (iteratively) solves (8) after substituting π(st) into at. Under general discounting as in (5), (8)

no longer holds. In this subsection, we present a recursive formula satisfied by our TIC Q-function (see (13)
below) by leveraging the extended DP theory (Björk et al. (2014)).
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TIC-adjusted DP Noting that in Section 3.2 we have assumed access to a fixed T̄ϵ <∞, we introduce a
reward adjustment (or r-function) that our agent will use it to track the nonstationary changes (due to TIC)
in Q-function.

Definition 4.2 (r-function). For each τ ∈ {0, . . . , T̄ϵ}, m ∈ {τ, . . . , T̄ϵ}, s ∈ S, a ∈ A, and a fixed policy
π ∈ ΠMD, we define r-function as

rπ,τ,m(s, a) .= E [φ(m− τ)R (Sa·π
m , π(Sa·π

m )) |Sτ = s] (9)

where τ and m are fixed parameters.

Next, we will use the adjustment function above to obtain a formula that recursively computes our Q-function.
Theorem 4.3. For any fixed π ∈ ΠMD, τ ∈ {0, . . . , T̄ϵ}, m ∈ {τ, . . . , T̄ϵ}, s ∈ S, a ∈ As, r-function satisfies
for m = τ ,

rπ,τ,τ (s, a) = ER∼pa
s

[φ(0)R(s, a)] (10)

and for m ≥ τ + 1,

rπ,τ,m(s, a) = ES′∼pa
s

[
φ(m− τ)

φ(m− (τ + 1))rπ,τ+1,m(S′, π(S′))
]

. (11)

Moreover, for any fixed π ∈ ΠMD, t ∈ {0, . . . , T̄ϵ}, st ∈ S, at ∈ Ast , under some technical conditions (see
Assumption B.1), Q-function satisfies for st ∈ S̄ and at ∈ Ā,

Qπ(st, at) = ER∼p
at
st

[φ(0)R(st, at)] (12)

and for st ∈ S \ S̄ and at ∈ Ast
,

Qπ(st, at) ≈ ER∼p
at
st

[φ(0)R(st, at)] + ES′∼p
at
st

[Qπ(S′, π(S′))]−∆rπ
t , (13)

where ∆rπ
t

.=
∑T̄ϵ

m=t+1

(
ES′∼p

at
st

[
rπ,t+1,m(S′, π(S′))

]
− rπ,t,m(st, at)

)
.

Remark 4.4. Both the proof of Theorem 4.3 and the technical conditions for it are provided in Appendix B.
We note that Theorem 4.3 is an analog to Proposition 11 in Lesmana & Pun (2021) and our main technical
novelty lies in the approximation (’≈’) part of (13); here, a ≈ b denotes the existence of κ(ϵ) s.t. |a− b| ≤ ϵ

κ(ϵ)
and limϵ↓0

ϵ
κ(ϵ) ↓ 0. Intuitively, this result ensures that our approximation error can be made arbitrarily small

by choosing a sufficiently large T̄ϵ.
Remark 4.5. Theorem 4.3 has used the specific properties of general-discounting TIC source. For other types
of TIC sources, recursive formulas need to be re-derived. In risk-sensitive case, for instance, readers may refer
to Tamar & Mannor (2013); Sobel (1982).

Standard TD-based approximation algorithms such as Q-learning Watkins & Dayan (1992) are drawn from
the standard formula (8) and thus, are insufficient for general-discounting factor. Theorem 4.3 provides
a formula that addresses insufficiency of standard formula (8), which we will later use to reinvent a new
approximate PI algorithm for general-discounting objectives.

4.3 Policy Improvement (Update Monotonicity)

In this subsection, we will highlight some insufficiencies of the standard PI’s update and analysis tools in the
face of TIC by revisiting the unprovable policy improvement theorem. To start off, we present the following
proof (cf. Sutton & Barto (2018)) of the theorem: ∀s ∈ S,

V π
T C(s) ≤ Qπ

T C(s, π′(s)) = E
[
Rπ′

t+1 + γV π
T C(Sπ′

t+1)|St = s
]

≤ E
[
Rπ′

t+1 + γQπ
T C(Sπ′

t+1, π′(Sπ′

t+1))|St = s
]

= · · · ≤ · · ·

≤ V π′

T C(s). (14)
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Note that in each alternating step of ’=’ and ’≤’, two operations are performed: (i) a recursive expansion of
TC Q-function, and (ii) substituting the monotonicity relation:

∀s ∈ S, V π′·π
T C (s) ≥ V π·π

T C (s) ⇒ ∀s ∈ S, V δτ ·π′·π
T C (s) ≥ V δτ ·π·π

T C (s) (15)

for all delays τ ≥ 1 and δτ = {π′, π′, . . . }. Let us pay attention to the monotonicity relation, particularly
about how (15) fails under a TIC criterion. To this end, we recall Example 3.7 and focus on the states along
the precommitment path in Figure 1(b). We can then counter (15) as follows:

Set π = π∗0, τ = 3, δτ = π∗0, π′(9) =←; then, 19
1+3 = V π·π(9) ≤ V π′·π(9) = 10

1+1 holds. However,

19
1 + 6 = V δ3·π·π(21) = Eδ3 [V π·π(9)] > Eδ3 [V π′·π(9)] = V δ3·π′·π(21) = 10

1 + 4 (16)

showing that at s = 21, the monotonicity relation (15) does not hold.

We make two observations here: (i) defining improvement as in policy improvement theorem (i.e.,
∀s ∈ S, V π′(s) ≥ V π(s)) might be too strong as this definition targets optimal policies not SPE policies, (ii)
the counterexample (16) suggests the existence of priority ordering4 over S (i.e. 9 holds priority over 21)
such that unordered (i.e. ∀s ∈ S) update as in (7) may not suffice. To further probe on these issues, we will
consider the following example.

Example 4.6 (Inefficiency of Standard PI). Let us refer back our Hyperbolic Gridworld in Figure 1(a). We
will keep our deterministic transition and reward functions, but restrict our state-space to:

S̃ = {1, 2, 3, 5, 7, 8, 9, 11, 13, 15, 17, 19, 21, 22, 23}

and action-spaces to:

Ã21 = {↑,→}, Ã9 = {↑,←},
A3 = {←},
As = {→}, ∀s ∈ {1, 22},
As = {↑}, ∀s ∈ {17, 13, 5, 7, 11, 15, 19, 23},
As = {ā}, ∀s ∈ {2, 8}.

Letting s0 = 21, ϵ = 0, Π̃ = {π ∈ ΠMD|π : S̃ → Ãs}, we have a priority-ordering on S̃, S̃0:T̄ = S̃s0,Π̃
0:T̄0

:

S̃0 = {21}, S̃1 = {17, 22}, S̃2 = {13, 23}, S̃3 = {9, 19}, S̃4 = {5, 8, 15},

S̃5 = {1, 11}, S̃6 = {2, 7}, S̃7 = {3}, S̃8 = {2}. (17)
To apply standard PI for SPE policy search from s0 = 21, we can choose an initial policy π(0) as illustrated
in Figure 2(a). Following the standard PI’s rule (7), policies at all states are updated conditional to the
policy at previous iteration. Let us now focus on the two important states s = 9, 21, in which decisions need
to be made (i.e., |Ãs| > 1). First, note that after updated conditional to the previous policy π(0)(9) =↑, we
obtain π(1)(21) =↑ that incurs a higher reward; see Figure 2(b). Following the same rule, we also obtain
π(1)(9) =←. When combined, the current iteration ends up in π(1) that corresponds to a delusional path;
see Figure 2(c). We contend that such iterative update is inefficient as we would have found the desired SPE
path if state 21 has anticipated π(1)(9) =← when making its update. We will see how we can achieve this in
Section 5.1, by leveraging a known priority-ordering as in (17).

