
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LOOKAHEAD SHIELDING FOR REGULAR SAFETY
PROPERTIES IN REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

To deploy reinforcement learning (RL) systems in real-world scenarios we need
to consider requirements such as safety and constraint compliance, rather than
blindly maximizing for reward. In this paper we develop a lookahead shielding
framework for RL with regular safety properties, which on the contrary to prior
shielding methodologies requires minimal prior knowledge. At each environment
step our framework aims to satisfy the regular safety property for a bounded hori-
zon with high-probability, for the tabular setting we provide provable guarantees.
We compare our setup to some common algorithms developed for the constrained
Markov decision process (CMDP), and we demonstrate the effectiveness and scal-
ability of our framework by extensively evaluating our framework in both tabular
and deep RL environments.

1 INTRODUCTION

Figure 1: Diagrammatic rep-
resentation of runtime verifi-
cation and shielding.

The field of safe reinforcement learning (RL) (Garcıa & Fernández,
2015; Amodei et al., 2016) has gained increasing interest, as practi-
tioners begin to understand the challenges of applying RL in the
real world (Dulac-Arnold et al., 2019). There exist several dis-
tinct paradigms in the literature, including constrained optimization
(Chow et al., 2018; Liang et al., 2018; Tessler et al., 2018; Ray et al.,
2019; Achiam et al., 2017; Yang et al., 2020), logical constraint sat-
isfaction (Voloshin et al., 2022; Hasanbeig et al., 2018; 2020a;b;
De Giacomo et al., 2020; Cai et al., 2021), safety-critical control
(McIlvanna et al., 2022; Cheng et al., 2019; Brunke et al., 2022),
all of which are unified by prioritizing safety- and risk-awareness
during the decision making process.

Constrained Markov decision processes (CMDP) (Altman, 1999) have emerged as a popular frame-
work for modelling safe RL, or RL with constraints. Typically, the goal is to obtain a policy that
maximizes reward while simultaneously ensuring that the expected cumulative cost remains below
a pre-defined threshold. A key limitation of this setting is that constraint violations are enforced in
expectation rather than with high probability, the constraint thresholds also have limited semantic
meaning, can be very challenging to tune and in some cases inappropriate for highly safety-critical
scenarios (Voloshin et al., 2022). Furthermore, the cost function in the CMDP is typically Markovian
and thus fails to capture a significantly expressive class of safety properties and constraints.

Regular safety properties (Baier & Katoen, 2008) are interesting because for all but the simplest
properties the corresponding cost function is non-Markov. Our problem setup consists of the stan-
dard RL objective with regular safety properties as constraints, we note that there has been a sig-
nificant body of work that combines temporal logic constraints with RL (Voloshin et al., 2022;
Hasanbeig et al., 2018; 2020a;b; De Giacomo et al., 2020; Cai et al., 2021), although many of these
do not explicitly separate reward and safety in the same way that we do.

Our approach relies on shielding (Alshiekh et al., 2018), which is a safe exploration strategy that
ensures the satisfaction of temporal logic constraints by deploying the learned policy in conjunction
with a reactive system that overrides any unsafe actions. Most shielding approaches typically make
highly restrictive assumptions, such as full knowledge of the environment dynamics (Alshiekh et al.,
2018), full knowledge of the topology of the MDP (Carr et al., 2023), or access to a simulator

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(Giacobbe et al., 2021), although there has been recent work to relax these restrictions (Goodall
& Belardinelli, 2023; He et al., 2022; Xiao et al., 2023). In this paper, we opt for minimal prior
knowledge, where the dynamics of the environment are unknown, and runtime verification of the
agent is realized by finite horizon model checking with a learned approximation of the environment
dynamics. However, in principle our framework is flexible enough to accommodate more standard
model checking procedures as long as certain assumptions are met.

Our approach can be summarised as an online shielding approach (see Figure 1), that dynamically
identifies unsafe actions during training and deployment, and deploys a learned safe ‘backup policy’
when necessary. We summarise the main contributions of our paper as follows:

(1) We develop a lookahead shielding framework for RL with regular safety properties as constraints,
which requires minimal prior knowledge; unknown transition dynamics and no a priori access to a
safe ‘backup policy’.

(2) We compare our setup to the CMDP framework and for the tabular setting we provide provable
safety guarantees.

(3) We empirically demonstrate the effectiveness of our framework in several environments with a
variety of regular safety properties and we compare our approach to projection-based and Lagrange
relaxation-based CMDP algorithms.

2 PRELIMINARIES

For a finite set S, let Pow(S) denote the power set of S. Also, let Dist(S) denote the set of
distributions over S, where a distribution µ : S → [0, 1] is a function such that

∑
s∈S µ(s) = 1. Let

S∗ and Sω denote the set of finite and infinite sequences over S respectively. The set of all finite and
infinite sequences is denoted S∞ = S∗ ∪ Sω . We denote as |ρ| the length of a sequence ρ ∈ S∞,
where |ρ| =∞ if ρ ∈ Sω . We also denote as ρ[i] the i+ 1-th element of a sequence, when i < |ρ|,
and we denote as ρ↓= ρ[|ρ| − 1] the last element of a sequence, when ρ ∈ S∗. A sequence ρ1 is a
prefix of ρ2, denoted ρ1 ⪯ ρ2, if |ρ1| ≤ |ρ2| and ρ1[i] = ρ2[i] for all 0 ≤ i ≤ |ρ1|. A sequence ρ1 is
a proper prefix of ρ2, denoted ρ1 ≺ ρ2, if ρ1 ⪯ ρ2 and ρ1 ̸= ρ2.

Labelled MDPs and Markov Chains. An MDP is a tuple M = (S,A,P,P0,R, AP, L), where
S and A are finite sets of states and actions resp.; P : S × A → Dist(S) is the transition function;
P0 ∈ Dist(S) is the initial state distribution; R : S × A → [0, 1] is the reward function; AP
is a set of atomic propositions, where Σ = Pow(AP) is the alphabet over AP ; and L : S → Σ
is a labelling function, where L(s) denotes the set of atoms that hold in a given state s ∈ S . A
memory-less (stochastic) policy is a function π : S → Dist(A) and its value function, denoted
Vπ : S → R is defined as the expected discounted reward from a given state under policy π, i.e.,
Vπ(s) = Eπ[

∑T
t=0 γ

tR(st, at)|s0 = s], where T is a fixed episode length and γ is the discount
factor. Furthermore, denote as Mπ = (S,Pπ,P0, AP, L) the Markov chain induced by a fixed
policy π, where the transition function is such that Pπ(s

′|s) =
∑

a∈A P(s′|s, a)π(a|s). A path
ρ ∈ S∞ throughMπ is a finite (or infinite) sequence of states. Using standard results from measure
theory it can be shown that the set of all paths {ρ ∈ Sω | ρpref ⪯ ρ} with a common prefix ρpref is
measurable (Baier & Katoen, 2008).

Probabilistic CTL. (PCTL) (Baier & Katoen, 2008) is a branching-time temporal logic for speci-
fying properties of stochastic systems. A well-formed PCTL property can be constructed with the
following grammar,

Φ ::=true | a | ¬Φ | Φ ∧ Φ | P▷◁ p[φ]

φ ::=XΦ | ΦUΦ | ΦU≤nΦ

where a ∈ AP , ▷◁ ∈ {<,>,≤,≥} is a binary comparison operator, and p ∈ [0, 1] is a probability.
Negation ¬ and conjunction ∧ are the familiar logical operators from propositional logic, and next
X , until U and bounded until U≤n are the temporal operators from CTL (Baier & Katoen, 2008).
We make the distinction here between state formula Φ and path formula φ. The satisfaction rela-
tion for state formula Φ is defined in the standard way for Boolean connectives. For probabilistic
quantification we say that s |= P▷◁ p[φ] iff Pr(s |= φ) := Pr(ρ ∈ Sω | ρ[0] = s, ρ |= φ) ▷◁ p.
Let PrM(s |= φ) be the probability w.r.t. the Markov chainM. For path formula φ the satisfaction

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

relation is also defined in the standard way for temporal logics, see Baier & Katoen (2008) . We
also note that the important temporal operators ‘eventually’ ♢ and ’always’ □, and their bounded
counterparts ♢≤n and □≤n can be derived in a familiar way, i.e., ♢Φ ::= trueUΦ, □Φ ::= ¬♢¬Φ,
resp. ♢≤n Φ ::= trueU≤nΦ, □≤n Φ ::= ¬♢≤n¬Φ.

