
Bayesian regularization of empirical MDPs

Anonymous submission

Abstract
In most applications of model-based Markov decision pro-
cesses, the parameters for the unknown underlying model are
often estimated from the empirical data. Due to noise, the
policy learned from the estimated model is often far from
the optimal policy of the underlying model. When applied to
the environment of the underlying model, the learned policy
results in suboptimal performance, thus calling for solutions
with better generalization performance. In this work we take a
Bayesian perspective and regularize the objective function of
the Markov decision process with prior information in order
to obtain more robust policies. Two approaches are proposed,
one based on L1 regularization and the other on relative en-
tropic regularization. We evaluate our proposed algorithms on
synthetic simulations and on real-world search logs of a large
scale online shopping store. Our results demonstrate the ro-
bustness of regularized MDP policies against the noise present
in the models.

1 Introduction
A Markov decision process (MDP) is a model M =
(S,A, P, r, γ). Here S is the discrete state space, with each
state represented by s. A represents the discrete action space
with each action denoted by a. P denotes the transition prob-
ability tensor where, for each action a ∈ A, P a ∈ R|S|×|S|

is the transition matrix between the states, i.e., P a
st denotes

the probability of moving from state s to state t if action a is
taken at state s. r represents the reward tensor where, for each
action a ∈ A, ra ∈ R|S|×|S| is the reward matrix between the
states, i.e., rast denotes the reward obtained in moving from
state s to state t if action a is taken at state s. The discount
factor γ ∈ [0, 1] determines the importance given to rewards
obtained in the future relative to those collected immediately.

A policy π = (πa
s ) defines the probabilities of tak-

ing action a at state s. The goal in the MDP is to find
a policy π that maximizes the expected discounted cu-
mulative reward vπs for each state s, given by vπs ≡
Eπ

[∑∞
m=0 γ

mram
sm,sm+1

|s0 = s
]
. In what follows, S, A, and

γ are considered to be fixed, and therefore, we often denote
the MDP model in short with M = (P, r).

For most applications, the environment is modeled with an
unknown underlying MDP M̄ = (P̄ , r̄) that is not directly
accessible. The empirical model M = (P, r) is often esti-
mated from samples of M̄ = (P̄ , r̄) and an optimal policy

π is then learned from M . As the two models M and M̄ are
different due to sampling noise, the policy π learned from M
is different from the true optimal policy π̄ of M̄ . When apply-
ing π directly to the environment modeled by the underlying
MDP M̄ , one often experiences suboptimal performance.

To give a simple example, consider an MDP with only two
actions a1 and a2 at each state and that action a1 is always
better than a2 for all states s ∈ S under the true transition
probability matrices P̄ a and reward matrices r̄a. The transi-
tion matrices P a and reward matrices ra constructed from
samples are different from P̄ a and r̄a due to the noise present
in the data. As a result, the policy π learned from the empir-
ical model M = (P, r) may recommend action a2 over a1
for some states s ∈ S, thus leading to poor generalization
performance.

As a more concrete example, let us consider the shopping
experience of a customer at an online shopping store. A cus-
tomer starts a session by typing in an initial query. Based on
the given query, the store can recommend products using one
of the existing search algorithms. Upon viewing the results,
the customer may either make a purchase or continue the
browsing session by typing a modified or new query. Such a
shopping experience can be modeled as an MDP, where each
query is regarded as a state s ∈ S and each search algorithm
as an action a ∈ A. The reward ras,t corresponds for example
to whether a purchase is made or not. The optimization prob-
lem is to decide which search algorithm should be activated
given the query in order to improve the overall shopping
experience. In a typical offline learning setting, the empirical
MDP model M is constructed based on the historical log
data. Therefore, the transition tensor P and purchase actions
are inherently noisy. If one learns the policy directly from the
noisy empirical model, it can have a poor performance when
deployed in the future. While we motivate this issue using
the online shopping example, it exists universally in many
other applications.

In this work, we study the problem of learning a robust
MDP policy from the empirical model M that can perform
significantly better than the naive policy π from M when
deployed to the unknown underlying M̄ . Though this is a
challenging problem stated as it is, a key observation is that
in many real applications there is often prior information
on the rankings of the available actions. Here, we take a
Bayesian approach to incorporate such prior information as a



regularizer.

