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Abstract

Modern continuous Hopfield networks (MCHNs) are a variant of Hopfield net-
works that have greater storage capacity and have been shown to have connections
to the attention mechanism in transformers. In this paper, we propose a variant of
MCHNs, which we call k-Hopfield layers, which is the first Hopfield-type net-
work that retrieves the k-nearest memories to a given input. k-Hopfield layers are
differentiable and may serve as (i) a soft approach to k-nearest neighbors, (ii) an
augmented form of memory in deep learning architectures and (iii) an alternative
to multihead attention in transformers. We empirically demonstrate that increas-
ing k aids in correctly reconstructing a corrupted input. We show that using a
k-Hopfield layer as a replacement to multihead attention demonstrates compara-
ble performance in small vision transformers while requiring fewer parameters.

1 Introduction

Hopfield networks [Hopfield, 1982, 1984] are a class of neural networks with an underlying energy
function and are typically used as a form of associative memory. Given a partial or noise-corrupted
memory, the network updates its state to minimize its energy, converges to a fixed point, and re-
trieves the full memory. Hopfield networks have garnered interest thanks to recent developments
on dense associative memories and modern Hopfield networks. It has been demonstrated that these
newer variants possess greater storage capacity compared to their classical counterparts [Krotov and
Hopfield, 2016, Demircigil et al., 2017, Ramsauer et al., 2021, Krotov and Hopfield, 2021]. Fur-
ther, [Ramsauer et al., 2021] shows a connection between modern continuous Hopfield networks
(MCHNs) and the attention mechanism in transformers [Vaswani et al., 2017]. Building upon these
breakthroughs in dense associative memories and MCHNs, recent interesting extensions include (i)
universal Hopfield networks [Millidge et al., 2022], (ii) kernel interpretations of MCHNs [Iatropou-
los et al., 2022], and (iii) Hopfield networks with setwise connections [Burns and Fukai, 2023]. Fi-
nally, Hopfield networks can be used to design new transformer architectures [Hoover et al., 2023].

In this paper, we propose a variant of MCHN to retrieve the k-nearest memories to an input. We
call this variant a k-Hopfield layer. In short, given a collection of memories {ξi}Ni=1, and input x0,
the k-Hopfield layer retrieves the k memories ξi1 , . . . , ξik that are most similar to x0. We provide
a pictorial representation of this procedure in Figure 1. Our k-Hopfield layer is built upon a soft
top-k operator [Amos et al., 2019], akin to how MCHNs use softmax as a soft approximation
for argmax. In this way, our k-Hopfield layer is differentiable and can be seamlessly integrated
into deep learning architectures trained via gradient descent. To the best of our knowledge, the k-
Hopfield layer is the first Hopfield-type network to retrieve more than one memory. We demonstrate
the k-Hopfield layer’s ability to reconstruct obscured memories. We additionally demonstrate the
utility of our approach as a multi-head attention substitute that uses fewer trainable parameters with
comparable performance on small-scale vision transformers [Dosovitskiy et al., 2021].
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Figure 1: Pictorial representation of the k-Hopfield layer with k = 5. The left images are the
occluded MNIST and CIFAR-10 inputs to the k-Hopfield layer and the right images are the outputs
of the k-Hopfield layer, i.e., the k closest stored memories to the occluded input.

2 Methods

Motivation and ksoftmax: Recall the standard update rule for the modern continuous Hopfield
networks (MCHNs)

x+ = Ξsoftmax(βΞ⊤x), (1)
where Ξ = [ξ1, . . . , ξN ] ∈ Rn×N with {ξi}Ni=1 being a collection of memories, and β > 0 is an
inverse temperature parameter. It was shown in [Ramsauer et al., 2021] that when the memories are
sufficiently well separated, the update rule (1) in one step retrieves the memory closest to x0.

