
000 001 002 003 004 005 REVISITING GRAPH CONTRASTIVE LEARNING 006 THROUGH THE LENS OF CONTRASTIVE OVERRFITTING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024

ABSTRACT

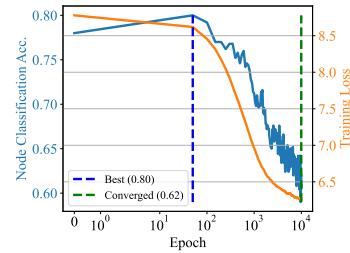
025 Graph Contrastive Learning (GCL) has emerged as a powerful framework for
026 unsupervised graph representation learning, typically optimized with contrastive
027 objectives such as InfoNCE. Contrary to the common belief that lower contrastive
028 loss implies better representations generated for downstream tasks, we observe little
029 positive correlation between the contrastive objective and downstream performance.
030 In fact, excessive optimization often leads to degraded performance—a clear symptom
031 of overfitting. We attribute this phenomenon to the structure-agnostic nature
032 of contrastive objective, which forces the encoder to discard essential structural
033 information. Through extensive empirical and theoretical studies, we verify that
034 the overfitted embeddings, which scarcely capture graph structural information,
035 substantially impair generalization when applied to downstream classifiers. To ad-
036 dress this issue, we propose a structure-preserving regularization (SPR) framework
037 that can be seamlessly integrated as a plug-and-play module to enhance existing
038 GCL methods. Comprehensive experiments across multiple datasets and baselines
039 demonstrate that our approach effectively mitigates the overfitting problem.
040

041 1 INTRODUCTION

042 Graph Contrastive Learning (GCL), which extends contrastive learning techniques to graph-
043 structured data, has emerged as a promising paradigm for graph representation learning, particularly
044 due to its ability to learn without manually annotated labels (Liu et al., 2022; Ju et al., 2024).
045 The primary objective of GCL is to train an encoder—typically a
046 Graph Convolutional Network (GCN) (Kipf & Welling, 2017)—
047 to generate node embeddings that are both informative and
048 discriminative for downstream tasks such as node classification.
049 Among various approaches, optimization objectives to mini-
050 mize the InfoNCE-based loss have become the mainstream.
051

052 Although previous works report favorable downstream classi-
053 fication performance gains by using InfoNCE-based optimiza-
054 tion objectives (Zhu et al., 2020; 2021a;b), closer inspection
055 highlights a fundamental misalignment between contrastive ob-
056 jective and downstream task. Ideally, a well-optimized GCL
057 objective should lead to representations that yeild better down-
058 stream performance. However, empirical evidence suggests this
059 correspondence is inconsistent: a better-converged contrastive
060 objective does not necessarily yield better-performing repres-
061 entations and can, in fact, degrade performance. We refer to this
062 misalignment phenomenon as *contrastive overfitting*.

063 As shown in Figure 1, while the contrastive loss decreases monotonically to convergence, downstream
064 performance follows a clear rise-then-fall trajectory during GCL training—a hallmark of overfitting,
065 which is consistent on other datasets and models as shown in Appendix B. Crucially, this issue
066 is inevitable in the unsupervised setting: with labels unavailable for the training data, there is no
067 validation set for early stopping or hyper-parameter tunning. As a result, the number of training
068 iterations is typically determined by extensive trial-and-error experiments. We refer to this as
069 *evaluation bias*, which leads prior work to overlook the misalignment.



070 Figure 1: GCL loss and node clas-
071 sification accuracy over training
072 epochs, using GRACE (Zhu et al.,
073 2020) on PubMed (Yang et al.,
074 2016) dataset.

054 This anomalous behavior in GCL raises two fundamental questions: *what causes this overfitting,*
055 *and how can it be effectively mitigated?* In this paper, we ascribe such overfitting to the structure-
056 agnostic nature of the GCL training objective. Specifically, optimizing such an objective overlooks
057 the structural roles of nodes and ultimately compels the encoder to ignore the graph’s structural
058 information, which is essential for graph representation learning. It is worth noting that some existing
059 studies, such as (Xia et al., 2022), tackle the problem of false negatives in GCL loss and suggest
060 that fitting to these samples undermines performance. Which aligns to some extent with our claim.
061 Nevertheless, their improvements are still drawn from biased evaluations and can not generalize to
062 the overfitting scenario. Further discussions about related works can be found in Appendix A.

063 Motivated by the insight that contrastive objectives are inherently structure-agnostic and thus fail
064 to encode essential graph structural information, we introduce a structure-preserving framework
065 that takes node embeddings as input and ensures that the outputs align with both local context and
066 global structural equivalence of nodes, guided by mutual inference and graph centrality measures.
067 In addition, after the regularized training, we further employ a post-hoc structural augmentation
068 technique that directly injects structural information into the learned node embeddings. Together,
069 these strategies effectively preserve structural signals and mitigate contrastive overfitting.

070 We highlight **our contributions** as follows:

071 • We identify that a well-optimized encoder in GCL can actually produce node representations with
072 poor downstream performance, revealing a previously overlooked issue of contrastive overfitting
073 in GCL.

074 • We conducted extensive investigations and verified, both theoretically and empirically, that the
075 structure-agnostic nature of the contrastive objective is the key factor underlying contrastive
076 overfitting. Specifically, optimizing a structure-agnostic contrastive loss prevents the encoder
077 from capturing graph structural information, which inherently carries label-discriminative signals,
078 thereby leading to insufficient encoding of label information.

079 • To address this issue, we propose a regularization approach that explicitly ensures the graph
080 structural information is encoded. Extensive experiments validate the effectiveness of our method
081 across multiple datasets and GCL baselines.

084 2 PRELIMINARIES

086 **Notations.** We denote an undirected graph as $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathbf{X}, \mathbf{Y})$, where $\mathcal{V} = \{i\}_{i=1}^N$ represents the
087 set of N nodes, $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ denotes the set of edges, $\mathbf{X} \in \mathbb{R}^{N \times D}$ is the given node attribute (feature)
088 matrix, where each row $\mathbf{x}_i \in \mathbb{R}^D$ corresponds to the feature vector of node i . $\mathbf{Y} \in \{0, 1, \dots, K\}^N$
089 denotes the labels of all nodes. Let $\mathbf{A} \in \{0, 1\}^{N \times N}$ be the adjacency matrix, where $\mathbf{A}_{i,j} = 1$ if
090 $(i, j) \in \mathcal{E}$, and $\mathbf{A}_{i,j} = 0$ otherwise. The neighborhood of node i is defined as the set of its adjacent
091 nodes: $\mathcal{N}_i = \{j \mid (i, j) \in \mathcal{E}\}$. $\mathbf{Z} \in \mathbb{R}^{N \times d}$ is the node embedding matrix, where d denotes the
092 dimensionality of latent space.

093 **Unsupervised Graph Representation Learning.** Graph representation learning focuses on training
094 a GNN encoder to generate informative node embeddings, which are subsequently passed to a
095 downstream classifier for task prediction. Formally, the process can be represented as follow:

$$097 \hat{\mathbf{Y}} = g_{\psi}(f_{\phi}(\mathbf{A}, \mathbf{X})),$$

099 where $f_{\phi} : \{0, 1\}^{N \times N} \times \mathbb{R}^{N \times D} \mapsto \mathbb{R}^{N \times d}$ is the GNN encoder, $g_{\psi} : \mathbb{R}^{N \times d} \mapsto \{0, 1, \dots, K\}^N$ is
100 the downstream classifier, $\hat{\mathbf{Y}}$ is the predicted node labels. Unsupervised graph representation learning
101 (e.g., graph contrastive learning) typically follows a two-stage optimization procedure: first, the
102 encoder f_{ϕ} is optimized by minimizing an unsupervised loss; then, fixing the optimal encoder f_{ϕ^*} ,
103 the downstream classifier g_{ψ} is trained by empirical risk minimization. Notably, node labels are
104 unavailable during the unsupervised training of the encoder.

105 **Graph Contrastive Learning.** GCL aims to learn high-quality node embeddings by contrasting
106 different augmented views of a graph. The framework typically involves three steps: graph augmentation,
107 encoding, and contrasting. First, multiple graph views are generated using random augmentation

techniques. Then, these views are passed through a shared GNN encoder to produce node embeddings. Finally, the embeddings are used to compute a contrastive loss, which is minimized to update the encoder parameters. The training objective of GCL is to bring representations of positive pairs closer while pushing apart those of negative pairs, which can be achieved by optimizing the following widely-adopted InfoNCE-based contrastive loss (Ord et al., 2018; Zhu et al., 2020):

$$\mathcal{L}_{\text{con}} = \frac{1}{2N} \sum_{i \in \mathcal{V}} (\mathcal{L}(\mathbf{u}_i, \mathbf{v}_i) + \mathcal{L}(\mathbf{v}_i, \mathbf{u}_i)), \quad (1)$$

where \mathbf{u}_i and \mathbf{v}_i are embeddings of node i in augmented views \mathcal{G}_U and \mathcal{G}_V . $\mathcal{L}(\mathbf{u}_i, \mathbf{v}_i)$ is defined as

$$\mathcal{L}(\mathbf{u}_i, \mathbf{v}_i) = -\log \frac{e^{\theta(\mathbf{u}_i, \mathbf{v}_i)/\tau}}{e^{\theta(\mathbf{u}_i, \mathbf{v}_i)/\tau} + \sum_{j \in \mathcal{V}/i} e^{\theta(\mathbf{u}_i, \mathbf{v}_j)/\tau} + \sum_{j \in \mathcal{V}/i} e^{\theta(\mathbf{u}_i, \mathbf{u}_j)/\tau}}, \quad (2)$$

and $\mathcal{L}(\mathbf{v}_i, \mathbf{u}_i)$ is symmetric with respect to Equation (2). In Equation (2), θ is a similarity measure function, and τ is the temperature coefficient.