Regular Safety Property. A linear time property Psafe ⊆ Σω over the alphabet Σ is a safety property
if for all words w ∈ Σω \ Psafe, there exists a finite prefix wpref of w such that Psafe ∩ {w′ ∈ Σω |
wpref ⪯ w′} = ∅. Any such sequence wpref is called a bad prefix for Psafe, a bad prefix wpref

is called minimal iff there does not exist w′′ ≺ wpref such that w′′ is a bad prefix for Psafe. Let
BadPref(Psafe) and MinBadPref(Psafe) denote the set of of bad and minimal bad prefixes resp.

A safety property Psafe ∈ Σω is regular if the set BadPref(Psafe) constitutes a regular language. That
is, there exists some deterministic finite automata (DFA) that accepts the bad prefixes for Psafe (Baier
& Katoen, 2008), that is, a path ρ ∈ Sω is ‘unsafe’ if the trace trace(ρ) = L(ρ[0]), L(ρ[1]), . . . ∈ Σω

is accepted by the corresponding DFA.
Definition 2.1 (DFA). A deterministic finite automata is a tuple D = (Q,Σ,∆,Q0,F), where Q
is a finite set of states, Σ is a finite alphabet, ∆ : Q × Σ → Q is the transition function, Q0 is the
initial state, and F ⊆ Q is the set of accepting states. The extended transition function ∆∗ is the
total function ∆∗ : Q × Σ∗ → Q defined recursively as ∆∗(q, w) = ∆(∆∗(q, w \ w↓), w↓). The
language accepted by DFA D is denoted L(D) = {w ∈ Σ∗ | ∆∗(Q0, w) ∈ F}.

Furthermore, we denote PN
safe ⊆ Σω as the corresponding finite-horizon safety property for N ∈ Z+,

where for all words w ∈ Σω \ PN
safe there exists wpref ⪯ w such that |wpref | ≤ N and wpref ∈

BadPref(Psafe). We model check regular safety properties by synchronizing the DFA and Markov
chain in a standard way, by computing the product Markov chain.
Definition 2.2 (Product Markov Chain). LetM = (S,P,P0, AP, L) be a Markov chain and D =
(Q,Σ,∆,Q0,F) be a DFA. The product Markov chain isM⊗D = (S ×Q,P ′,P ′

0, {accept}, L′),
where L′(⟨s, q⟩) = {accept} if q ∈ F and L′(⟨s, q⟩) = ∅ o/w, P ′

0(⟨s, q⟩) = P0(s) if
q = ∆(Q0, L(s)) and 0 o/w, and P ′(⟨s′, q′⟩|⟨s, q⟩) = P(s′|s) if q′ = ∆(q, L(s′)) and 0 o/w.

Definition 2.3 (Satisfaction probability for Psafe). LetM = (S,P,P0, AP, L) be a Markov chain
and let D = (Q,Σ,∆,Q0,F) be the DFA such that L(D) = BadPref(Psafe). For a path ρ ∈ Sω
in the Markov chain, let trace(ρ) = L(ρ[0]), L(ρ[1]), . . . ∈ Σω be the corresponding word over
Σ = Pow(AP). From a given state s ∈ S the satisfaction probability for Psafe is defined as follows,

PrM(s |= Psafe) := PrM(ρ ∈ Sω | ρ[0] = s, trace(ρ) ̸∈ L(D))

Perhaps more importantly, we note that this satisfaction probability can be written as the following
reachability probability in the product Markov chain,

PrM(s |= Psafe) = PrM⊗D(⟨s, qs⟩ ̸|= ♢accept)

where qs = ∆(Q0, L(s)) and ♢accept is a probabilistic CTL path formula that reads, ‘eventually
accept’ (Baier & Katoen, 2008).

The finite-horizon satisfaction probability of Psafe can be equated to the to the satisfaction probability
of the corresponding finite horizon safety property PN

safe as follows.

Proposition 2.4 (Finite-horizon satisfaction probability for Psafe). Let M and D be defined as in
Defn. 2.3. For a path ρ ∈ Sω , let traceN (ρ) = L(ρ[0]), L(ρ[1]) . . . , L(ρ[N]) be the corresponding
finite word over Σ = Pow(AP). For a given state s ∈ S the finite horizon satisfaction probability
for Psafe is given by,

PrM(s |= PN
safe) := PrM(ρ ∈ Sω | ρ[0] = s, traceN (ρ) ̸∈ L(D))

where N ∈ Z+ is some fixed model checking horizon. Similar to before, we show that the finite
horizon satisfaction probability can be written as the following bounded reachability probability,

PrM(s |= PN
safe) = PrM⊗D(⟨s, qs⟩ ̸|= ♢≤Naccept)

where qs = ∆(Q0, L(s)) is as before and ♢≤Naccept is the corresponding step-bounded proba-
bilistic CTL path formula that reads, ‘eventually accept in N timesteps’.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 LOOKAHEAD SHIELDING

In our looakhead shielding framework the goal is to synthesize a safe policy πshield, by dynamically
integrating two sub-policies πtask and πsafe. Control of the agent is given to one of these sub-policies
depending on the current state of the agent and the desired safety-threshold. The ‘task policy’ πtask
is a (possibly neural) policy trained with RL to maximise reward, i.e., maxπ Vπ . On the other
hand the ‘backup policy’ πsafe is a low-reward policy specifically designed to keep the agent within
a probabilistic safe set of states. In some simple instances the ‘backup policy’ may constitute a
simple rule-based policy that is guaranteed to be safe before training. However, since we assume
minimal prior knowledge, the ‘backup policy’ will need to be trained online with RL similar to the
‘task policy’, but with a different objective.

From a given product state ⟨s, q⟩ ∈ S × Q, we dynamically switch between πtask and πsafe by
evaluating the N -step reachability probability Pr(⟨s, q⟩ |= ♢≤Naccept), by rolling-out our learned
dynamics model for N timesteps with the ‘backup policy’ πsafe, given an action a sampled from the
‘task policy’ πtask

1. If the reachability probability does not exceed some step-wise safety-threshold
εt then the action a is permissible, otherwise the action a is rejected and a safe action is sampled
from the ‘backup policy’. The ‘shielded’ policy πshield thus has the following form,

πshield(⟨s, q⟩, a) =
{
πtask(s, a) if Pr(⟨s, q⟩ |= ♢≤Naccept) ≤ εt (given a)
πsafe(⟨s, q⟩, a) otherwise

(1)

The safety of πshield relies on the fact that the ‘backup policy’ πsafe can keep the agent within a
probabilistic safe set, and that for any irrecoverable action a the lookahead or model checking
horizon N is sufficiently large to identify a as irrecoverable. We will formalize both these ideas
later on in Section 3.5.

Thus πshield provides a step-wise safety guarantee of εt which is in line with similar shielding ap-
proaches (Wabersich et al., 2021; Bastani et al., 2021). For the satisfaction of Psafe for an entire
fixed episode length T , we can use a conservative union bound to derive a probability lower bound,
PrM(s |= Psafe) ≥ 1 − ε or equivalently, PrM⊗D(⟨s, qs⟩ |= ♢accept) ≤ ε, where ε =

∑T
t=0 εt.

Unfortunately, we cannot immediately derive an infinite horizon guarantee, without for example, ei-
ther assuming the existence of and being able to identify safe end components (Haddad & Monmege,
2018; Brázdil et al., 2024), or assuming deterministic dynamics (Berkenkamp et al., 2017).

3.1 TRAINING THE BACKUP POLICY

As we alluded to above, in all but the simplest cases the ‘backup policy’ πsafe will need to be trained
online with RL. To construct an effective ‘backup policy’ we introduce the following cost function,
Definition 3.1 (Cost function). Let Psafe be a regular safety property and letD be the DFA such that
L(D) = BadPref(Psafe), the cost function is an ω-automaton (or Büchi automaton) that simulates
the DFA D and then resets after reaching an accepting state (i.e. for all q ∈ F , q → Q0), the cost
function C is then defined as follows:

C(⟨s, q⟩) =
{
1 if accept ∈ L′(⟨s, q⟩)
0 otherwise

where L′ is the labelling function defined in Definition 2.2.

The ‘backup policy’ can then be trained with standard RL techniques (e.g. Q-learning) to the mini-
mize the expected discounted cost, i.e. Eπ[

∑T
t=0 γ

tC(st, qt)].
Remark 3.2. It is important to note that for regular safety properties the corresponding cost func-
tion is defined over the product states and is thus non-Markov. As a result the ‘backup policy’ is also
defined over the product states, which can pose an issue, particularly for larger automata, as the
rate of convergence will be much slower than expected. To eliminate this issue we leverage coun-
terfactual experiences (Icarte et al., 2022; 2018) – a method originally used for reward machines
which generates additional experience for the policy, by simulating automaton transitions.