We motivate our proposed approach for modifying the update rule (1) to retrieve k nearest memories
via an intuitive explanation for the effectiveness of (1) in memory retrieval. In the limit as β → ∞,
softmax(βΞ⊤x) converges to the binary vector with unity in the entry corresponding to the largest
entry of the vector Ξ⊤x. Then Ξ softmax(βΞ⊤x) outputs the single memory which is closest to x.

Following the intuitive explanation above, we aim to define a new operation, ksoftmax, which has
the property that in the limit as β → ∞, ksoftmax(βΞ⊤x) converges to a binary n×k matrix where
the i-th column corresponds to one of the i-th closest memories with unity in the entry of the vector
corresponding to the i-th largest entry of Ξ⊤x. Specifically, ksoftmax serves as a smooth and soft
approximation for the nonsmooth operator that outputs this binary matrix.

The key observation is the following: finding the index corresponding to the i-th largest entry of a
vector may be computed by taking the top-i operator of the vector minus its top-(i − 1) operator,
where we recall that the top-k operator of a vector x returns a binary vector of the same size as x,
but with unity in the entries corresponding to the k-largest entries of x. Since the top-k operator is
not differentiable, we replace it by a soft version. We discuss alternative approaches to retrieving
k-nearest memories in Appendix A. In this work, we adopt the approach of [Amos et al., 2019],
which they refer to as the limited multi-label projection layer. We will refer to this layer as the
sum-softmax function in analogy with the classical softmax operation.
Definition 1. The sum-softmax function, ssm : Rn × {1, . . . , n} → Rn is defined by

ssm(x; k) = argmin
y∈[0,1]n

−x⊤y −Hb(y), s.t. 1⊤
n y = k, (2)

where Hb(y) = −
∑n

i=1(yi log(yi) + (1− yi) log(1− yi)) is the binary entropy function.

The sum-softmax function and softmax share the following similarity: if k = 1 and Hb in the
objective function (2) is replaced with the entropy function H(y) = −

∑n
i=1 yi log(yi), then the

solution to the minimization problem is equal to the output of the softmax function. The choice
of using Hb rather than H in the objective function encourages less sparse gradients [Amos et al.,
2019]. We establish in Appendix B that the ssm function converges to the top-k operator as β → ∞.
The forward and backward passes for the ssm function were implemented in Pytorch in [Amos et al.,
2019] and can be directly applied for the problem under consideration.

With the ssm function in hand, we are ready to define the ksoftmax function.
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Definition 2. For k ≤ n, define the k-softmax function ksoftmax : Rn → Rn×k one column at a
time, for i = 1, . . . , k, by:

ksoftmaxi(x) =

{
ssm(x; 1), if i = 1,

ssm(x; i)− ssm(x; i− 1), otherwise
(3)

Note that since ssm(x; i) provides a smooth approximation for the binary vector with unity in entries
corresponding to the top-i entries of x, then ksoftmaxi(x) is an approximation to the binary vector
with unity in the entry corresponding to the i-th largest entry of x. Moreover, this vector always has
nonnegative entries (we prove this intuitive fact in Appendix B).

k-Hopfield Layer and Practical Considerations: Given an input x0 ∈ Rn, we propose the follow-
ing single-step update, which we refer to as a k-Hopfield layer:

X = Ξksoftmax(βΞ⊤x0). (4)

Note that although the input x0 is a vector, the output, X ∈ Rn×k is a matrix where each column
corresponds to a memory. The column Xi corresponds to an approximation to the i-th closest
memory to the input x0. Although the update rule (4) is a map from Rn to Rn×k, we provide an
energy interpretation of the update rule when studied one column at a time in Appendix C (i.e., the
dynamical system x+ = Ξksoftmaxi(βΞ

⊤x), which takes the i-th column from ksoftmax).

As was studied in [Millidge et al., 2022], similarity measures other than the inner product may
be desirable depending on the application domain. To this end, we can modify our update rule to
accommodate more general similarity measures:

X = Ξksoftmax(βsim(Ξ, x)), where sim(Ξ, x)i = sim(ξi, x), (5)
where sim(ξi, x) denotes a measure of similarity between the vectors ξi and x and is “large” when
ξi and x are close to one another. Other choices of similarity are the negative squared Euclidean
distance, and the negative Manhattan distance, as reported in [Millidge et al., 2022].

