REVISITING GRAPH CONTRASTIVE LEARNING
THROUGH THE LENS OF CONTRASTIVE OVERFITTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Contrastive Learning (GCL) has emerged as a powerful framework for
unsupervised graph representation learning, typically optimized with contrastive
objectives such as InfoNCE. Contrary to the common belief that lower contrastive
loss implies better representations generated for downstream tasks, we observe little
positive correlation between the contrastive objective and downstream performance.
In fact, excessive optimization often leads to degraded performance-a clear symp-
tom of overfitting. We attribute this phenomenon to the structure-agnostic nature
of contrastive objective, which forces the encoder to discard essential structural
information. Through extensive empirical and theoretical studies, we verify that
the overfitted embeddings, which scarcely capture graph structural information,
substantially impair generalization when applied to downstream classifiers. To ad-
dress this issue, we propose a structure-preserving regularization (SPR) framework
that can be seamlessly integrated as a plug-and-play module to enhance existing
GCL methods. Comprehensive experiments across multiple datasets and baselines
demonstrate that our approach effectively mitigates the overfitting problem.

1 INTRODUCTION

Graph Contrastive Learning (GCL), which extends contrastive learning techniques to graph-
structured data, has emerged as a promising paradigm for graph representation learning, particularly
due to its ability to learn without manually annotated labels (Liu et al., 2022; Ju et al., 2024).
The primary objective of GCL is to train an encoder—typically a
Graph Convolutional Network (GCN) (Kipf & Welling, 2017)—
to generate node embeddings that are both informative and ~ ""'| ———\ !
discriminative for downstream tasks such as node classification. - tv\w E
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Although previous works report favorable downstream classi-
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fication performance gains by using InfoNCE-based optimiza- — ~ o60] ZZ comenmo
tion objectives (Zhu et al., 2020; 2021a;b), closer inspection R R T T
highlights a fundamental misalignment between contrastive ob- Epoch

jective and downstream task. Ideally, a well-optimized GCL

objective should lead to representations that yeild better down- Figure 1: GCL loss and node clas-
stream performance. However, empirical evidence suggests this  sification accuracy over training
correspondence is inconsistent: a better-converged contrastive  epochs, using GRACE (Zhu et al.,
objective does not necessarily yield better-performing represen- 2020) on PubMed (Yang et al.,
tations and can, in fact, degrade performance. We refer to this 2016) dataset.

misalignment phenomenon as contrastive overfitting.

As shown in Figure 1, while the contrastive loss decreases monotonically to convergence, downstream
performance follows a clear rise-then-fall trajectory during GCL training—a hallmark of overfitting,
which is consistent on other datasets and models as shown in Appendix B. Crucially, this issue
is inevitable in the unsupervised setting: with labels unavailable for the training data, there is no
validation set for early stopping or hyper-parameter tunning. As a result, the number of training
iterations is typically determined by extensive trial-and-error experiments. We refer to this as
evaluation bias, which leads prior work to overlook the misalignment.



This anomalous behavior in GCL raises two fundamental questions: what causes this overfitting,
and how can it be effectively mitigated? In this paper, we ascribe such overfitting to the structure-
agnostic nature of the GCL training objective. Specifically, optimizing such an objective overlooks
the structural roles of nodes and ultimately compels the encoder to ignore the graph’s structural
information, which is essential for graph representation learning. It is worth noting that some existing
studies, such as (Xia et al., 2022), tackle the problem of false negatives in GCL loss and suggest
that fitting to these samples undermines performance. Which aligns to some extent with our claim.
Nevertheless, their improvements are still drawn from biased evaluations and can not generalize to
the overfitting scenario. Further discussions about related works can be found in Appendix A.

Motivated by the insight that contrastive objectives are inherently structure-agnostic and thus fail
to encode essential graph structural information, we introduce a structure-preserving framework
that takes node embeddings as input and ensures that the outputs align with both local context and
global structural equivalence of nodes, guided by mutual inference and graph centrality measures.
In addition, after the regularized training, we further employ a post-hoc structural augmentation
technique that directly injects structural information into the learned node embeddings. Together,
these strategies effectively preserve structural signals and mitigate contrastive overfitting.

We highlight our contributions as follows:

* We identify that a well-optimized encoder in GCL can actually produce node representations with
poor downstream performance, revealing a previously overlooked issue of contrastive overfitting
in GCL.

* We conducted extensive investigations and verified, both theoretically and empirically, that the
structure-agnostic nature of the contrastive objective is the key factor underlying contrastive
overfitting. Specifically, optimizing a structure-agnostic contrastive loss prevents the encoder
from capturing graph structural information, which inherently carries label-discriminative signals,
thereby leading to insufficient encoding of label information.

* To address this issue, we propose a regularization approach that explicitly ensures the graph
structural information is encoded. Extensive experiments validate the effectiveness of our method
across multiple datasets and GCL baselines.

2 PRELIMINARIES

Notations. We denote an undirected graph as G = (V, €, X,Y), where V = {3}V represents the
set of N nodes, £ C V x V denotes the set of edges, X € RV*P is the given node attribute (feature)
matrix, where each row x; € RP corresponds to the feature vector of node i. Y € {0,1,..., K}V
denotes the labels of all nodes. Let A € {0, 1}V be the adjacency matrix, where A; ; = 1 if
(1,7) € €, and A; ; = 0 otherwise. The neighborhood of node i is defined as the set of its adjacent
nodes: N; = {j | (i,j) € £}. Z € RY¥*4 is the node embedding matrix, where d denotes the
dimensionality of latent space.