3 EMPIRICAL INVESTIGATION AND THEORETICAL ANALYSIS

3.1 MOTIVATING HYPOTHESIS

GCL aims to encode as much label-relevant information as possible into node embeddings, which typically arises from two sources: a node’s intrinsic attributes and its structural role within the graph. As a non-Euclidean data with disordered and variable number of neighbors, a graph’s topology inherently carries rich information about node relationships, community structures, and functional roles, making structural information essential for effective representation learning. However, conventional instance-level contrastive objectives, such as InfoNCE, primarily focus on aligning representations of the same node across different views and distinguishing them from others, without explicitly modeling structural dependencies. Consequently, during training, the model can achieve low contrastive loss by relying largely on node attributes, potentially overlooking structural cues. This results in embeddings that capture node-level similarity but underrepresent the graph’s structural roles, which may limit their utility for downstream tasks.

3.2 EMPIRICAL OBSERVATIONS

In this section, we conduct detailed investigations of the contrastive overfitting in GCL. We test multiple existing GCL methods, and obtain several important yet counter-intuitive findings as follow:

Observation 1: GCL methods with structure-agnostic objective always suffer from contrastive overfitting. We evaluate four representative node-level GCL methods: GRACE (Zhu et al., 2020), ProGCL (Xia et al., 2022), CCA-SSG (Zhang et al., 2021), and DGI (Veličković et al., 2018). Specifically, GRACE and ProGCL adopt InfoNCE-based objectives, CCA-SSG employs a feature-level objective derived from canonical correlation analysis (CCA), and DGI maximizes the mutual information between local and global graph representations. The details are summarized in Table 1.

Table 1: Statistics of GCL methods.

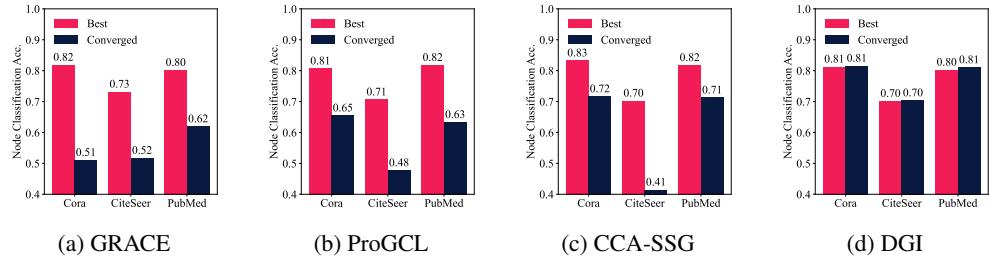
Method	contrastive object	contrastive strategy	structure-agnostic
GRACE	Equation (1)	InfoNCE-based	✓
ProGCL	Equation (1) with false negative weights	InfoNCE-based	✓
CCA-SSG	$\ \mathbf{U} - \mathbf{V}\ ^2 - \lambda \left(\ \mathbf{U}^\top \mathbf{U} - \mathbf{I}\ ^2 + \ \mathbf{V}^\top \mathbf{V} - \mathbf{I}\ ^2 \right)$	CCA-based	✓
DGI	$-\frac{1}{N+M} \sum_{i=1}^N \mathbb{E}_{\mathcal{G}}[\log(\mathcal{D}(\mathbf{h}_i, \mathbf{s})] + \sum_{i=1}^M \mathbb{E}_{\tilde{\mathcal{G}}}[\log(1 - \mathcal{D}(\tilde{\mathbf{h}}_i, \mathbf{s}))]$	InfoMax-based	

* \mathbf{U} and \mathbf{V} are node embeddings of graph view \mathcal{G}_U and \mathcal{G}_V ; $\tilde{\mathcal{G}}$ is the corrupted graph of \mathcal{G} .

As shown in Figure 2, the node classification accuracy of GRACE, ProGCL, and CCA-SSG drops sharply when the encoder converges, whereas DGI maintains stable accuracy without exhibiting contrastive overfitting. We attribute this performance degradation to the structure-agnostic nature of

162

163

172 Figure 2: Performance degradation of GRACE, ProGCL, CCA-SSG, and DGI on different datasets.
173

174

175 their optimization objectives. In contrast, DGI contrasts local and global representations, compelling
176 the discriminator to learn their matching relationships. This design naturally enforces the model to
177 preserve information that differentiates augmented views, thereby enabling the encoding of structural
178 information. Similar observations for other InfoNCE-based methods can be found in Appendix B.

179

180 **Observation 2: Graph structural information tends to be discarded during training.** Unlike
181 contrastive learning methods designed for Euclidean data (Chen et al., 2020; Oord et al., 2018;
182 Tschannen et al., 2020), GCL places a much greater reliance on the encoder’s ability to capture and
183 represent high-dimensional, non-Euclidean structures, particularly when dealing with non-attributed
184 graphs, where all discriminative information is derived from the graph structure.

185

186 Let $\mathbf{H} \in \mathbb{R}^{N \times D}$ denotes the node representations output by a hidden layer in GNN encoder, \mathbf{W} is a
187 trainable matrix, l is the layer index, the simplified expression of one layer of GNN and MLP are as
188 follow:

$$189 \text{GNN: } \mathbf{H}^{(l+1)} = \sigma(\mathbf{A}\mathbf{H}^{(l)}\mathbf{W}^{(l)}), \quad \text{MLP: } \mathbf{H}^{(l+1)} = \sigma(\mathbf{H}^{(l)}\mathbf{W}^{(l)}). \quad (3)$$

190

191 It can be observed that, different from MLP, GNN is structure-aware, which stems from the left
192 multiplication of adjacency matrix, known as message-passing mechanism (Gilmer et al., 2017).

193

194 To quantify the structural information encoded by GNN encoder, we employ the sensitivity of GNN
195 to graph structural perturbations as a proxy metric. Specifically, we randomly drop edges of the
196 original graph \mathcal{G} to generate a corrupt graph $\tilde{\mathcal{G}}$, with the adjacency matrix $\tilde{\mathbf{A}}$. $\mathbf{Z} = f_\phi(\mathbf{A}, \mathbf{X})$ and
197 $\tilde{\mathbf{Z}} = f_\phi(\tilde{\mathbf{A}}, \mathbf{X})$ are the embedding matrices. We define $\mathcal{C} = 1 - \frac{1}{N} \sum_{i=1}^N \frac{\mathbf{z}_i \mathbf{z}_i^\top}{\|\mathbf{z}_i\| \cdot \|\tilde{\mathbf{z}}_i\|}$ as a proxy metric
198 to quantify how much structural information is captured, which calculates the average cosine similarity
199 between the embeddings of the same node before and after graph corruption. For a structure-agnostic
200 encoder such as MLP, node embeddings remain unchanged after corruption, yielding an averaged
201 cosine similarity of 1, resulting in $\mathcal{C} = 0$. In general, if node embeddings change little after graph
202 corruption, it indicates that the encoder captures less structural information, corresponding to \mathcal{C} close
203 to 0.

204

205 Based on this proxy metric, we track both the value of \mathcal{C} and the loss throughout GCL training. As
206 shown in Figure 3, the training loss is strongly positively correlated with the proxy graph information
207 metric \mathcal{C} , indicating that the encoder becomes increasingly insensitive to changes in the graph structure
208 during training, and gradually discards structural information.

209

210 **Observation 3: Structural dependency governs the degree of contrastive overfitting.** For
211 different datasets, we assess their dependency on graph structural information by removing the
212 structure-encoding capability, i.e., replacing the GCN encoder with an MLP, and then observing the
213 their classification accuracy.

214

215 As shown in Table 2, we find that some datasets exhibit a strong dependency on graph structural
216 information, where replacing the GCN encoder with an MLP significantly degrades downstream
217 performance (e.g., Cora, CiteSeer, and PubMed). In contrast, some datasets can still maintain stable
218 node classification performance even when using an MLP encoder (e.g., Am-Photo, Co-CS, and
219 Wiki-CS). Moreover, the last row in Table 2 shows that, on the Am-Photo, Co-CS, and Wiki-CS
220 datasets, the classifier trained directly on raw node attributes, also achieves comparable performance.

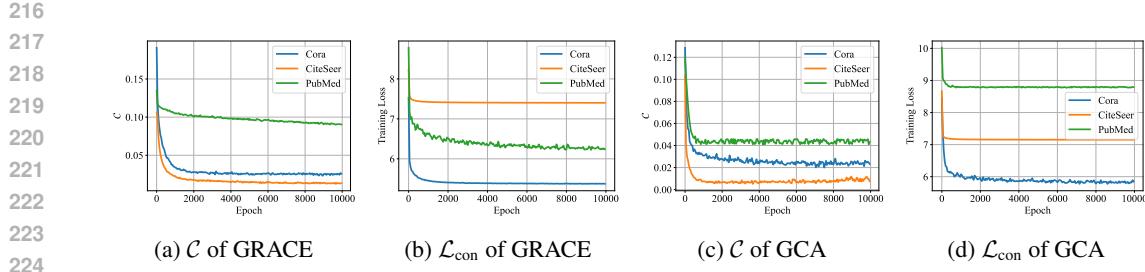


Figure 3: Graph structural information of GRACE during training.

Table 2: The performance comparison between using MLP and GCN as the GCL encoder.