Main Contributions. The main contributions of this work
are:

• We propose a Bayesian approach that factors in known
prior information about the actions and learns policies
robust to noise in empirical MDPs. More specifically, two
approaches are proposed: one based on L1 regularization
and the other on relative entropic regularization. Both
can be implemented efficiently by leveraging existing
algorithms for MDP optimization.

• We evaluate the designed algorithms on both synthetic
simulations and on the logs of a real-world online shop-
ping store dataset. Our regularized policies significantly
outperform the un-regularized MDP policies.

Related work. When solving the MDPs, entropy regular-
ization has proven quite useful (Peters, Mulling, and Altun
2010; Fox, Pakman, and Tishby 2015; Schulman et al. 2015;
Mnih et al. 2016). Commonly, Shannon entropy or nega-
tive conditional entropy is used to regularize the MDPs (Pe-
ters, Mulling, and Altun 2010; Fox, Pakman, and Tishby
2015; Schulman et al. 2015; Mnih et al. 2016; Dai et al.
2018; Haarnoja et al. 2018). While this results in more robust
stochastic policies, they do not necessarily account for any
prior information. The work of (Neu, Jonsson, and Gómez
2017; Peters, Mulling, and Altun 2010; Nachum et al. 2017;
Wu, Tucker, and Nachum 2019) discusses relative entropic
regularization in MDPs, which biases results to a reference
distribution. These works focus on improving the conver-
gence and stability of RL methods by employing entropic
regularization. But, this idea has yet to be applied in the
context of empirical MDPs through a Bayesian perspective.

There has been work on reward shaping (Ng, Harada, and
Russell 1999; Harutyunyan et al. 2015; Cooper and Rangara-
jan 2012; Grzes 2017; Gimelfarb, Sanner, and Lee 2018)
where the idea is to obtain a new MDP model M ′ = (P, r′)
by modifying the rewards of model M = (P, r) as r′as,t =
ras,t + ϕ(s)− ϕ(t), where ϕ(s), ϕ(t) are potential functions
at state s, t. In particular, (Ng, Harada, and Russell 1999)
showed that such a reward shaping ensures that the optimal
policy in the two models M and M ′ remains the same. The
focus of all these works is to design potential functions ϕ
to improve the convergence of algorithms in M ′ without al-
tering the optimal policies. As the empirical model M and
true model M̄ are different in our setting due to the inherent
noise, we need regularization based approaches which incor-
porate the prior information about preference towards certain
actions as the optimal policy in M is not necessarily optimal
under M̄ .

An alternative solution to this problem would be from a
denoising perspective, where the empirical model M is first
denoised and then the policy is learned from the denoised
model instead. This has been studied in the context of linear
systems where the objective is to solve the system Āx = b̄
but the estimated model parameters A ≈ Ā and b ≈ b̄ contain
a significant level of noise. To tackle this, (Etter and Ying
2020, 2021) propose an operator augmentation approach that
perturbs the inverse of the sampled operator A−1 for better

approximation to x. However, it is not clear how to extend
this approach to the control setting in MDP.

A closely related line of work is that of model based
Bayesian reinforcement learning (Ghavamzadeh et al. 2016),
where priors are expressed over model as opposed to the
policy. Imposing priors in such a way allows one to deal
with imprecise models (Levine et al. 2020). Our work on
studying Bayesian regularization policies in the action space
is complementary to this line of work. The choice of impos-
ing a prior on model against a prior on policy boils down
to the application domain. In several application domains,
the state space is quite large as a result of which working
with a Bayesian model on transition/reward tensors becomes
infeasible. In contrast, the action space is relatively much
smaller, as a result of which employing a Bayesian approach
on the action space is much more practical.

Organization. In Section 2, we present the optimization
formulations and describe our regularization approach by
incorporating prior information. Section 3 studies the per-
formance of the proposed policy against baseline algorithms
on several simulated examples. Section 4 evaluates the per-
formance of our proposed algorithms on an application data
set.