Unsupervised Graph Representation Learning. Graph representation learning focuses on training
a GNN encoder to generate informative node embeddings, which are subsequently passed to a
downstream classifier for task prediction. Formally, the process can be represented as follow:

Y =gy (fo (A, X)),

where fj : {0, 1}VXN x RNXD 3y RNXd j5 the GNN encoder, g, : RV*4 — {0,1,..., K}V is
the downstream classifier, Y is the predicted node labels. Unsupervised graph representation learning
(e.g., graph contrastive learning) typically follows a two-stage optimization procedure: first, the
encoder fy is optimized by minimizing an unsupervised loss; then, fixing the optimal encoder fy-,
the downstream classifier gy, is trained by empirical risk minimization. Notably, node labels are
unavailable during the unsupervised training of the encoder.

Graph Contrastive Learning. GCL aims to learn high-quality node embeddings by contrasting
different augmented views of a graph. The framework typically involves three steps: graph augmenta-
tion, encoding, and contrasting. First, multiple graph views are generated using random augmentation



techniques. Then, these views are passed through a shared GNN encoder to produce node embeddings.
Finally, the embeddings are used to compute a contrastive loss, which is minimized to update the
encoder parameters. The training objective of GCL is to bring representations of positive pairs closer
while pushing apart those of negative pairs, which can be achieved by optimizing the following
widely-adopted InfoNCE-based contrastive loss (Oord et al., 2018; Zhu et al., 2020):

1
Leon = N Z (L(uj,vi) + L(vi, ), (D
1€V
where u; and v; are embeddings of node ¢ in augmented views Gy and Gy. £(u;, v;) is defined as
ee(ui7vi)/r

L(u;,v;) = —log , 2)

ef(uivi)/m 4 Zjev/i ef(uivi)/T 4 Zjev/i ef(uiu;)/7

and £(v;, u;) is symmetric with respect to Equation (2). In Equation (2), § is a similarity measure
function, and 7 is the temperature coefficient.

3  EMPIRICAL INVESTIGATION AND THEORETICAL ANALYSIS

3.1 MOTIVATING HYPOTHESIS

GCL aims to encode as much label-relevant information as possible into node embeddings, which
typically arises from two sources: a node’s intrinsic attributes and its structural role within the graph.
As a non-Euclidean data with disordered and variable number of neighbors, a graph’s topology inher-
ently carries rich information about node relationships, community structures, and functional roles,
making structural information essential for effective representation learning. However, conventional
instance-level contrastive objectives, such as InfoNCE, primarily focus on aligning representations of
the same node across different views and distinguishing them from others, without explicitly modeling
structural dependencies. Consequently, during training, the model can achieve low contrastive loss by
relying largely on node attributes, potentially overlooking structural cues. This results in embeddings
that capture node-level similarity but underrepresent the graph’s structural roles, which may limit
their utility for downstream tasks.

3.2 EMPIRICAL OBSERVATIONS

In this section, we conduct detailed investigations of the contrastive overfitting in GCL. We test
multiple existing GCL methods, and obtain several important yet counter-intuitive findings as follow:

Observation 1: GCL methods with structure-agnostic objective always suffer from contrastive
overfitting. We evaluate four representative node-level GCL methods: GRACE (Zhu et al., 2020),
ProGCL (Xia et al., 2022), CCA-SSG (Zhang et al., 2021), and DGI (Velickovi¢ et al., 2018).
Specifically, GRACE and ProGCL adopt InfoNCE-based objectives, CCA-SSG employs a feature-
level objective derived from canonical correlation analysis (CCA), and DGI maximizes the mutual
information between local and global graph representations. The details are summarized in Table 1.

Table 1: Statistics of GCL methods.

Method contrastive object contrastive strategy  structure-agnostic
GRACE Equation (1) InfoNCE-based v
ProGCL Equation (1) with false negative weights InfoNCE-based v
CCA-SSG U=VIP=A([uTu-1* +[[vTV - 1] CCA-based v
DGI —xbi S Egllog(D(hy,5)] + M, Egllog(1 — D(hy,s))]  InfoMax-based

* U and V are node embeddings of graph view Gy and Gy-; G is the corrupted graph of G.

As shown in Figure 2, the node classification accuracy of GRACE, ProGCL, and CCA-SSG drops
sharply when the encoder converges, whereas DGI maintains stable accuracy without exhibiting
contrastive overfitting. We attribute this performance degradation to the structure-agnostic nature of
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Figure 2: Performance degradation of GRACE, ProGCL, CCA-SSG, and DGI on different datasets.

their optimization objectives. In contrast, DGI contrasts local and global representations, compelling
the discriminator to learn their matching relationships. This design naturally enforces the model to
preserve information that differentiates augmented views, thereby enabling the encoding of structural
information. Similar observations for other InfoNCE-based methods can be found in Appendix B.

Observation 2: Graph structural information tends to be discarded during training. Unlike
contrastive learning methods designed for Euclidean data (Chen et al., 2020; Oord et al., 2018;
Tschannen et al., 2020), GCL places a much greater reliance on the encoder’s ability to capture and
represent high-dimensional, non-Euclidean structures, particularly when dealing with non-attributed
graphs, where all discriminative information is derived from the graph structure.