Method	Cora	CiteSeer	PubMed	Am-Photo	Co-Cs	Wiki-CS
GRACE	81.30 ± 0.90	73.12 ± 0.30	80.12 ± 0.10	91.95 ± 0.02	92.25 ± 0.18	79.81 ± 0.04
GRACE _{MLP}	60.85 ± 0.05	$20.45 \downarrow$	63.70 ± 1.00	$9.42 \downarrow$	75.70 ± 0.10	$4.42 \downarrow$
Converged GRACE	51.00 ± 0.00	$31.30 \downarrow$	51.68 ± 0.41	$21.44 \downarrow$	61.88 ± 0.86	$18.24 \downarrow$
Raw Features	47.49 ± 0.13	$33.81 \downarrow$	49.47 ± 0.63	$23.65 \downarrow$	69.34 ± 0.74	$10.18 \downarrow$

This suggests that label-relevant information in these datasets is largely derived from node attributes. Meanwhile, and more importantly, we can observe that, compared to structure-sensitive datasets, those are less reliant on structural information exhibit a lower degree of overfitting.

3.3 THEORETICAL INSIGHTS

To understand this phenomenon more fundamentally, we analyze the underlying conflict between the contrastive learning objective and the message-passing mechanism. Specifically, GNN captures structural information through message-passing, which inherently promotes local smoothness in node representations. For instance, a k -layer GNN aggregates information from k -hop neighborhoods. This process can be viewed as minimizing the graph Laplacian energy:

$$E(\mathbf{Z}) = \frac{1}{2} \sum_{(i,j) \in \mathcal{E}} \|\mathbf{z}_i - \mathbf{z}_j\|^2, \quad (4)$$

which encourages adjacent nodes to be close in the embedding space. In contrast, the InfoNCE loss promotes global separability: embeddings of different nodes are pushed apart regardless of their structural proximity.

In summary, message passing promotes local smoothness by encouraging structurally close nodes to have similar representations, while InfoNCE enforces global separability by pushing all node embeddings apart to maximize discrimination. These two objectives are fundamentally at odds. When the InfoNCE loss is overly optimized, the separation effect dominates, gradually diminishing the encoder's sensitivity to structural perturbations. This inherent conflict aligns with our empirical findings: as training progresses, the influence of message passing is progressively suppressed, leading to a reduced capacity of the encoder to capture and reflect structural variations.

4 THE PROPOSED METHOD

From the Bayesian perspective, we propose a Structure-Preserving Regularization (SPR) framework to mitigate contrastive overfitting, which introduces the structural prior. This prior constrains the encoder to capture structural information by aligning node embeddings with both local connectivity patterns and global structural roles. In particular, it keeps the embeddings of nodes with equivalent structure more similar, as well as embeds structural role cues that ensures properties such as node centrality to be inferred from the learned representations. In addition, we propose a simple yet effective parameter-free post-hoc embedding enhancement mechanism, which directly improves the quality of the learned representations, particularly in overfitting scenarios. Refer to Appendix E.1 for the complete algorithm pseudo code.

270 4.1 STRUCTURE-PRESERVING FRAMEWORK
 271

272 **Local Structure Context Preservation.** Local structural information characterizes the short-range
 273 context dependencies among nodes in the graph. To preserve it, we maintain the ability of mutual
 274 inference between a node and its contextual neighbors. The mutual inferability is quantified by the
 275 mutual information (MI) $\mathcal{I}_\phi(\tilde{Z}; Z)$, where \tilde{Z} is the random variable of neighborhood embeddings $\tilde{\mathbf{Z}}$,
 276 and Z is the random variable of anchor node embeddings \mathbf{Z} . Let $P(Z, \tilde{Z})$ be the joint distribution
 277 with $P(Z)$ and $P(\tilde{Z})$ the marginal distributions. We apply the Jensen-Shannon MI estimator to
 278 maximize $\mathcal{I}_\phi(\tilde{Z}; Z)$ as follow:

279
$$\mathcal{I}_{\mathcal{D}, \phi}^{JSD}(\tilde{Z}; Z) := \mathbb{E}_{(z, \tilde{z}) \sim P(Z, \tilde{Z})} \log \mathcal{D}(z, \tilde{z}) + \mathbb{E}_{z \sim P(Z), \tilde{z} \sim P(\tilde{Z})} \log(1 - \mathcal{D}(z, \tilde{z})). \quad (5)$$

280 For the optimal discriminator \mathcal{D}^* , $\mathcal{I}_{\mathcal{D}^*, \phi}^{JSD}(\tilde{Z}; Z) = 2D_{\text{JS}}(P(Z, \tilde{Z}) \parallel P(Z)P(\tilde{Z})) - \log 4$ (see Appendix C for a proof). Therefore, any parameters that maximize the above estimator also maximize the JS divergence between the joint and marginal distributions. Moreover, as shown in (Hjelm et al., 2018), $D_{\text{JS}}(P(Z, \tilde{Z}) \parallel P(Z)P(\tilde{Z}))$ is a monotonic function of the point-wise mutual information, which implies that maximizing it is equivalent to maximize the mutual information $\mathcal{I}_\phi(\tilde{Z}; Z)$.

281 Therefore, we take maximizing $\mathcal{I}_{\mathcal{D}, \phi}^{JSD}(\tilde{Z}; Z)$ as the optimization objective, and rewrite it to obtain
 282 the empirical objective as follows:

283
$$\begin{aligned} & \arg \max_{\mathcal{D}, \phi} \left\{ \mathcal{I}_{\mathcal{D}, \phi}^{JSD}(\tilde{Z}; Z) \right\} \\ &= \arg \max_{\mathcal{D}, \phi} \left\{ \mathbb{E}_{(z, \tilde{z}) \sim P(Z, \tilde{Z})} \log \mathcal{D}(z, \tilde{z}) + \mathbb{E}_{z \sim P(Z), \tilde{z} \sim P(\tilde{Z})} \log(1 - \mathcal{D}(z, \tilde{z})) \right\} \\ &= \arg \min_{\mathcal{D}, \phi} \left\{ -\mathbb{E}_{\tilde{z} \sim P(\tilde{Z})} \left[\mathbb{E}_{z \sim P(Z|\tilde{Z})} \log \mathcal{D}(z, \tilde{z}) + \mathbb{E}_{z \sim P(Z)} \log(1 - \mathcal{D}(z, \tilde{z})) \right] \right\} \\ &\approx \arg \min_{\mathcal{D}, \phi} \left\{ -\frac{1}{|\mathcal{V}|} \sum_{i \in \mathcal{V}} [\log \mathcal{D}(\mathbf{z}_i, \tilde{\mathbf{z}}_i) + \log(1 - \mathcal{D}(\mathbf{z}_j, \tilde{\mathbf{z}}_i))] \right\}, \end{aligned} \quad (6)$$

284 where we treat observed node-neighbor context pairs $(\mathbf{z}_i, \tilde{\mathbf{z}}_i)$ as positive samples from joint distribution,
 285 and randomly pairing $\tilde{\mathbf{z}}_i$ with the embedding \mathbf{z}_j of a different node $j \neq i$, which approximates
 286 a sample from the product of marginals. To obtain the neighbor embedding $\tilde{\mathbf{z}}_i$ for each node i , we
 287 employ a graph aggregation operator to perform context representation aggregation, which is defined
 288 as follow:

289
$$\tilde{\mathbf{z}}_i = \text{Aggregator}(\{\mathbf{z}_k | k \in \mathcal{N}_i \cup \{i\}\}). \quad (7)$$

290 **Global Structure Equivalence Preservation.** In addition to local context, we further require the
 291 embeddings to preserve the role of nodes within the whole graph structure. To this end, structurally
 292 equivalent nodes (e.g., those with the same centrality) should be encouraged to have similar embed-
 293 dings. Therefore, we introduce a proxy optimization objective of graph centrality reconstruction,
 294 which predicts node centralities to preserve the embeddings' awareness of global structural roles.

295 Let $C \in \mathbb{R}^{N \times B}$ denote the centrality matrix of a graph with N nodes and B different centrality
 296 measures. Each entry $c_{i,j}$ represents the value of the j -th centrality measure for node v_i . Thus, the
 297 i -th row $C_{i,:}$ corresponds to the centrality profile of node v_i across all B measures, while the j -th column
 298 $C_{:,j}$ contains the values of the j -th centrality measure for all nodes.

299 We optimize the reconstruction objective as follow:

300
$$\arg \min_{\xi, \phi} \left\{ \frac{1}{NB} \|h_\xi(f_\phi(\mathbf{X}, \mathbf{A})) - C\|^2 \right\}, \quad (8)$$

301 where h_ξ is a proxy centrality predicting network.