1The probability here is taken under the product Mπsafe ⊗ D with the first timestep replaced by the con-
ditional action matrix P (a) (to account for a), this value is well-defined and can be computed exactly (see
Algorithm 3), for brevity we will remove all superscripts unless otherwise unclear in the current context

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2 COMPARISON TO CONSTRAINED MDP

We now provide a comparison to the CMDP framework (Altman, 1999; Ray et al., 2019), where
typically the constraints are specified as expected cumulative cost constraints at the trajectory level.

Problem 3.3 (Expected Cumulative Cost Constraint).

max
π

Vπ subject to E
[∑T

t=0 C(⟨st, qt⟩)
]
≤ C (2)

where C : S ×Q → R is the cost function from Definition 3.1 and C ∈ N is the cost threshold.

To guarantee the satisfaction of Psafe with probability at least 1−ε for the entire fixed episode length
T , the cost threshold C needs to be set to a prohibitively small value (namely ε), which algorithms
developed to tackle CMDPs, like PPO-Lagrangian (PPO-Lag) (Ray et al., 2019) and Constrained
Policy Optimization (CPO) (Achiam et al., 2017) are not always suited for.

3.3 PROBLEM SETTINGS

We now detail two possible instantiations of our lookahead shielding framework for the tabular and
deep RL settings.

3.3.1 TABULAR RL

For tabular RL it is most natural to use tabular Q-learning (QL) for training both the ‘task policy’
and ‘backup policy’. The update rule for the ‘task policy’ is modified slightly to update give zero
reward to actions that are overridden,

Q̂task(st, at)
α←−

{
R(st, at) + γmaxa{Q̂task(st+1, a)} if at is not overridden
0 otherwise

(3)

where α←− denotes an in-place update with learnin rate α. This modification prevents the shielded
policy from ‘getting stuck’ proposing possibly high-reward but unsafe actions and should reduce the
number of times the ‘task policy’ is overridden. The ‘backup policy’ is updated with the standard
QL update rule, but with negative penalties supplied by the cost function from Definition 3.1,

Q̂safe(st, qt, at)
α←− γmax

a
{Q̂safe(st+1, qt+1, a)} − C((st, qt)) (4)

For dynamics learning, we estimate the transition probabilities by using the empirical transition
probabilities P̂(s′ | s, a) = #(s′, s, a)/#(s, a), where #(s, a) and #(s′, s, a) are the total number
of times that (s, a) and (s′, s, a) have been observed during training respectively. The full algorithm
is detailed in Appendix A.1.

3.3.2 DEEP RL

For our deep RL experiments we use DreamerV3 (Hafner et al., 2023) for both dynamics learn-
ing and policy optimization. DreamerV3 is based on the Recurrent State Space Model (RSSM)
(Hafner et al., 2019), a special type of sequential Variational Auto-encoder (VAE) (Kingma &
Welling, 2013), which learns a latent representation and dynamics model of the environment from
observations. The model consists of the following key components: sequential model ht =
fθ(ht−1, zt−1, at−1), observation encoder zt ∼ qθ(zt | ot, ht), transition predictor ẑt ∼ pθ(ẑt | ht),
observation decoder ôt ∼ pθ(ôt | ht, zt), reward predictor r̂t ∼ pθ(r̂t | ht, zt) and termination pre-
dictor γ̂t ∼ pθ(γ̂t | ht, zt). Our implementation is build upon approximate model-based shielding
(AMBS) (Goodall & Belardinelli, 2023) which additionally uses a cost predictor ĉt ∼ pθ(ĉt | ht, zt)
to predict state-dependent costs. Since DreamerV3 encodes the observation and action history in the
latent vectors (ht, zt) we can use the same cost predictor to learn the cost function C(⟨st, qt⟩) from
Definition 3.1 with the hope that the necessary temporal dependencies are captured in the latent
space, although this should be the case as the cost predictor gradients are used to update the latent
space representation.

We can then estimate the N -step reachability probability Pr(⟨s, q⟩ |= ♢≤Naccept) by rolling out
the latent dynamics model pθ for N timesteps, we then sum the predicted costs along the trajectory
and average the result over multiple trajectories sampled in parallel. The full algorithm is detailed
in Appendix A.3.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.4 MODEL CHECKING

We now detail several model checking paradigms that can be ‘plugged’ into our framework for
computing the finite-horizon satisfaction probability of the regular safety property Psafe.

Exact model checking. If we have access to the transition matrix P of the MDP then we can exactly
compute the (finite horizon) satisfaction probability of Psafe, in the Markov chainMπ induced by
the fixed policy π in timeO(poly(size(Mπ⊗D))·N) (Baier & Katoen, 2008) by O(N) matrix mul-
tiplications, where D is the DFA such that L(D) = BadPref(Psafe) and N is the model checking
horizon. If the size of the productMπ ⊗D is too large then exact model checking is impractical.

Statistical model checking. To address the limitations of exact model checking, we can sam-
ple sufficiently many paths using the transition matrix P and estimate the reachability probability
Pr(⟨s, q⟩ |= ♢≤Naccept) in the product Markov chain Mπ ⊗ D, by computing the proportion
of accepting paths. Using statistical bounds, such as Hoeffding’s inequality (Hoeffding, 1963) or
Bernstein-type bounds (Maurer & Pontil, 2009), we can bound the error of this estimate, with high
probability. Since the product states ⟨s, q⟩ ∈ S × Q can be computed on-the-fly, rather the time
complexity depends on the horizon N , the desired level of accuracy ε′ and failure probability δ′.
Proposition 3.4. Let ε′ > 0, δ′ > 0, ⟨s, q⟩ ∈ S × Q and N ≥ 1 be given. By sampling m ≥
1

2ε′2
log

(
2
δ′

)
many paths with P , we can obtain an ε′-approximate estimate for the probability

Pr(⟨s, q⟩ |= ♢≤Naccept) with probability at least 1− δ′.

Model checking with approximate models. In the standard RL setting where the transition matrix
P is unknown we can instead rely on an empirical estimate of P or an ‘approximate model’, which
can either be constructed ahead of time (offline) or from the experience collected during training.
We can then either exact model check with the empirical probabilities P̂ , or if the product MC is too
large, we can leverage statistical model checking by sampling paths from the ’approximate model’.
Proposition 3.5. Let ε′ > 0, δ′ > 0, s ∈ S and N ≥ 1 be given. Suppose that for all s ∈ S, our
empirical estimate P̂ is such that,

DTV (Pπ(· | s), P̂π(· | s)) ≤ ε′/N (5)

where DTV denotes the total variation (TV) distance 2, then,

(1) We can obtain an ε′-approximate estimate for Pr(⟨s, q⟩ |= ♢≤Naccept) with probability 1 by
exact model checking with the transition probabilities of P̂ in time O(poly(size(Mπ ⊗D)) ·N).

(2) We can obtain an ε′-approximate estimate for Pr(⟨s, q⟩ |= ♢≤Naccept) with probability at least
1− δ′, by sampling m ≥ 2

ε′2
log

(
2
δ′

)
many paths with the ‘approximate model’ P̂ .

It then might be interesting to analyze when (5) is satisfied in practice. For the tabular case we
provide this analysis in the proof of Theorem 3.10, stated in the next section. For the deep RL
setting it becomes very tricky to obtain any guarantees, although we can fall back on the upper
bound and intuition provided in Goodall & Belardinelli (2023).

3.5 GLOBAL SAFETY GUARANTEES

In the tabular setting (see Section 3.3.1) we can prove that πshield provides a step-wise safety guar-
antee of εt. We first provide the following definitions.
Definition 3.6 (Probabilistic Safe Set). For a given policy π defined over the product state space
S ×Q, a probabilistic safe set for the fixed episode length T and step-wise safety level εt is defined
as,

Sπ(εt) = {⟨s, q⟩ ∈ S ×Q : Pr(⟨s, q⟩ |= ♢≤Taccept) ≤ εt} (6)
where all probability is taken under the product Markov chainMπ ⊗D.
Definition 3.7 (Irrecoverable). An action a is said to be irrecoverable from a given product state
⟨s, q⟩ ∈ S ×Q, if given a then ⟨s, q⟩ ̸∈ Sπsafe(εt), or in words, a is irrecoverable from ⟨s, q⟩ if given
a the product state ⟨s, q⟩ is not in the (T -step) probabilistic safe set for the ‘backup policy’ πsafe.

2For two discrete probability distributions µ1 and µ2 over the same space X the TV distance is defined as:
DTV (µ1(·), µ2(·)) = 1

2

∑
x∈X |µ1(x)− µ2(x)|

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Ideas such as probabilistic safe sets and irrecoverable states/actions have been considered in many
prior works (Abate et al., 2008; Hewing & Zeilinger, 2018; Li & Bastani, 2020; Bastani et al., 2021;
Thomas et al., 2021). Intuitively the ‘backup policy’ πsafe defines an (T -step) probabilistic safe set
from which we can obtain a step-wise safety guarantee of εt (by using the ‘backup policy’). Thus,
any action a ∈ A which does not keep us within this probabilistic safe set is deemed ‘irrecoverable’.
To complete our proof we need to make the following assumptions.
Assumption 3.8. There exists some N∗ ≪ T such that For all irrecoverable actions a ∈ A the
reachability probability Pr(⟨s, q⟩ |= ♢≤N∗

accept) > εt and we have N ≥ N∗.