2 Problem statement and algorithms
2.1 Policy maximization
Let ∆ = {η = (ηa)a∈A :

∑
a∈A ηa = 1 and ηa ≥ 0} be the

probability simplex over the action set A. The set of all valid
policies is

∆|S| = {π = (πs)s∈S : πs ∈ ∆ for ∀s ∈ S} .

For a policy π ∈ ∆|S|, the transition matrix Pπ ∈ R|S|×|S|

under the policy π is defined as Pπ
st =

∑
a∈A P a

stπ
a
s , i.e., Pπ

st
is the probability of arriving at state t from state s if policy
π is taken. Similarly, the reward rπ ∈ R|S| under the policy
π is given by rπs =

∑
a∈A rasπ

a
s , where ras =

∑
t∈S rastP

a
st,

i.e., the expected reward at state s under action a.
For a discounted MDP (Sutton and Barto 2018; Puterman

2014) with γ ∈ [0, 1], the value function under policy π
is a vector vπ ∈ R|S|, where each entry vπs represents the
expected discounted cumulative reward starting from state s
under the policy π, i.e.,

vπs = E

[ ∞∑
m=0

γmram
sm,sm+1

|s0 = s

]
,

with the expectation taken over am ∼ πsm and sm+1 ∼
P am
sm,· for all m ≥ 0. The value function satisfies the Bellman

equation (Bellman 1966), i.e., for any s ∈ S

vπs = rπs + γEπ[vπs1 |s0 = s] = rπs + γ
∑
t∈S

Pπ
stv

π
t ,

or equivalently in the matrix-vector notation

vπ = rπ + γPπvπ ⇐⇒ vπ = (I − γPπ)−1rπ.

Here, the inverse of the matrix (I − γPπ) exists whenever
γ < 1 or there exists a terminal state z in the MDP such



that P a
z,z = 1, raz,z = 0, and P a

s,z ̸= 0 ∀a ∈ A, s ∈ S (Bell
1965). Given the MDP, the optimization problem is

max
π

e⊺vπ = max
π

e⊺(I − γPπ)−1rπ, (1)

where e ∈ R|S| is an arbitrary vector with positive entries
(Ye 2011). By introducing the discounted visitation count
wπ = (I − γPπ)−⊺e, we can rewrite Equation (1) as

max
π

(wπ)⊺rπ, with wπ ≡ (I − γPπ)−⊺e. (2)

2.2 Bayesian approaches
Given an MDP model M , we can view (2) as the maximum a
posteriori probability (MAP) estimate maxπ Pr(π|M) with

Pr(π|M) ∝ exp(e⊺vπ) = exp((wπ)⊺rπ). (3)

When prior knowledge about π is not available, it is natural
to take a uniform prior over π, i.e. Pr(π) is constant. This im-
plies that Pr(π|M) ∝ Pr(M |π) Pr(π) ∝ Pr(M |π), leading
to

Pr(M |π) ∝ exp((wπ)⊺rπ). (4)
On the other hand, if prior knowledge about π is available,

it makes sense to impose more informative priors on π. One
commonly used prior is that at state s ∈ S an action ξ(s) ∈ A
is often preferred over the rest of the actions. This prior
information can be incorporated naturally in the following
two ways.

2.2.1 L1-type prior In particular, we assume a prior

Pr(π) ∝ exp(−λ(wπ)⊺fπ), (5)

where fπ is defined to be the L1 norm of π outside of action
ξ(s), i.e., (fπ)s =

∑
a̸=ξ(s) πs,a. This prior puts more proba-

bility on action ξ(s) relative to other actions in A. Combining
(4) and (5) leads to the a posteriori probability

Pr(π|M) ∝ Pr(π,M) = Pr(M |π) Pr(π)
∝ exp((wπ)⊺rπ) exp(−λ(wπ)⊺fπ).