302 **Regularized learning objective.** In summary, the total optimization objective of structure decoder
 303 is as follow:

304
$$\mathcal{L}_{\text{reg}} = -\frac{1}{|\mathcal{V}|} \sum_{i \in \mathcal{V}} [\log \mathcal{D}(\mathbf{z}_i, \tilde{\mathbf{z}}_i) + \log(1 - \mathcal{D}(\mathbf{z}_j, \tilde{\mathbf{z}}_i))] + \frac{1}{NB} \|h_\xi(f_\phi(\mathbf{X}, \mathbf{A})) - C\|^2. \quad (9)$$

324 The final optimization objective of the regularized GCL is:
325

$$\mathcal{L} = \mathcal{L}_{\text{con}} + \mathcal{L}_{\text{reg}}, \quad (10)$$

327 where \mathcal{L}_{con} is a certain contrastive loss, such as Equation (1).
328

329 4.2 POST-HOC STRUCTURAL AUGMENTATION 330

331 Beyond regularizing the optimization process, we introduce an explicit structure injection mechanism
332 to directly enhance node embeddings. As analyzed in Section 3.2, the main source of structural
333 information loss in embeddings is the failure of the encoder’s message-passing. Motivated by SGC
334 (Wu et al., 2019), we remedy this by applying message-passing directly on the embeddings to
335 explicitly inject structural information. Let $\text{MP}(\mathbf{X}, \mathbf{A}) = \hat{\mathbf{D}}^{-\frac{1}{2}} \hat{\mathbf{A}} \hat{\mathbf{D}}^{-\frac{1}{2}} \mathbf{X}$ denotes a single layer
336 message-passing rule, where $\hat{\mathbf{A}} = \mathbf{A} + \mathbf{I}_N$ is the adjacency matrix with inserted self-loops, and $\hat{\mathbf{D}}$ is
337 its corresponding degree matrix. The structure-augmented embeddings \mathbf{Z}_{aug} are defined as follow:
338

$$\mathbf{Z}_{\text{aug}} = \underbrace{\text{MP}_T \circ \dots \circ (\text{MP}_2 (\text{MP}_1 (\mathbf{Z}, \mathbf{A}), \mathbf{A}), \dots, \mathbf{A})}_{T \text{ layers of message-passing}} \quad (11)$$

341 where $\mathbf{Z} = f_{\phi}(\mathbf{A}, \mathbf{X})$ is the output embeddings of GNN encoder. Since SPR does not make any
342 assumptions about the contrastive loss, it is a framework that compatible with various GCL methods.
343

344 5 EXPERIMENTAL STUDY 345

346 5.1 EXPERIMENTAL SETUP 347

348 **Datasets and Baselines** We conduct experiments on six widely used benchmark datasets: Cora,
349 CiteSeer, PubMed (Yang et al., 2016), Am-Photo, Co-Cs (Shchur et al., 2019), and Wiki-CS (Mernyei
350 & Cangea, 2020). We compare the performance of base GCL methods and their variants regularized
351 by SPR under the same hyper-parameters (following their original designs). Specifically, we adopt
352 eight representative GCL models, including GRACE (Zhu et al., 2020), GCA (Zhu et al., 2021b),
353 PiGCL (He et al., 2024), ReGCL (Ji et al., 2024), ProGCL (Xia et al., 2022), GRACE+ (Chi & Ma,
354 2024), HomoGCL (Li et al., 2023), and GRAPE (Hao et al., 2024). More details about the datasets
355 and baselines are provided in Appendix D.
356

357 **Implementation Details** We use a bi-linear scoring function $\mathcal{D}(\mathbf{h}_i, \mathbf{h}_j) = \sigma(\mathbf{h}_i \mathbf{W}^T \mathbf{h}_j)$ as the
358 discriminator network in Equation (6), where \mathbf{W}^T is the trainable matrix and σ is the sigmoid
359 function, and we use GCN convolution operator as the aggregator in Equation (7) for two-hop context
360 aggregation to construct neighbor embeddings. We use degree, betweenness, average neighbor
361 degree, and PageRank as node centrality measures. For the post-hoc structural augmentation in
362 Equation (11), we set the number of message-passing layers $T = 2$. More implementation details
363 and hyper-parameter settings are provided in Appendix E.2.
364

365 **Evaluation Protocol** To ensure an unbiased evaluation of GCL models, we assess the embeddings
366 extracted from the encoder at the epoch where the contrastive loss has converged, and use them to
367 train a downstream node classifier. All baseline methods are trained for 10,000 iterations with a
368 cosine annealing learning rate scheduler (Loshchilov & Hutter, 2016) to guarantee convergence. For
369 dataset splits, we follow the standard public settings for Cora, CiteSeer, and PubMed (20/50/1000
370 for train/val/test), and adopt random 10%/10%/80% splits for Co-Cs and Am-Photo, and Wiki-CS
371 follow (Zhu et al., 2021b). The downstream node classifier is implemented as logistic regression
372 (Kleinbaum et al., 2002). We tune it on the validation set to select the best classifier and then evaluate
373 on the test set. For each experiment, we repeat it 10 times using different random seeds, and present
374 the mean and standard deviation of the result accuracy.
375

376 5.2 MAIN RESULTS AND ABLATION 377

378 To demonstrate the effect of SPR, as well as the individual contributions of the structure decoder and
379 post-hoc structural augmentation during GCL training, we compare the node classification accuracy
380 of base GCL methods and their regularized variants.
381

378
379 Table 3: Node classification accuracy (%) with converged encoders. Results are reported for variants
380 with post-hoc augmentation (+PA), structure decoder (+SD), and their combination (+SPR). The top
381 1st, 2nd and 3rd results are highlighted with accuracy improvements. OOM denotes out of memory.
382

Method	Cora	CiteSeer	PubMed	Am-Photo	Co-CS	Wiki-CS
GRACE	51.00 \pm 0.00	51.68 \pm 0.41	61.88 \pm 0.86	90.28 \pm 0.15	84.90 \pm 0.08	79.03 \pm 0.05
+PA	66.08\pm0.30 15.08 \uparrow	55.76\pm0.83 4.08 \uparrow	68.72\pm0.43 6.84 \uparrow	92.39\pm0.29 2.11 \uparrow	86.96\pm0.17 2.06 \uparrow	79.04\pm0.22 0.01 \uparrow
+SD	74.56\pm0.71 23.56 \uparrow	66.84\pm0.94 15.16 \uparrow	79.36\pm0.39 17.48 \uparrow	90.40\pm0.17 0.12 \uparrow	88.69\pm0.17 4.69 \uparrow	79.16\pm0.09 0.13 \uparrow
+SPR	75.12\pm0.52 24.12 \uparrow	64.80\pm0.52 13.12 \uparrow	80.20\pm0.28 18.32 \uparrow	92.67\pm0.35 2.39 \uparrow	87.82\pm0.27 2.92 \uparrow	79.40\pm0.53 0.37 \uparrow
GCA	64.12 \pm 0.94	42.26 \pm 0.73	54.42 \pm 1.54	90.39 \pm 0.02	79.45 \pm 0.03	71.91 \pm 0.06
+PA	70.46\pm1.27 6.34 \uparrow	46.14\pm0.61 3.88 \uparrow	62.38\pm0.93 7.96 \uparrow	90.75\pm0.02 0.36 \uparrow	85.62\pm0.03 6.17 \uparrow	72.73\pm0.08 0.82 \uparrow
+SD	72.50\pm1.11 8.38 \uparrow	55.10\pm0.55 12.84 \uparrow	65.50\pm2.26 11.08 \uparrow	92.52\pm0.26 2.13 \uparrow	89.13\pm0.07 9.68 \uparrow	79.82\pm0.07 7.91 \uparrow
+SPR	75.38\pm0.87 11.26 \uparrow	57.40\pm1.03 15.14 \uparrow	65.82\pm0.93 11.40 \uparrow	91.82\pm0.08 1.43 \uparrow	89.50\pm0.04 10.05 \uparrow	79.60\pm0.09 7.69 \uparrow
PiGCL	60.22 \pm 0.41	44.18 \pm 0.68	55.36 \pm 1.87	90.54 \pm 0.03	80.39 \pm 0.04	77.32 \pm 0.03
+PA	62.10\pm1.22 1.88 \uparrow	46.92\pm0.48 2.74 \uparrow	68.06\pm0.40 12.70 \uparrow	91.72\pm0.07 1.18 \uparrow	84.68\pm0.04 4.29 \uparrow	77.55\pm0.06 0.22 \uparrow
+SD	62.14\pm0.31 1.92 \uparrow	47.92\pm0.98 3.74 \uparrow	79.02\pm0.22 23.66 \uparrow	93.29\pm0.06 2.75 \uparrow	88.87\pm0.11 8.48 \uparrow	80.33\pm0.28 3.01 \uparrow
+SPR	68.42\pm0.20 8.20 \uparrow	51.04\pm0.55 6.86 \uparrow	79.26\pm0.88 23.90 \uparrow	92.59\pm0.26 2.05 \uparrow	89.31\pm0.07 8.92 \uparrow	80.00\pm0.14 2.68 \uparrow
ReGCL	52.02 \pm 0.64	43.26 \pm 0.72	OOM	OOM	OOM	OOM
+PA	64.14\pm0.79 12.12 \uparrow	52.02\pm1.33 8.76 \uparrow	N/A	N/A	N/A	N/A
+SD	68.68\pm0.53 16.66 \uparrow	54.36\pm0.94 11.10 \uparrow	N/A	N/A	N/A	N/A
+SPR	71.62\pm0.50 19.60 \uparrow	57.54\pm1.40 14.28 \uparrow	N/A	N/A	N/A	N/A
ProGCL	65.40 \pm 1.14	47.00 \pm 0.67	63.26 \pm 1.26	91.70 \pm 0.03	80.20 \pm 0.01	76.94 \pm 0.01
+PA	72.32\pm0.87 6.92 \uparrow	53.10\pm1.07 6.10 \uparrow	68.66 \pm 0.745.40 \uparrow	91.73\pm0.10 0.03 \uparrow	84.85\pm0.04 4.65 \uparrow	77.26\pm0.06 0.32 \uparrow
+SD	72.24\pm0.53 6.84 \uparrow	59.06\pm0.56 12.06 \uparrow	77.82\pm0.45 14.56 \uparrow	92.18\pm0.21 0.48 \uparrow	91.25\pm0.10 11.05 \uparrow	79.25\pm0.36 2.31 \uparrow
+SPR	77.52\pm0.57 12.12 \uparrow	60.22\pm0.98 13.22 \uparrow	79.20\pm0.55 15.94 \uparrow	92.91\pm0.12 1.21 \uparrow	90.69\pm0.04 10.49 \uparrow	78.98\pm0.29 2.04 \uparrow
GRACE+	71.64 \pm 2.48	62.48 \pm 0.89	75.10 \pm 0.94	OOM	OOM	OOM
+PA	72.98\pm2.64 1.34 \uparrow	62.72\pm0.49 0.24 \uparrow	76.23\pm0.04 1.13 \uparrow	N/A	N/A	N/A
+SD	71.68\pm0.65 0.04 \uparrow	62.96\pm0.67 0.48 \uparrow	78.43\pm0.93 3.33 \uparrow	N/A	N/A	N/A
+SPR	73.44\pm0.65 1.80 \uparrow	63.02\pm1.12 0.54 \uparrow	78.83\pm0.23 3.73 \uparrow	N/A	N/A	N/A
HomoGCL	69.64 \pm 0.08	46.52 \pm 0.92	70.24 \pm 0.62	92.89\pm0.29	89.27\pm0.40	79.03\pm0.07
+PA	72.84\pm1.22 3.20 \uparrow	49.64\pm0.95 3.12 \uparrow	76.12\pm0.53 5.88 \uparrow	88.81 \pm 0.27	85.26 \pm 0.53	76.45 \pm 0.81
+SD	75.00\pm1.18 5.36 \uparrow	58.44\pm0.15 11.92 \uparrow	78.12\pm0.52 7.88 \uparrow	91.06\pm0.18	90.04 \pm 0.107.77 \uparrow	81.26\pm0.34 2.23 \uparrow
+SPR	75.64\pm0.34 6.00 \uparrow	59.68\pm1.03 13.16 \uparrow	76.68\pm0.24 6.44 \uparrow	89.70\pm0.27	87.94\pm0.22	78.38\pm0.41
GRAPE	57.92 \pm 0.10	48.56 \pm 1.35	68.76 \pm 0.20	92.71\pm0.17	84.9 \pm 0.03	81.86\pm0.14
+PA	66.88\pm0.45 8.96 \uparrow	50.64\pm0.79 2.08 \uparrow	73.76\pm0.71 5.00 \uparrow	91.84\pm0.49	86.89\pm0.04 1.99 \uparrow	78.70 \pm 0.42
+SD	78.96\pm0.73 21.04 \uparrow	66.68\pm0.48 18.12 \uparrow	76.04\pm0.32 7.28 \uparrow	91.97\pm0.06	89.48 \pm 0.124.49 \uparrow	79.91\pm0.17
+SPR	77.60\pm0.59 19.68 \uparrow	67.44\pm1.18 18.88 \uparrow	75.36\pm0.08 6.60 \uparrow	90.07 \pm 0.47	88.85\pm0.24 3.95 \uparrow	78.80\pm0.24