Our update rule (4) or (5) can also readily be used as a first step in a larger dense associative memory.
Specifically, given an input x0 ∈ Rn, one can consider the combined update

X = Ξksoftmax(β1Ξ
⊤x0), X+ = Ξsoftmax(β2Ξ

⊤X), (6)
where the softmax is applied to each column independently. Intuitively, the k-Hopfield update finds
k new inputs which are close to the k memories closest to x0 and then MCHN update retrieves these
nearest memories in one step, as was shown in [Ramsauer et al., 2021].

3 Numerical Experiments

Image Reconstruction: In line with the experiments run in [Millidge et al., 2022] and [Burns and
Fukai, 2023], we study the ability of the k-Hopfield layer to reconstruct corrupted memories as a
function of both the number of stored memories and k. Specifically, we say that a k-Hopfield layer
correctly reconstructs a memory if, given a corrupted input, any of the columns of the output matrix
X are sufficiently close to the uncorrupted input. We say that a reconstruction is sufficiently close
to the uncorrupted input if the sum-of-squares difference between the two is less than 50.

We embed data from MNIST, CIFAR-10, and Tiny ImageNet as memories into our k-Hopfield layer.
We corrupt inputs as follows: if the dataset is (i) either MNIST or Tiny ImageNet, we occlude the
top half of the input image, (ii) CIFAR-10, then we occlude the top 10/32 rows of the input image.
We use β = 3 and the negative Manhattan distance as similarity function in all experiments. We
report the results for the k-Hopfield layer in additional to the MCHN in Figure 2.

We observe in all experiments that using k = 1 yields similar performance to using a standard
MCHN for reconstruction. Additionally, we can empirically observe that using k > 1 provides
improved ability to reconstruct the uncorrupted memory. This result makes intuitive sense since
increasing k allows the layer to reconstruct multiple memories which are close to the input and
check if any of these reconstructed memories are close to the uncorrupted memory.

ksoftmax Multihead Attention: Next, we assess using ksoftmax as a replacement for multihead
attention. In this context, k represents the number of heads and the k-Hopfield attention update is

kHopfieldAttn(X) = V ksoftmax(βQ⊤K), (7)
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Figure 2: Storage capacity of the k-Hopfield layer with varying k and a MCHN [Ramsauer et al.,
2021] as measured by increasing the number of memories. We average the performance over 10
trials with different memories and report the mean and one standard deviation. We observe that
k = 1 performs comparably to MCHN and increasing k improves storage capacity (higher is better).

where K = UKX,Q = UQX, and V = UV X , denote the keys, values, and queries, respectively,
and ksoftmax is applied to each column individually. Compared to standard multihead attention
which runs k self-attention updates in parallel and concatenates them, the update (7) directly pro-
vides k different outputs. Thus, the update (7) serves as a substitute for multihead attention, while
only requiring the parameters of a single head.

To test the k-Hopfield attention update, we train small vision transformers (ViT) [Dosovitskiy et al.,
2021] with standard multihead attention and with k-Hopfield attention on MNIST (Figure 3) and
CIFAR-10 (Appendix D). We provide training details in Appendix E. We observe that both multi-
head attention and k-Hopfield attention perform comparably.

4 Conclusion and Future Directions

We propose the k-Hopfield layer which can retrieve k-closest memories to an obscured input in a
differentiable manner. We provide a mathematical treatment for the layer and provide an energy-
based interpretation. The layer performs well when embedded in small vision transformers while
requiring fewer parameters.

Future theoretical work will entail deciphering the provided energy function and convergence guar-
antees for the update rule. Future experimental work will entail testing on larger scale transformers.
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Figure 3: ViT training curves on MNIST with k-Hopfield attention (ViT-Hopfield) and standard
multi-headed attention (ViT). k corresponds to the number of attention heads. We observe that
performance of both methods is comparable, even though our method requires fewer parameters.