The corresponding MAP estimate is

argmax
π

exp((wπ)⊺rπ − λ(wπ)⊺fπ)

= argmax
π

(wπ)⊺(rπ − λfπ) (6)

Note that individual component of rπ − λfπ can be broken
down as,

rπs−λfπ
s =

∑
a

rasπ
a
s−λ

∑
a̸=ξ(s)

πa
s =

∑
a

(ras−λδa̸=ξ(s))π
a
s ,

where δa̸=ξ(s) = 1 if a ̸= ξ(s) and 0 if a = ξ(s). Hence, this
formulation is equivalent to replacing ras with ras − λδa̸=ξ(s),
i.e., the reward of all non-preferred actions a ̸= ξ(s) is re-
duced by a constant λ. The corresponding Bellman equation
is

vs = max
a

((ras − λδa̸=ξ(s)) + γ(P av)s).

Once vs is computed, the optimal action at state s is given by

argmax
a

((ras − λδa̸=ξ(s)) + γ(P av)s). (7)

2.2.2 Relative entropy regularization In the MDP liter-
ature, it is common to use Shannon entropy regularization,
which allows for learning stochastic policies instead of de-
terministic ones. However, it fails to capture the prior infor-
mation, such as the scenario where one of the actions in A
is preferred over others. To accommodate such a prior, we
propose to use the relative entropy instead of Shannon en-
tropy. By choosing the prior distribution carefully, relative
to which the entropy of policy is evaluated, we obtain solu-
tions that prefer one action over other actions in A. We con-
sider a penalty such that Pr(π) ∝ exp(−κ(wπ)⊺hπ) with
hπ
s =

∑
a π

a
s log

(
πa
s

qas

)
, where qas is a distribution over A

that prefers a = ξ(s), e.g.,

qa =

{
1− ϵ, a = ξ(s)

ϵ/(|A| − 1), a ̸= ξ(s),

for some ϵ > 0. The corresponding MAP estimate is

argmax
π

(wπ)⊺rπ − κ(wπ)⊺hπ

=argmax
π

∑
s

wπ
s

(
rπs − κ

∑
a

πa
s log

πa
s

qas

)

=argmax
π

∑
s

wπ
s

(∑
a

((ras + κ log qas )− κ log πa
s )π

a
s

)
(8)

This is in fact equivalent to the standard Shannon entropy
regularization with modified rewards ras + κ log qas , i.e., a
penalty κ log qas is added to ras when action a ∈ A is taken.
The magnitude of the penalty for action a is large if the prior
probability qas of selecting action a is small. By applying the
Bellman equation of Shannon entropy regularization (Neu,
Jonsson, and Gómez 2017; Ying and Zhu 2020) to (8), we
obtain

vs = max
πs∈∆

∑
a∈A

(ras + κ log qas+γ
∑
t∈S

P a
stvt − κ log πa

s )π
a
s .

Because of the Gibbs variational principle, the RHS is equal
to κ log

(∑
a∈A exp

(
ras+κ log qas+γ

∑
t∈S Pa

stvt
κ

))
. Thus, the

Bellman equation can be written in the following log-sum-
exp form

vs = κ log

(∑
a∈A

exp

(
ras + κ log qas + γ

∑
t∈S P a

stvt

κ

))
,

(9)
which can be solved with a value function iteration. Once vs
is known, the optimal policy at state s and action a is given
by

exp(ras + κ log qas + γ
∑

t∈S P a
stvt − vs)

Zs
, (10)

where Zs =
∑

a∈A exp(ras +κ log qas +γ
∑

t∈S P a
stvt− vs)

is the normalization factor.

Comments Both the optimization formulations in Sections
2.2.1 and 2.2.2 add a penalty on top of the reward obtained
for each action. The less preferred actions (i.e., a ̸= ξ(s))



are penalized and hence as a result the learned policy prefers
action ξ(s) over the other ones. The magnitude of the penalty
depends on the regularization parameter λ in the L1 case
and (κ, qa) in the relative entropy case. The policy obtained
in Section 2.2.1 is a deterministic policy, whereas the one
learned in Section 2.2.2 is a stochastic policy due to the added
entropy regularization. When κ in Section 2.2.2 is chosen to
be small, the policy becomes more and more concentrated
and is often practically equivalent to the one in Section 2.2.1.
Finally, we note that both the approaches presented above
can be easily extended to settings where a certain subset of
the actions are preferred over the others.