Assumption 3.9. The initial state ⟨s0, L(s0)⟩ is contained in the probabilistic safe set Sπsafe(εt).

Assumption 3.8 is for practical convenience, a similar assumption was made in Thomas et al. (2021),
it means we can identify irrecoverable actions by only model checking with some fixed horizon N ≥
N∗, rather than for the entire episode length T , which could be either computationally expensive
or incur significant model drift when using the empirical estimates of the transition probabilities.
Assumption 3.9 guarantees that their is a safe strategy from the initial state, this allows us to prove
safety by establishing an invariant: ‘we can always fall back on the backup policy for a step-wise
safety guarantee of εt regardless of the previous action’.

In general it is unlikely that Assumption 3.9 and 3.8 are immediately satisfied at the start of training,
however by using RL to train πsafe online with penalties provided by the cost function we might
expect πsafe to converge to a policy satisfying these assumptions. Abate et al. (2008) analyze the
conditions for the existence of a maximally safe policy trained solely with a cost function, this is
beyond the scope of our paper, we simply assume that πsafe satisfies Assumption 3.9 and 3.8 without
necessarily being maximally safe.
Theorem 3.10. Under Assumption 3.8 and 3.9, and provided that every state action pair (s, a) ∈
S × A has been visited at least O

(
N2|S|2

ε′2
log

(
|A||S|2

δ′

))
times. Then the ‘shielded policy’ πshield

provides a step-wise safety guarantee of εt and with a step-wise failure probability of δt = 2δ′.

The theory is quite conservative here due to the strong dependence on |S|, in practice the outermost
|S|2 can be replaced by the maximum number of successor states from any given state. Similar
to before, by taking a conservative union bound, we can obtain an ‘episodic’ safety guarantee of
PrM(s |= Psafe) ≥ 1− ε with probability 1− δ, where ε =

∑T
t=0 εt and δ =

∑T
t=0 δt.

4 EXPERIMENTAL EVALUATION

4.1 TABULAR RL

We evaluate our framework in 4 separate tabular environments, see Figure 2. We compare our
approach to tabular QL, tabular QL with penalties provided by the cost function in Definition 3.1
(QL-Cost), and two CMDP-based approaches PPO-Lag (Ray et al., 2019) and CPO (Achiam et al.,
2017). This instantiation of our framework is called QL-Shield and is detailed in Section 3.3.1, for
model checking we use statistical model checking and we assume no knowledge of the transition
matrix P . We provide the following environment descriptions.

Media streaming. Inspired by Bura et al. (2022), The agent is tasked with managing a data-buffer,
packets leave in the data-buffer according to a Bernoulli process with rate µout, the agent has two
action A = {fast, slow} which add new packets to the data-buffer according to a Bernoulli process
with rates µfast = 0.9 and µslow = 0.1 respectively. The agent receives a negative reward of−1.0 for
choosing the fast rate, the goal is to maximise reward during the fixed episode length T = 40, while
ensuring the data-buffer is never empty. The safety property is a simple invariant property, □¬empty
(with PCTL-style notation) with the number of automaton states |D| = 2 and the safety and cost
thresholds set to εt = 0.001 and C = 0.01 respectively, the model checking horizon N = 5.

Bridge crossing. Inspired by Hasanbeig et al. (2020a), the agent operates in a 20 × 20 ‘slippery’
gridworld where there is a 0.04 chance that the agent’s action is ignored and another action is uni-
formly sampled. From the green start state the goal is to reach the safe terminal yellow states, which
provide a reward +1. The unsafe red states are also terminal (providing no reward). Again, the
safety property is a simple invariant □¬red with |D| = 2, εt = 0.05, C = 0.15 and N = 5.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

9 × 9 gridworld. The agent operates in a 9 × 9 ‘slippery’ gridworld where there is now a 0.1
chance that the agent’s action is ignored. From the start state S the goal is to reach either the blue,
pink or yellow states which are terminal and provide a reward of +1. We specify two properties in
the environment the first (1) is a simple invariant property □¬B, the second (2) is □((¬BXB) →
(XB)). In words, (1) specifies that the agent must avoid ‘bomb’ states (B), (2) specifies that the
agent must ‘disarm’ ‘bomb’ states (B) by staying on them for at least 2 timesteps. For (1): |D| = 2
and εt = 0.01, C = 0.01 and N = 3, for (2): |D| = 4 and εt = 0.12, C = 0.12 and N = 5.

(a) Bridge crossing
S

B

B

B

(b) 9× 9 gridworld

S

S

S S

S

M

M

M

M

M

B

B

B

BB

B

B

(c) 15× 15 gridworld

Figure 2: Gridworld Environments

15× 15 gridworld. The agent now operates in a 15× 15
‘slippery’ gridworld with the same ‘randomness parame-
ter’ 0.1. The goal is to reach either the blue, pink, yellow,
red or green states (providing a reward of +1) from any of
the starting states (S). In this environment the goal states
are no longer terminal and reaching a goal state move the
agent to a start state (S) sampled uniformly at random.
The agent must therefore collect as much reward in the
fixed episode length of T = 250. We specify three prop-
erties in this environment. Property (1) and (2) are identi-
cal to the 9× 9 gridworld (see above). The third property
(3) specifies that if the agent reaches a ‘bomb’ state (B)
then must reach and stay in a ‘medic’ state (M) for two
timesteps, within 10 timesteps, with PCTL-style notation
this is denoted as □(B → ♢≤10□≤2M). For (3) we have
|D| = 22 and εt = 0.001, C = 0.01 and N = 13.

4.2 DEEP RL

We evaluate our framework on Atari Seaquest, provided as part of the Arcade Learning Environment
(ALE) (Machado et al., 2018). Our approach in this setting is built upon DreamerV3 (Hafner et al.,
2023), see Section 3.3.2 for details. We compare our approach to vanilla DreamerV3 (no costs), a
modified version of DreamerV3 that implements the Augmented Lagrangian (Wright, 2006) very
similar in principle to other works such as Safe-DreamerV3 (Huang et al., 2023) and LAMBDA
(As et al., 2022), for a detailed description of the Augmented Lagrangian framework we refer the
reader to Appendix D.2. We also run PPO-Lag (Ray et al., 2019) and CPO (Achiam et al., 2017)
in this setting, however since both these algorithms are model-free and also not suitably adapted to
pixel input, we provide as input, perfect RAM information 3 and the current automaton state, this
circumvents the issue of PPO-Lag and CPO having to learn an image feature representation and
provides a more fair comparison.

Figure 3: Atari Seaquest. The goal is to
rescue divers (small blue people), while
shooting enemy sharks and submarines.

Seaquest. Seaquest is a partially observable environment
meaning we do not have direct access to the underlying
state space S, we are however provided with observations
o ∈ O as pixel images which correspond to 64 × 64 × 3
tensors. Fortunately DreamerV3 is specifically designed
to operate such settings. The cardinality of the action
space is |A| = 18. In addition to collecting reward, the
agent must manage its oxygen resources and avoid being
hit by sharks and the enemy submarines which fire back,
see Fig. 3. We experiment with two different regular
safety properties in this environment, (1) (□¬surface→
□(surface→diver))∧(□¬out-of-oxygen)∧(□¬hit), and
(2) □diver ∧ ¬surface→♢≤30surface. The first property (1) is aligned closely with the goal – the
agent must only surface with a diver, not run out of oxygen and not be hit by an enemy. The second
property (2) states after the agent picks up a diver it must return to the surface within 30 timesteps,
this property directly conflicts with the optimal policy. We have |D| = 4 and |D| = 30 for property
(1) and property (2) respectively, and for both properties the safety and cost thresholds are set to
εt = 0.01 and C = 1.0 respectively.

3The perfect RAM input x corresponds to the features identified in (Anand et al., 2019) and the one-step
deltas ∆x which encodes the necessary temporal information for effective learning.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 4: Learning curves for tabular gridworld environments.

4.3 DISCUSSION

Figure 5: Learning curves for Seaquest.

The media streaming environment is more of a sanity
check, the environment is very quickly solved and in all
cases the safety-aware algorithms quickly converge to the
optimal reward of roughly −22.0, although PPO-Lag and
CPO exhibit slightly slower convergence. For the bridge
crossing environment both QL-Shield and QL-Cost are
able to reliably find the path across the bridge, notice that
this is a hard exploration challenge as without penalties
QL is unable to find the path across the bridge, both PPO-
Lag and CPO also struggle with exploration.