404 As shown in Table 3, **firstly**, we observe that SPR can improve the accuracy gained by baseline meth-
405 ods in most conditions after seamlessly integrated into them in a plug-and-play manner. This suggests
406 that SPR effectively mitigates the overfitting issue present in existing GCL approaches. **Secondly**, the
407 accuracy gains are more pronounced for structure-sensitive datasets (Cora, CiteSeer, and PubMed)
408 than for structure-insensitive datasets (Am-Photo, Co-CS, and Wiki-CS). This results further supports
409 our analysis in Section 3 for datasets that are inherently less dependent on structural information,
410 the loss of such information has a limited impact on the encoder’s performance in downstream
411 classification. **Thirdly**, among the baseline methods, GRACE+ and HomoGCL achieves relative
412 better converged accuracy, this can be attributed to their pre-designed structure-aware contrastive loss.
413 GRACE+ estimates node similarity and samples negatives from a small set of high-confidence nodes
414 based on prior graph structure, thereby incorporating structural information. HomoGCL similarly
415 augments the positive set using homophily of graph. These approaches align with our proposed idea
416 that GCL should preserve structural information in encoders.

417 We also conduct ablation experiment by applying structure decoder (SD) and post-hoc structural
418 augmentation (PA) individually to the baseline methods, the results of which are shown in Table 3.
419 For structure-sensitive datasets, embeddings enhanced with PA almost always improve accuracy
420 compared to the original learned embeddings (e.g., GRACE vs. GRACE+PA, GRACE+SD vs.
421 GRACE+SPR), indicating that PA is an effective embedding augmentation strategy. In contrast,
422 for structure-insensitive datasets, introducing PA may lead to over-smoothing of node embeddings,
423 slightly reducing accuracy (e.g., HomoGCL on Am-Photo, Co-CS, and Wiki-CS), this phenomenon
424 is typically observed when the original embeddings already achieve high accuracy. Meanwhile, SD
425 yields consistent accuracy improvements across various datasets and baseline methods, which show
426 its effectiveness. However, SPR produces a better overall performance than that of AP or SD alone,
427 benefiting from the combination of them.

5.3 EMBEDDING VISUALIZATION

428 In this section, we visualize node embeddings during training. Firstly, based on label information, we
429 divide the negative set of anchor nodes during training into two subsets: true negatives (with labels
430 different from the anchor node) and false negatives (with the same label as the anchor node). We then

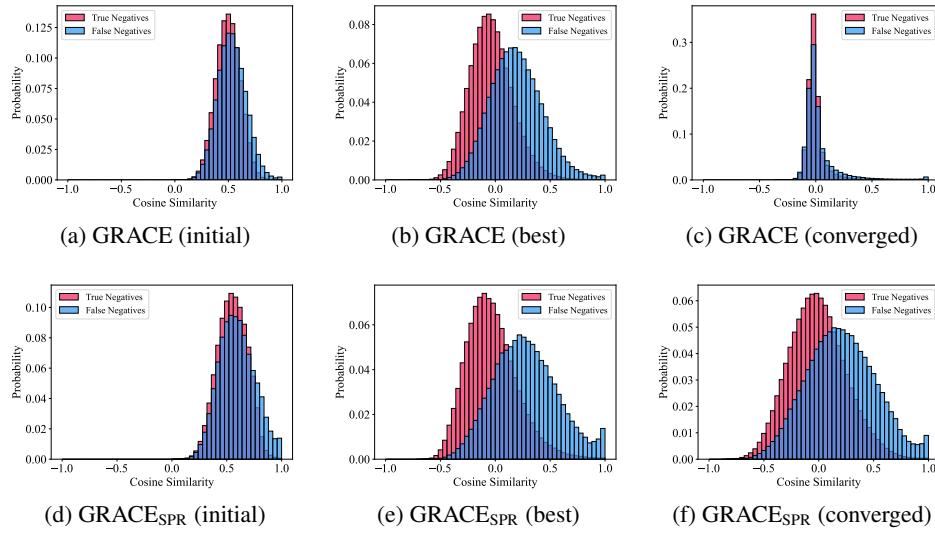


Figure 4: The similarity distributions between anchors and true negatives, as well as between anchors and false negatives. The results are obtained on CiteSeer dataset.

visualize the similarity distributions between anchor nodes and true negatives, as well as that between anchor nodes and false negatives. Ideally, these two distributions should form a non-overlapping bimodal pattern, with the expected similarity of true negatives being lower than that of false negatives. Figure 4 illustrates the similarity distributions of GRACE and GRACE_{SPR} at the early, best, and final stages of training. We observe that, without regularization, GRACE will push both true and false negatives away during training, while GRACE_{SPR} consistently preserves the bimodal distribution.

We further visualize the impact of PA on node embeddings through t-SNE dimensionality reduction. As shown in Figure 5, after a simple parameter-free message-passing, the quality of node embeddings can be clearly improved. This demonstrates the effectiveness of our post-hoc augmentation, especially under overfitting scenarios. More visualization results, such as intra-class similarity and comparisons of classification accuracy curves during training, are presented in Appendix B.

6 CONCLUSIONS

This paper revisits Graph Contrastive Learning (GCL) through the lens of contrastive overfitting. We highlight a critical yet previously overlooked issue: empirically optimal GCL encoders often lead to poor downstream performance. Our analysis reveals that this overfitting arises from the structure-agnostic nature of the contrastive loss, which results in the loss of essential graph structural information. To mitigate this problem, we propose a simple yet effective Structure-Preserving Regularization (SPR) approach that introduces structural priors by preserving both the mutual inferability between a node and its neighborhood as well as its centrality reconstruction ability. This work sheds new light on the generalization behavior of GCL and provides a practical path toward building more reliable unsupervised graph learning frameworks.

7 LLM USAGE AND REPRODUCIBILITY

This manuscript has been polished with the assistance of a ChatGPT. The authors take full responsibility for the content. This work adheres to the ICLR Code of Ethics. To facilitate reproducibility, our anonymous code implementation is available at: <https://anonymous.4open.science/r/SPR-GCL-DDB3/>

486 REFERENCES

487

488 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
489 contrastive learning of visual representations. In *International conference on machine learning*,
490 2020.

491 Hongliang Chi and Yao Ma. Enhancing contrastive learning on graphs with node similarity. In
492 *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*,
493 2024.

494 Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
495 message passing for quantum chemistry. In *International conference on machine learning*, 2017.

496

497 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
498 *Advances in Neural Information Processing Systems*, 2017.

499

500 Zhezheng Hao, Haonan Xin, Long Wei, Liaoyuan Tang, Rong Wang, and Feiping Nie. Towards
501 expansive and adaptive hard negative mining: Graph contrastive learning via subspace preserving.
502 In *Proceedings of the ACM Web Conference 2024*, 2024.

503

504 Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on
505 graphs. In *International conference on machine learning*, pp. 4116–4126, 2020.

506

507 Dongxiao He, Jitao Zhao, Cuiying Huo, Yongqi Huang, Yuxiao Huang, and Zhiyong Feng. A new
508 mechanism for eliminating implicit conflict in graph contrastive learning. In *Proceedings of the
509 AAAI Conference on Artificial Intelligence*, 2024.

510

511 Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
512 unsupervised visual representation learning. In *Proceedings of the IEEE/CVF conference on
513 computer vision and pattern recognition*, pp. 9729–9738, 2020.