5 Backward Q-learning Algorithm

Drawing on the analyses and observations in Section 4, we propose a new algorithm in the approximate PI
family that targets SPE policy under a general-discounting criterion.

4By either the sophisticated agent’s strategy Strotz (1955) or its SPE formalism Björk et al. (2014), higher priority here
corresponds to a later order of visitation in a trajectory.
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(a) (b) (c)

Figure 2: 2-Layered Correction with Standard PI. (a) Policies at initialization. (b) Policies after state
21 updates. (c) Policies after state 9 (and all other states) updates.

5.1 Backward Conditioning

To mitigate the insufficiencies surrounding update monotonicity, we build on a recent result in Lesmana &
Pun (2021) and propose backward conditioning: to perform update backward from ST̄ to S0 and conditioning
the update of states with lower priority (happens earlier) on the new policy π′ of states with higher priority
(happens later). We formalize the above in the following update rule.

Definition 5.1 (Backward Conditioning Rule). For any ϵ > 0, set T̄ := T̄ϵ and let S0:T̄ := Ss0,ΠMD

0:T̄ be a
priority-ordering on S. Then, for t = T̄ − 1 : 0:

∀s ∈ St, π′(s)← arg max
a∈As

Q(π′)T̄ −1−t·π(s, a) (18)

Remark 5.2. Note that in the Definition 5.1, we have assumed the existence of a priority-ordering: whatever
actions the states in S0:t−1 are taking are assumed to have no effect on the choice of states in St. This
justifies (18): its backward order and conditioning the update of any s ∈ ST̄ −1 (with highest priority) on
the old policy π. We note however that even without such priority-ordering, the worst that can happen is
Ss0,ΠMD

t = S,∀t ∈ [0, T̄ ], which is equivalent to performing standard PI in (7) T̄ times.

Next, we will show that the backward conditioning rule preserves the SPE optimality of termination policy.
Proposition 5.3. If π′ = π and update follows the rule in equation 18, then π, π′ are SPE policy.

Proof. First, we will show that

∀s ∈ S, s ∈ Ss0,ΠMD

0:T̄ −1 (19)

Since T̄ϵ − 1 ≥ T̂s0 , by definition of T̂s0 , ∀s ∈ S,

∃π ∈ ΠMD,

T̄ϵ−1∑
t=0

P[Sπ
t = s|s0] > 0⇒ ∃t ∈ [0, T̄ϵ − 1] s.t. ∃π ∈ ΠMD,P[Sπ

t = s|s0] > 0

⇒ ∃t ∈ [0, T̄ϵ − 1] s.t. s ∈ St

⇒ s ∈ S0:T̄ϵ−1.

Now, let us consider arbitrary s ∈ S. By (19), ∃t ∈ [0, T̄ − 1] s.t. s ∈ St. Using such t, by (18), we have
∀a ∈ As,

Q(π′)T̄ −t−1·π(s, π′(s)) ≥ Q(π′)T̄ −t−1·π(s, a)

which by π = π′, implies
Qπ′

(s, π′(s)) ≥ Qπ′
(s, a).

10
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Example 5.4 (Efficiency of Backward Conditioning). To illustrate the difference between (18) and (7), let us
reconsider the setup in Example 4.6. Given the same initialization (see Figure 3(a)), backward conditioning
rule (18) asserts state 9 ∈ S̃3 to update earlier than state 21 ∈ S̃0, in one current iteration. This necessarily
means that by the time state 21 updates, it will have anticipated state 9’s current policy π(1)(9) =← (see
Figure 3(b)) and directly obtain the desired π(1)(21) =→ (see Figure 3(c)). When combined, such current
iteration ends up in π(1) that corresponds to the target SPE path π̂; note how the path extending from
s0 = 21 in Figure 3(c) overlaps with the one in Figure 1(c). In contrast to (7), backward conditioning
imposes that the choice of later states are directly propagated to earlier states in each policy iteration and
correspondingly prevents inefficient movement of policies (i.e., away from an SPE policy as in Figure 2).

(a) (b) (c)

Figure 3: 2-Layered Correction with Backward Conditioning. (a) Initialization. (b) State 9 updates
first. (c) State 21 updates last, after 9, 13, 17 make their updates.

Remark 5.5. Through Example 4.6 and Example 5.4, we have concluded that relative to standard PI, backward
conditioning mitigates inefficient movement of policies (cf. Figure 2) by propagating information about future
players’ “optimal“ policies (as soon as it is found) directly to earlier players (cf. Figure 3). To see how
this phenomenon transfers to a TIC “Q-learning“ setting, readers may refer to Table 1 in Section 6.1 and
Appendix D.4.3, particularly to (i) the reduced delusionality in earlier episodes under backward conditioning
(cf. Figure 6(e)) as compared to standard forwardly-ordered version (cf. Figure 9(e)), and (ii) the improved
stability of Figures 6(e)-(f) relative to Figures 9(e)-(f). We would like to remark that our observations are
consistent with the results of related literature under non-TIC motivations, e.g., sample efficiency (Lin (1991);
Lee et al. (2019)), consistent uncertainty propagation (Bai et al. (2021)), where they have similarly concluded
backward update’s power in information propagation.
Remark 5.6. In Theorem 25 of Lesmana & Pun (2021), a finite-horizon analog to the update rule (18) has
been shown to exhibit lex-monotonicity (i.e. a weaker update monotonicity than PIT that reflects closer to
SPE), by leveraging a policy-independent ordering on time-extended state-space due to T <∞ (i.e. players
are times). This prevents the cycling of policies, implying convergence. In T = ∞, we lose this order (i.e.
players are states) and resort to using visitation order on a trajectory. This results in a lex-mono analog: ∀t,
if π′

S>t
is closer to SPE π̂S>t than πS>t ; so is π′

St
. It was discussed through Example 5.4 when St = {21}

and S>t = {17, 13, 9}. Convergence thus remains open as complications may arise when St ∩ St′ ̸= ∅ for some
t ̸= t′.

5.2 Approximate Backward Conditioning

In this subsection, we are interested in deriving an approximate version to the backward conditioning rule in
Definition 5.1. This can be done in two steps. Firstly, we will replace the exact computation of Qπ′(s, a)
with prediction. To this end, we will use our results in Theorem 4.3 and derive TIC-adjusted TD targets for
predicting rπ′(st, at) from (10)-(11) and Qπ′(st, at) from (12)-(13),

ξr
t (m) =

{
φ(0)R(st, at), m = t

γ(m−t)
γ(m−(t+1)) rt+1,m(St+1, π′(St+1)), m > t

(20)
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ξQ
t =


φ(0)R(st, at) + Q(St+1, π′(St+1))
−max(0, ∆rt), t ≤ T ∗ − 1
φ(0)R(st, at), t = T ∗ and st ∈ S̄

(21)

where ∆rt =
∑T ∗

m=t+1 rt+1,m(st+1, π′(st+1)) − rt,m(st, at). Then, we can incorporate the backward conditioning
simply by reordering update from the end of a sampled trajectory t = T ∗ to t = 0. Note that here, we
have replaced T̄ with T ∗ ≤ T̄ to account for the variable length of trajectories encountered in practice. We
summarize this section with a pseudocode in Algorithm 1, where lines 11, 18 − 20 capture our backward
conditioning and lines 12− 17 capture the TIC-adjusted TD evaluation5.