For property (1) in the 9 × 9 gridworld, QL-shield is
slightly more reliable than QL-cost, as it converges to the
shortest safe route more quickly, QL finds the shortest route very quickly (straight to the yellow
state) however this route goes through a ‘bomb’ (B) state. For property (2) QL-Shield converges
much more quickly than QL-Cost, this is likely because QL-cost tries to find an overly conservative
route that avoid any ‘bombs’, when in actuality it is allowed to step on ‘bomb’ as long as it ‘dis-
arms’ them. Note that PPO-Lag and CPO seem to do much better than for property (2) compared to
property (1), as the safety criteria is not as strict.

For property (1) in the 15 × 15 gridworld QL-Shield and QL-Cost have a similar performance in
terms of safety and reward, although QL-Shield is quite noisy, which suggests additional tuning of
the step-wise safety rate εt and m could be useful. For property (2) QL-Shield converges quickly to
a stable policy in contrast to QL-Cost, again this is likely because the QL-cost tries to completely
avoid bomb states leading to a more challenging exploration problem. For property (3) QL-Shield
does much better in terms of safety and QL-Cost doesn’t appear to converge to a stable policy.
Property (3) requires effective exploration to find both the ‘coloured’ and ‘medic’ states, which for
QL-Shield are delegated to separate sub policies, QL-Cost likely struggles to balance these two
objective with just one policy. Notice that PPO-Lag and CPO struggle here for all the properties as
the problem requires much more effective exploration.

For both property (1) and (2) in the Atari Seaquest environment our approach clearly outperforms
the baselines in terms of reward and does well across the board in terms of safety performance.
DreamerV3 (LAG) slightly outperforms our approach in terms of safety performance for property
(2), however this is at the cost of much worse task performance (reward). Perhaps by using a stricter

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

step-wise safety parameter εt we could bring DreamerV3-Shield in line with DreamerV3 (LAG) for
this property. PPO-Lag and CPO appear to do rather poorly in comparison, highlighting the poor
sample complexity of model-free algorithms and demonstrating the difficulty with tuning the cost
threshold C and initial Lagrange multiplier λinit.

5 RELATED WORK

Safety Paradigms in Reinforcement Learning. The most common paradigm is constrained MDPs
(CMDP) for which, several constrained optimization algorithms have been developed, most are
gradient-based methods built upon Lagrange relaxations of the constrained problem (Chow et al.,
2018; Liang et al., 2018; Tessler et al., 2018; Ray et al., 2019) or projection-based local policy search
(Achiam et al., 2017; Yang et al., 2020). Model-based approaches to CMDP (As et al., 2022; Huang
et al., 2023; Thomas et al., 2021; Berkenkamp et al., 2017) have also gathered recent interest as they
enjoy better sample complexity than their model-free counterparts (Janner et al., 2019).

Linear Temporal Logic (LTL) constraints (Voloshin et al., 2022; Hasanbeig et al., 2018; 2020a;b;
De Giacomo et al., 2020; Cai et al., 2021) for RL have been developed as an alternative to CMDPs to
specify stricter and more expressive constraints. The LTL formula is typically treated as the entire
task specification, although some works have aimed to separate LTL satisfaction and reward into
two distinct objectives (Voloshin et al., 2022). The typical procedure in this setting is to identify
end components of the MDP that satisfy the LTL constraint and construct a corresponding reward
function such that the optimal policy satisfies the LTL constraint with maximal probability. Formal
PAC-style guarantees have been developed for this setting (Fu & Topcu, 2014; Wolff et al., 2012;
Voloshin et al., 2022; Hasanbeig et al., 2018) although they often rely on non-trivial assumptions.

More rigorous safety-guarantees can be obtained by using shielding (Alshiekh et al., 2018), con-
trol barrier functions (CBF) (Ames et al., 2019), and model predictive safety certification (MPSC)
(Wabersich & Zeilinger, 2018; 2021). To achieve zero-violation training, these methods typically
assume that the dynamics of the system are known and thus they are typically restricted to low-
dimensional systems. Recent works have aimed to scale the concept of shielding to more general
settings, relaxing the prerequisite assumptions for shielding, by either only assuming access to a
‘black box’ model for planning (Giacobbe et al., 2021), or learning a world model from scratch
(Goodall & Belardinelli, 2023; He et al., 2022; Xiao et al., 2023). Notable works that can be viewed
as shielding include, MASE (Wachi et al., 2018) – a safe exploration algorithm with access to an
‘emergency reset button’, and Recovery-RL (Thananjeyan et al., 2021). A simple form of shielding
with LTL specifications has also been considered (Hasanbeig et al., 2020a; Mitta et al., 2024).

Learning Over Regular Structures. RL and regular properties have been studied in conjunction
before, perhaps most famously as ‘Reward Machines’ (Icarte et al., 2018; 2022) – a type of finite
state automaton that specifies a different reward function at each automaton state, however reward
machines do not explicitly deal with safety. In addition, regular decision processes (RDP) (Brafman
et al., 2019) are a specific class non-Markov DPs (Bacchus et al., 1996) that have also been studied
in several works (Brafman et al., 2019; Ronca & De Giacomo, 2021; Majeed et al., 2018; Toro Icarte
et al., 2019; Cipollone et al., 2024). Most of these works are theoretical and slightly out-of-scope
for this paper, as RDPs capture both non-Markov rewards and transition probabilities.

6 CONCLUSION

The separation of reward and safety objectives into two distinct policies has been demonstrated as
an effective strategy towards safety-aware decision making (Goodall & Belardinelli, 2023; Jansen
et al., 2018; Thananjeyan et al., 2021; Alshiekh et al., 2018), in many cases the safety objective is
simpler and can be more quickly learnt (Jansen et al., 2018). In this paper we have demonstrated
that this is an effective framework for dealing with regular safety properties, an important class of
temporal properties where the corresponding cost function is non-Markov. We detail two possi-
ble instantiations of our framework for the tabular and deep RL environments, and we provide a
thorough experimental evaluation including a comparison to CMDP-based approaches. Beyond our
empirical results we provide safety guarantees in the tabular setting, that hold under reasonable as-
sumptions. Future work includes, further investigation into the scenarios where it is appropriate and
beneficial to leverage shielding as an approach to safe RL.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Alessandro Abate, Maria Prandini, John Lygeros, and Shankar Sastry. Probabilistic reachability
and safety for controlled discrete time stochastic hybrid systems. Automatica, 44(11):2724–2734,
2008.

Pieter Abbeel and Andrew Y Ng. Exploration and apprenticeship learning in reinforcement learning.
In Proceedings of the 22nd international conference on Machine learning, pp. 1–8, 2005.

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International conference on machine learning, pp. 22–31. PMLR, 2017.

Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott Niekum, and
Ufuk Topcu. Safe reinforcement learning via shielding. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32, 2018.

Eitan Altman. Constrained Markov decision processes: stochastic modeling. Routledge, 1999.

Aaron D Ames, Samuel Coogan, Magnus Egerstedt, Gennaro Notomista, Koushil Sreenath, and
Paulo Tabuada. Control barrier functions: Theory and applications. In 2019 18th European
control conference (ECC), pp. 3420–3431. IEEE, 2019.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Con-
crete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Côté, and R Devon
Hjelm. Unsupervised state representation learning in atari. Advances in neural information pro-
cessing systems, 32, 2019.

Yarden As, Ilnura Usmanova, Sebastian Curi, and Andreas Krause. Constrained policy optimization
via bayesian world models. arXiv preprint arXiv:2201.09802, 2022.

Fahiem Bacchus, Craig Boutilier, and Adam Grove. Rewarding behaviors. In Proceedings of the
National Conference on Artificial Intelligence, pp. 1160–1167, 1996.

Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT press, 2008.

Osbert Bastani, Shuo Li, and Anton Xu. Safe reinforcement learning via statistical model predictive
shielding. In Robotics: Science and Systems, pp. 1–13, 2021.

Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, and Andreas Krause. Safe model-based
reinforcement learning with stability guarantees. Advances in neural information processing sys-
tems, 30, 2017.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax.

Ronen I Brafman, Giuseppe De Giacomo, et al. Regular decision processes: A model for non-
markovian domains. In IJCAI, pp. 5516–5522, 2019.

Tomáš Brázdil, Krishnendu Chatterjee, Martin Chmelik, Vojtěch Forejt, Jan Křetı́nskỳ, Marta
Kwiatkowska, Tobias Meggendorfer, David Parker, and Mateusz Ujma. Learning algorithms
for verification of markov decision processes. arXiv preprint arXiv:2403.09184, 2024.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Lukas Brunke, Melissa Greeff, Adam W Hall, Zhaocong Yuan, Siqi Zhou, Jacopo Panerati, and
Angela P Schoellig. Safe learning in robotics: From learning-based control to safe reinforcement
learning. Annual Review of Control, Robotics, and Autonomous Systems, 5:411–444, 2022.

