
Published as a conference paper at ICLR 2025

TDCM25: A MULTI-MODAL MULTI-TASK BENCHMARK
FOR TEMPERATURE-DEPENDENT CRYSTALLINE MATERI-
ALS

Can Polat1, Hasan Kurban2∗, Erchin Serpedin1, and Mustafa Kurban3∗

1Dept. of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
2College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
3Dept. of Prosthetics and Orthotics, Ankara University, Ankara, Turkey

{can.polat, eserpedin}@tamu.edu, hkurban@hbku.edu.qa, kurbanm@ankara.edu.tr

ABSTRACT

Materials exhibit phase and temperature dependent properties that are critical for appli-
cations ranging from catalysis to energy storage and environmental remediation and ac-
curate modeling of these dependencies requires high-quality, multi-modal datasets. In
this work, TDCM25 (Temperature Dependent Crystalline Materials 2025) is introduced
as a comprehensive dataset featuring approximately 100,000 entries spanning three crys-
talline phases of TiO2 (anatase, brookite, and rutile) sampled over 21 temperatures from
0K to 1000K. Each entry comprises 3D atomic coordinates, corresponding RGB molec-
ular images, and detailed textual metadata including Ti:O ratios, temperature, spatial
dimensions, and transformation parameters. TDCM25 provides a benchmark for de-
veloping and evaluating machine learning methods that integrate multi-modal data to
capture temperature dependent material behavior. The dataset is publicly available at
https://github.com/KurbanIntelligenceLab/TDCM25.

1 INTRODUCTION

Material behaviors vary significantly with changes in phase and temperature, driven by complex interactions
among atomic structures, electronic configurations, and external conditions that determine key characteris-
tics such as bandgap, conductivity, and mechanical stability (Yeomans, 1992; Rashad et al., 2012; Roduner,
2014; Sarkar et al., 2018; Cho et al., 2020).

Titanium dioxide (TiO2) exemplifies the challenges of modeling temperature and phase dependent behaviors
(Zhang et al., 2009; Hanaor & Sorrell, 2011; Kurban et al., 2020). Its three crystalline phases, namely
anatase, brookite, and rutile, display distinct physical and chemical properties that evolve with temperature,
underpinning its applications in photocatalysis, solar energy conversion, and hydrogen capture (Li et al.,
2018; Reinhardt et al., 2020; Zhang & Xu, 2020; Zhang et al., 2021; Kurban et al., 2024). Accurately
predicting these properties requires capturing comprehensive structural and contextual information across
diverse phases and thermal conditions.

Benchmark datasets have driven significant progress in materials science by enabling standardized evaluation
of machine learning models. Datasets such as QM9 (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014),

∗Corresponding authors. Dataset is publicly available at https://github.com/
KurbanIntelligenceLab/TDCM25.

1

https://github.com/KurbanIntelligenceLab/TDCM25
https://github.com/KurbanIntelligenceLab/TDCM25


Published as a conference paper at ICLR 2025

MD17 (Chmiela et al., 2017), and MatBench (Dunn et al., 2020) have supported tasks in molecular and
property prediction, yet many focus on static configurations or limited chemical spaces. This leaves a gap
in capturing the dynamic, temperature sensitive, and phase dependent behaviors essential for materials like
TiO2. Moreover, limited rotational and structural diversity in existing datasets hampers the development of
models that can effectively learn rotational invariance and phase transitions.

This study addresses these challenges by introducing TDCM25 (Temperature Dependent Crystalline Ma-
terials 2025), a comprehensive multi-modal benchmark dataset designed to advance machine learning (ML)
in materials science. Simulations were performed using density functional tight binding (DFTB) (Hourahine
et al., 2020), balancing computational efficiency with physical accuracy to ensure TDCM25 accurately cap-
tures essential temperature- and phase-dependent phenomena. TDCM25 serves as a robust benchmark for
classification (phase identification), regression (property prediction), and interpretability (explainability of
model decisions). The dataset comprises 99,414 data items spanning the anatase, brookite, and rutile phases
of TiO2, sampled at temperatures from 0 K to 1000 K in 50 K increments. Each data item includes 3D
atomic coordinates, corresponding molecular images, and detailed textual metadata capturing phase-specific
and temperature-sensitive properties. By integrating structural, visual, and textual data, TDCM25 aims to
catalyze AI-driven breakthroughs in materials science and foster structured data sharing within the research
community. An overview of the dataset and its associated tasks is presented in Figure 1.