Algorithm 1 Backward Q-learning (bwdQ)
1: Parameters: exploration rate ϵ, episode length T̄ , learning rates αQ, αr

2: Init:
3: Q(s, a) = 0,∀s ∈ S \ S̄, a ∈ A;
4: Q(s, a) = φ(0)R(s, a),∀s ∈ S̄, a ∈ Ā;
5: rτ,m(s, a) = 0,∀τ, m, s ∈ S, a ∈ A;
6: π′(s)← arg maxa Q(s, a),∀s ∈ S, π ← ∅
7: repeat
8: π ← π′;
9: Choose S0 randomly;

10: Sample S0, A0, . . . , ST ∗−1, AT ∗−1, ST ∗ , AT ∗ = ā ∼ πϵ;
11: for t← T ∗ to 0 do
12: for m← t to T ∗ do
13: Compute ξr

t (m) according to (20);
14: rt,m(St, At)← rt,m(St, At) + αr(ξr

t (m)− rt,m(St, At));
15: end for
16: Compute ξQ

t according to (21);
17: Q(St, At)← Q(St, At) + αQ(ξQ

t −Q(St, At));
18: if Q(St, π(St)) < maxa Q(St, a) then
19: π′(St)← arg maxa Q(St, a)
20: else
21: π′(St)← π(St)
22: end if
23: end for
24: until stable (π′ ̸= π)

Remark 5.7. While Algorithm 1 can be considered as a Q-learning’s variant, standard convergence analysis
such as in Bertsekas & Tsitsiklis (1996) does not apply to our case. Even more recent analysis techniques on
coupled iterations such as those done for double Q-learning (Hasselt (2010); Xiong et al. (2020); Zhao et al.
(2021)) do not apply to our case for the fully-coupled dynamics of the iterated r-functions and Q-function.
Formal convergence analysis of backward Q-learning is thus left for future study.

6 Learning Performance: An Illustration

In this section, we illustrate the behaviour of bwdQ in two TIC Gridworld environments: (i) Deterministic
(D), by reusing our motivating example in Figure 1, which has been shown to exhibit future deviations, and
(ii) Stochastic (S), by injecting some random noise into state 9’s transition in (D). For our comparative study,
we consider as benchmarks two approximate PI variants that also target SPE policy under general-discounting
objectives, namely standard PI with Monte Carlo (MC) and sophisticated EU (sophEU) from Evans et al.
(2016). Pseudocodes and training specifications are provided in Appendices D.2-D.3.

5For detailed derivations of Algorithm 1, readers can refer to Appendix C.

12



Published in Transactions on Machine Learning Research (11/2022)

6.1 Results

Our results and evaluation can be segregated into three components: efficiency, value prediction, and
termination policy, all of which are summarized into Table 1 and Figure 4.

Efficiency In Section 5.1, we have provided an intuition on the desirability of backward conditioning. From
Table 1, we can see its implication to actual learning instances with approximation. In particular, we can
observe that bwdQ demonstrates higher learning efficiency in both (D) and (S): it has significantly shorter
∆i∗ in average (mean) with lower standard deviation compared to the others.

Table 1: Delusional period ∆i∗ .= |i∗
21 − i∗

9| statistics, presented as mean(stdev) (in thousands). This
metric relates to the 2-layered correction illustrated in Figures 2 and 3: ∆i∗ quantifies how many iterations
21 needs to reflect 9’s move to SPE. Episode indexes i∗

9 and i∗
21 represent the first overtaking episodes of

mean SPE Q-value at states 9 and 21, respectively; see Appendix D.4.1 for illustrative Q-value curves. For
each algorithm and environment, 10 experiments are conducted and each consists of 50 random seeds.

MC SophEU BwdQ
(D) 15.39(3.69) 69.97(1.81) 2.37(0.73)
(S) 14.55(4.83) 97.56(2.17) 3.68(0.51)

(a) (b)

Figure 4: (a) Value learning curves of s0 = 21. (b) Termination policies. For each algorithm in (a),
the dark line and the shaded region each refers to the mean and standard deviation of 50 experiments, where
in one experiment, we record the values V i(s0) = Qi(s0, πi(s0)) at the end of each training episode i. In (b),
we record the termination policies πI(s),∀s ∈ S after the policies at all states stabilize at training episode
I; note that I here may differ across algorithms and experiments as we only want to show the asymptotic
performance of each algorithm in learning SPE policy. Groundtruth ‘TRUE’ in (a) is then computed as the
value of analytical SPE policy in (D), and the value of termination policy in (S).
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Value prediction From Figure 4(a), we can observe that in (D), the mean value of bwdQ matches closely
the groundtruth (manually computed) upon convergence. On the contrary, sophEU and MC both converge at
a value strictly smaller than the groundtruth. Similar conclusion can be drawn in (S), despite bwdQ produces
higher variance than the rest; see Appendices D.4.2-D.4.3 for more results and discussions on value biases.

Termination policy In both (D) and (S), all algorithms (i.e. MC, sophEU, and bwdQ) converge and the
termination policies are plotted in Figure 4(b). While all algorithms converge to the same policies in (S),
this is not true in (D): at s = 13, 17, MC and sophEU converge to {↑, ↑} when bwdQ converges to {↑,←}
or {←,←}. Thus, in Figure 4(b), we present together these three different termination policies. For the
termination policies in (D), we can verify that they correspond to the groundtruth SPE policies (by Definition
3.1 and Qπ̂ computed manually from the reward specifications in Figure 1). This is consistent with our results
in Propositions 4.1 (MC) and 5.3 (bwdQ) that guarantee SPE optimality if converged. For the termination
policies in (S), we can see how the noise injected to 9 affects the SPE policy: π̂(13) shifts from {←, ↑} in (D)
to {←} in (S) as Qπ̂(13, ↑) in (S) is pulled down by random transitions of 9→ 5 and 9→ 13.

7 Conclusion and Future Works

Prior to this paper, it was unclear how policy iteration performs and whether it is sufficient in TIC RL
settings under which BPO or DP becomes inaccessible. Through this paper, we demonstrated how introducing
SPE optimality can shed lights on the two fundamental questions surrounding the use of PI in TIC RL
setting. While this paper on TIC RL is of theoretical nature, we managed to use a toy Gridworld example to
demonstrate our findings. In particular, we obtain positive results on PI in the sense of both standard PI and
backward conditioning’s capability to characterize SPE policies. Though we could not close the convergence of
either standard PI or backward conditioning, we have made progress towards it by verifying the importance of
ordered policy iteration and improvement criteria. From the perspective of policy evaluation, SPE optimality
recovers the use of DP-like formulas. This has resulted in familiar forms of algorithms, such as our backward
Q-learning, that is also important towards closing the analysis of SPE policy search.