Emma Brunskill, Bethany R Leffler, Lihong Li, Michael L Littman, and Nicholas Roy. Provably
efficient learning with typed parametric models. 2009.

11

http://github.com/google/jax
http://github.com/google/jax

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Archana Bura, Aria HasanzadeZonuzy, Dileep Kalathil, Srinivas Shakkottai, and Jean-Francois
Chamberland. Dope: Doubly optimistic and pessimistic exploration for safe reinforcement learn-
ing. Advances in neural information processing systems, 35:1047–1059, 2022.

Mingyu Cai, Shaoping Xiao, Zhijun Li, and Zhen Kan. Optimal probabilistic motion planning with
potential infeasible ltl constraints. IEEE transactions on automatic control, 68(1):301–316, 2021.

Steven Carr, Nils Jansen, Sebastian Junges, and Ufuk Topcu. Safe reinforcement learning via shield-
ing under partial observability. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 14748–14756, 2023.

Richard Cheng, Gábor Orosz, Richard M Murray, and Joel W Burdick. End-to-end safe reinforce-
ment learning through barrier functions for safety-critical continuous control tasks. In Proceed-
ings of the AAAI conference on artificial intelligence, volume 33, pp. 3387–3395, 2019.

Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone. Risk-constrained rein-
forcement learning with percentile risk criteria. Journal of Machine Learning Research, 18(167):
1–51, 2018.

Roberto Cipollone, Anders Jonsson, Alessandro Ronca, and Mohammad Sadegh Talebi. Provably
efficient offline reinforcement learning in regular decision processes. Advances in Neural Infor-
mation Processing Systems, 36, 2024.

Giuseppe De Giacomo, Luca Iocchi, Marco Favorito, and Fabio Patrizi. Restraining bolts for re-
inforcement learning agents. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 13659–13662, 2020.

Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world reinforcement
learning. arXiv preprint arXiv:1904.12901, 2019.

Jie Fu and Ufuk Topcu. Probably approximately correct mdp learning and control with temporal
logic constraints. arXiv preprint arXiv:1404.7073, 2014.

Javier Garcıa and Fernando Fernández. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(1):1437–1480, 2015.

M Giacobbe, Mohammadhosein Hasanbeig, Daniel Kroening, and Hjalmar Wijk. Shielding atari
games with bounded prescience. In Proceedings of the International Joint Conference on Au-
tonomous Agents and Multiagent Systems, AAMAS, 2021.

Alexander W Goodall and Francesco Belardinelli. Approximate model-based shielding for safe
reinforcement learning. In ECAI 2023, pp. 883–890. IOS Press, 2023.

Serge Haddad and Benjamin Monmege. Interval iteration algorithm for mdps and imdps. Theoretical
Computer Science, 735:111–131, 2018.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International conference on
machine learning, pp. 2555–2565. PMLR, 2019.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening. Logically-constrained re-
inforcement learning. arXiv preprint arXiv:1801.08099, 2018.

Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening. Cautious reinforcement
learning with logical constraints. arXiv preprint arXiv:2002.12156, 2020a.

Mohammadhosein Hasanbeig, Daniel Kroening, and Alessandro Abate. Deep reinforcement learn-
ing with temporal logics. In Formal Modeling and Analysis of Timed Systems: 18th International
Conference, FORMATS 2020, Vienna, Austria, September 1–3, 2020, Proceedings 18, pp. 1–22.
Springer, 2020b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Chloe He, Borja G León, and Francesco Belardinelli. Do androids dream of electric fences? safety-
aware reinforcement learning with latent shielding. 2022. URL https://ceur-ws.org/
Vol-3087/paper_50.pdf.

Lukas Hewing and Melanie N Zeilinger. Stochastic model predictive control for linear systems
using probabilistic reachable sets. In 2018 IEEE Conference on Decision and Control (CDC), pp.
5182–5188. IEEE, 2018.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58(301):13–30, 1963.

Weidong Huang, Jiaming Ji, Borong Zhang, Chunhe Xia, and Yaodong Yang. Safe dreamerv3: Safe
reinforcement learning with world models. arXiv preprint arXiv:2307.07176, 2023.

Rodrigo Toro Icarte, Toryn Klassen, Richard Valenzano, and Sheila McIlraith. Using reward ma-
chines for high-level task specification and decomposition in reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 2107–2116. PMLR, 2018.

Rodrigo Toro Icarte, Toryn Q Klassen, Richard Valenzano, and Sheila A McIlraith. Reward ma-
chines: Exploiting reward function structure in reinforcement learning. Journal of Artificial In-
telligence Research, 73:173–208, 2022.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. Advances in neural information processing systems, 32, 2019.

Nils Jansen, Bettina Könighofer, Sebastian Junges, Alexandru C Serban, and Roderick Bloem. Safe
reinforcement learning via probabilistic shields. arXiv preprint arXiv:1807.06096, 2018.

Borong Zhang Juntao Dai Xuehai Pan Ruiyang Sun Weidong Huang Yiran Geng Mickel Liu
Yaodong Yang Jiaming Ji, Jiayi Zhou. Omnisafe: An infrastructure for accelerating safe rein-
forcement learning research. arXiv preprint arXiv:2305.09304, 2023.

Sham Kakade, Michael J Kearns, and John Langford. Exploration in metric state spaces. In Pro-
ceedings of the 20th International Conference on Machine Learning (ICML-03), pp. 306–312,
2003.

Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time. Ma-
chine learning, 49:209–232, 2002.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Shuo Li and Osbert Bastani. Robust model predictive shielding for safe reinforcement learning
with stochastic dynamics. In 2020 IEEE International Conference on Robotics and Automation
(ICRA), pp. 7166–7172. IEEE, 2020.

Qingkai Liang, Fanyu Que, and Eytan Modiano. Accelerated primal-dual policy optimization for
safe reinforcement learning. arXiv preprint arXiv:1802.06480, 2018.

Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew J. Hausknecht, and
Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.

Sultan Javed Majeed, Marcus Hutter, et al. On q-learning convergence for non-markov decision
processes. In IJCAI, volume 18, pp. 2546–2552, 2018.

Andreas Maurer and Massimiliano Pontil. Empirical bernstein bounds and sample variance penal-
ization. arXiv preprint arXiv:0907.3740, 2009.

Stephen McIlvanna, Nhat Nguyen Minh, Yuzhu Sun, Mien Van, and Wasif Naeem. Rein-
forcement learning-enhanced control barrier functions for robot manipulators. arXiv preprint
arXiv:2211.11391, 2022.

13

https://ceur-ws.org/Vol-3087/paper_50.pdf
https://ceur-ws.org/Vol-3087/paper_50.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Rohan Mitta, Hosein Hasanbeig, Jun Wang, Daniel Kroening, Yiannis Kantaros, and Alessandro
Abate. Safeguarded progress in reinforcement learning: Safe bayesian exploration for control
policy synthesis. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38,
pp. 21412–21419, 2024.

Aravind Rajeswaran, Igor Mordatch, and Vikash Kumar. A game theoretic framework for model
based reinforcement learning. In International conference on machine learning, pp. 7953–7963.
PMLR, 2020.

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep reinforcement
learning. arXiv preprint arXiv:1910.01708, 7(1):2, 2019.

Alessandro Ronca and Giuseppe De Giacomo. Efficient pac reinforcement learning in regular deci-
sion processes. arXiv preprint arXiv:2105.06784, 2021.

Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization. arXiv
preprint arXiv:1805.11074, 2018.

Brijen Thananjeyan, Ashwin Balakrishna, Suraj Nair, Michael Luo, Krishnan Srinivasan, Minho
Hwang, Joseph E Gonzalez, Julian Ibarz, Chelsea Finn, and Ken Goldberg. Recovery rl: Safe
reinforcement learning with learned recovery zones. IEEE Robotics and Automation Letters, 6
(3):4915–4922, 2021.

Garrett Thomas, Yuping Luo, and Tengyu Ma. Safe reinforcement learning by imagining the near
future. Advances in Neural Information Processing Systems, 34:13859–13869, 2021.

Rodrigo Toro Icarte, Ethan Waldie, Toryn Klassen, Rick Valenzano, Margarita Castro, and Sheila
McIlraith. Learning reward machines for partially observable reinforcement learning. Advances
in neural information processing systems, 32, 2019.

Cameron Voloshin, Hoang Le, Swarat Chaudhuri, and Yisong Yue. Policy optimization with lin-
ear temporal logic constraints. Advances in Neural Information Processing Systems, 35:17690–
17702, 2022.