3 Simulated examples
In the following simulated examples, we demonstrate numer-
ically that an optimal policy of the empirical MDP M results
in sub-optimal performance on the underlying MDP model
M̄ and that the regularized policies provide significantly bet-
ter performance.
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Figure 1: The transition probabilities P̄ a
st and rewards r̄ast of

the true model M̄ in Example 1 (left) and Example 2 (right).
The state space is the set {1, 2, 3, . . . , N}. Under action 0,
for i ̸= 1 the transition from state i can go to state i − 1 or
N , while for i = 1 it can go to N − 1 or N . Similarly under
action 1, for i ̸= N − 1 the transition from state i can go to
i+ 1 or N , while for i = N − 1 it can go to state 1 or N .

Example 1. Consider the MDP model M̄ shown in Fig-
ure 1. This model has N states {1, 2, . . . , N} and two actions
{0, 1}. The transition and reward tensors for model M̄ are
defined below

P̄
(0)
i,N−1−(N−i)%(N−1) = 0.35, P̄

(0)
i,N = 0.65

r̄
(0)
i,N−1−(N−i)%(N−1) = 2i+N, r̄

(0)
i,N = i+N

P̄
(1)
i,i%(N−1)+1 = 0.25, P̄

(1)
i,N = 0.75

r̄
(1)
i,i%(N−1)+1 = 2i+N, r̄

(1)
i,N = i+N.

Here, state N is a terminal state, where P̄
0/1
N,N = 1 and

r̄
0/1
N,N = 0. In our simulations, N = 10 and γ = 1. The

empirical MDP M is constructed from the true MDP M̄
by sampling the transition probabilities from a set of 100
samples for each state s ∈ S. Due to the sampling noise, the

transition tensor P of model M is different from P̄ of M̄ . In
this example, we assume that the underlying reward tensor r̄
is known exactly. Under the true model M̄ , action ξ(s) ≡ 0
is optimal for any state s ∈ S, as the transition probability to
states with higher reward is larger under action 0. However,
when the model M is constructed from empirical samples,
the optimal policy learned on M recommends action 1 for
some states, leading to a sub-optimal performance on the true
model M̄ .

22.8

22.85

22.9

22.95

23

23.05

23.1

23.15

23.2

0 0.5 1 1.5 2 2.5
Va

lu
e 

pe
r s

ta
te

Regularization parameter λ

L^1 Regularized MDP unregularized policy𝐿!-regularized policy

Figure 2: Example 1. The L1-regularized policy vs. the unreg-
ularized policy. When λ increases, the L1-regularized policy
prefers action 0 over action 1 and achieves significantly better
value per state on the true model M̄ relative to the unregular-
ized policy of model M . The error bars indicate a width of
two standard error in all subsequent simulations and experi-
ments.

Figure 2 shows the comparison between the L1-regularized
policy and the unregularized policy when evaluated on M̄ . As
the regularization parameter λ increases, the learned policy
prefers action 0 over action 1 and obtains higher value per
state as a result. In Figure 3, we compare the relative entropic
regularization policy (referred in short as the RE-regularized
policy) with the unregularized policy on the true model M̄ .
We set regularization coefficient to be κ = 0.25 and vary
the value of prior q1s on the x-axis. The value q1s = 0.5
corresponds to the case with Shannon entropic regularization.
As the value of q1s becomes smaller, the RE-regularized policy
prefers action 0 over action 1 and results in a higher value
per state relative to the unregularized policy.

In practice, the values of (κ, q1s) (for the RE-regularized
policy) and λ (for the L1-regularized policy) can be learned
through evaluation on a validation set. In both the cases, the
need for regularization goes down as the number of sam-
ples used to evaluate M̄ increases. This effect is demon-
strated in Figure 4, where we plot the performance of the
L1-regularized policy as a function of the samples used to
estimate the transition probabilities for each state in M̄ .