Let H € RV*P denotes the node representations output by a hidden layer in GNN encoder, W is a
trainable matrix, [ is the layer index, the simplified expression of one layer of GNN and MLP are as
follow:

GNN: HOHD) — o (AH(”W(”) , MLP: HD — o (HU)W(”) . 3)

It can be observed that, different from MLP, GNN is structure-aware, which stems from the left
multiplication of adjacency matrix, known as message-passing mechanism (Gilmer et al., 2017).

To quantify the structural information encoded by GNN encoder, we employ the sensitivity of GNN
to graph structural perturbations as a proxy metric. Specifically, we randomly drop edges of the

original graph G to generate a corrupt graph G, with the ad_]acency matrix A. Z = fo(A,X) and

ot
Z = f4(A,X) are the embedding matrices. We define C = 1 — ~ El 1 m as a proxy metric
to quantify how much structural information is captured, which calculates the average cosine similarity
between the embeddings of the same node before and after graph corruption. For a structure-agnostic
encoder such as MLP, node embeddings remain unchanged after corruption, yielding an averaged
cosine similarity of 1, resulting in C = 0. In general, if node embeddings change little after graph
corruption, it indicates that the encoder captures less structural information, corresponding to C close
to 0.

Based on this proxy metric, we track both the value of C and the loss throughout GCL training. As
shown in Figure 3, the training loss is strongly positively correlated with the proxy graph information
metric C, indicating that the encoder becomes increasingly insensitive to changes in the graph structure
during training, and gradually discards structural information.

Observation 3: Structural dependency governs the degree of contrastive overfitting. For
different datasets, we assess their dependency on graph structural information by removing the
structure-encoding capability, i.e., replacing the GCN encoder with an MLP, and then observing the
their classification accuracy.

As shown in Table 2, we find that some datasets exhibit a strong dependency on graph structural
information, where replacing the GCN encoder with an MLP significantly degrades downstream
performance (e.g., Cora, CiteSeer, and PubMed). In contrast, some datasets can still maintain stable
node classification performance even when using an MLP encoder (e.g., Am-Photo, Co-CS, and
Wiki-CS). Moreover, the last row in Table 2 shows that, on the Am-Photo, Co-CS, and Wiki-CS
datasets, the classifier trained directly on raw node attributes, also achieves comparable performance.
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Figure 3: Graph structural information of GRACE during training.

Table 2: The performance comparison between using MLP and GCN as the GCL encoder.

Method Cora CiteSeer PubMed Am-Photo Co-Cs Wiki-CS
GRACE 81.30-£0.90 73124030 80.1240.10 91.95.40.02 92.25.40.18 79.8110.04
GRACEpp 60.8510.05 20.45 | 63.7041.00 942 | 75.7010.104.42]  90.724002 1.23 ] 92124004 0.13 | 78.121¢.10 1.69 |

Converged GRACE  51.00+0.00 31.30 L 51.684+0.41 21.44 ] 61.881086 18.24 ] 90.2840.151.67 ] 84.9040,088.05] 79.03+0.050.78 ]
Raw Features 47494013 33811 49.474063 23.65] 69.3410.74 10.18 | 87.79.0804.16 | 91.171030 1.08 | 74.841042497 ]

This suggests that label-relevant information in these datasets is largely derived from node attributes.
Meanwhile, and more importantly, we can observe that, compared to structure-sensitive datasets,
those are less reliant on structural information exhibit a lower degree of overfitting.

3.3 THEORETICAL INSIGHTS

To understand this phenomenon more fundamentally, we analyze the underlying conflict between
the contrastive learning objective and the message-passing mechanism. Specifically, GNN captures
structural information through message-passing, which inherently promotes local smoothness in node
representations. For instance, a k-layer GNN aggregates information from k-hop neighborhoods.
This process can be viewed as minimizing the graph Laplacian energy:

E(Z)=1% ) lzi—zlP @

(i,9)€€

which encourages adjacent nodes to be close in the embedding space. In contrast, the InfoNCE loss
promotes global separability: embeddings of different nodes are pushed apart regardless of their
structural proximity.

In summary, message passing promotes local smoothness by encouraging structurally close nodes
to have similar representations, while InfoNCE enforces global separability by pushing all node
embeddings apart to maximize discrimination. These two objectives are fundamentally at odds.
When the InfoNCE loss is overly optimized, the separation effect dominates, gradually diminishing
the encoder’s sensitivity to structural perturbations. This inherent conflict aligns with our empirical
findings: as training progresses, the influence of message passing is progressively suppressed, leading
to a reduced capacity of the encoder to capture and reflect structural variations.

4 THE PROPOSED METHOD

From the Bayesian perspective, we propose a Structure-Preserving Regularization (SPR) framework
to mitigate contrastive overfitting, which introduces the structural prior. This prior constrains the
encoder to capture structural information by aligning node embeddings with both local connectivity
patterns and global structural roles. In particular, it keeps the embeddings of nodes with equivalent
structure more similar, as well as embeds structural role cues that ensures properties such as node
centrality to be inferred from the learned representations. In addition, we propose a simple yet
effective parameter-free post-hoc embedding enhancement mechanism, which directly improves the
quality of the learned representations, particularly in overfitting scenarios. Refer to Appendix E.1 for
the complete algorithm pseudo code.