2 RELATED WORK

2.1 DFT AND DFTB IN MATERIALS MODELING

Density functional theory (DFT) (Hohenberg & Kohn, 1964; Calais, 1993) provides a powerful frame-
work for predicting material properties by solving the many-body Schrödinger equation (Schrödinger, 1926;
Atkins & Friedman, 2011) through approximations like the Kohn-Sham formalism (Kohn & Sham, 1965).
The total energy of a system in DFT is expressed as:

Etotal[ρ(r)] = Ts[ρ(r)] +

∫
vext(r)ρ(r) dr+ EH [ρ(r)] + Exc[ρ(r)]. (1)

This equation consists of four key terms: the kinetic energy of non-interacting electrons (Ts), the external
potential energy (vext), the Hartree energy (EH ) accounting for classical electrostatic interactions, and the
exchange-correlation energy (Exc), which captures quantum mechanical many-body effects. While DFT
provides accurate predictions, its computational cost scales as O(n3T ), where n represents the number
of electrons or basis functions, and T denotes the number of self-consistent field iterations required for
convergence. This scaling makes DFT impractical for large-scale datasets and high-throughput materials
screening (Becke, 2014; Ratcliff et al., 2017).

DFTB represents a computationally efficient alternative to DFT by approximating it with parameterized
Hamiltonians and overlap matrices. The total energy in DFTB is expressed as Etotal ≈ E0+∆Erep, where E0

represents the band structure energy obtained from the eigenvalues of the effective Hamiltonian, while ∆Erep
accounts for short-range repulsive interactions. By leveraging precomputed parameters, DFTB significantly
reduces the computational costs while maintaining sufficient accuracy for modeling temperature- and phase-
dependent properties. This balance makes it particularly suitable for generating datasets like TDCM25,
which require extensive structural and electronic data across varying conditions.

2.2 CRYSTAL PHASES AND TEMPERATURE DEPENDENCE

Crystalls exhibit diverse physical and chemical behaviors depending on their phases and temperature condi-
tions (Rohrer, 2001). For instance, TiO2 exists in three main phases: anatase, brookite, and rutile, each with
unique electronic, optical, and structural properties (Murray et al., 1993).
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Figure 1: Overview of TDCM25, a multi-modal benchmark for modeling temperature dependent properties
in crystalline materials. The figure highlights key tasks: phase classification, property prediction, and ex-
planation generation using large language models, and illustrates the dataset’s multi-modal representations
(text, images, and 3D coordinates) for TiO2 in its three phases (anatase, brookite, and rutile) across a range
of temperatures.

Anatase is known for its photocatalytic efficiency and high surface reactivity and is widely studied for
applications in water splitting and pollutant degradation (Luttrell et al., 2014). Brookite displays unique
intermediate properties, with potential for niche energy storage applications (Chen & Mao, 2007; Reyes-
Coronado et al., 2008). Rutile is the thermodynamically stable phase and is commonly used in optical
coatings, pigments, and conductive materials due to its density and lower bandgap (Gemming et al., 2010;
Buchalska et al., 2015).

Temperature plays a critical role in determining the stability, electronic structure, and phase transitions of
these materials (Dubey, 2018). For example, anatase transforms into rutile at elevated temperatures, accom-
panied by significant changes in its bandgap and charge transport properties (Dette et al., 2014). Capturing
these dependencies is essential for modeling real-world applications, making datasets that integrate phase
specific and temperature sensitive information invaluable for advancing materials design (Zhang et al., 2013;
Hosseini-Sarvari, 2011).

2.3 DATASETS IN QUANTUM CHEMISTRY

Benchmark datasets have catalyzed advances in ML for quantum chemistry and materials science by provid-
ing structured data for various prediction tasks. For example, QM7 (Blum & Reymond, 2009; Rupp et al.,
2012) focuses on small organic molecules with atomization energies as target properties. Datasets such as
OC20 (Chanussot et al., 2021) and OC22 (Tran et al., 2023) extend these efforts to catalyst surface inter-
actions, providing geometries, energies, and relaxation trajectories for material-catalyst systems. Similarly,
MD22 (Chmiela et al., 2023) includes molecular dynamics trajectories with atomic forces, facilitating the
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development of accurate force field models. More recently, PubQChemQC (Kim et al., 2025) offers mil-
lions of ground-state molecular structures and electronic properties to support large-scale prediction tasks.
Datasets, such as NablaDFT (Khrabrov et al., 2022) and QH9 (Yu et al., 2024) concentrate on Hamiltonian
matrix prediction, a core aspect of quantum dynamics, with NablaDFT offering millions of Hamiltonian
matrices for various molecular conformers. Despite their significant contributions, many of these datasets
lack temperature sensitivity, phase diversity, or multi-modal representations.

In parallel, several benchmarks have been developed to evaluate multi-modal models in scientific contexts.
ScienceQA (Lu et al., 2022) and SciBench (Wang et al., 2023) cover topics from elementary to college-level
science, while LabBench (Laurent et al., 2024) focuses on figure and table interpretation. More compre-
hensive benchmarks such as MMMU (Yue et al., 2024) and OlympiadBench (He et al., 2024) extend to
research-level content and advanced multi-modal challenges.