From our current paper, closing the convergence analysis of PI, backward conditioning, and their approximate
variants under SPE optimality (i.e., in particular, addressing the fully-coupled iterations that arise with
TIC adjustments) is an important future direction. Secondly, noting our recovery of DP-like formulas and
Q-learning like algorithms, we see promise in adopting the use of function approximations and scaling up
to more general models such as linear MDP (Jin et al. (2020)) or more complex domains such as Atari
(Bellemare et al. (2013)). Finally, it will be interesting to apply the analysis of this paper to other TIC sources
such as risk-sensitive objectives and compare across different TIC sources the extent of future deviations,
TIC-adjustment techniques, and the control performance of PI (as a proxy for SPE policy). On a broader
extent, we hope that our first attempt can inspire more works on TIC RL towards closing the gap between
progress in standard RL and TIC RL.
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A Additional Details on Assumption 3.3-3.5

A.1 MDP Examples under General-Discounting Criterion

In this section, we derive several sufficient conditions for our assumptions in Section 3.2, in the form of
restrictions on MDP (S,A,P, R) or discounting function φ(·).
Definition A.1 (Boundary-only Rewards). The reward function R : S ×A → R+ is boundary-only if it is
non-zero only at boundary states, i.e. R(s, a) > 0 only if s ∈ S̄.

Lemma A.2. Any MDP that has boundary-only rewards satisfies Assumption 3.3.

Proof. Let T π
S̄ |s defines the minimum hitting time of any boundary states s̄ ∈ S̄ when initiated at s and

following π. Thus, ∀s ∈ S,∀π ∈ ΠMD,∀T̄ <∞,

V π(s) := E

[ ∞∑
t=0

φ(t)Rπ
t | s

]
=

T̄∑
τ=0

P[T π
S̄

= τ |s]E
[

τ∑
t=0

φ(t)Rπ
t |s

]
+

∞∑
τ=T̄ +1

P[T π
S̄

= τ |s]E
[

τ∑
t=0

φ(t)Rπ
t |s

]
,

V πT̄ ·π̈(s) := E

[ ∞∑
t=0

φ(t)RπT̄ ·π̈
t | s

]

=
T̄∑

τ=0
P[T πT̄ ·π̈

S̄
= τ |s]E

[
τ∑

t=0
φ(t)RπT̄ ·π̈

t |s

]
+

∞∑
τ=T̄ +1

P[T πT̄ ·π̈
S̄

= τ |s]E
[

τ∑
t=0

φ(t)RπT̄ ·π̈
t |s

]

=
T̄∑

τ=0
P[T π

S̄
= τ |s]E

[
τ∑

t=0
φ(t)Rπ

t |s

]
. (since ∀τ ≥ T̄ + 1, Sτ = s̄void ⇒ P[T πT̄ ·π̈

S̄
= τ |s] = 0.)

By bounded reward function,

Rmax := max{|R(s, a)| : s ∈ S, a ∈ A} (22)

exists. Then, ∀ϵ > 0,∀s ∈ S, we can set T̄ <∞ s.t.

|Rmax|φ(T̄ + 1) ≤ ϵ (23)

and the following holds,

sup
π∈ΠMD

|V πT̄ ·π(s)− V πT̄ ·π̈(s)| = sup
π∈ΠMD

∣∣∣∣∣∣
∞∑

τ=T̄ +1

P[T π
S̄

= τ |s]E [φ(τ)Rπ
τ |s]

∣∣∣∣∣∣ (by boundary-only rewards)

≤ sup
π∈ΠMD

|Rmax|
∞∑

τ=T̄ +1

P[T π
S̄

= τ |s]φ(τ) (by (22))

≤ sup
π∈ΠMD

|Rmax|φ(T̄ + 1)P[T π
S̄ > T̄ |s] (by φ(·) decreasing)

≤ |Rmax|φ(T̄ + 1) ≤ ϵ (by (23))

Lemma A.3. Suppose an MDP has boundary-only rewards, s0 that satisfies Assumption 3.4 such that
T̄s0,0 <∞, and a discounting factor φ : N→ (0, 1] that satisfies

∀t ≥ 0,
φ(τ + t)

φ(τ) is increasing in τ, τ ≥ 1. (24)

Then, Assumption 3.5 holds.
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Proof. Suppose otherwise, ∃ϵ∗ > 0, t∗ ∈ [0, T̄ϵ∗ ], s∗ ∈ Ss0,ΠMD

t∗ , π∗ ∈ ΠMD s.t.

P[Sπ∗
t∗ = s∗|s0] > 0 (25)

and ∀κ > 0,

ϵ∗

κ
< ∥V π∗(s∗)− V π

T̄ϵ∗
∗ −t∗

· π̈(st∗)∥ =
∞∑

τ=T̄ϵ∗ −t∗+1

P[T π∗
S̄ = τ |s∗]E[φ(τ)Rπ∗

τ |s∗] (26)

Let us fix π := π∗ and set

κ∗ := P[Sπ∗
t∗ = s∗|s0]φ(T̄ϵ∗ + 1) (27)

Note that κ∗ > 0 by (25) and T̄ϵ∗ <∞ (by Assumption 3.3, T̄s0,ϵ∗ <∞, and by Assumption 3.4, T̂s0 <∞).
Then, ∣∣∣∣V π∗(s0)− V π

T̄s0,ϵ∗
∗ ·π̈(s0)

∣∣∣∣ =
∑

τ=T̄s0,ϵ∗ +1

P[T π∗
S̄ = τ |s0]E[φ(τ)Rπ∗

τ |s0]

(by boundary-only rewards; see Lemma A.2’s proof)

≥
∑

τ=T̄ϵ∗ +1

P[T π∗
S̄ = τ |s0]E[φ(τ)Rπ∗

τ |s0] (by T̄s0,ϵ∗ ≤ T̄ϵ∗)

=
∑

τ=T̄ϵ∗ +1

∑
s∈S

P[Sπ∗
t∗ = s|s0]P[T π∗

S̄ = τ − t∗|s]E[φ(τ)Rπ∗
τ−t∗ |s]

≥ P[Sπ∗
t∗ = s∗|s0]

∑
τ=T̄ϵ∗ −t∗+1

P[T π∗
S̄ = τ |s∗]E[φ(τ + t∗)Rπ∗

τ |s∗]

(by non-negative rewards and probabilities)

≥ P[Sπ∗
t∗ = s∗|s0]φ(T̄ϵ∗ + 1)

∑
τ=T̄ϵ∗ −t∗+1

P[T π∗
S̄ = τ |s∗]E[φ(τ)Rπ∗

τ |s∗]

(by (24) and t∗ ∈ [0, T̄ϵ∗ ])

> P[Sπ∗
t∗ = s∗|s0]φ(T̄ϵ∗ + 1) ϵ∗

κ∗ = ϵ∗ (by (26) and (27))

This contradicts definition of T̄s0,ϵ∗ (see Assumption 3.3), implying that our supposition is false.