4.1 STRUCTURE-PRESERVING FRAMEWORK

Local Structure Context Preservation. Local structural information characterizes the short-range
context dependencies among nodes in the graph. To preserve it, we maintain the ability of mutual
inference between a node and its contextual neighbors. The mutual inferability is quantified by the
mutual information (MI) Z (Z ; Z), where Z is the random variable of neighborhood embeddings Z,

and Z is the random variable of anchor node embeddings Z. Let P(Z, Z ) be the joint distribution

with P(Z) and P(Z) the marginal distributions. We apply the Jensen-Shannon MI estimator to
maximize Z4(Z; Z) as follow:

I550(2:2) = E(. 5~p(2,2)108D(2,2) + E, _p(z) :pz)log(l — D(z,2)). (5)

For the optimal discriminator D*, Z222(Z; Z) = 2Dys(P(Z, Z) || P(Z)P(Z)) — log4 (see Ap-
pendix C for a proof). Therefore, any parameters that maximize the above estimator also maximize
the JS divergence between the joint and marginal distributions. Moreover, as shown in (Hjelm et al.,
2018), Dys(P(Z,Z) || P(Z)P(Z)) is a monotonic function of the point-wise mutual information,
which implies that maximizing it is equivalent to maximize the mutual information Z, (Z VAR

Therefore, we take maximizing Ié‘ibD (Z ; Z) as the optimization objective, and rewrite it to obtain
the empirical objective as follows:
arg max {IéiﬁD (Z:7) }
D,¢
= argDrzax {E(z,2)~P(Z,Z) logD(2,2) + E. _p(z)zpz)108(1 = D(z, 5))}

: . . (6)
= argimin {_EZNP(Z) |:]Ez~P(Z\Z) log D(2,%) + E.p(z) log(l — D(z, Z))} }

~ arg min {—|]1]| Z [log D (z;,%;) + log (1 — D (Zj,ii))]} )

D¢ i€y

where we treat observed node-neighbor context pairs (z;, Z;) as positive samples from joint distribu-
tion, and randomly pairing Z; with the embedding z; of a different node j # ¢, which approximates
a sample from the product of marginals. To obtain the neighbor embedding z; for each node i, we
employ a graph aggregation operator to perform context representation aggregation, which is defined
as follow:

z; = Aggregator ({zi|k € N; U {i}}). ™)

Global Structure Equivalence Preservation. In addition to local context, we further require the
embeddings to preserve the role of nodes within the whole graph structure. To this end, structurally
equivalent nodes (e.g., those with the same centrality) should be encouraged to have similar embed-
dings. Therefore, we introduce a proxy optimization objective of graph centrality reconstruction,
which predicts node centralities to preserve the embeddings’ awareness of global structural roles.

Let C € RV*E denote the centrality matrix of a graph with N nodes and B different centrality
measures. Each entry c; ; represents the value of the j-th centrality measure for node v;. Thus, the
i-th row Cj . corresponds to the centrality profile of node v; across all B measures, while the j-th
column C. ; contains the values of the j-th centrality measure for all nodes.

We optimize the reconstruction objective as follow:
1
angmin {7 (X, A)) = CIF | ®
where h¢ is a proxy centrality predicting network.

Regularized learning objective. In summary, the total optimization objective of structure decoder
is as follow:

1 N _ 1
bree =~ ; log D (2, 2;) +log (1 = D (2, 2:))] + 15 Ihe(fo(X, A)) = C[I%. (9)



The final optimization objective of the regularized GCL is:
L= ﬁcon + Erega (10)

where L, is a certain contrastive loss, such as Equation (1).

4.2 POST-HOC STRUCTURAL AUGMENTATION

Beyond regularizing the optimization process, we introduce an explicit structure injection mechanism
to directly enhance node embeddings. As analyzed in Section 3.2, the main source of structural
information loss in embeddings is the failure of the encoder’s message-passing. Motivated by SGC
(Wu et al., 2019), we remedy this by applying message-passing directly on the embeddings to
explicitly inject structural information. Let MP(X, A) = D 2AD2X denotes a single layer
message-passing rule, where A=A +1yisthe adjacency matrix with inserted self-loops, and Dis
its corresponding degree matrix. The structure-augmented embeddings Z,, are defined as follow:

Zyy =MPro---0o(MPy(MP; (Z,A),A),---,A) 11

T layers of message-passing

where Z = f(A, X) is the output embeddings of GNN encoder. Since SPR does not make any
assumptions about the contrastive loss, it is a framework that compatible with various GCL methods.

5 EXPERIMENTAL STUDY

5.1 EXPERIMENTAL SETUP

Datasets and Baselines We conduct experiments on six widely used benchmark datasets: Cora,
CiteSeer, PubMed (Yang et al., 2016), Am-Photo, Co-Cs (Shchur et al., 2019), and Wiki-CS (Mernyei
& Cangea, 2020). We compare the performance of base GCL methods and their variants regularized
by SPR under the same hyper-parameters (following their original designs). Specifically, we adopt
eight representative GCL models, including GRACE (Zhu et al., 2020), GCA (Zhu et al., 2021b),
PiGCL (He et al., 2024), ReGCL (Ji et al., 2024), ProGCL (Xia et al., 2022), GRACE+ (Chi & Ma,
2024), HomoGCL (Li et al., 2023), and GRAPE (Hao et al., 2024). More details about the datasets
and baselines are provided in Appendix D.

Implementation Details We use a bi-linear scoring function D (h;, h;) = ¢ (h;W "h;) as the

discriminator network in Equation (6), where W T is the trainable matrix and o is the sigmoid
function, and we use GCN convolution operator as the aggregator in Equation (7) for two-hop context
aggregation to construct neighbor embeddings. We use degree, betweenness, average neighbor
degree, and PageRank as node centrality measures. For the post-hoc structural augmentation in
Equation (11), we set the number of message-passing layers 7' = 2. More implementation details
and hyper-parameter settings are provided in Appendix E.2.