Finally, specialized benchmarks like MoleculeNet (Wu et al., 2018) standardize molecular machine learning
evaluation by curating datasets, defining metrics, and providing open-source implementations to advance
predictive modeling. ChemLit-QA (Wellawatte et al., 2024) provides an expert-validated dataset for eval-
uating retrieval-augmented generation systems, while HoneyComb (Zhang et al., 2024) enhances materials
science reasoning with a curated knowledge base and adaptive tool hub. More recently, MaCBench (Alam-
para et al., 2024) assesses core competencies in chemistry and materials science, including data extraction
and laboratory knowledge.

3 DATASET

The construction of the TDCM25 dataset starts with the electronic structure computations (e.g., using DFTB)
and continues with the generation of multi-modal data: 3D coordinates (XYZ files), molecular images,
and accompanying textual metadata. Each modality contributes uniquely to model training and broadens
applicability.

XYZ files encode precise atomic coordinates, capturing structural configurations, bonding interactions, and
phase transitions. These representations enable graph-based neural networks to learn fundamental physical
and chemical properties at the atomic level. Images provide visual representations of molecular structures,
allowing vision-based models to extract structural patterns, morphological variations, and phase-dependent
characteristics. This modality is particularly useful for learning spatial and geometric relationships. Textual
descriptions offer structured metadata, including elemental composition, Ti:O ratio, temperature, and spatial
dimensions. These summaries enhance explain ability, support retrieval-augmented generation models, and
enable large language models (LLMs) to perform scientific reasoning and explanation tasks.

Through the integration of three distinct data modalities, TDCM25 facilitates comprehensive evaluation
across a wide range of model architectures, encompassing graph-based, vision-based, and language-based
frameworks. This multimodal approach not only augments predictive performance but also significantly
advances AI-driven materials discovery by enabling cross-modal learning in tasks such as classification,
regression, and interpretability.

3.1 DFTB SIMULATIONS

Detailed settings and results of in-house DFTB simulations are provided in Appendix A.1 while Figure 2
summarizes the optimized electronic properties for TiO2 in its three phases: anatase, brookite, and rutile,
at 0K, 500K, and 1000K. Specifically, the plots track the evolution of the ground-state energy (EG), total
energy (ET ), LUMO energy (EL), Fermi energy (EF ), and HOMO energy (EH ), respectively. Addition-
ally, Figure 2(d) presents the maximum atomic displacement, while Figure 2(e) illustrates the volumetric
expansion as temperature increases.
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Figure 2: Temperature dependent electronic properties and structural changes of TiO2 in its anatase, brookite,
and rutile phases. The plots track the evolution of EG, normalized ET , EL, EF , and EH with temperature.
Subplots (d) and (e) show the relative maximum atomic displacement and volumetric expansion, respec-
tively, illustrating the effects of thermal expansion.

3.2 ROTATIONAL DIVERSITY AND SAMPLING IN 3D SPACE

To achieve rotational invariance, the dataset incorporates multiple orientations of TiO2 nanoparticles, sys-
tematically sampled from the special orthogonal group SO(3). A quaternion-based method is employed
for uniform sampling, thereby avoiding the clustering issues associated with angle-based parameteriza-
tions (Yershova & LaValle, 2004). The total number of orientations, N , is computed using the solid angle
Ω = 2π(1 − cos(θ)), which leads to N = 4π

Ω . For an angular separation of 5◦, this formula yields ap-
proximately 526 orientations, providing an optimal balance between rotational diversity and computational
efficiency. Smaller angular separations would introduce redundancy and inflate storage requirements, while
larger separations could miss important orientations.

3.3 MOLECULAR IMAGES

For each rotated configuration, a high-resolution two-dimensional RGB image is generated using the Mat-
plotlib library (Hunter, 2007). This process is applied across every orientation and temperature for all TiO2
phases, resulting in a one-to-one correspondence between the 526 orientations and 526 RGB images per
configuration.
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3.4 TEXTUAL DESCRIPTIONS

In addition to the XYZ files and molecular images, concise human-generated textual descriptions capture
key structural properties. Each description details the temperature, total atom count, elemental composi-
tion (Ti:O ratio), and approximate nanoparticle dimensions along the Cartesian axes. The quotation below
illustrates the format for the original, unrotated configuration at 0 K:

“This configuration at 0K consists of 268 atoms, including 88 titanium atoms and 180 oxygen atoms,
resulting in a Ti:O ratio of approximately 0.49:1. The nanoparticle spans about 19.7 Å in x, 17.9 Å
in y, and 18.5 Å in z. This is the original configuration (no rotation).”