4



Acknowledgements: This work was supported in part by the NSF Graduate Research Fellowship
under grant 2139319, the ARO under grant W911NF-22-1-0233, and by AFOSR award FA9550-
22-1-0059.

References
R. Abraham, J. E. Marsden, and T. S. Ratiu. Manifolds, Tensor Analysis, and Applications, vol-

ume 75 of Applied Mathematical Sciences. Springer, 2 edition, 1988. ISBN 0387967907.

B. Amos, V. Koltun, and J. Z. Kolter. The limited multi-label projection layer. arXiv preprint:
1906.08707, 2019. URL https://arxiv.org/abs/1906.08707.

T. F. Burns and T. Fukai. Simplicial Hopfield networks. In International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=_QLsH8gatwx.
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A Comparative Discussion to Alternative Approaches

One alternative to retrieving k-nearest memories, for example, would be to retrieve one memory,
and then remove that memory and retrieve again. Our method is better than this one in two respects.
First, our method is inherently differentiable, while iteratively removing memories is not. Second,
a key function of Hopfield networks is the ability to retrieve superpositions of memories, or “in-
between” memories, referred to as spin-glass states [Hopfield, 1982] or metastable states [Ramsauer
et al., 2021]. The retrieval of superpositions is what makes Hopfield networks suitable for continuous
learning tasks. There is no intuitive way to remove a superposition from memory if it was retrieved.

An alternative naive approach requires increasing the dimension of the state space to be n × k
and defining new “memories” which are combinations of the original ones. This approach requires
combinatorially many new memories compared to original ones and becomes quickly intractible.

Finally, there is a growing literature on soft top-k operators [Malaviya et al., 2018, Amos et al.,
2019, Xie et al., 2020, Sander et al., 2023]. While we adopt the approach of [Amos et al., 2019],
an interesting future direction of research would evaluate the performance of alternative soft top-k
operators in k-Hopfield layers.

B Mathematical Analysis

Proposition 3. Let x ∈ Rn and suppose x[k] > x[k+1], where x[i] denotes the i-th largest entry of
x. Then

lim
β→∞

ssm(βx; k) = topk(x), where topk(x)i =

{
1, if xi ∈ {x[1], . . . , x[k]}
0, otherwise

. (8)

Proof. Since the optimization problem is permutation invariant, we assume, without loss of gener-
ality, that x1 ≥ x2 ≥ · · · ≥ xn. Following the analysis from [Amos et al., 2019], the Lagrangian
for the minimization problem arising from ksoftmax is given by

L(y, λ;β) = −βx⊤y −Hb(y) + λ(k − 1⊤
n y).
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The first-order optimality condition is ∇yL(y
⋆, λ⋆;β) = 0n and yields the conditions −βxi +

log(y⋆i /(1− y⋆i ))− λ⋆ = 0 for all i ∈ {1, . . . , n}. These conditions can be expressed succinctly as

y⋆ = σ(βx+ λ⋆1n), (9)

where σ denotes the logistic function σ(z) = 1/(1 + e−z), which acts elementwise. Moreover, to
find the optimal dual variable, we substitute (9) into the constraint 1⊤

n y
⋆ = k to find the condition

n∑
i=1

σ(βxi + λ⋆) = k. (10)

Note that the map λ 7→
∑n

i=1 σ(βxi + λ) is continuous and monotonically increasing so that, if
there is an interval [λ, λ] such that

∑n
i=1 σ(βxi + λ) ≤ k and

∑n
i=1 σ(βxi + λ) ≥ k, then there

exists λ⋆ ∈ [λ, λ] satisfying (10).