Kim P Wabersich and Melanie N Zeilinger. Linear model predictive safety certification for learning-
based control. In 2018 IEEE Conference on Decision and Control (CDC), pp. 7130–7135. IEEE,
2018.

Kim P Wabersich, Lukas Hewing, Andrea Carron, and Melanie N Zeilinger. Probabilistic model pre-
dictive safety certification for learning-based control. IEEE Transactions on Automatic Control,
67(1):176–188, 2021.

Kim Peter Wabersich and Melanie N Zeilinger. A predictive safety filter for learning-based control
of constrained nonlinear dynamical systems. Automatica, 129:109597, 2021.

Akifumi Wachi, Yanan Sui, Yisong Yue, and Masahiro Ono. Safe exploration and optimization of
constrained mdps using gaussian processes. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

Eric M Wolff, Ufuk Topcu, and Richard M Murray. Robust control of uncertain markov decision
processes with temporal logic specifications. In 2012 IEEE 51st IEEE Conference on decision
and control (CDC), pp. 3372–3379. IEEE, 2012.

Jorge Nocedal Stephen J Wright. Numerical optimization, 2006.

Wenli Xiao, Yiwei Lyu, and John Dolan. Model-based dynamic shielding for safe and efficient
multi-agent reinforcement learning. In Proceedings of the 2023 International Conference on
Autonomous Agents and Multiagent Systems, pp. 1587–1596, 2023.

Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J Ramadge. Projection-based
constrained policy optimization. arXiv preprint arXiv:2010.03152, 2020.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A ALGORITHMS

A.1 QL-SHIELD

Algorithm 1 QL-Shield (Regular Safety Property)
Input: DFAD = (Q,Σ,∆,Q0,F), labelling function L, model checking parameters (εt, ε′, δ′, N),
temperature τ > 0, cost coefficient c > 0 and fixed episode length T

Initialize: (Q-table) Q̂task(s, a)← 0 ∀s ∈ S, a ∈ A
Initialize: (Q-table) Q̂safe(s, q, a)← 0∀s ∈ S, q ∈ Q, a ∈ A
Initialize: (Transition probabilities) P̂ = I (identity)

for each episode do
Observe s0, L(s0) and q0 ← ∆(Q0, L(s0))
for t = 0, . . . , T do

// Sample an action from the ‘task policy’ and override if necessary
Sample action atask with the Boltzmann policy derived from Q̂task(st, ·) and temp. τ .
override← Shield(εt, ε′, δ′, N, ⟨st, qt⟩, atask, πsafe, L,D, P̂, type = statistical)
at ← argmaxa Qsafe(st, a) if override else at ← atask
Play action at and observe st+1, L(st+1) and rt.
// Update the ’task policy’ and empirical probabilities
Update Q̂task(st, at) with experience (st, at, rt, st+1), see Eq. 3,
Update P̂ with experience (st, at, st+1), see Section 3.3.1.
// Counterfactual experiences (Icarte et al., 2022)
// Generate synthetic data by simulating all automaton transitions
for q ∈ Q do

Compute q′ ← ∆(q, L(st+1))
Compute cost c′ ← c · 1[q′ ∈ F]
// Q-learning step
Update Q̂safe(st, q, at) with experience (⟨st, q⟩, at, ⟨st+1, q

′⟩, c′), see Eq. 4
Compute qt+1 ← ∆(qt, L(st+1)) and continue

A.2 MODEL CHECKING

Algorithm 2 Shield (type = statistical)
Input: model checking parameters (εt, ε′ δ′, N), state ⟨s, q⟩, action a, ‘backup policy’ π, labelling
function L, DFA D = (Q,Σ,∆,Q0,F) and (approximate) transition probabilities P .

Choose m ≥ 2/(ε′2) log(2/δ′)
for i = 1, . . . ,m do

Set s0 ← s, q0 ← q and a0 ← a
// Sample a path through the model
for j = 1, . . . , N do

Sample next state sj ∼ P(· | sj−1, aj−1),
Compute qj ← ∆(qj−1, L(sj)),
Sample action aj ∼ π(· | ⟨sj , qj⟩)

// Check if the path is accepting
Let Xi ← 1 [qH ∈ F]

// Compute the probability estimate
Let X̄ ← 1

m

∑m
i=1 Xi

// If X̄ is below the step-wise threshold we don’t need to override
return False if X̄ < εt − ε′ else return True

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Algorithm 3 Shield (type = exact)
Input: model checking parameters (εt, ε′, δ′ = 0 N), state ⟨s, q⟩, action a, ‘backup policy’ π,
labelling function L, DFA D = (Q,Σ,∆,Q0,F) and (approximate) transition probabilities P .

Compute the product MC:Mπ ⊗D = (S ×Q,P ′,P ′
0, {accept}, L′).

Compute the probability matrix: P ← (P ′(s, t))s,t̸∈accept

Compute the probability vector: p← (P ′(s, accept))s̸∈accept

Compute the conditional action matrix: P (a) ← (P(s, t)′)s,t̸∈accept

(P (a))⟨s,q⟩ ← (P)⟨s,q⟩,a · π(a | ⟨s, q⟩)
Compute the conditional action vector: p(a) ← (P ′(s, accept))s̸∈accept

(p(a))⟨s,q⟩ ← (P)⟨s,q⟩,a · π(a | ⟨s, q⟩)
// Iterate over the model checking horizon
Initialize zero vector x(0) ← 0 with size |S| × |Q|
for i = 1, . . . , N − 1 do

Compute x(i) = Px(i−1) + p

// Final update with the conditional action
Compute x(N) = P (a)x(N−1) + p(a)

// Get the corresponding probability
Let X ← x

(N)
⟨s,q⟩

// If X is below the step-wise threshold we don’t need to override
return False if X < εt − ε′ else return True

A.3 DREAMERV3-SHIELD

Algorithm 4 DreamerV3-Shielding (Regular Safety Property)
Input: DFA D = (Q,Σ,∆,Q0,F), labelling function L, model checking parameters
(εt, ε

′,m,N), cost coefficient c > 0 and fixed episode length T , roll-out horizon H .
Initialize: replay buffer D, DreamerV3 parameters θ, ‘task policy’ πtask and ‘backup policy’ πsafe.

for each episode do
Observe o0, L(s0) and q0 ← ∆(Q0, L(s0))
for t = 1, . . . , T do

// Shielding with the latent world model
Sample action atask ∼ πtask from the ‘task policy’.
Sample m sequences ⟨{ôt′:t′+N , r̂t′:t′+N , ĉt′:t′+N}⟩mi=0 ∼ pθ with πsafe and atask.
// Compute the probability estimate
X̄ ← 1

m

∑m
i=0 clip

(∑t′+N
t′ ct′ , 0.0, 1.0

)
override← False if X̄ < εt − ε′ else True
at ∼ πsafe if override else at ← atask
Play action at and observe ot+1, L(st+1) and rt
Compute qt+1 ← ∆(qt, L(st+1)),
Compute cost c · ct ← 1[qt+1 ∈ F]
Append (ot, at, rt, ct, ot+1) to the replay buffer D
if update then

// World model learning
Sample a batch B of transition sequences {(ot′ , at′ , rt′ , ct′ , ot′+1)} ∼ D.
Update DreamerV3 parameters θ with maximum likelihood (Hafner et al., 2023).
// Task policy optimization
Sample sequences {ôt′:t′+H , r̂t′:t′+H , ĉt′:t′+H} ∼ pθ with the ‘task policy’ πtask
Update the ‘task policy’ πtask with RL (to maximize reward).
Update the corresponding value critics with maximum likelihood
// Backup policy optimization
Sample sequences {ôt′:t′+H , r̂t′:t′+H , ĉt′:t′+H} ∼ pθ with the ‘backup policy’ πsafe
Update the ‘backup policy’ πsafe with RL (to minimize cost)
Update the corresponding value critics with maximum likelihood

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B PROOFS

B.1 PROOF OF PROPOSITION 3.4

Proposition 3.4 (restated). Let ε′ > 0, δ′ > 0, ⟨s, q⟩ ∈ S × Q and N ≥ 1 be given. By sampling
m ≥ 1

2ε′2
log

(
2
δ′

)
many paths with P , we can obtain an ε′-approximate estimate for the probability

Pr(⟨s, q⟩ |= ♢≤Naccept) with probability at least 1− δ′.

Proof. In words, we estimate Pr(⟨s, q⟩ |= ♢≤Naccept) by sampling m paths with P using a fixed
policy π. We can simply label each path as satisfying or not and return the proportion of satisfying
traces as our estimate for Pr(⟨s, q⟩ |= ♢≤Naccept).