With κ(ϵ, t, st, π; s0) := P[Sπ
t = st|s0]φ(T̄ϵ + 1), we will now show that

lim
ϵ→0

ϵ

P[Sπ
t = st|s0]φ(T̄ϵ + 1)

= 0 (28)

For any fixed ϵ > 0, let us define

G(T̄ϵ; s0) := min{P[Sπ
t = st|s0] > 0 : t ∈ [0, T̄ϵ], st ∈ S, π ∈ ΠMD}. (29)

Then, ∀π ∈ ΠMD,∀t ∈ [0, T̄ϵ],∀st ∈ Ss0,ΠMD

t ,

0 ≤ ϵ

P[Sπ
t = st|s0]φ(T̄ϵ + 1)

≤ ϵ

G(T̄ϵ; s0)φ(T̄ϵ + 1)
(30)

Since T̄s0,0 <∞, we have

T̄0
.= max{T̂s0 , T̄s0,0} <∞. (31)
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Let us fix arbitrarily π ∈ ΠMD, t ∈ [0, T̄0], st ∈ Ss0,ΠMD

t . By (31), limϵ→0 G(T̄ϵ; s0) = G(T̄0; s0) > 0 and
limϵ→0 φ(T̄ϵ + 1) = φ(T̄0 + 1) > 0. Thus, we can take limϵ→0 on the upper and lower bound in (30) and have
shown

lim
ϵ→0

ϵ

P[Sπ
t = st|s0]φ(T̄ϵ + 1)

= 0

Finally, it’s straightforward to verify that our hyperbolic Gridworld in Figure 1(a) has boundary-only rewards
and s0 = 21 that satisfies Assumption 3.4. Moreover, due to the existence of τ∗ := max{T π

S̄ < ∞ : π ∈
ΠMD} <∞ by its deterministic transition and |ΠMD| <∞, we have ∀T̄ ≥ τ∗,

sup
π∈ΠMD

|V π(s0)− V πT̄ ·π̈(s0)| = sup
π∈ΠMD:T π

S̄
<∞
|V π(s0)− V πT̄ ·π̈(s0)| (by boundary-only rewards)

= 0 ( by ∀τ > T̄ ≥ τ∗,∀π ∈ ΠMD with T̄ π
S̄ <∞,P[T π

S̄ = τ |s0] = 0)

and thus, T̄s0,0 ≤ τ∗ <∞. For a more concrete example, we can refer to the restricted Hyperbolic Gridworld
in Example 4.6, where we can compute manually T̂s0 = 7 and T̄s0,0 = 8.

A.2 Implied Bounded Value Functions

Through the following lemma, we can link Assumption 3.3 to the standard well-posedness condition of
bounded value functions that ensures the existence of optimal policy.
Lemma A.4. If Assumption 3.3 holds, then ∀s ∈ S,∀π ∈ ΠMD, V π(s) <∞.

Proof. Suppose ∃π∗, s∗ s.t. V π∗(s∗) =∞. Then, we can set s, π ← s∗, π∗ and arbitrary ϵ∗ > 0 s.t. ∀T̄ <∞,
|V πT̄

∗ ·π̃(s∗)− V π∗(s∗)| > ϵ∗ since V πT̄
∗ ·π̃(s∗) <∞.

B Theorem 4.3

B.1 Technical Assumptions

Assumption B.1 ("Relevant at t under π"). If t = 0,

P[Sπ
t = s0|s0] = 0,∀t ≥ 1 ∧ P[S1 = s0|S0 = s0, A0 = a0] = 0 (32)

If t > 0, ∃(st−1, at−1) "relevant at t− 1 under π" s.t.

P[St = st|St−1 = st−1, At−1 = at−1] > 0 ∧ at = π(st). (33)

Intuitively, for t > 0, (33) exhausts the use instances of (st, at) in PE updates Qπ(st−1, at−1) ←
E[Qπ(st, π(st))] + . . . and thus, it must hold. Whereas for t = 0, some restrictions on the MDP
(e.g., ∀t′ ̸= t,Ss0,ΠMD

t ∩ Ss0,ΠMD

t′ = ∅ as in Example 4.6) can be imposed to ensure that (32) holds
∀π ∈ ΠMD, s0 ∈ S \ {S̄}, a0 ∈ As0 . Note however that in actual use instances, (32) only need to hold
for the π encountered in the PI updates (instead of ∀π ∈ ΠMD). This may relax the need for such MDP
restrictions: as we can observe from our experiments (see Section 6), our algorithm still performs plausibly
well even when ∀t′ ̸= t,Ss0,ΠMD

t ∩Ss0,ΠMD

t′ = ∅ does not hold. In what follows, we present several intermediate
results that link the conditions in Assumption B.1 to the "approximation" (13) in Theorem 4.3.
Lemma B.2. At any t ≥ 0, if (st, at) is "relevant at t under π", then ∃s0, a0 "relevant at 0 under π" s.t.

P[Sπs0,a0
t = st|s0] > 0 ∧ at = πs0,a0(st)
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with πs0,a0 defined as follows

πs0,a0(s) =
{

a0, if s = s0

π(s), otherwise
(34)

Proof. (Base case: t = 0.) Note that for any (s0, a0) that is "relevant at 0 under π", we have P[Sπs0,a0
0 |s0] =

1 > 0. Moreover, a0 = πs0,a0(s0) holds by definition in (34).

(t > 0.) Proof by induction. Suppose that the relation holds at t = t′ − 1, we will show that it also holds at
t = t′. By (st′ , at′)’s "relevance at t′ under π", ∃(st′−1, at′−1) "relevant at t′ − 1 under π" s.t.

P[St′ = st′ |St′−1 = st′−1, At′−1 = at′−1] > 0 ∧ at′ = π(st′) (35)

Moreover, by assumption (that at t = t′ − 1 the relation holds), the above (st′−1, at′−1) satisfies: ∃s0, a0
"relevant at 0 under π s.t.

P[Sπs0,a0
t′−1 = st′−1|s0] > 0 ∧ at′−1 = πs0,a0(st′−1). (36)

Therefore,

P[Sπs0,a0
t′ = st′ |s0] ≥ P[Sπs0,a0

t′ = st′ |St′−1 = st′−1]P[Sπs0,a0
t′−1 = st′−1|s0]

= P[St′ = st′ |St′−1 = st′−1, At′−1 = at′−1]P[Sπs0,a0
t′−1 = st′−1|s0] > 0 (by (36))

Moreover, by (s0, a0)’s "relevance at 0 under π" and t′ > 0, we must have st′ ̸= s0 which then implies

at′ = πs0,a0(st′) (by (35))

Lemma B.3. For any π ∈ ΠMD, t ≥ 0, and (st, at) "relevant at t under π", ∃κ > 0 s.t.

∀st+1 ∼ pat
st

,
∣∣∣V π(st+1)− V πT̄ϵ−(t+1)·π̈(st+1)

∣∣∣ ≤ ϵ

κ
(37)

and limϵ↓0
ϵ
κ = 0.

Proof. Let us first fix arbitrarily (st, at, π). By Lemma B.2, ∃s0, a0 and π̃ := πs0,a0 s.t.