Example 2. In Example 1, only the transition tensor in M
is sampled from the true model M̄ . In practice, the reward
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Figure 3: Example 1. The RE-regularized policy vs. the unreg-
ularized policy. As the value of q1s decreases (or equivalently
− log(q1s) increases), the RE-regularized policy prefers ac-
tion 0 over action 1, leading to improvement in performance
over the unregularized policy.

tensor is also estimated empirically. To model this, in this
example the reward values rast has a Gaussian noise N (0, σ2)
added to the true unknown underlying reward r̄ast. The transi-
tion and reward tensors for model M̄ are defined below (also
see Figure 1)

P̄
(0)
i,N−1−(N−i)%(N−1) = 0.45, P̄

(0)
i,N = 0.55

r̄
(0)
i,N−1−(N−i)%(N−1) = X

(0)
i , r̄

(0)
i,N = Y

(0)
i

P̄
(1)
i,i%(N−1)+1 = 0.45, P̄

(1)
i,N = 0.55

r̄
(1)
i,i%(N−1)+1 = X

(1)
i , r̄

(1)
i,N = Y

(1)
i .

Here, X(0)
i is taken to be a random realization drawn

from N (5, 1). Similarly, X(1)
i ∼ N (6, 1), Y (0)

i ∼ N (2, 1),
Y

(1)
i ∼ N (3, 1). In our simulations, N = 1000. For this

MDP model M̄ , the optimal action is 0 for about 82.4% of
the states in M̄ as the expected number of steps to reach the
terminal state N from a given state s is higher in action 0
relative to action 1.

The empirical MDP M is obtained by averaging 100 sam-
ples per state of M̄ , where each reward entry of r is cor-
rupted by a zero mean Gaussian noise with standard deviation
σ = 1.5. As the transition and reward tensors in M contain
noise, the unregularized policy from M recommends action 1
for more than 30% of the states. As a result, the unregularized
policy is sub-optimal on the underlying model M̄ .

The prior information that action 0 is preferred over ac-
tion 1 helps the L1-regularized policy and RE-regularized
policy to outperform the unregularized policy. Figures 5 and
6 illustrate this improvement as a function of regularization
parameters λ and q1s (the regularization coefficient κ is fixed
at 0.25 for this example). As the value of λ or − log(q1s)
increase, the regularized policies favor action 0 over action
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Figure 4: Example 1. The performance of the L1-regularized
policy as a function of the samples used to estimate the tran-
sition probabilities for each state in M̄ . The regularization
benefit decreases as the number of samples increases due to
a reduction of the sampling noise.

1, leading to significant improvements on model M̄ . With
further increase in λ and − log(q1s), the performance dips
afterwards as the regularized policies start selecting action 0
over action 1 for more states than necessary.

4 Experiments on real data
This section discusses large-scale experiments on logs of an
online shopping store with competing search algorithms. We
consider the user shopping experience discussed in Section
1 and model a shopping session with an MDP where a state
s ∈ S corresponds to the search query typed in by the user.

For each query s, the shopping store needs to decide on the
search algorithm to use to display results. This corresponds
to the two actions of the MDP. When an action is taken, the
search results are shown to the user and the user interaction
will result in a transition to a new state. We identify this new
state with the new query t from the user. However, before
making this transition from state s to t, the user may make
a purchase, which corresponds to the reward. The user may
terminate the session at any point with/without making a
purchase and this is captured by the transition to a terminal
state (see Figure 7). The rewards are considered to be binary:
if a user makes a purchase at state s under shopping store’s
action a and then transitions to t, ras,t = 1. ras,t = 0 if no
purchase were made. The two available search algorithms
perform differently on different queries. Therefore, there is
an opportunity to interleave different algorithms based on
the queries, even within a single shopping session. Moreover,
often it is known a priori that one search algorithm may work
better than the other. As a result, it is useful to incorporate
this information as a prior and design regularized policies
that are robust to noise in the empirical MDP.