When a rotation is applied, the textual description is updated to include the corresponding rotation angles.
For example: “Rotation applied: x=170.5, y=13.6, z=66.3.” These concise metadata annotations enrich each
configuration, thereby enhancing the dataset’s utility for multi-modal representation learning in materials
science and supporting explainability tasks using LLMs.

3.5 TASKS

To highlight the multi-modal nature of the TDCM25 dataset and evaluate a range of modeling approaches,
three core tasks in the dataset are next described: phase classification, property prediction, and explainability.

3.5.1 TASK 1: PHASE CLASSIFICATION

Classification Objective. Classify each TiO2 nanoparticle into one of three crystalline phases.

Data Splits. Training and Validation: Samples from all three phases within the temperature range of 0K
to 800K (excluding 400K to 600K) are used. These samples are randomly partitioned into 80% for training
and 20% for validation, ensuring proportional representation of all phases.

In-distribution (ID) Test Set: To assess performance on unseen but in-range data, the temperature range
400K to 600K (inclusive) is reserved as the ID test set. This range is excluded from training and validation
to simulate unseen conditions within the overall temperature span.

Out-of-distribution (OOD) Test Set: To evaluate generalization beyond the training range, samples from
800K to 1000K (inclusive) form the OOD test set. These temperatures lie entirely outside the 0K to 800K
range used for training and validation.

The splitting strategy enables evaluation of both unseen in-range data and truly out-of-distribution samples,
providing insights into the model’s robustness and generalization across temperature variations.

Evaluation Metrics. Performance is measured using standard classification metrics, including accuracy,
precision, recall, and F1-score.

3.5.2 TASK 2: PROPERTY PREDICTION

Prediction Objective. Predict five key electronic structure properties: EG, ET , EL, EF , and EH , using
inputs derived from atomic structures, images, textual descriptions, or a combination thereof.

Data Splits. This regression task uses the same dataset splits as defined in Task 1 for both ID and OOD
evaluations. The training and validation sets are organized in the same manner, with the difference that the
target variables are the corresponding physical property values.

Evaluation metrics. Model performance is evaluated using standard regression metrics, including mean
absolute error (MAE) and the standard deviation (STD) of the predictions. These metrics provide insights
into both the accuracy and consistency of the predicted electronic structure properties.

6



Published as a conference paper at ICLR 2025

3.5.3 TASK 3: EXPLAINABILITY OF MATERIALS

Explainability Objective. Automatically generate human-readable textual descriptions for configurations
of TiO2 nanoparticles across different temperatures and phases using only 2D molecular renders and XYZ
data.

Data Splits. For this LLM-based task, the same ID and OOD dataset splits defined in Task 1 are used.
Additionally, a fine-tuning stage can be performed on the training and validation sets to further improve
LLM performance.

Evaluation Metrics. Model performance is assessed along three dimensions: Structural Prediction: Evalu-
ates the ability to capture essential material properties, including atom counts, phase, dimensional accuracy,
and atomic ratios. Temperature Prediction: Measures accuracy in identifying thermal properties, consid-
ering both exact matches and tolerance-based thresholds. Textual Accuracy: Quantified using linguistic
similarity metrics such as BLEU and ROUGE scores. This comprehensive evaluation framework enables an
assessment of both the descriptive quality and the physical accuracy of the generated material explanations.

4 MODEL IMPLEMENTATIONS AND EVALUATION RESULTS

To demonstrate the versatility and challenge of the TDCM25 dataset, a wide range of established models
were evaluated across all tasks. This study, exclusively relied on well-known architectures and state-of-the-
art (SOTA) methods from the literature during initial exploration, including DTNN (Schütt et al., 2017b),
FermiNet (Pfau et al., 2020), SpookyNet (Unke et al., 2021), ForceNet (Hu et al., 2021), PaiNN (Schütt
et al., 2021), GNS (Godwin et al., 2021), DeepMoleNet (Liu et al., 2021), PsiFormer (von Glehn et al.,
2022), Equiformer-v2 (Liao et al., 2023), Pure2DopeNet (Polat et al., 2024), DeNS (Liao et al., 2024), and
QuantumShellNet (Polat et al., 2025).

4.1 CLASSIFICATION RESULTS

For phase classification, three models were evaluated as showcase: ResNet18 (He et al., 2016), SchNet
(Schütt et al., 2017a), and DimeNet++ (Gasteiger et al., 2020). ResNet18 was trained on 2D images and
adapted for three-class classification, while SchNet and DimeNet++ processed XYZ files using graph neural
network architectures, with modifications to their output layers for classification. ResNet18 was imple-
mented using the Transformers library (Wolf, 2019) with pre-trained ImageNet-1k checkpoints. In contrast,
SchNet and DimeNet++ were obtained from PyTorch Geometric (Fey & Lenssen, 2019) and trained from
scratch. Classification accuracy was reported over three runs, using a subset of 90 out of 526 data points for
each configuration.