P[Sπ̃
t = st|s0] > 0 ∧ at = π̃(st) (38)

Next, for any arbitrary choice of st+1 ∼ pat
st

, we have

P[St+1 = st+1|St = st, At = at] > 0 (39)

Therefore,

P[Sπ̃
t+1 = st+1|s0] ≥ P[Sπ̃

t+1 = st+1|St = st]P[Sπ̃
t = st|s0]

= P[St+1 = st+1|St = st, At = at]P[Sπ̃
t = st|s0] (by (38))

> 0 (by (38) and (39))

which by Assumption 3.5, implies
ϵ

κ(ϵ, t + 1, st+1, π̃; s0) ≥
∣∣∣V π̃(st+1)− V π̃T̄ϵ−(t+1)·π̈(st+1)

∣∣∣
=

∣∣∣V π(st+1)− V πT̄ −(t+1)·π̈(st+1)
∣∣∣

(by (s0, a0)’s "relevance at 0 under π" and t + 1 > 0, st+1 ̸= s0.)
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and

lim
ϵ↓0

ϵ

κ(ϵ, t + 1, st+1, π̃; s0) = 0. (40)

Now, let us choose κ := min{κ(ϵ, t + 1, st+1, π̃; s0) : st+1 ∼ pat
st
}. Note that (37) directly holds. It thus

remains to show the following,

lim
ϵ↓0

ϵ

κ
= lim

ϵ↓0

ϵ

min{κ(ϵ, t + 1, st+1, π̃; s0) : st+1 ∼ pat
st }

= lim
ϵ↓0

max
{

ϵ

κ(ϵ, t + 1, st+1, π̃; s0) : st+1 ∼ pat
st

}
= 0 (by (40) and at most finitely many choices of st+1 ∈ S)

B.2 Proof of Theorem 4.3

For any m ≥ τ + 1, we can derive r-function recursion as follows

rπ,τ,m(s, a) .= E [φ(m− τ)R (Sa·π
m , π(Sa·π

m )) |Sτ = s] (41)
= ESτ+1∼pa

s
[E [φ(m− τ)R (Sπ

m, π(Sπ
m)) |Sτ+1]] (42)

= ESτ+1∼pa
s

[
φ(m− τ)

φ(m− (τ + 1))E [φ(m− (τ + 1))R (Sπ
m, π(Sπ

m)) |Sτ+1]
]

(43)

= ESτ+1∼pa
s

[
φ(m− τ)

φ(m− (τ + 1))rπ,τ+1,m(Sτ+1, π(Sτ+1)
]

(44)

For m = τ , by Definition 4.2, we have

rπ,τ,τ (s, a) .= E [φ(m− τ)R (Sa·π
m , π(Sa·π

m )) |Sτ = s] (45)
= ER∼pa

s
[φ(0)R(s, a)] (46)

Next, we derive Q-function recursion,

Qπ(st, at)
.= E

[
φ(0)R(st, at) + φ(1)R(Sat·π

t+1 , π(Sat·π
t+1 )) + . . . |St = st

]
(47a)

= ER∼p
at
st

[φ(0)R(st, at)] + E
[
φ(0)R(Sat·π

t+1 , π(Sat·π
t+1 )) + φ(1)R(Sat·π

t+2 , π(Sat·π
t+2 )) + . . . |St = st

]
−

{
E

[
φ(0)R(Sat·π

t+1 , π(Sat·π
t+1 )) + φ(1)R(Sat·π

t+2 , π(Sat·π
t+2 )) + . . . |St = st

]
− E

[
φ(1)R(Sat·π

t+1 , π(Sat·π
t+1 )) + φ(2)R(Sat·π

t+2 , π(Sat·π
t+2 )) + . . . |St = st

]}
(47b)

= ER∼p
at
st

[φ(0)R(st, at)] + ESt+1∼p
at
st

[Qπ(St+1, π(St+1))]

−
{
ESt+1∼p

at
st

[
E

[
φ(0)R(Sπ

t+1, π(Sπ
t+1)) + φ(1)R(Sπ

t+2, π(Sπ
t+2)) + . . . |St+1

]]
− ESt+1∼p

at
st

[
E

[
φ(1)R(Sπ

t+1, π(Sπ
t+1)) + φ(2)R(Sπ

t+2, π(Sπ
t+2)) + . . . |St+1

]]}
(47c)

= ER∼p
at
st

[φ(0)R(st, at)] + ESt+1∼p
at
st

[Qπ(St+1, π(St+1))]

−

{
ESt+1∼p

at
st

[
E

[ ∞∑
m=t+1

φ(m− (t + 1))R(Sπ
m, π(Sπ

m))
∣∣∣St+1

]]

− ESt+1∼p
at
st

[
E

[ ∞∑
m=t+1

φ(m− t)R(Sπ
m, π(Sπ

m))
∣∣∣St+1

]]}
(47d)
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On the 2nd line, we apply ∀st+1 ∼ pat
st

,∣∣∣∣∣∣E
[ ∞∑

m=t+1
φ(m− (t + 1))Rπ

m|St+1 = st+1

]
− E

 T̄ϵ∑
m=t+1

φ(m− (t + 1))Rπ
m|St+1 = st+1

∣∣∣∣∣∣
=

∣∣∣∣∣∣E
[ ∞∑

m=0
φ(m)Rπ

m|S0 = st+1

]
− E

T̄ϵ−(t+1)∑
m=0

φ(m)Rπ
m|S0 = st+1

∣∣∣∣∣∣
= |V π(st+1)− V πT̄ϵ−(t+1)·π̈(st+1)|

≤ ϵ

κ
(by using κ from Lemma B.3)

On the 3rd line, we apply ∀st+1 ∼ pat
st

,∣∣∣∣∣∣E
[ ∞∑

m=t+1
φ(m− t)Rπ

m||St+1 = st+1

]
− E

 T̄ϵ∑
m=t+1

φ(m− t)Rπ
m|St+1 = st+1

∣∣∣∣∣∣
=

∣∣∣∣∣∣E
[ ∞∑

m=1
φ(m)Rπ

m−1|S0 = st+1

]
− E

T̄ϵ−t∑
m=1

φ(m)Rπ
m−1|S0 = st+1

∣∣∣∣∣∣
≤

∣∣∣∣∣∣E
[ ∞∑

m=1
φ(m− 1)Rπ

m−1|S0 = st+1

]
− E

T̄ϵ−t∑
m=1

φ(m− 1)Rπ
m−1|S0 = st+1

∣∣∣∣∣∣ (by φ(.) decreasing)

=
∣∣∣V π(st+1)− V πT̄ϵ−(t+1)·π̈(st+1)

∣∣∣ (by (5))

≤ ϵ

κ
(by using κ from Lemma B.3)

Therefore, continuing from (47d), we can perform approximation with T̄ϵ <∞ as follows,

≈ ER∼p
at
st

[φ(0)R(st, at)] + ESt+1∼p
at
st

[Qπ(St+1, π(St+1))]

−

ESt+1∼p
at
st

 T̄ϵ∑
m=t+1

E [φ(m− (t + 1))R(Sπ
m, π(Sπ

m))|St+1]


− ESt+1∼p

at
st

 T̄ϵ∑
m=t+1

φ(m− t)
φ(m− (t + 1))E [φ(m− (t + 1))R(Sπ

m, π(Sπ
m))|St+1]


(by setting κ(ϵ) = κ/2 which directly implies limϵ↓0

ϵ
κ(ϵ) = 0)