Evaluation Protocol To ensure an unbiased evaluation of GCL models, we assess the embeddings
extracted from the encoder at the epoch where the contrastive loss has converged, and use them to
train a downstream node classifier. All baseline methods are trained for 10,000 iterations with a
cosine annealing learning rate scheduler (Loshchilov & Hutter, 2016) to guarantee convergence. For
dataset splits, we follow the standard public settings for Cora, CiteSeer, and PubMed (20/50/1000
for train/val/test), and adopt random 10%/10%/80% splits for Co-Cs and Am-Photo, and Wiki-CS
follow (Zhu et al., 2021b). The downstream node classifier is implemented as logistic regression
(Kleinbaum et al., 2002). We tune it on the validation set to select the best classifier and then evaluate
on the test set. For each experiment, we repeat it 10 times using different random seeds, and present
the mean and standard deviation of the result accuracy.

5.2 MAIN RESULTS AND ABLATION

To demonstrate the effect of SPR, as well as the individual contributions of the structure decoder and
post-hoc structural augmentation during GCL training, we compare the node classification accuracy
of base GCL methods and their regularized variants.



Table 3: Node classification accuracy (%) with converged encoders. Results are reported for variants
with post-hoc augmentation (+PA), structure decoder (+SD), and their combination (+SPR). The top
1%, 2" and 3" results are highlighted with accuracy improvements. OOM denotes out of memory.

Method Cora CiteSeer PubMed Am-Photo Co-CS ‘Wiki-CS
GRACE 51.00-+0.00 51.68+0.41 61.8810.86 90.2840.15 84.90+0.08 79.03+0.05

+PA 66.0820.5015.08 7 557620 :4.08 7 068.72.01:6.84 1  92.3940.902.117  86.96-01,2.06 7  79.04-,0.01 1
+SD 74.5640.7123.56 T 66.84100:15.16 7  79.36104017.48 7 90.40.0170.12 1  88.69.0174.697  79.1610090.13 1
+SPR 75120502412 1 64.80105213.12 T 80.20100518.32 1 92.67-05:2.39 7  87.8240972.92 1  79.405:0.37 1
GCA 64.1240.94 42.2610.73 544241 54 90.39+0.02 79.4540.03 71.9140.06

+PA 704611 976.34 1  46.14106:3.881  62.38.0997.96 T  90.7510.020.36 1  85.62.0056.17F  72.73.0050.82 %
+SD 72.5041.118.38 55.1040.5512.84 1 65.50422611.08 1T  92.52.(262.13 T 89.1340.079.68 1 79.8240.077.91 1
+SPR 753801126 1 57401 0915047 658220 051140 T 91.82400s1.43 T 89500 0110.05 1 79.600.007.69
PiGCL 60.2240.41 44.184.0.68 55.3641.87 90.5440.03 80.39+0.04 77.3240.03

+PA 62101, 901881  46.9200 102747 68.06.0 1012701  91.72.0.0-1.18 %  S4.68.0014.29F  77.5540.0,0.22
+SD 62.1410311.921  47.9210083.74 1T 79.0210.2223.66 T 93.29.0062.75 T 88.8710.118.48 7  80.33.0253.01 1
+SPR 68.42.40.208.20 51.0440556.86 1 79.26108523.90 T 92.5940.262.05 1T 89.31.0078.92 1 80.0040.142.68 1
ReGCL 52.0240.64 43.2610.72 OOM OOM OOM OOM

+PA 64.1440.7912.12 1  52.024 338.76 N/A N/A N/A N/A

+SD 68.6840.5316.66 1 54.3610.9411.10 T N/A N/A N/A N/A

+SPR 71.62,105019.60 T 57.54,, 4014.28 17 N/A N/A N/A N/A

ProGCL 65.4041 14 47.0040.67 63.2611 .26 91.7010.03 80.20+0.01 76.9410.01

+PA 72.3240.876.92 1 53.1044076.10 1 68.66+0.745.40 1 91.73.0.100.03 T 84.85.044.65 T 77.2640.060.32 T
+SD 72.94,046.84 7 59.06405612.06 T 77.8220.4514.56 7 92.1840010.48 T 91.25.0 1011051  79.25.0.4:2.31
+SPR 7752400012121 6022000513221 79.200.5515.94 7  92.91 0 151.21 1 90.69400410.49 1  78.9840.202.04
GRACE+ 71.6449.48 62.48.40.89 75.104+0.94 OOM OOM OOM

+PA 729840641341 627210400241  76.23.00.1.131 N/A N/A N/A

+SD 71.6810.650.04 1 62.9610.670.48 T 78.4340.923.33 1 N/A N/A N/A

+SPR 73.44:0.651.80 1 63.0217 120.54 78.8310213.73 1 N/A N/A N/A

HomoGCL  69.6410.0s 46.5240.92 70.2410.62 92.8940.29 89.27+0.40 79.0310.07

+PA T280015,3201 4064003121 76121025881  88.81ugar 85.26.0.5 T6.4520.51

+SD 75.0040.185.36 1 58.4440.1511.92 1 7812, 5,7.88 1 91.06+0.18 90.04.0.100.77 1 81.2610.342.23 1
+SPR 75.6410.916.00 7 59681 0513.16 T 76.6840.016.44 7 8970047 87.940.22 78.3% 011
GRAPE 57.9240.10 48.5641 35 68.7610.20 92.7140.17 84.940.03 81.86+0.14