514

515 R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam
516 Trischler, and Yoshua Bengio. Learning deep representations by mutual information estimation
517 and maximization. *arXiv preprint arXiv:1808.06670*, 2018.

518

519 Cheng Ji, Zixuan Huang, Qingyun Sun, Hao Peng, Xingcheng Fu, Qian Li, and Jianxin Li. Regcl:
520 rethinking message passing in graph contrastive learning. In *Proceedings of the AAAI Conference
521 on Artificial Intelligence*, 2024.

522

523 Wei Ju, Yifan Wang, Yifang Qin, Zhengyang Mao, Zhiping Xiao, Junyu Luo, Junwei Yang, Yiyang
524 Gu, Dongjie Wang, Qingqing Long, et al. Towards graph contrastive learning: A survey and
525 beyond. *arXiv preprint arXiv:2405.11868*, 2024.

526

527 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
528 In *International Conference on Learning Representations*, 2017.

529

530 David G Kleinbaum, K Dietz, M Gail, Mitchel Klein, and Mitchell Klein. *Logistic regression*.
531 Springer, 2002.

532

533 Wen-Zhi Li, Chang-Dong Wang, Hui Xiong, and Jian-Huang Lai. Homogcl: Rethinking homophily
534 in graph contrastive learning. In *Proceedings of the 29th ACM SIGKDD Conference on Knowledge
535 Discovery and Data Mining*, 2023.

536

537 Yixin Liu, Ming Jin, Shirui Pan, Chuan Zhou, Yu Zheng, Feng Xia, and S Yu Philip. Graph self-
538 supervised learning: A survey. *IEEE transactions on knowledge and data engineering*, 35(6):
539 5879–5900, 2022.

540

541 Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. *arXiv
542 preprint arXiv:1608.03983*, 2016.

543

544 Péter Mernyei and Cătălina Cangea. Wiki-cs: A wikipedia-based benchmark for graph neural
545 networks. *arXiv preprint arXiv:2007.02901*, 2020.

546

547 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
548 coding. *arXiv preprint arXiv:1807.03748*, 2018.

540 Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
541 of graph neural network evaluation. *arXiv preprint arXiv:1811.05868*, 2018.
542

543 Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Gunnemann. Pitfalls
544 of graph neural network evaluation, 2019.

545 Michael Tschannen, Josip Djolonga, Paul K. Rubenstein, Sylvain Gelly, and Mario Lucic. On mutual
546 information maximization for representation learning. In *International Conference on Learning
547 Representations*, 2020.

548 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
549 Bengio. Graph attention networks. In *International Conference on Learning Representations*,
550 2018.

551 Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
552 Hjelm. Deep graph infomax. *arXiv preprint arXiv:1809.10341*, 2018.

553 Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplify-
554 ing graph convolutional networks. In *International conference on machine learning*, 2019.

555 Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
556 comprehensive survey on graph neural networks. *IEEE transactions on neural networks and
557 learning systems*, 32(1):4–24, 2020.

558 Jun Xia, Lirong Wu, Ge Wang, Jintao Chen, and Stan Z Li. Progcl: Rethinking hard negative mining
559 in graph contrastive learning. In *Proceedings of the International Conference on Machine Learning*,
560 2022.

561 Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
562 graph embeddings. In *International conference on machine learning*, 2016.

563 Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised
564 learning via redundancy reduction. In *International conference on machine learning*, pp. 12310–
565 12320. PMLR, 2021.

566 Hengrui Zhang, Qitian Wu, Junchi Yan, David Wipf, and Philip S Yu. From canonical correlation
567 analysis to self-supervised graph neural networks. In *Advances in Neural Information Processing
568 Systems*, 2021.

569 Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep Graph Contrastive
570 Representation Learning. In *ICML Workshop on Graph Representation Learning and Beyond*,
571 2020.

572 Yanqiao Zhu, Yichen Xu, Qiang Liu, and Shu Wu. An empirical study of graph contrastive learning.
573 In *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
574 Track (Round 2)*, 2021a.

575 Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph contrastive learning
576 with adaptive augmentation. In *Proceedings of the Web Conference 2021*, 2021b.

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 A RELATED WORKS
595

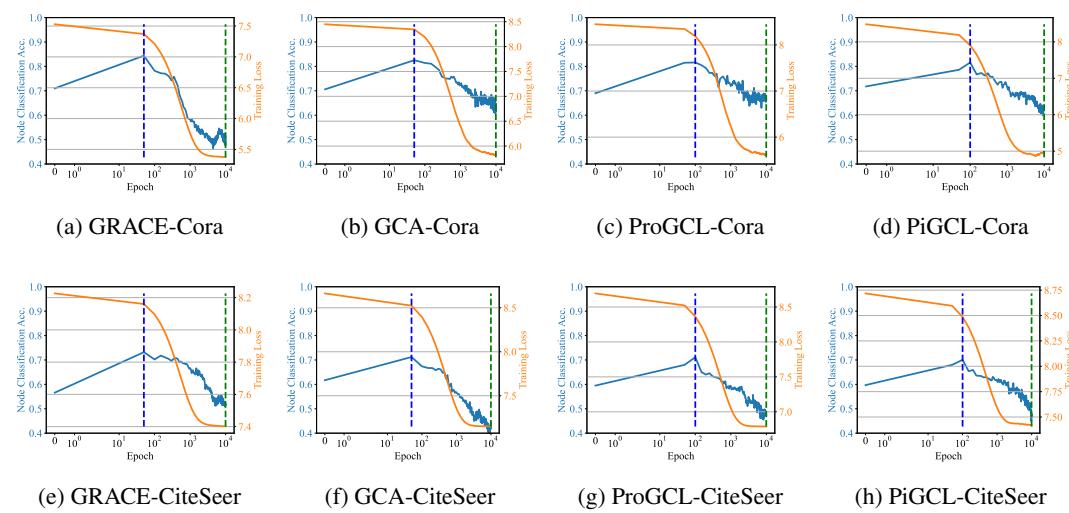
596 **Graph Neural Network** Graph Neural Networks (GNNs) (Kipf & Welling, 2017; Veličković
597 et al., 2018; Hamilton et al., 2017; Wu et al., 2020) have become a fundamental architecture for
598 learning representations from graph-structured data. Most widely used GNN layers are built upon the
599 message-passing mechanism (Gilmer et al., 2017), which iteratively aggregates information from a
600 node’s neighbors to encode the structural properties of the graph.

601 **Graph Contrastive Learning** Contrastive learning (CL) (Oord et al., 2018; Chen et al., 2020; He
602 et al., 2020; Zbontar et al., 2021) has emerged as a prominent self-supervised learning paradigm
603 that captures the inherent similarities and differences among data instances, thereby reducing the
604 dependence on labeled data. Its core principle is to pull together representations of similar instances
605 (positive pairs) while pushing apart those of dissimilar instances (negative pairs) in the embedding
606 space. There are many work adapting CL to graph representation learning, known as graph contrastive
607 learning (GCL) (Veličković et al., 2018; Zhang et al., 2021; Zhu et al., 2020; Hassani & Khasahmadi,
608 2020; Zhu et al., 2021a), which brings a new paradigm in self-supervised graph representation
609 learning.

610 **False Negatives in GCL** In GCL methods based on the InfoNCE loss, one prominent issue is that
611 all other nodes, apart from the anchor itself, are treated as negative samples and are pushed away
612 in the embedding space. Several studies have pointed out that many of these negatives are in fact
613 false negatives-nodes sharing the same class label as the anchor-which ideally should not be repelled.
614 To address the issue of imprecise positive and negative sample sets, various approaches have been
615 proposed Xia et al. (2022); Li et al. (2023); Chi & Ma (2024); Hao et al. (2024). For instance, Xia
616 et al. (2022) employs a mixture of Beta distributions to estimate the likelihood of a node being a
617 false negative. However, these methods generally assume access to implicit label-related signals and
618 focus on improving the theoretical upper bound of GCL performance, often neglecting the behavior
619 of encoders at convergence. Existing works also tend to treat label information as a monolithic entity,
620 without distinguishing between structural and attribute-based components. Furthermore, most studies
621 evaluate their methods on datasets where label dependence on structure varies, but the implications
622 of this factor are seldom explored.

623
624 B ADDITIONAL EXPERIMENTAL RESULTS
625

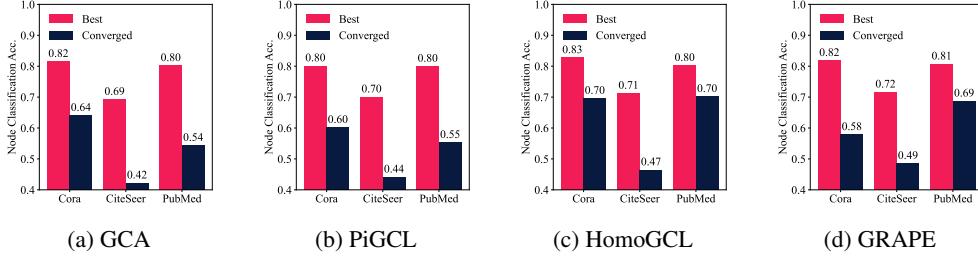
626 B.1 CONTRASTIVE OVERTFITTING
627



631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356

648
649
650
651
652 Figure 6 illustrates the widespread presence of contrastive overfitting across different GCL methods
653 and datasets.
654
655

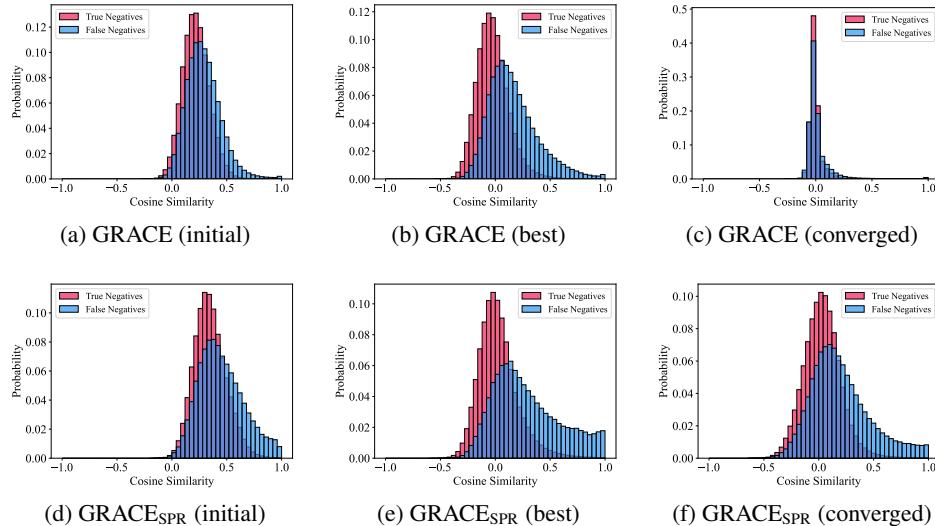
656 B.2 PERFORMANCE DEGRADATION 657 658



659
660
661
662
663
664 Figure 7: Performance degradation of GCA, PiGCL, HomoGCL, and GRAPE on different datasets.