We now aim to show that as β → ∞, y⋆ → topk(x). To this end, let ε > 0 be given. We will prove
that there exists β > 0 sufficiently large such that y⋆i ≥ 1 − ε for i ∈ {1, . . . , k} and y⋆i ≤ ε for
i ∈ {k + 1, . . . , n}2. To this end, let M = σ−1(1− ε),m = σ−1(ε) and pick3

β ≥ max

0,
M −m

xk − xk+1
,
M − σ−1

(
ε

n−k

)
xk − xk+1

,
σ−1(1− ε/k)−m

xk − xk+1

 .

Note that (1) for y⋆i ≥ 1−ε with i ∈ {1, . . . , k}, it is sufficient that λ⋆ ≥ M−βxk and (2) for y⋆i ≤ ε
with i ∈ {k+1, . . . , n}, it is sufficient that λ⋆ ≤ m−βxk+1. In other words, to prove the result, we
need to establish that there exists λ⋆ ∈ [M − βxk,m − βxk+1] satisfying the condition (10). First
note that the interval [M − βxk,m − βxk+1] is nonempty because β ≥ (M − m)/(xk − xk+1).
To establish the existence of λ⋆, we leverage the continuity and monotonicity of the map λ 7→∑n

i=1 σ(βxi + λ). First, we evaluate this map at the left endpoint of our interval to obtain
n∑

i=1

σ(βxi +M − βxk) =

k−1∑
i=1

σ(β(xi − xk) +M) + σ(M) +

n∑
i=k+1

σ(β(xi − xk) +M)

(a)

≤ k − ε+

n∑
i=k+1

σ(β(xk+1 − xk) +M)

= k − ε+ (n− k)σ(β(xk+1 − xk) +M)

(b)

≤ k − ε+ ε = k,

where inequality (a) holds because σ(z) ≤ 1 for all z, because σ(M) = 1 − ε, and because
β(xi − xk) ≤ β(xk+1 − xk) for all i ∈ {k + 1, . . . , n} since β ≥ 0. Inequality (b) holds because
β ≥ (M − σ−1(ε/(n− k)))/(xk − xk+1).

Regarding the evaluation of the map at the right endpoint of the interval, we compute
n∑

i=1

σ(βxi +m− βxk+1) =

k∑
i=1

σ(β(xi − xk+1) +m) + σ(m) +

n∑
i=k+2

σ(β(xi − xk+1) +m)

(c)

≥
k∑

i=1

σ(β(xk − xk+1) +m) + ε

= kσ(β(xk − xk+1) +m) + ε

(d)

≥ k
(
1− ε

k

)
+ ε = k,

where inequality (c) holds because β(xi − xk+1) ≥ β(xk − xk+1) for all i ∈ {1, . . . , k} since
β ≥ 0, σ(m) = ε, and because σ(z) ≥ 0 for all z. Inequality (d) holds because β ≥ σ−1(1−ε/k)−m

xk−xk+1
.

2If ϵ ≥ 1, any choice of β ≥ 0 will suffice, so we further assume ϵ < 1.
3Note that since σ is the logistic function, σ−1 exists on the domain ]0, 1[ and is given by σ−1(x) =

log(x/(1− x)).
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Therefore, we conclude that there exists a λ⋆ ∈ [M − βxk,m − βxk+1] satisfying condition (10).
Since λ⋆ ≥ M − βxk, by (9) we conclude that y⋆i ≥ 1 − ε for i ∈ {1, . . . , k} and since λ⋆ ≤
m− βxk−1, we conclude that y⋆i ≤ ε for i ∈ {k+ 1, . . . , n}. Since ε > 0 was arbitrarily small, the
proof is completed.

Proposition 4. For all x ∈ Rn, k, j ∈ {1, . . . , n}, with k ≥ j, the following inequality holds
elementwise:

ssm(x; k) ≥ ssm(x; j). (11)

Proof. Recall from the proof of Proposition 3 that ssm(x; k) =: y⋆,k is given by y⋆,k = σ(x+λ⋆,k),
where λ⋆,k is the optimal dual variable and satisfies

n∑
i=1

σ(xi + λ⋆,k) = k.