By applying (46), Definition 4.2, and (44) on the 1st, 2nd, and 3rd line, respectively, we can then obtain

= ER∼p
at
st

[φ(0)R(st, at)] + ESt+1∼p
at
st

[Qπ(St+1, π(St+1))]

−


T̄ϵ∑

m=t+1

(
ESt+1∼p

at
st

[
rπ,t+1,m(St+1, π(St+1))

]
− rπ,t,m(st, at)

) (47e)

Finally, based on the Definition 3.6, we will set our boundary conditions (when we are at some boundary
states),

Qπ(st, at) = ER∼p
at
st

[φ(0)R(st, at)],∀st ∈ S̄, at ∈ Ā (48)

C Backward Q-learning Algorithm

In this section, we detail the derivations of our Backward Q-learning in Section 5.2 from Theorem 4.3.
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C.1 r-table Update

Based on the r-function recursion, i.e. (44) and (46), we obtain bootstrap targets that corresponds to (20) in
the main paper,

ξr
t (m)← φ(0)R(st, at), for m = t (49)

ξr
t (m)← φ(m− t)

φ(m− (t + 1))rt+1,m(St+1, π′(St+1)), for m = t + 1 : T ∗ (50)

Then, updates to r-table are made as follows,

rt,m(st, at)← (1− αr)rt,m(st, at) + αrξr
t (m), for m = t : T ∗ (51)

given learning rate αr > 0.

C.2 Q-table Update

Based on the Q-function recursion, i.e. (47e) and (48), we obtain bootstrap targets that corresponds to (21)
in the main paper,

ξQ
t ← γ(0)R(st, at), for t = T ∗ and st ∈ S̄ (52)

ξQ
t ← γ(0)R(st, at) + Q(St+1, π′(St+1))−max(0, ∆rt), for t ≤ T ∗ − 1 (53)

where ∆rt =
∑T ∗

m=t+1 rt+1,m(st+1, π′(st+1))− rt,m(st, at). Then, updates to Q-table can be done as follows,

Q(st, at)← (1− αQ)Q(st, at) + αQξQ
t , for t ≤ T ∗ (54)

given learning rate αQ > 0.

Truncation from T̄ to T ∗. For our implementation, instead of keeping track of all values up to T̄ , we use
the variable length T ∗ of each trajectory sampled following a current policy π. However, we will still set a
sufficiently large T̄ as a proxy for T̄ϵ to ensure that all trajectory terminates.

Clipping of adjustment terms. Let us denote by ∆rπ
t the adjustment terms in the 2nd row of (47e) as

in the main paper. Referring to (53), we note that the clipped function max(0, ∆rt) has been used in place of
∆rt. This is done to slow down the accumulation of error relevant to ∆rt ≈ ∆rπ

t . In particular, we note that
∆rπ

t ≥ 0:

∆rπ
t

.=
T̄ −1∑

m=t+1

(
ES′∼p

at
st

[
rπ,t+1,m(S′, π(S′))

]
− rπ,t,m(st, at)

)

=
T̄ −1∑

m=t+1

(
ES′∼p

at
st

[(
1− φ(m− t)

φ(m− (t + 1))

)
rπ,t+1,m(S′, π(S′)

])
(by (44))

≥ 0 (by φ(·) discount factor and R : S ×A → R+ s.t. (9) is non-negative)

But without clipping, ∆rt < 0 may happen in subsequent iterations, inflating Q-values at some states past a
certain threshold such that their neighboring states prefer transition to these inflated states than moving
towards goal states, when the latter clearly results in a fewer steps. This then creates a looping behaviour
which eventually lead to divergence.

C.3 Policy-table Update

We note our use of policy-table separate from the arg max of a Q-table to represent greedy policy. This is
due to the possibilities of non-unique actions realizing arg maxa Q(s, a) for some s ∈ S which may cause
non-unique r-function related values, i.e. the components in

∑T ∗

m=t+1 ∆rm
t , after substituting different global

optima actions. Specifically, we follow the consistent tie-break rule proposed in Section 3.3 of Lesmana &
Pun (2021); see line 18-22 in Algorithm 1.
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Algorithm 2 On-policy Monte Carlo Control (MC)
1: Input: Hyperbolic (k = 1) Gridworld, Hyperparameters (ϵ, T̄ )
2: Output: Approximate SPE Q-function Qπ̂(s, a)∀s ∈ S, a ∈ A
3: Initialize: Q(s, a)← 0,∀s ∈ S \ S̄, a ∈ A; Q(s, a)← φ(0)R(s, a),∀s ∈ S̄, a ∈ Ā; Returns(s, a)← ∅,∀s ∈
S, a ∈ A(s); π′(s)← arg maxa Q(s, a),∀s ∈ S; π ← ∅;

4: repeat
5: Update π ← π′

6: Choose S0 randomly
7: Generate trajectory ω0:T ∗

.= S0, A0, . . . , ST ∗ , AT ∗ following πϵ

8: Set G← 0
9: for t← 0 to T ∗ do

10: if the pair (St, At) does not appear in ω0:t−1 then
11: Compute G← φ(T ∗ − t)R(ST ∗ , AT ∗)
12: Append G to Returns(St, At)
13: Update Q(St, At)← average(Returns(St, At))
14: Update π′(St)← arg maxa Q(St, a)
15: end if
16: end for
17: until stable (π′ ̸= π)

D NUMERICAL EXAMPLES

This section provides some missing details on Section 6.

D.1 Environment Setup

We review 3 important considerations in our Gridworld designs: (i) existence of actual future deviations (i.e.
if states like (s0, sτ ) = (21, 9) exist, where the optimality of 21’s action is constrained by 9’s action such that
we have priority ordering on S), (ii) π∗0(s0) ̸= π̂(s0) where the value of following SPE path π̂ is strictly
less than following precommitment path π∗0, and (iii) initialization to TIC, precommitment policy (that is
necessary to invoke the insufficiency of standard PI as illustrated in Example 4.6). For our stochastic (S)
example, we inject noise to the deterministic transitions pa

9(·) of state 9 in (D) such that

∀a ∈ {←, ↑,→, ↓}, P (s′|s = 9, a) =
{

.9, if pa
9(s′) = 1 in (D)

1−.9
3 , else

D.2 Benchmark Algorithms

Following, we describe the two benchmark algorithms that we use in our experiments: MC and sophEU. For
our MC implementation, we use the fist-visit variant on-policy MC control6 as described in Algorithm 2. For
the sophEU, we adapt the sophEU algorithm proposed in Evans et al. (2016) by modifying the exploration
technique to ϵ-greedy; see Algorithm 3. This is done for fair comparison with the other two methods, i.e. MC
and bwdQ.

D.3 Training Setup

For each pair of algorithm and environment, hyperparameters are informally selected from the sets α, αQ ∈
{.2, .3, .4, .5}, αr ∈ {.7, .8, .9, 1.0}, ϵ ∈ {.01, .03, .05, .07, .1} with the following criteria in mind: (i) small
overtaking-mean i∗

21, (ii) small stdev-shade on the Q-value learning curves at s = 9, 21, and (iii) identifiable
i∗
9, i∗

21 (i.e. reducing the overlapping frequencies between two contending actions’ mean Q-value learning
6We refer to the sourcecode in https://github.com/dennybritz/reinforcement-learning prior to our hyperbolic-discounting

modification.