+PA 66.8810158.96 1 50.64.0792.081 7376015001  91.81.0 40 86.89.00:1.99 1 78.7040.40

+SD 78960921041 66.68104518.12 7 76.011057287 91972006 80480154491 79911017
+SPR 77.60405919.68 1 67.44,, ,518.88 1 75.364+1 056.60 T 90.07+0.47 88.8540.243.95 1 78.8040.24

As shown in Table 3, firstly, we observe that SPR can improve the accuracy gained by baseline meth-
ods in most conditions after seamlessly integrated into them in a plug-and-play manner. This suggests
that SPR effectively mitigates the overfitting issue present in existing GCL approaches. Secondly, the
accuracy gains are more pronounced for structure-sensitive datasets (Cora, CiteSeer, and PubMed)
than for structure-insensitive datasets (Am-Photo, Co-CS, and Wiki-CS). This results further supports
our analysis in Section 3 for datasets that are inherently less dependent on structural information,
the loss of such information has a limited impact on the encoder’s performance in downstream
classification. Thirdly, among the baseline methods, GRACE+ and HomoGCL achieves relative
better converged accuracy, this can be attributed to their pre-designed structure-aware contrastive loss.
GRACEH+ estimates node similarity and samples negatives from a small set of high-confidence nodes
based on prior graph structure, thereby incorporating structural information. HomoGCL similarly
augments the positive set using homophily of graph. These approaches align with our proposed idea
that GCL should preserve structural information in encoders.

We also conduct ablation experiment by applying structure decoder (SD) and post-hoc structural
augmentation (PA) individually to the baseline methods, the results of which are shown in Table 3.
For structure-sensitive datasets, embeddings enhanced with PA almost always improve accuracy
compared to the original learned embeddings (e.g., GRACE vs. GRACE+PA, GRACE+SD vs.
GRACE+SPR), indicating that PA is an effective embedding augmentation strategy. In contrast,
for structure-insensitive datasets, introducing PA may lead to over-smoothing of node embeddings,
slightly reducing accuracy (e.g., HomoGCL on Am-Photo, Co-CS, and Wiki-CS), this phenomenon
is typically observed when the original embeddings already achieve high accuracy. Meanwhile, SD
yields consistent accuracy improvements across various datasets and baseline methods, which show
it effectiveness. However, SPR produces a better overall performance than that of AP or SD alone,
benefiting from the combination of them.

5.3 EMBEDDING VISUALIZATION

In this section, we visualize node embeddings during training. Firstly, based on label information, we
divide the negative set of anchor nodes during training into two subsets: true negatives (with labels
different from the anchor node) and false negatives (with the same label as the anchor node). We then
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Figure 4: The similarity distributions between anchors and true negatives, as well as between anchors
and false negatives. The results are obtained on CiteSeer dataset.

visualize the similarity distributions between anchor nodes and true negatives, as well as that between
anchor nodes and false negatives. Ideally, these two distributions should form a non-overlapping
bimodal pattern, with the expected similarity of true negatives being lower than that of false negatives.
Figure 4 illustrates the similarity distributions of GRACE and GRACE,spR at the early, best, and
final stages of training. We observe that, without regularization, GRACE will push both true and false
negatives away during training, while GRACE,spr consistently preserves the bimodal distribution.

We further visualize the impact of PA on node
embeddings through t-SNE dimensionality re-
duction. As shown in Figure 5, after a simple
parameter-free message-passing, the quality of o
node embeddings can be clearly improved. This 0
demonstrates the effectiveness of our post-hoc
augmentation, especially under overfitting sce-
narios. More visualization results, such as intra-
class similarity and comparisons of classifica-

tion accuracy curves during training, are pre-
sented in Appendix B. Figure 5: node embedding t-SNE visualization.

Original Embeddings Augmented Embeddings

6 CONCLUSIONS

This paper revisits Graph Contrastive Learning (GCL) through the lens of contrastive overfitting.
We highlight a critical yet previously overlooked issue: empirically optimal GCL encoders often
lead to poor downstream performance. Our analysis reveals that this overfitting arises from the
structure-agnostic nature of the contrastive loss, which results in the loss of essential graph structural
information. To mitigate this problem, we propose a simple yet effective Structure-Preserving
Regularization (SPR) approach that introduces structural priors by preserving both the mutual
inferability between a node and its neighborhood as well as its centrality reconstruction ability. This
work sheds new light on the generalization behavior of GCL and provides a practical path toward
building more reliable unsupervised graph learning frameworks.

7 LLM USAGE AND REPRODUCIBILITY

This manuscript has been polished with the assistance of a ChatGPT. The authors take full responsi-
bility for the content. This work adheres to the ICLR Code of Ethics. To facilitate reproducibility, our
anonymous code implementation is available at: https://anonymous.4open.science/r/
SPR-GCL-DDB3/
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A RELATED WORKS

Graph Neural Network Graph Neural Networks (GNNs) (Kipf & Welling, 2017; Velickovié
et al., 2018; Hamilton et al., 2017; Wu et al., 2020) have become a fundamental architecture for
learning representations from graph-structured data. Most widely used GNN layers are built upon the
message-passing mechanism (Gilmer et al., 2017), which iteratively aggregates information from a
node’s neighbors to encode the structural properties of the graph.