665
666
667 Figure 7 shows the performance degradation of four InfoNCE-based GCL methods.
668
669
670

671 B.3 EXTRA VISUALIZATION 672 673



674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691 Figure 8: The similarity distributions between anchors and true negatives, as well as between anchors
692 and false negatives. The results are obtained on Cora dataset.
693
694
695

696
697
698 Figure 8 shows the similarity distributions of GRACE and GRACE_{SPR} at the early, best, and final
699 stages of training.
700

701 Figure 9 shows that after applying the SPR regularization strategy, the downward trend in downstream
702 task accuracy during training is significantly alleviated.

703 Figures 10 to 12 illustrate the intra-class node similarity. By comparison, we can observe that SPR
704 effectively preserves the similarity among nodes of the same class at convergence.

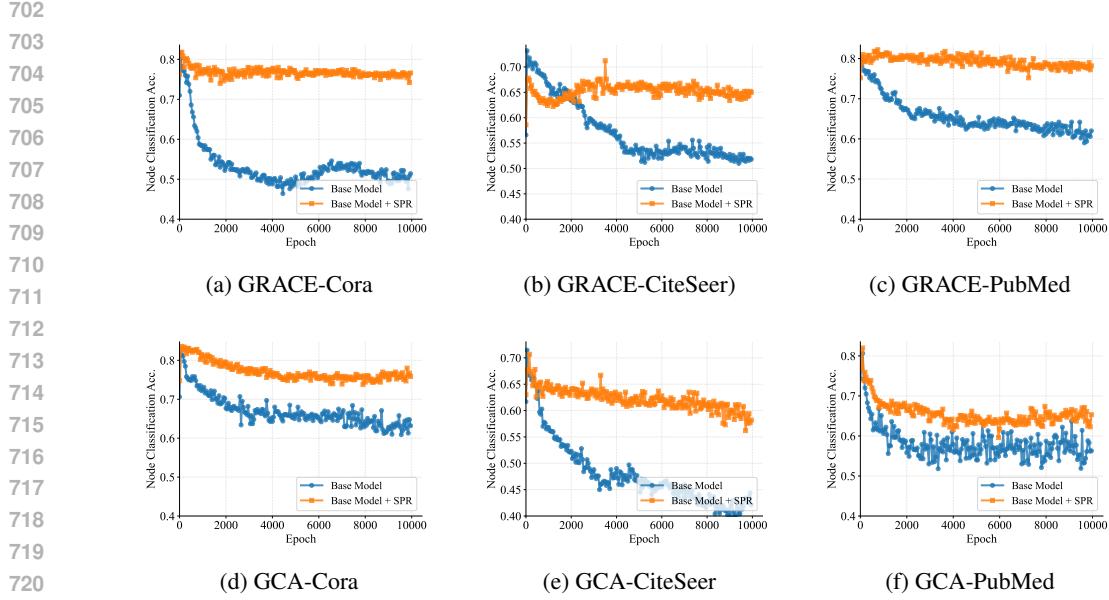


Figure 9: Comparison of downstream node classification accuracy during training.

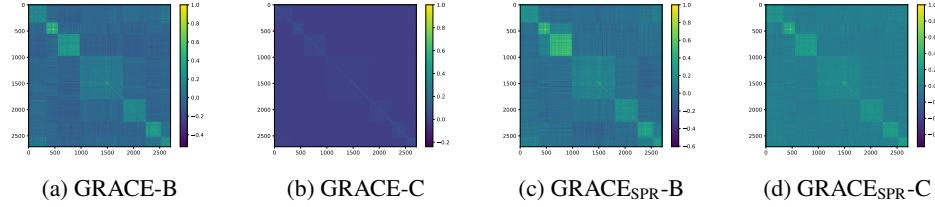


Figure 10: Intra-class node similarity matrix on the Cora dataset, with nodes (rows and columns) reordered by class. "B" represent Best, "C" represent Converged.

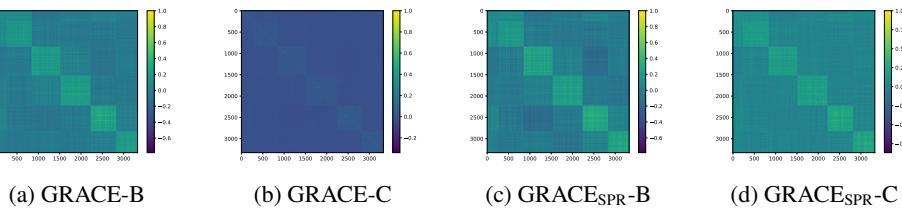


Figure 11: Intra-class node similarity matrix on the CiteSeer dataset, with nodes (rows and columns) reordered by class. "B" represent Best, "C" represent Converged.

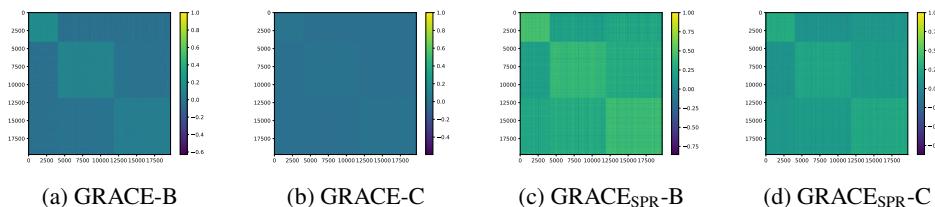


Figure 12: Intra-class node similarity matrix on the PubMed dataset, with nodes (rows and columns) reordered by class. "B" represent Best, "C" represent Converged.

756 **C PROOFS**

758 **Theorem 1.** Let \mathcal{D} be a discriminator trained to distinguish between joint samples $(z, \tilde{z}) \sim P(Z, \tilde{Z})$
759 and marginal samples $(z, \tilde{z}) \sim P(Z)P(\tilde{Z})$. Consider the following objective:
760

761 $\mathcal{I}_{\mathcal{D}}^{\text{JSD}}(\tilde{Z}; Z) := \mathbb{E}_{(z, \tilde{z}) \sim P(Z, \tilde{Z})} [\log \mathcal{D}(z, \tilde{z})] + \mathbb{E}_{z \sim P(Z), \tilde{z} \sim P(\tilde{Z})} [\log(1 - \mathcal{D}(z, \tilde{z}))].$

762 At the optimal discriminator \mathcal{D}^* , the objective evaluates to:
763

764 $\mathcal{I}_{\mathcal{D}^*}^{\text{JSD}}(\tilde{Z}; Z) = 2D_{\text{JS}}\left(P(Z, \tilde{Z}) \parallel P(Z)P(\tilde{Z})\right) - \log 4,$
765

766 where $D_{\text{JS}}(\cdot \parallel \cdot)$ denotes the Jensen-Shannon divergence.
767

768 *Proof.* We rewrite the term $\mathcal{I}_{\mathcal{D}}^{\text{JSD}}(\tilde{Z}; Z)$ as:
769

770
$$\begin{aligned} \mathcal{I}_{\mathcal{D}}^{\text{JSD}}(\tilde{Z}; Z) &:= \mathbb{E}_{(z, \tilde{z}) \sim P(Z, \tilde{Z})} [\log \mathcal{D}(z, \tilde{z})] + \mathbb{E}_{z \sim P(Z), \tilde{z} \sim P(\tilde{Z})} [\log(1 - \mathcal{D}(z, \tilde{z}))] \\ &= \int p(z, \tilde{z}) \log(\mathcal{D}(z, \tilde{z})) + p(z)p(\tilde{z}) \log(1 - \mathcal{D}(z, \tilde{z})) dz d\tilde{z}, \end{aligned} \quad (12)$$

771

773 since $\mathcal{I}_{\mathcal{D}}^{\text{JSD}}(\tilde{Z}; Z)$ is concave in \mathcal{D} , we calculate the first-order derivative:
774

775
$$\frac{\partial \mathcal{I}_{\mathcal{D}}^{\text{JSD}}(\tilde{Z}; Z)}{\partial \mathcal{D}} = \int \frac{p(z, \tilde{z})}{\mathcal{D}} - \frac{p(z)p(\tilde{z})}{1 - \mathcal{D}} dz d\tilde{z},$$