Table 2 in Appendix A.2 presents the classification results, comparing model performance on both ID and
OOD temperature tasks including STD. DimeNet++ achieved the highest accuracy across both ID and OOD
datasets. SchNet performed better on OOD data than on ID data, indicating strong generalization capabil-
ities. ResNet18 showed comparable performance to SchNet on ID data but suffered the largest accuracy
drop in OOD scenarios. These findings suggest that graph-based models such as SchNet and DimeNet++
generalize more effectively than convolutional neural networks like ResNet-18 for phase classification.

4.2 PREDICTION OF PHYSICAL PROPERTIES

For the regression task, instead of ResNet, a pre-trained ViT (Dosovitskiy, 2020) model (ImageNet-1k via the
Transformers library) was used. In addition, SchNet and DimeNet++ were replaced with Equiformer (Liao
& Smidt, 2022) and FAENet (Duval et al., 2023), via their official repositories. ViT operated exclusively on
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images, while Equiformer and FAENet utilized XYZ files. Unlike the classification task, these models were
trained on the full dataset of approximately 100,000 samples.

Table 1 presents the MAE in electron volts (eV) for each architecture across ID and OOD scenarios. An
extended analysis with STD values is presented in Appendix A.3. ViT achieved the best performance for
predicting EH , but its performance degraded significantly on OOD data. FAENet produced the lowest errors
for EL predictions and demonstrated strong OOD generalization with minimal accuracy loss. Equiformer
yielded mixed results, excelling at some energy levels while struggling with EG predictions. Notably, all
models exhibited the highest MAE in ET predictions, indicating that ET remains the most challenging
property to predict accurately.

Table 1: Mean absolute error for different models across target properties (EH , EL, EG, EF , ET ) under ID
and OOD settings. Lower values indicate better performance.

Model EH EL EG EF ET

ID OOD ID OOD ID OOD ID OOD ID OOD

ViT 0.2130 0.2711 0.2161 0.2317 0.3514 0.3791 0.2175 0.2234 0.6620 0.7047

Equiformer 0.3843 0.3794 0.1995 0.2015 0.6288 0.6426 0.5014 0.5110 0.7651 0.7340

FAENet 0.4843 0.4967 0.1670 0.1755 0.4825 0.5087 0.3268 0.3294 0.6584 0.6590

4.3 EXPLAINABILITY EVALUATION

SOTA LLMs from multiple providers were evaluated, including OpenAI’s GPT-4o and GPT-3.5-Turbo, as
well as Anthropic’s Claude-3-Sonnet and Claude-3-Opus. The evaluation reveals distinct performance pat-
terns across various metrics. Figure 3 presents a comprehensive performance analysis: Figures 3(a) and (b)
illustrate phase and structural prediction performance, respectively; Figure 3(c) shows temperature accuracy
for both ID (solid bars) and OOD (hatched bars), with higher percentages indicating better accuracy; and
Figure 3(d) compares average temperature errors between ID and OOD cases, where lower values denote
improved performance. Detailed numerical values and BLEU/ROUGE scores are provided in Appendix A.4
(Tables 4, 5, 6, and 7) as well as user and system prompts.

Structural Predictions. Results from Figure 3 show that Claude-3 Opus achieves the highest accuracy in
structural predictions, particularly in dimensional accuracy (45% within a 15% tolerance) and Ti atom counts
(47.92% within a 15% tolerance). However, all models struggle with O atom predictions, with average errors
ranging from 34% to 69%. Phase prediction accuracy remains stable at 50% for Claude models across both
ID and OOD scenarios, whereas GPT models perform notably worse (13 - 45%). Predictions of the Ti:O
ratio remains a challenging task for all models, with average errors between 0.18 and 0.56.

Temperature Prediction. Figure 3 indicates that GPT-3.5-Turbo exhibits strong ID performance in temper-
ature prediction, achieving 46% accuracy within a 200K tolerance and the lowest average error (61.15K).
However, its performance deteriorates drastically in OOD scenarios, with accuracy dropping to 0% across
all thresholds. In contrast, Claude models maintain more consistent performance across both ID and OOD
cases, albeit with higher average errors (139 - 154K for ID and 294 - 357K for OOD).
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Figure 3: Comprehensive evaluation of LLM performance. (a) and (b) show model performance on ID and
OOD data, respectively, reporting phase prediction accuracy, dimensional error, titanium count error, and
oxygen count error. (c) Displays temperature prediction accuracy across different temperature ranges for ID
(solid bars) and OOD (hatched bars) cases, with higher percentages indicating better accuracy. (d) Compares
the average temperature error (in K) between ID and OOD scenarios, where lower values denote improved
performance.