Graph Contrastive Learning Contrastive learning (CL) (Oord et al., 2018; Chen et al., 2020; He
et al., 2020; Zbontar et al., 2021) has emerged as a prominent self-supervised learning paradigm
that captures the inherent similarities and differences among data instances, thereby reducing the
dependence on labeled data. Its core principle is to pull together representations of similar instances
(positive pairs) while pushing apart those of dissimilar instances (negative pairs) in the embedding
space. There are many work adapting CL to graph representation learning, known as graph contrastive
learning (GCL) (Velic¢kovi€ et al., 2018; Zhang et al., 2021; Zhu et al., 2020; Hassani & Khasahmadi,
2020; Zhu et al., 2021a), which brings a new paradigm in self-supervised graph representation
learning.

False Negatives in GCL In GCL methods based on the InfoNCE loss, one prominent issue is that
all other nodes, apart from the anchor itself, are treated as negative samples and are pushed away
in the embedding space. Several studies have pointed out that many of these negatives are in fact
false negatives-nodes sharing the same class label as the anchor-which ideally should not be repelled.
To address the issue of imprecise positive and negative sample sets, various approaches have been
proposed Xia et al. (2022); Li et al. (2023); Chi & Ma (2024); Hao et al. (2024). For instance, Xia
et al. (2022) employs a mixture of Beta distributions to estimate the likelihood of a node being a
false negative. However, these methods generally assume access to implicit label-related signals and
focus on improving the theoretical upper bound of GCL performance, often neglecting the behavior
of encoders at convergence. Existing works also tend to treat label information as a monolithic entity,
without distinguishing between structural and attribute-based components. Furthermore, most studies
evaluate their methods on datasets where label dependence on structure varies, but the implications
of this factor are seldom explored.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 CONTRASTIVE OVERFITTING
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Figure 6: GCL loss and node classification accuracy over training epochs.
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Figure 6 illustrates the widespread presence of contrastive overfitting across different GCL methods

and datasets.

B.2 PERFORMANCE DEGRADATION
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Figure 7: Performance degradation of GCA, PiGCL, HomoGCL, and GRAPE on different datasets.

Figure 7 shows the performance degradation of four InfoNCE-based GCL methods.

B.3 EXTRA VISUALIZATION
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Figure 8: The similarity distributions between anchors and true negatives, as well as between anchors
and false negatives. The results are obtained on Cora dataset.

Figure 8 shows the similarity distributions of GRACE and GRACE,gspR at the early, best, and final

stages of training.

Figure 9 shows that after applying the SPR regularization strategy, the downward trend in downstream
task accuracy during training is significantly alleviated.

Figures 10 to 12 illustrate the intra-class node similarity. By comparison, we can observe that SPR
effectively preserves the similarity among nodes of the same class at convergence.
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C PROOFS

Theorem 1. Let D be a discriminator trained to distinguish between joint samples (z,%) ~ P(Z,Z)

and marginal samples (z,%) ~ P(Z)P(Z). Consider the following objective:
I%)SD(Z Z) = B 5eprz,2) [log D(z, 2)] + E. pz)2~pP2) [log(1 —D(z,2))] .
At the optimal discriminator D*, the objective evaluates to:
THP(2:2) = 2Dss (P(2,2) | P(2)P(Z)) — log4,

where Djg(+||-) denotes the Jensen-Shannon divergence.

Proof. We rewrite the term Z5P (Z; Z) as:

Ip°(Z;7) = B s~pz.2) log D(z, 2)] + B, p(2):~pP2) [log(1 — D(z, 2))]

(12)
— [ 922 108Dz, 2) + p(a)p(E) log(1 ~ Dz, 2)dad,
since ZP (Z; Z) is concave in D, we calculate the first-order derivative:
0Ip°(Z:2) _ [p(z2)  pE)p(E) , .
oD _/ D~ 1-p ¥
TP (Z;2) _ . _ (2,%)
let DT = 0, we have D* = m
We plugging D* back to Equation (12):
IIP(Z: 2) = /p z, %) log Np(z,é) —] + p(2)p(2) log {)(z)p(%) —|dzdz (13)
e D YOG I T e a)

Let p denotes p(z, Z), ¢ denotes p(z)p(2),
5P (7,2 :/plogi +q10gidzd2
(2:2) 2]+ glogl )
p q -
= [ plog|——] + plog(2) + qlog|——] + qlog(2) — plog(2) — qlog(2)dzdz
[ plogl- 1+ plog(2) + logl L) + glog(2) - plog(2) ~ glog(2

= 27]0 o) A zdz — zdz zdZ) - lo
— [ progl) o qlogl =iz — ([ pazdz + [ adad) log(2)
= 2Dys(pllq) — log(4)
= 2Dys (P(Z, 2 P(Z)P(Z)) “logd

(14)

D BASELINES AND DATASETS

D.1 BASELINES

In this section, we give brief introductions of the baselines used in the paper which are not described
in the main paper due to the space constraint.