24



Published in Transactions on Machine Learning Research (11/2022)

Algorithm 3 Sophisticated Expected-Utility Agent (sophEU)
1: Input: Hyperbolic (k = 1) Gridworld, Hyperparameters(ϵ, T̄ , α)
2: Output: Approximate SPE Q-function Qπ̂(s, a) = Q(s, a, 0),∀s ∈ S, a ∈ A
3: Initialize: Q(s, a, d) ← 0,∀d, s ∈ S \ S̄, a ∈ A; Q(s, a, d) ← φ(0)R(s, a),∀d, s ∈ S̄, a ∈ A; π′

d(s) ←
arg maxa Q(s, a, d),∀d, s ∈ S, π ← ∅

4: repeat
5: Update π ← π′

6: Choose S0 randomly
7: for t← 0 to T̄ − 1 do
8: Sample action At ∼ πϵ

0(.|St)
9: Observe reward Rt+1

.= R(St, At) and next state St+1
10: Set d← t
11: Compute utility U ← φ(d) ·R(St, At)
12: Compute expectation E ←

∑
a′∼A πϵ

0(a′|St+1)Q(St+1, a′, d + 1)
13: Update Q(St, At, d)← Q(St, At, d) + α(U + E −Q(St, At, d))
14: Update π′

d(St)← arg maxa Q(St, a, d)
15: end for
16: until stable (π′

0 ̸= π0)

curves); see Figure 8(a)-(b) for relatively bad instances. For all environments and algorithms, we set T̄ = 100;
larger episode truncation does not affect much our experiment results. We summarize our final choice of
hyperparameters in Table 2.

Table 2: Hyperparameters
(ϵ, T̄ , αQ/α, αr) MC sophEU bwdQ

(D) (.07, 100, -, -) (.07, 100, .4, -) (.07, 100, .4, 1.0)
(S) (.07, 100, -, -) (.07, 100, .4, -) (.07, 100, .4, .9)

D.4 Additional Results and Evaluation

This subsection expands the results and evaluation subsection in the main paper.

D.4.1 Q-value Learning Curves

To illustrate how we record the overtaking indexes i∗
9, i∗

21 used to compute ∆i∗ in Table 1, we plot in Figure
5-8 the Q-value learning curves that correspond to Figure 4.

D.4.2 Terminal Policies vs Groundtruth Value Comparisons

In Figure 4(b) of the main paper, we have shown that all algorithms will eventually terminate at SPE policy
π̂(s0) for s0 = 21. However, Figure 4(a) shows that both MC and sophEU do not flatten to the groundtruth
SPE value function V π̂(s0) = Qπ̂(s0, π̂(s0)). Now that we have Q-value learning curves in Figure 5-8, it
becomes clearer that the source of this discrepancy lies on the mis-evaluated Q-values; see Q(21,→) in Figure
5(a) for instance. This is explainable for a few reasons. Firstly, in the case of MC, the magnitude of exploratory
rate ϵ causes Q-values to evaluate the exploratory policy πϵ consisting paths of extended lengths, which
correspondingly lead to an underestimated cumulative discounted reward. In the case of sophEU, similar
undervaluation of π happens due to the action-taking probabilities being included in the Q-table updates;
see line 12-13 in Algorithm 3. While making ϵ smaller intuitively fixes this issue, learning performance
deteriorates (i.e. highly variable across seeds) once we decrease ϵ up to certain threshold; our final choice
of ϵ = .07 has taken this into consideration. Secondly, MC observes some kind of smoothening effect across
updates, which if combined with the delayed reflecting of information (i.e. prolonged ∆i∗) exacerbate the
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Q-value Learning Curves for MC, sophEU, and bwdQS at s = 21, 9 in (D).

early flattening of policy values. Such smoothening concurrently explains how MC appears to have lesser
variance as compared to bwdQ or sophEU at later iterations; see Figure 4(a)-Stochastic (S) in the main paper.

D.4.3 Ablation Study: Reversed Backward Q-learning

Since both benchmark algorithms suffer from similar undervaluation of policy issue, we construct an additional
benchmark: Reversed Backward Q-learning (bwdQ-rev), that is based on our own algorithm bwdQ. Here, we
only retain the extended DP-based policy evaluation component of bwdQ (that resembles TD-based methods
in standard RL literature) and apply standard conditioning by reversing the backward order of policy update
in line 11, Algorithm 1. This benchmarking can also be seen as an ablation study to see how backward
conditioning alone can reduce delusionality and improve learning performance. Figure 9 displays the value
and Q-value learning curves of bwdQ-rev against bwdQ in both (D) and (S), under the same learning rates.
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Q-value Learning Curves for MC, sophEU, and bwdQ at s = 21, 9 in (S).

Value learning curves. From Figure 9(a), it can be seen that bwdQ-rev also manages to match the
groundtruth values at about the same speed of bwdQ. However, we can observe a large swing at earlier
iterations which indicate bwdQ-rev’s degree of delusionality. In particular, such a swing is caused by 21’s late
update about 9’s strategy of going ’←’, resulting in delusional prediction targets Q(21, ↑; π(9) =↑) and an
inflation of Q-values. BwdQ-rev’s speed of correction towards the groundtruth here is then made possible by
its large learning rates7, which we will show to have some disadvantages next.

7Some comparisons can be made with MC’s degree of delusionality in Figure 4(a) of the main paper, that is milder for its
smaller (smoothened) learning rate. It is then natural to ask how sophEU does not seem to exhibit such (Q-)value inflation. This
can be explained by sophEU’s delay-augmentation, in which the rate of value propagation from delays d > 0 to d = 0 may match
the speed of delusionality correction. To illustrate, we can observe how in Figure 5(c), sophEU’s Q(21, ↑) climbs up slowly from 0
instead of jumping to near 2.0 like most others.
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(a) (b)

Figure 7: Q-value Learning Curves for sophEU (Ext.) at s = 21, 9 in (D).

(a) (b)

Figure 8: Q-value Learning Curves for sophEU (Ext.) at s = 21, 9 in (S).

Q-value learning curves. From Figure 9(e), while i∗
21 of bwdQ-rev seems to match bwdQ, we observe wide

stdev-shades for two contending actions ’→’ and ’↑’ that overlap throughout training episodes, indicating
indecisive behaviour i.e. high variability of trained policy at convergence across random seeds. We note that
this phenomenon happens in 5 out of 10 bwdQ-rev experiments we conducted under (S) setup, while never
happening in bwdQ. Moreover, in Figure 9(f), the mean Q-curves of the two contending actions ’←’ and ’↑’
are relatively unstable and overlap frequently; see how bwdQ behaves in Figure 6(f) for comparison. These
evidences suggest that reversing backward conditioning to standard impedes learning, particularly impairing
bwdQ’s ability to handle larger learning rates. The results for both algorithms under (D) setup are largely
similar, except for bwdQ-rev’s inflated Q-values at earlier iterations that has been covered previously.
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(a) (b)

(c) (d)

(e) (f)

Figure 9: Value and Q-value Learning Curve at s = 21, 9 of bwdQ-rev in (D) and (S). Experiment ID
for bwdQ-rev is similarly set to the one exhibiting slowest termination at 21 as indicated by the largest i∗

21.
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