5 DISCUSSION AND CONCLUSION

The TDCM25 dataset is a comprehensive benchmark for multi-modal AI in materials science, addressing
classification, regression, and explainability tasks. Experiments show that graph-based neural networks
outperform convolutional networks in phase classification, while vision transformers yield promising energy
predictions, modeling ET remains particularly challenging, signaling a need for better representations.

LLM evaluations reveal mixed performance in temperature and structural predictions. Some models achieve
low temperature prediction errors in ID settings but fail to generalize OOD, whereas others maintain consis-
tent accuracy. In structural predictions, certain LLMs excel in estimating dimensions and titanium counts,
yet all models struggle with oxygen counts and Ti:O ratios, indicating a necessity for domain-specific fine-
tuning.

TDCM25, while a valuable benchmark for AI-driven materials science, has its limitations. It focuses ex-
clusively on TiO, meaning that incorporating additional materials could enhance its applicability and help
validate model findings across diverse systems. Although DFTB simulations offer computational efficiency,
they may not match the accuracy of higher-fidelity quantum methods or experimental measurements. Ad-
ditionally, challenges in integrating multi-modal data and capturing domain-specific nuances might limit
the generalizability of models trained on this dataset. Future research should therefore aim to refine model
architectures, diversify material inclusion, and utilize advanced simulation techniques to overcome these
challenges while further advancing robust, generalizable models for temperature-sensitive materials.
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A APPENDIX

A.1 DFTB SIMULATIONS

The structural analysis and electronic structure of anatase, brookite, and rutile phase TiO2 nanoparticles
(NPs) have been investigated using the DFTB method and molecular dynamics simulations implemented
in the DFTB+ code (DFT, 2020). The calculations employ the tiorg-0-1 (Dolgonos et al., 2010) set of
Slater-Koster parameters.

The initial structures of anatase, brookite, and rutile phase TiO2 NPs are illustrated in Fig. 4. All three TiO2

NP models were derived from a bulk 60× 60× 60 supercell. The nanoparticle radius was set to the desired
value of 0.9 nm, with only atoms within this sphere considered, while those outside were removed. All
simulations were conducted at constant volume conditions.

Figure 4: Structural models of anatase, brookite, and rutile phase TiO2 NPs.

HDFTB = H0 +HSCC +HREP , (2)

where H0 represents the non-self-consistent part of the Hamiltonian, HSCC accounts for self-consistent
charge corrections, and HREP corresponds to the repulsive potential between atoms. The total energy of the
system is then obtained as:

EDFTB =
∑
i

fiϵi + ESCC + EREP , (3)

where fi are the occupation numbers, ϵi stands for the orbital energies, ESCC denotes the self-consistent
charge energy, and EREP represents the repulsive energy.

A.2 CLASSIFICATION RESULTS

Detailed classification results for the experiments are presented in Table 2. The reported values represent the
average outcomes from three independent runs.

A.3 PROPERTY PREDICTION EXTENDED RESULTS

The results of the property prediction experiments are expanded with additional STD values in Table 3.
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Table 2: Classification results with extended STD values in parenthesis.

Model Accuracy (STD) (%) Loss (STD)

ID OOD ID OOD

ResNet 65.55 (11.89) 61.76 (17.82) 5.62 (0.5139) 6.59 (0.8840)
SchNet 60.00 (11.55) 66.67 (0.000) 0.82 (0.2960) 0.84 (0.2831)
DimeNet++ 66.67 (33.33) 66.67 (33.33) 0.65 (0.4470) 0.66 (0.4453)

Table 3: Extended property prediction MAE results with STD values in parenthesis for ID and OOD settings.
Averaged over 3 runs. All values are in eV.

Model EH EL EG

ID (STD) OOD (STD) ID (STD) OOD (STD) ID (STD) OOD (STD)

ViT
0.2130 (0.0036) 0.2711 (0.0037) 0.2161 (0.0085) 0.2317 (0.0090) 0.3514 (0.0156) 0.3791 (0.0145)

EF : 0.2175 (0.0054), 0.2234 (0.0056) ET : 0.6620 (0.0253), 0.7047 (0.0321)

Equiformer
0.3843 (0.0069) 0.3794 (0.0080) 0.1995 (0.0070) 0.2015 (0.0085) 0.6288 (0.0264) 0.6426 (0.0244)

EF : 0.5014 (0.0140), 0.5110 (0.0158) ET : 0.7651 (0.0344), 0.7340 (0.0272)

FAENet
0.4843 (0.0097) 0.4967 (0.0124) 0.1670 (0.0063) 0.1755 (0.0072) 0.4825 (0.0217) 0.5087 (0.0254)

EF : 0.3268 (0.0098), 0.3294 (0.0089) ET : 0.6584 (0.0250), 0.6590 (0.0277)

A.4 EXTENDED EXPLAINABILITY RESULTS

This subsection presents used prompts and detailed results for the LLM tasks, including BLEU and ROUGE
metrics, temperature prediction accuracy, and structural analysis.