To conduct our experiment, we collected the search logs
of an online shopping store for a time period for two dif-
ferent search algorithms, one deployed in period 1 and
the other in period 2, with period 1 is before period 2 in
time and both the time periods are non-overlapping. There-



8.38

8.4

8.42

8.44

8.46

8.48

8.5

8.52

8.54

0 0.5 1 1.5 2 2.5 3

Va
lu

e 
pe

r s
ta

te

Regularization parameter λ

L1 Regularized MDP unregularized policy𝐿!-regularized policy

Figure 5: Example 2. The L1-regularized policy vs. the un-
regularized policy. As λ increases, the L1-regularized policy
favors action 0 over action 1. The incorporated prior infor-
mation allows the L1-regularized policy to outperform the
unregularized policy.

fore, the action space consists of two search algorithms,
A = {ranker1, ranker2} which were previously deployed
in period 1 and period 2 respectively. We processed the data
in a time period where ranker 1 was deployed to obtain the
search logs under the ranker 1 action. Similarly, the data for
another time period, in which ranker 2 was used, was col-
lected to obtain the user logs under the ranker 2 action. We
considered the set of 135, 000 most typed queries as the state
space S. For each of these time periods, we estimated the
transition and reward tensors from user logs, thereby obtain-
ing the MDP model M , i.e., P algo1

s,t , P algo2
s,t , ralgo1s,t , ralgo2s,t

for all s, t.
The key challenge is to learn robust policies from the

empirical model M . It is known a priori that on average,
ranker 2 tends to produce better results relative to ranker 1.
We exploit this information to learn the L1-regularized and
RE-regularized policies, which interleave ranker 1 and ranker
2 effectively for different queries within a single session.

The performance of different policies is judged based on
the objective function e⊺v ≡

∑
s∈S esvs, where vs is the

value function at s ∈ S with discount factor γ = 1 and es
denotes the probability that s is the first query in a random
shopping session. This probability {es} is evaluated based
on a hold-out time period from the collected search logs.

In order to evaluate the performance in an unbiased way,
we extracted the data for different time periods in which
ranker 1 and ranker 2 were deployed, to construct a model
M̃ with tensors denoted by P̃ and r̃. As the true underlying
model M̄ is not directly accessible, we use M̃ , a fresh unbi-
ased estimator of M̄ , to evaluate the different policies. This
essentially corresponds to evaluating the performance of the
policies on a new time period.

The transition and reward tensors between models M =
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Figure 6: Example 2. The RE-regularized policy vs. the un-
regularized policy. As q1s decreases, the value of − log(q1s)
increases and the RE-regularized policy favors action 0 over
action 1. Accounting for prior information through q1s helps
the RE-regularized policy to outperform the unregularized
policy.
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Figure 7: A shopping session at an online shopping store
is typically sequential in nature. The user may start with a
broad query and continuously refine it based on the results
generated from the search algorithm. Eventually, the user
exits the system, which is modeled by the terminal state. The
user can make a purchase at any point during the session.

(P, r) and M̃ = (P̃ , r̃) can be quite different. In fact, com-
paring these two estimated models provides an idea of the
existing noise in the estimated models. For example, the av-
erage L1 norm of the rows of P ranker1 − P̃ ranker1 (also
P ranker2 − P̃ ranker2) is about 0.16, suggesting that the av-
erage total variational distance between transition probability
vectors of P and P̃ is 0.08, which is empirically quite signif-
icant.

For comparison purposes, we include the performance of
several baselines defined below:

• unregularized MDP policy: this policy is optimal for
model M and is applied to M̃ without any regulariza-
tion.

• one-shot policy (OSP): this policy selects action ranker
1 for a particular keyword s if immediate reward from
ranker 1 is larger, i.e., rranker1s > rranker2s .

• regularized one-shot policy (OSPλ): this policy selects
ranker 1 for a particular keyword s only if rranker1s −λ >
rranker2s .

Figure 8 shows the performance of L1-regularized MDP
policy, the unregularized MDP policy, OSP, and OSPλ on
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Figure 8: Performance comparison on an online shopping
store dataset: The L1-regularized policy accounts for the prior
information through λ. As λ increases, the L1-regularized
policy favors action 0 over action 1. The incorporated prior
allows the L1-regularized MDP policy to outperform the
unregularized MDP policy learned from M . Since the MDP
based approach accounts for the delayed rewards by modeling
the session interaction, it outperforms the regularized one-
shot policy OSPλ for all values of λ.