Note, however that if λ⋆,k ≥ λ⋆,j , then the result is proved in view of the formulas for y⋆,k and
y⋆,j in view of monotonicity of σ. However, it is straightforward to see that λ⋆,k ≥ λ⋆,j since the
mapping λ 7→

∑n
i=1 σ(xi+λ) is monotone and k ≥ j. In other words, for the optimal dual variable

to satisfy the constraint, it is necessary that λ⋆,k ≥ λ⋆,j . Thus, the result is proved.

As a corollary to Proposition 4, we can see that for any x ∈ Rn, ksoftmax(x) ≥ 0, where the
inequality is understood elementwise.

C Energy Interpretation of Update Rule

Proposition 5. For any k ∈ {1, . . . , n}, the following statements hold:

(i) There exists Vk : Rn → R such that ∇Vk(x) = ssm(x; k). Indeed, one such Vk is given by

Vk(x) =

∫ 1

0

x⊤ ssm(tx; k)dt. (12)

(ii) The function Vk in equation (12) is convex and its Hessian, ∇2Vk(x), is a Laplacian matrix
for all x ∈ Rn.

Proof. To establish that ssm is the gradient of a potential function Vk, we show that its Jacobian is
symmetric. To this end, leveraging the Lagrangian formulation from Proposition 3, we know that

ssm(x; k)i =: y⋆i (x, λ
⋆(x)) = σ(xi + λ⋆(x)) and

n∑
i=1

σ(xi + λ⋆(x)) = k, (13)

where λ⋆(x) denotes the optimal dual variable for the optimization problem. Computing the partial
derivatives for y⋆i yields

∂y⋆i
∂xj

(x, λ⋆(x)) = σ′(xi + λ⋆(x))
(
δij +

∂λ⋆

∂xj
(x)

)
, (14)

where δij is the Kronecker delta. The evaluation of ∂λ⋆/∂xj may be computed via the implicit
function theorem:

n∑
i=1

σ′(xi + λ⋆(x))
(
δij +

∂λ⋆(x)

∂xj

)
= 0

⇐⇒ ∂λ⋆

∂xj
(x) = − σ′(xj + λ⋆(x))∑n

ℓ=1 σ
′(xℓ + λ⋆(x))

.

Substituting this expression into the equation (14) yields

∂y⋆i
∂xj

(x, λ⋆(x)) = −σ′(xi + λ⋆(x))σ′(xj + λ⋆(x))∑n
ℓ=1 σ

′(xℓ + λ⋆(x))
+ δijσ

′(xi + λ⋆(xi)). (15)
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Since ∂y⋆i /∂xj = ∂y⋆j /∂xi for all i, j ∈ {1, . . . , n}, we conclude that the Jacobian matrix of y⋆ is
symmetric. The result is then implied by the Poincaré lemma from differential geometry [Abraham
et al., 1988, Theorem 6.4.14]. A direct calculation shows that with Vk defined in (12) satisfies
∇Vk(x) = ssm(x; k) using the symmetry of partial derivatives.

To see that Vk is convex, we will establish that the Jacobian of y⋆(x, λ⋆(x)) is positive semidefinite
for all x. For i ∈ {1, . . . , n}, we use the shorthand ai := σ′(xi + λ⋆(x)) and note that for all x and
i, ai ∈ ]0, 1/4]. Then we can see that the diagonal elements of the Jacobian are positive since

∂y⋆i
∂xi

(x, λ⋆(x)) = − a2i∑n
j=1 aj

+ ai = ai

(
1− ai/

n∑
j=1

aj

)
> 0.

We can also see that the off-diagonal elements are negative. Computing row sums of the Jacobian
yields

∂y⋆i
∂xi

(x, λ⋆(x)) +
∑
j ̸=i

∂y⋆i
∂xj

(x, λ⋆(x)) = ai −
a2i∑n
ℓ=1 aℓ

−
∑
j ̸=i

aiaj∑n
ℓ=1 aℓ

= ai −
ai∑n
ℓ=1 aℓ

(ai +
∑
j ̸=i

aj) = ai − ai = 0.