Prompts. Same prompt utilized for all the models in order to keep the benchmarking consistent. The
prompts are constructed as below:

1 messages = [
2 {
3 "role": "system",
4 "content": """You are a materials science expert specializing in

↪→ analyzing TiO2 nanoparticles.
5 Your task is to generate precise captions describing the structural properties

↪→ of nanoparticles based on both visual and atomic coordinate data.
6 You should predict both the exact temperature within the given range and the

↪→ crystal phase (anatase, brookite, or rutile),
7 and determine the precise rotation applied to the structure if it is not the

↪→ original configuration."""
8 },
9 {

10 "role": "user",
11 "content": [
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12 {
13 "type": "text",
14 "text": """Analyze this TiO2 nanoparticle structure. The

↪→ temperature is between 0K and 1000K. This is {"the
↪→ original" if is_original else "a rotated"} configuration.

15

16 Here is the XYZ structural data:
17 {xyz_content}
18

19 Based on the structural data and image, perform the following tasks:
20

21 1. **Predict the crystal phase**: (options: anatase, brookite, rutile)
22 2. **Predict the exact temperature** within the given range.
23 3. **Determine the precise rotation angles** if this is a rotated configuration

↪→ .
24

25 Then, generate a caption in the following exact format (replace the
↪→ placeholders with your predictions):

26

27 "This [predicted_phase] configuration at [predicted_temperature]K consists of [
↪→ total_atoms] atoms, including [ti_atoms] titanium atoms and [o_atoms]
↪→ oxygen atoms, resulting in a Ti:O ratio of approximately [ratio]:1. The
↪→ nanoparticle spans about [x_dimension] in x, [y_dimension] in y,
↪→ and [z_dimension] in z. [Original/Rotation Information]"

28

29 **Notes:**
30

31 - For rotated configurations, replace ‘[Original/Rotation Information]‘ with:
32 "Rotation applied: x=[x_angle] , y=[x_angle] , z=[z_angle] ."
33 - For original configurations, replace it with:
34 "This is the original configuration (no rotation)."
35

36 **Example Output:**
37 "This anatase configuration at 350K consists of 100 atoms, including 30

↪→ titanium atoms and 70 oxygen atoms, resulting in a Ti:O ratio of
↪→ approximately 0.43:1. The nanoparticle spans about 5.0 in x, 3.0 in
↪→ y, and 2.0 in z. This is the original configuration (no rotation)."

38

39 **Important:** Only output the caption as specified above without any
↪→ additional text or explanations."""

40 },
41 {
42 "type": "image_url",
43 "image_url": {
44 "url": "data:image/png;base64,{image_b64}",
45 "detail": "low"
46 }
47 }
48 ]
49 }
50 ]

Text Similarity Performance. Claude-3 models (Sonnet and Opus) outperform GPT models in text simi-
larity metrics, as shown in Table 7, achieving BLEU scores around 0.440.45 and ROUGE-L scores above
0.70. GPT-4 underperforms, with BLEU scores around 0.15 and ROUGE-L scores near 0.24. Performance
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remains stable between ID and OOD scenarios for most models, except GPT-4, which experiences slight
degradation in OOD cases.

Table 4: Dimension and Phase Prediction Performance

Metric Model ID (%) OOD (%)

Total Atom Count Match (%) Claude-3-Sonnet 0.00 0.00
Claude-3-Opus 0.00 0.00
GPT-3.5-Turbo 0.00 0.00
GPT-4o 0.00 0.00

Phase Prediction (%) Claude-3-Sonnet 50.00 50.00
Claude-3-Opus 50.00 50.00
GPT-3.5-Turbo 45.67 42.08
GPT-4o 16.33 13.33

Dimension Exact (%) Claude-3-Sonnet 0.00 0.00
Claude-3-Opus 0.00 0.00
GPT-3.5-Turbo 0.00 0.00
GPT-4o 0.00 0.00

Dimension Within 5% Claude-3-Sonnet 0.00 1.25
Claude-3-Opus 6.33 11.67
GPT-3.5-Turbo 0.00 0.00
GPT-4o 1.33 1.67

Dimension Within 10% Claude-3-Sonnet 2.00 1.25
Claude-3-Opus 25.67 26.25
GPT-3.5-Turbo 0.00 0.00
GPT-4o 6.00 4.58