776

777 let $\frac{\partial \mathcal{I}_{\mathcal{D}}^{\text{JSD}}(\tilde{Z}; Z)}{\partial \mathcal{D}} = 0$, we have $\mathcal{D}^* = \frac{p(z, \tilde{z})}{p(z, \tilde{z}) + p(z)p(\tilde{z})}$.
778

779 We plugging \mathcal{D}^* back to Equation (12):
780

781
$$\mathcal{I}_{\mathcal{D}^*}^{\text{JSD}}(\tilde{Z}; Z) = \int p(z, \tilde{z}) \log\left[\frac{p(z, \tilde{z})}{p(z, \tilde{z}) + p(z)p(\tilde{z})}\right] + p(z)p(\tilde{z}) \log\left[\frac{p(z)p(\tilde{z})}{p(z, \tilde{z}) + p(z)p(\tilde{z})}\right] dz d\tilde{z} \quad (13)$$

782

783 Let p denotes $p(z, \tilde{z})$, q denotes $p(z)p(\tilde{z})$,
784

785
$$\begin{aligned} \mathcal{I}_{\mathcal{D}^*}^{\text{JSD}}(\tilde{Z}; Z) &= \int p \log\left[\frac{p}{p+q}\right] + q \log\left[\frac{q}{p+q}\right] dz d\tilde{z} \\ &= \int p \log\left[\frac{p}{p+q}\right] + p \log(2) + q \log\left[\frac{q}{p+q}\right] + q \log(2) - p \log(2) - q \log(2) dz d\tilde{z} \\ &= \int p \log\left[\frac{2p}{p+q}\right] + q \log\left[\frac{2q}{p+q}\right] dz d\tilde{z} - \left(\int pdz d\tilde{z} + \int qdz d\tilde{z}\right) \cdot \log(2) \\ &= 2D_{\text{JS}}(p \parallel q) - \log(4) \\ &= 2D_{\text{JS}}\left(P(Z, \tilde{Z}) \parallel P(Z)P(\tilde{Z})\right) - \log 4 \end{aligned} \quad (14)$$

786

787 \square

788 **D BASELINES AND DATASETS**

799 **D.1 BASELINES**

800 In this section, we give brief introductions of the baselines used in the paper which are not described
801 in the main paper due to the space constraint.
802

803

- **GRACE** learns node representations by generating two graph views (edge dropping +
804 feature masking) and maximizing their agreement based on InfoNCE loss [Chen et al. \(2020\)](#).
805 Code link: <https://github.com/CRIPAC-DIG/GRACE>
- **GCA** performs adaptive augmentation that drops unimportant edges and perturbs unimpor-
806 tant features based on centrality. Code link: <https://github.com/CRIPAC-DIG/>
807 [GCA](#)

- **PiGCL** detects embedding-and-ignoring conflicts via gradient cues and dynamically ignores those negatives during training so the encoder can learn from them adaptively. Code link: <https://github.com/hedongxiao-tju/PiGCL>
- **ReGCL** addresses GNN-GCL conflicts through gradient-guided structure learning and gradient-weighted InfoNCE. Code link: <https://github.com/RingBDStack/ReGCL>
- **ProGCL** models the distribution of negative pairs using a Beta Mixture Model (BMM), enabling it to estimate the probability of a negative sample being a false negative based on embedding similarity. Code link: <https://github.com/junxia97/ProGCL>
- **GRACE Plus**: exploits node similarity to construct anchor-aware sampling distributions which estimates node similarity and samples negatives from a small set of high-confidence nodes. Code link: <https://github.com/frankhlchi/SimEnhancedGCL>
- **HomoGCL**: adopts the homophily assumption by treating all neighbors of an anchor node as positive samples and assigning weights using clustering techniques. Code link: <https://github.com/wenzhilics/HomoGCL>
- **GRAPE**: leverages a subspace-preserving technique to learn the weights of negative samples. Code link: <https://github.com/zz-haooo/WWW24-GRAPE>

D.2 DATASETS

In this section, we give brief introductions of the datasets used in the paper, Table 4 shows detailed information of each dataset.

Table 4: Dataset information statistics.

Dataset	#Nodes	#Edges	#Attributes	#Classes
Cora	2,708	10,556	1,433	7
CiteSeer	3,327	9,228	3,703	6
PubMed	19,717	88,651	500	3
Co-Cs	18,333	163,788	6,805	15
Am-Photo	7,650	238,163	745	8
Wiki-CS	11,701	431,726	300	10

- **Cora** [Yang et al. \(2016\)](#): A citation network where each node represents a scientific publication in the field of machine learning, and edges denote citation relationships between papers. Each publication is described by a sparse bag-of-words feature vector derived from its abstract, and is categorized into one of seven predefined research topics.
- **CiteSeer** [Yang et al. \(2016\)](#): A citation network composed of scientific publications in the field of computer science. Similar to Cora, nodes represent documents and edges represent citation links. Each document is represented by a sparse bag-of-words vector of its content.
- **PubMed** [Yang et al. \(2016\)](#): A citation network of biomedical research papers from the PubMed database. Each node corresponds to a paper, and edges indicate citation links. Node features are TF-IDF weighted word vectors based on the paper abstracts.
- **Co-CS** [Shchur et al. \(2018\)](#): An academic network constructed from the Microsoft Academic Graph, where nodes represent authors and edges denote co-authorship relationships-i.e., two authors are connected if they have collaborated on at least one paper. Each node is associated with a sparse bag-of-words feature vector derived from the keywords of the papers authored by that individual. The label assigned to each author corresponds to their most active research area.
- **Am-Photo** [Shchur et al. \(2018\)](#): A network of co-purchase relationships constructed from Amazon, where nodes represent products and edges indicate that two products are frequently bought together. Each node is associated with a sparse bag-of-words feature vector derived from product reviews and is labeled according to its category.

864 • **Wiki-CS** [Mernyei & Cangea \(2020\)](#): A reference network derived from Wikipedia, where
 865 nodes represent computer science-related articles and edges denote hyperlinks between
 866 them. Each node is assigned one of ten class labels, corresponding to distinct subfields
 867 within computer science. Node features are computed by averaging the pre-trained GloVe
 868 word embeddings of the words appearing in the respective article.
 869

870 **E IMPLEMENTATION DETAILS**
 871

872 **E.1 ALGORITHM PSEUDO CODE**
 873

874 We provide the algorithm pseudo code as follow:
 875

876 **Algorithm 1** Regularized GCL

877 **Input:** original graph $\mathcal{G} = (\mathbf{A}, \mathbf{X})$, encoder f_ϕ ;
 878 **Output:** the converged encoder f_{ϕ^*} , node embeddings \mathbf{Z} ;
 879 1: Initialize encoder f_ϕ
 880 2: **while** not converge **do**
 881 3: generate two augmented graph views \mathcal{G}_U and \mathcal{G}_V
 882 4: obtain node embeddings \mathbf{Z} , \mathbf{U} , \mathbf{V} of \mathcal{G} , \mathcal{G}_U , \mathcal{G}_V using encoder ϕ
 883 5: compute the contrastive loss \mathcal{L}_{con} of a base GCL method (e.g., Equation (1))
 884 6: compute neighbor context embedding $\tilde{\mathbf{Z}}$ by Equation (7)
 885 7: compute local context mutual inference loss \mathcal{L}_{MI} by Equation (6)
 886 8: compute global equivalence loss \mathcal{L}_{ge} by Equation (8)
 887 9: the final loss $\mathcal{L} = \mathcal{L}_{\text{con}} + \mathcal{L}_{\text{MI}} + \mathcal{L}_{\text{ge}}$
 888 10: update the parameters of f_ϕ via minimizing \mathcal{L}
 889 11: **end while**
 890 12: $\tilde{\mathbf{A}} \leftarrow \hat{\mathbf{D}}^{-\frac{1}{2}} \hat{\mathbf{A}} \hat{\mathbf{D}}^{-\frac{1}{2}}$
 891 13: $\mathbf{Z} \leftarrow f_{\phi^*}(\mathbf{A}, \mathbf{X})$
 892 14: $\mathbf{Z} \leftarrow \tilde{\mathbf{A}}^2 \mathbf{Z}$

893
 894 **E.2 IMPLEMENTATION DETAILS**
 895

896 To identify node structural equivalence, we select four important centrality-related node properties
 897 to represent a node’s role in the graph topology and reconstruct them through decoding. These
 898 attributes include node degree, betweenness centrality, average neighbor degree, and PageRank.
 899 Degree measures the number of a node’s direct connections. Nodes with higher degree centrality are
 900 regarded as more locally important, as they engage in more direct interactions within the network.
 901 Betweenness measures how often a node appears on the shortest paths between other pairs of nodes.
 902 Nodes with high betweenness centrality serve as critical bridges for information flow across the
 903 network. PageRank assesses a node’s importance based on both the quantity and quality of its
 904 incoming connections, assigning higher weight to links from more influential nodes.
 905

906 For the hyper-parameters of baseline methods, we follow the default settings provided in the official
 907 implementations (refer to Appendix D.1). For datasets or methods where hyper-parameters are not
 908 specified, we perform a small-scale grid search to approximate the performance reported in the original
 909 papers as closely as possible. The searched ranges include: hidden dimension $N_{\text{hid}} \in \{256, 512\}$,
 910 edge/feature masking probability $p \in \{0.1, 0.2, 0.4\}$, learning rate $lr \in \{0.001, 0.0001\}$ with
 911 a cosine annealing scheduler, temperature coefficient $\tau \in \{0.2, 0.3, 0.5\}$, and projection head
 912 dimension $N_{\text{proj}} \in \{256, 512\}$, weight decay rate $\lambda = 1e - 5$, for downstream classifier, $lr = 0.01$,
 913 epochs = 2000, weight_decay = 5e - 4.
 914

915 All experiments are conducted on an NVIDIA RTX 3090Ti GPU.
 916