Since the diagonal entries of ∂y⋆

∂x are positive, the off-diagonal entries are negative, and row sums are
equal to zero, we conclude that for all x, the Jacobian matrix is a Laplacian matrix. An application of
Gershgorin’s circle theorem establishes positive semidefiniteness for all x, which proves convexity
of Vk.

With Proposition 5 in hand, we are ready to provide an energy interpretation to the k-Hopfield layer
rule (4). To be more specific, since the rule (4) is a map from Rn to Rn×k, it cannot have an energy
function that it is minimizing. Instead, we study the update rule one column at a time as follows:

x+ = Ξksoftmaxi(βΞ
⊤x), (16)

where i ∈ {1, . . . , k} and ksoftmaxi : Rn → Rn outputs the ith column of ksoftmax. In other
word, in one step, the update rule (16) attempts to output the i-th closest memory to x. This update
rule defines a map from Rn to itself. If i ̸= 1, we consider the function E : Rn → Rn given by

E(x) =
1

2
x⊤x− 1

β

(∫ 1

0

x⊤(ssm(tβΞ⊤x; i)− ssm(tβΞ⊤x; i− 1))dt

)
. (17)

Then, the update rule (16) is a gradient descent update with unit step size. To see this fact, note that

∇E(x) = x− Ξ(ssm(βΞ⊤x; i)− ssm(βΞ⊤x); i− 1)

and note that ssm(βΞ⊤x; i)−ssm(βΞ⊤x; i−1) = ksoftmaxi(βΞ
⊤x). A gradient descent algorithm

on E with stepsize α > 0 is

x+ = x− α∇E(x) = (1− α)x+ αΞksoftmaxi(βΞ
⊤x).

Picking α = 1 yields the stated update rule (16).

If instead, i = 1, then ksoftmax1(βΞ
⊤x) = ssm(βΞ⊤x; 1) and the underlying energy function

E : Rn → Rn is given by

E(x) =
1

2
x⊤x− 1

β

∫ 1

0

x⊤ ssm(tβΞ⊤x; 1)dt. (18)

Although we do not present a closed-form expression for Vk(x) =
∫ 1

0
x⊤ ssm(tx; k)dt, we provide

the following interpretation: since ssm(x; k) is a smooth approximation for the top-k operator, we
believe its underlying potential function Vk is a smooth approximation for the k-max sum function

fk(x) =

k∑
i=1

x[i],

where we recall the notation x[i] denotes the i-th largest element of the vector x. Smooth approx-
imations for k-max sums were studied in [Todd, 2018] and for k = 1, one such approximation is
the log-sum-exp function, as was studied for MCHNs in [Ramsauer et al., 2021]. We believe that
different approximations can provide different architectures for associative memory systems.
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Figure 4: Vision transformer training curves on CIFAR-10 with k-Hopfield attention(ViT-Hopfield)
and standard multi-headed attention(ViT). k corresponds to the number of attention heads. We
observe that performance of both methods is comparable, even though our method requires fewer
parameters.

D More Experiments

We further experiment with the k-Hopfield attention and vision transformer for CIFAR-10. We note
that the performance of both models is poor. Vision transformers are known to be difficult to train on
small datasets [Liu et al., 2021]. Successfully training ViTs requires techniques such as distillation
and smart initialization [Touvron et al., 2021, Trockman and Kolter, 2023]. We do not use these
techniques as we are interested in comparison of the attention mechanism.

E Training Details

For vision transformers, we use the ViT class from https://github.com/lucidrains/
vit-pytorch. We train with patch size of 4, embedding dimension of 128, MLP dimension
of 512, and depth of 2. For β, we set it equal to the usual transformer normalization constant
1/

√
d, where d is the dimension of the head. We use an Adam optimizer with learning rate of

0.001 and no dropout. For the ssm function, we use a modified version of the implementation in
https://github.com/locuslab/lml, where we edited the forward pass to use a Newton solver
rather than a bracketing method.
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