Dimension Within 15% Claude-3-Sonnet 7.33 8.33
Claude-3-Opus 41.67 45.00
GPT-3.5-Turbo 0.00 0.00
GPT-4o 10.67 7.50

Average Dimension Error (%) Claude-3-Sonnet 39.68 33.27
Claude-3-Opus 7.16 6.17
GPT-3.5-Turbo 44.54 44.23
GPT-4o 8.12 8.49
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Table 5: Atom Count Prediction Performance

Metric Model ID (%) OOD (%)

Ti Atoms Count Exact Match (%) Claude-3-Sonnet 0.33 0.00
Claude-3-Opus 13.67 15.42
GPT-3.5-Turbo 0.00 0.00
GPT-4o 0.00 0.00

Ti Atoms Count Within 5% Claude-3-Sonnet 0.33 0.42
Claude-3-Opus 14.33 15.83
GPT-3.5-Turbo 0.67 1.67
GPT-4o 1.00 1.67

Ti Atoms Count Within 10% Claude-3-Sonnet 4.00 5.00
Claude-3-Opus 47.67 47.50
GPT-3.5-Turbo 0.67 1.67
GPT-4o 4.33 5.83

Ti Atoms Count Within 15% Claude-3-Sonnet 4.67 5.83
Claude-3-Opus 47.67 47.92
GPT-3.5-Turbo 4.33 4.58
GPT-4o 9.33 10.00

Average Ti Atoms Count Error (%) Claude-3-Sonnet 44.96 45.37
Claude-3-Opus 6.90 6.65
GPT-3.5-Turbo 34.79 33.53
GPT-4o 14.75 12.13

O Atoms Exact Count Match (%) Claude-3-Sonnet 0.00 0.00
Claude-3-Opus 0.00 0.00
GPT-3.5-Turbo 0.00 0.00
GPT-4o 0.33 0.00

O Atoms Count Within 5% Claude-3-Sonnet 0.00 0.00
Claude-3-Opus 1.33 1.67
GPT-3.5-Turbo 0.00 0.00
GPT-4o 1.00 1.25

O Atoms Count Within 10% Claude-3-Sonnet 0.00 0.00
Claude-3-Opus 1.67 1.67
GPT-3.5-Turbo 0.00 0.00
GPT-4o 1.67 1.25

O Atoms Count Within 15% Claude-3-Sonnet 0.00 0.00
Claude-3-Opus 1.67 1.67
GPT-3.5-Turbo 0.00 0.00
GPT-4o 2.00 1.25

Average O Atoms Count Error (%) Claude-3-Sonnet 64.18 63.88
Claude-3-Opus 44.28 43.76
GPT-3.5-Turbo 69.39 68.05
GPT-4o 34.13 34.23
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Table 6: Temperature Prediction Performance

Metric Model ID (%) OOD (%)

Temperature Exact (%) Claude-3-Sonnet 5.33 0.00
Claude-3-Opus 2.00 0.00
GPT-3.5-Turbo 9.33 0.00

GPT-4o 2.33 0.00

Temperature Within 50K (%) Claude-3-Sonnet 14.33 2.92
Claude-3-Opus 7.67 0.42
GPT-3.5-Turbo 28.00 0.00

GPT-4o 5.33 0.00

Temperature Within 100K (%) Claude-3-Sonnet 27.00 4.58
Claude-3-Opus 15.67 0.42
GPT-3.5-Turbo 46.00 0.00

GPT-4o 9.00 0.42

Temperature Within 200K (%) Claude-3-Sonnet 40.67 15.00
Claude-3-Opus 37.33 11.25
GPT-3.5-Turbo 46.00 0.00

GPT-4o 14.00 0.83

Average Temperature Error (K) Claude-3-Sonnet 139.67 357.92
Claude-3-Opus 154.50 294.08
GPT-3.5-Turbo 61.15 422.22

GPT-4o 125.51 339.06
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Table 7: Text Similarity Metrics

Metric Model ID OOD

BLEU Claude-3-Sonnet 0.4433 0.4368
Claude-3-Opus 0.4544 0.4609
GPT-3.5-Turbo 0.4064 0.3806

GPT-4o 0.1500 0.1159

ROUGE1 Claude-3-Sonnet 0.7462 0.7452
Claude-3-Opus 0.7521 0.7670
GPT-3.5-Turbo 0.7103 0.6915

GPT-4o 0.2519 0.2030

ROUGE2 Claude-3-Sonnet 0.5018 0.4989
Claude-3-Opus 0.5237 0.5385
GPT-3.5-Turbo 0.4635 0.4470

GPT-4o 0.1808 0.1441

ROUGEL Claude-3-Sonnet 0.7104 0.7095
Claude-3-Opus 0.7218 0.7329
GPT-3.5-Turbo 0.6649 0.6476

GPT-4o 0.2445 0.1960
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