model M̃ , where all these policies are learned from model M .
We observe that (a) the L1-regularized MDP policy shows
about 0.7% improvement over the ranker 2 policy, and the
improvement over the ranker 1 policy is in the range of 21-
22%, (b) the L1-regularized policy outperforms both OSP
and OSPλ, suggesting that the MDP model is beneficial as the
OSP and OSPλ do not factor in delayed rewards, and (c) the
L1-regularized policy outperforms the unregularized MDP
policy by accounting for prior information in the form of
regularization parameter λ. The best performance is obtained
with λ = 0.02. As the value of λ increases, the regularized
policies prefer ranker 2 over ranker 1. When λ is increased
further, the learned policy ends up selecting ranker 2 for all
the states. This is why its performance becomes similar to
ranker 2 in Figure 8 for large values of λ.

The same experiment is repeated for the RE-regularized
policy and we observe a performance similar to that of the
L1−regularized policy with the best improvement of 0.69%
coming at κ = 0.001 and qranker1s = 10−8.

The above experiments suggest that hyperparameters
λ = 0.02 and (κ = 0.001, qranker1s = 10−8) per-
form the best for the L1-regularized policy and the RE-
regularized policy, respectively. To validate our results, we
performed another experiment with these hyperparameters,
where we learned the model M with a new action space
A = {ranker2, ranker3} by collecting user logs for two
different non-overlapping time periods in which ranker 2 and
ranker 3 were deployed. In this scenario, ranker 3 was more
recently deployed relative to ranker 2. The test data is also
generated by collecting user logs on a hold-out time period
where ranker 2 and ranker 3 were previously deployed. In

this situation, the prior is that the ranker 3 is on average better
than ranker 2 and it has been incorporated in the computa-
tion of the L1-regularized and RE-regularized policies. The
results are reported below in Table 1.

Algorithm % improvement
over ranker 3

unregularized policy −0.1
L1-regularized policy 0.214
RE-regularized policy 0.207
One-shot Policy −6.33
Regularized one-shot Policy −2.92

Table 1: Performance comparison of different policies with
pre-learned hyperparameters. The task is to identify the better
search algorithm among ranker 2 and ranker 3 for a given
query. The L1-regularized and RE-regularized policies out-
perform other approaches as (a) they account for delayed
rewards through MDP based session modeling and (b) they
are robust to noise by factoring in the prior knowledge.

We make several observations from the results listed in
Table 1. First, there is a significant difference between the
performance of the regularized one-shot policy and the regu-
larized MDP policies, as the sessions were of longer range
in the collected data. For example, a typical query improved
using older search algorithm is "mens gifts". As this query
leads to sessions of larger length on the shopping store, the
regularized MDP policies allow us to factor in the delayed
rewards and suggest the appropriate search algorithm for the
query. An empirical approach such as OSPλ fails to evaluate
the quality of search results in this case as it focuses only on
the immediate rewards. Second, the regularized MDP policies
outperform both ranker 2 and ranker 3, whereas all other poli-
cies are worse of than the simple strategy of selecting ranker
3 for all queries. This is because the L1-regularized and
RE-regularized MDP policies account for the noise present
in the model and incorporate the known prior information
appropriately.

5 Conclusions
In this paper, we study the problem of learning policies where
the parameters of the underlying MDP M̄ are not known
but instead estimated from empirical data. Simply learning
policies on the estimated model M may lead to poor general-
ization performance on the underlying MDP M̄ . To address
this issue, we propose a Bayesian approach, which regular-
izes the objective function of the MDP to learn policies that
are robust to noise. Our learned policies are based on L1

norm regularization and relative entropic regularization on
the objective function of MDP. We show that our proposed
regularized MDP approaches end up penalizing the reward
of less preferred actions, thereby giving preference to certain
actions in A over others.

To validate the performance of proposed algorithms, we
evaluate the performance on both synthetic examples and
on the logs of real-world online shopping store data set. We
demonstrate that a policy learned optimally on M without



any regularization can even do worse than a simple policy
that always selects one of the actions a ∈ A for all the states.
Our experiments reveal that the un-regularized policies are
not robust to noise in probability and reward tensors. On
the other hand, the regularized MDP policies significantly
outperform other baseline algorithms both on synthetic and
real-world numerical experiments.
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