* GRACE learns node representations by generating two graph views (edge dropping +
feature masking) and maximizing their agreement based on InfoNCE loss Chen et al. (2020).
Code link: https://github.com/CRIPAC-DIG/GRACE

* GCA performs adaptive augmentation that drops unimportant edges and perturbs unimpor-
tant features based on centrality. Code link: https://github.com/CRIPAC-DIG/
GCA
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* PiGCL detects embedding-and-ignoring conflicts via gradient cues and dynamically ignores
those negatives during training so the encoder can learn from them adaptively. Code link:
https://github.com/hedongxiao-tju/PiGCL

* ReGCL addresses GNN-GCL conflicts through gradient-guided structure learning and
gradient-weighted InfoNCE. Code link: https://github.com/RingBDStack/
ReGCL

* ProGCL models the distribution of negative pairs using a Beta Mixture Model (BMM),
enabling it to estimate the probability of a negative sample being a false negative based on
embedding similarity. Code link: https://github.com/junxia97/ProGCL

* GRACE Plus: exploits node similarity to construct anchor-aware sampling distributions
which estimates node similarity and samples negatives from a small set of high-confidence
nodes. Code link: https://github.com/frankhlchi/SimEnhancedGCL

* HomoGCL: adopts the homophily assumption by treating all neighbors of an anchor
node as positive samples and assigning weights using clustering techniques. Code link:
https://github.com/wenzhilics/HomoGCL

* GRAPE: leverages a subspace-preserving technique to learn the weights of negative samples.
Code link: https://github.com/zz-haooo/WWW24-GRAPE

D.2 DATASETS

In this section, we give brief introductions of the datasets used in the paper, Table 4 shows detailed
information of each dataset.

Table 4: Dataset information statistics.

Dataset ~ #Nodes #Edges #Attributes #Classes

Cora 2,708 10,556 1,433 7
CiteSeer 3,327 9,228 3,703 6
PubMed 19,717 88,651 500 3

Co-Cs 18,333 163,788 6,805 15
Am-Photo 7,650 238,163 745 8
Wiki-CS 11,701 431,726 300 10

* Cora Yang et al. (2016): A citation network where each node represents a scientific
publication in the field of machine learning, and edges denote citation relationships between
papers. Each publication is described by a sparse bag-of-words feature vector derived from
its abstract, and is categorized into one of seven predefined research topics.

* CiteSeer Yang et al. (2016): A citation network composed of scientific publications in the
field of computer science. Similar to Cora, nodes represent documents and edges represent
citation links. Each document is represented by a sparse bag-of-words vector of its content.

* PubMed Yang et al. (2016): A citation network of biomedical research papers from the
PubMed database. Each node corresponds to a paper, and edges indicate citation links. Node
features are TF-IDF weighted word vectors based on the paper abstracts.

¢ Co-CS Shchur et al. (2018): An academic network constructed from the Microsoft Academic
Graph, where nodes represent authors and edges denote co-authorship relationships-i.e.,
two authors are connected if they have collaborated on at least one paper. Each node is
associated with a sparse bag-of-words feature vector derived from the keywords of the
papers authored by that individual. The label assigned to each author corresponds to their
most active research area.

¢ Am-Photo Shchur et al. (2018): A network of co-purchase relationships constructed from
Amazon, where nodes represent products and edges indicate that two products are frequently
bought together. Each node is associated with a sparse bag-of-words feature vector derived
from product reviews and is labeled according to its category.
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* Wiki-CS Mernyei & Cangea (2020): A reference network derived from Wikipedia, where
nodes represent computer science-related articles and edges denote hyperlinks between
them. Each node is assigned one of ten class labels, corresponding to distinct subfields
within computer science. Node features are computed by averaging the pre-trained GloVe
word embeddings of the words appearing in the respective article.

E IMPLEMENTATION DETAILS

E.1 ALGORITHM PSEUDO CODE

We provide the algorithm pseudo code as follow:

Algorithm 1 Regularized GCL

Input: original graph G = (A, X), encoder fy;
Output: the converged encoder f4-, node embeddings Z;

1: Initialize encoder fy

2: while not converge do

3:  generate two augmented graph views Gy and Gy
obtain node embeddings Z, U, V of G, Gy, Gy using encoder ¢
compute the contrastive loss L., of a base GCL method (e.g., Equation (1))
compute neighbor context embedding Z by Equation (7)
compute local context mutual inference loss Ly by Equation (6)
compute global equivalence loss L, by Equation (8)

9:  the final loss £ = Leon + Lyr + Lye
10:  update the parameters of f4 via minimizing £
11: end while
122 A+ D 3AD:
13: Z + f4-(A, X)
14: Z «+ A’Z

A

Nl

E.2 IMPLEMENTATION DETAILS

To identify node structural equivalence, we select four important centrality-related node properties
to represent a node’s role in the graph topology and reconstruct them through decoding. These
attributes include node degree, betweenness centrality, average neighbor degree, and PageRank.
Degree measures the number of a node’s direct connections. Nodes with higher degree centrality are
regarded as more locally important, as they engage in more direct interactions within the network.
Betweenness measures how often a node appears on the shortest paths between other pairs of nodes.
Nodes with high betweenness centrality serve as critical bridges for information flow across the
network. PageRank assesses a node’s importance based on both the quantity and quality of its
incoming connections, assigning higher weight to links from more influential nodes.

For the hyper-parameters of baseline methods, we follow the default settings provided in the official
implementations (refer to Appendix D.1). For datasets or methods where hyper-parameters are not
specified, we perform a small-scale grid search to approximate the performance reported in the original
papers as closely as possible. The searched ranges include: hidden dimension Npy € {256,512},
edge/feature masking probability p € {0.1,0.2,0.4}, learning rate Ir € {0.001,0.0001} with
a cosine annealing scheduler, temperature coefficient 7 € {0.2,0.3,0.5}, and projection head
dimension Ny € {256,512}, weight decay rate A = le — 5, for downstream classifier, Ir = 0.01,
epochs = 2000, weight_decay = 5e — 4.

All experiments are conducted on an NVIDIA RTX 3090Ti GPU.
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