We proceed as follows, let ρ1, . . . ρm be a sequence of paths sampled from the Markov chain Pπ and
let trace(ρ1), . . . trace(ρm) be the corresponding traces. Furthermore, let X1, . . . , Xm be indicator
r.v.s such that,

Xi =

{
1 if trace(ρi) |= ♢≤Naccept,
0 otherwise

(7)

Recall that trace(ρ1) |= ♢≤Naccept can be checked in time O(N). Now let,

X̄ =
1

m

m∑
i=1

Xi where E[X̄] = Pr(⟨s, q⟩ |= ♢≤Naccept) (8)

then by Hoeffding’s inequality (Hoeffding, 1963),

P
[
|X̄ − E[X̄]| ≥ ε′

]
≤ 2 exp

(
−2mε′

2
)

(9)

Bounding the RHS from above by δ′ and rearranging gives the desired result.

B.2 PROOF OF PROPOSITION 3.5

We start by introducing the following lemma.

Lemma B.1 (Error amplification for trace distributions). Let P̂ ≈ P be such that,

DTV

(
P(· | s), P̂(· | s)

)
≤ α ∀s ∈ S (10)

Let the start state s0 ∈ S be given, and let Pt(·) and P̂t(·) denote the path distribution (at time t)
for the two transition probabilities P and P̂ respectively. Then the total variation distance between
the two path distributions (at time t) are bounded as follows,

DTV

(
Pt(·), P̂t(·)

)
≤ αt ∀t (11)

Proof. We will prove this fact by doing an induction on t. We recall that Pt(·) and P̂t(·) denote the
path distribution (at time t) for the two transition probabilities P and P̂ respectively. Formally we
define them as follows,

Pt(ρ) = Pr(s0, . . . , st ⪯ ρ | s0 = s,P) (12)

P̂t(ρ) = Pr(s0, . . . , st ⪯ ρ | s0 = s, P̂) (13)
These probabilities read as follows, ‘the probability of the sequence s0, . . . , st ⪯ ρ at time t’, or
similarly ‘the probability that the sequence s0, . . . , st is a prefix of ρ at time t’ Since the start state
s0 ∈ S is given we note that,

P0(·) = P̂0(·) (14)
Before we continue with the induction on t we make the following observation, for any path ρ ∈ Sω
we have by the triangle inequality,∣∣∣Pt(ρ)− P̂t(ρ)

∣∣∣ = ∣∣∣P(st | st−1)Pt−1(ρ)− P̂(st | st−1)P̂t−1(ρ)
∣∣∣ (15)

≤ Pt−1(ρ)
∣∣∣P(st | st−1)− P̂(st | st−1)

∣∣∣+ P̂(st | st−1)
∣∣∣Pt−1(ρ)− P̂t−1(ρ)

∣∣∣
(16)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Now we continue with the induction on t,

2DTV (Pt(·), P̂t(·)) =
∑
ρ∈Sω

∣∣∣Pt(ρ)− P̂t(ρ)
∣∣∣ (17)

≤
∑
ρ∈Sω

Pt−1(ρ)
∣∣∣P(st | st−1)− P̂(st | st−1)

∣∣∣
+

∑
ρ∈Sω

P̂(st | st−1)
∣∣∣Pt−1(ρ)− P̂t−1(ρ)

∣∣∣ (18)

≤
∑
ρ∈Sω

Pt−1(ρ) · (2α) +
∑
ρ∈Sω

∣∣∣Pt−1(ρ)− P̂t−1(ρ)
∣∣∣ (19)

= 2α+ 2DTV (Pt−1(·), P̂t−1(·)) (20)
≤ 2αt (21)

The final result is obtained by an induction on t where the base case comes from P0(·) = P̂0(·).

Proposition 3.5 (restated). Let ε′ > 0, δ′ > 0, s ∈ S and N ≥ 1 be given. Suppose that for all
s ∈ S, our empirical estimate P̂ is such that,

DTV (Pπ(· | s), P̂π(· | s)) ≤ ε′/N (22)

where DTV denotes the total variation (TV) distance, then,

(1) We can obtain an ε′-approximate estimate for Pr(⟨s, q⟩ |= ♢≤Naccept) with probability 1 by
exact model checking with the transition probabilities of P̂ in time O(poly(size(Mπ ⊗D)) ·N).

(2) We can obtain an ε′-approximate estimate for Pr(⟨s, q⟩ |= ♢≤Naccept) with probability at least
1− δ′, by sampling m ≥ 2

ε′2
log

(
2
δ′

)
many paths with the ‘approximate model’ P̂ .

Proof. We start by proving statement (1) and then statement (2) will follow quickly. First let
Pr(⟨s, q⟩ |= ♢≤Naccept) and P̂r(⟨s, q⟩ |= ♢≤Naccept) denote the acceptance probabilities for the
two transition probabilities P and P̂ respectively. We also let g(·) and ĝ(·) denote the average trace
distribution (over the next N timesteps) for the two transition probabilities P and P̂ respectively,
where,

g(ρ) =
1

N

N∑
t=1

Pt(ρ) (23)

ĝ(ρ) =
1

N

N∑
t=1

P̂t(ρ) (24)

Before we continue with the proof of (1) we make the following observations,

• max
⟨s,q⟩

∣∣∣Pr(⟨s, q⟩ |= ♢≤Naccept)− P̂r(⟨s, q⟩ |= ♢≤Naccept)
∣∣∣ ≤ 1

• Let f(x) : x ∈ X → [0, 1] be a real-valued function. Let P1(·) and P2(·) be probability
distributions over the space X , then.∣∣Ex∼P1(·)[f(x)]− Ex∼P2(·)[f(x)]

∣∣ ≤ DTV (P1(·),P2(·))

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

We continue by showing the following,∣∣∣Pr(⟨s, q⟩ |=♢≤Naccept)− P̂r(⟨s, q⟩ |= ♢≤Naccept)
∣∣∣ (25)

=
∣∣∣Eρ∼g

[
1
[
⟨s, q⟩ |= ♢≤Naccept

]]
− Eρ∼ĝ

[
1
[
⟨s, q⟩ |= ♢≤Naccept

]] ∣∣∣ (26)

≤ DTV (g(·), ĝ(·)) (27)

=
1

2

∑
ρ∈Sω

|g(ρ)− ĝ(ρ)| (28)

=
1

2N

∑
ρ∈Sω

∣∣∣∣∣
N∑
t=1

Pt(ρ)− P̂t(ρ)

∣∣∣∣∣ (29)

≤ 1

2N

N∑
t=1

∣∣∣∣∣∣
∑
ρ∈Sω

Pt(ρ)− P̂t(ρ)

∣∣∣∣∣∣ (30)

≤ 1

2N

H∑
t=1

N(ε′/N) (31)

= ε′/2 (32)
(33)

The first inequality (27) comes from our earlier observations. The second inequality (30) is straight-
forward and the final inequality (31) is obtained by applying Lemma B.1 and our initial assumption
in (22). We note that this result is closely related to the simulation lemma (Kearns & Singh, 2002),
which has been proved many times for several different settings (Kakade et al., 2003; Abbeel & Ng,
2005; Brunskill et al., 2009; Rajeswaran et al., 2020).

This concludes the proof of statement (1), since we have shown that P̂r(⟨s, q⟩ |= ♢≤Naccept) is an
ε′/2-approximate estimate of Pr(⟨s, q⟩ |= ♢≤Naccept), under the our initial assumption in (22).

The proof of statement (2) follows quickly. We have established that,∣∣∣Pr(⟨s, q⟩ |= ♢≤Naccept)− P̂r(⟨s, q⟩ |= ♢≤Naccept)
∣∣∣ ≤ ε′/2 (34)

It remains to obtain an ε′/2-approximate estimate of P̂r(⟨s, q⟩ |= ♢≤Naccept). By using the
same reasoning as in the proof of Proposition 3.4. We can obtain an ε′/2-approximate estimate of
P̂r(⟨s, q⟩ |= ♢≤Naccept) by sampling m paths, ρ1, . . . ρm, from the approximate dynamics model
P̂ . Then provided,

m ≥ 2

ε′2
log

(
2

δ′

)
(35)

with probability 1−δ′ we can obtain ε′/2-approximate estimate of P̂r(⟨s, q⟩ |= ♢≤Naccept) and by
extension an ε′-approximate estimate of Pr(⟨s, q⟩ |= ♢≤Naccept). This concludes the proof.

B.3 PROOF OF THEOREM 3.10

Theorem 3.10 (restated). Under Assumption 3.8 and 3.9, and provided that every state action pair
(s, a) ∈ S ×A has been visited at leastO

(
N2|S|2

ε′2
log

(
|A||S|2

δ′

))
times. Then the ‘shielded policy’

πshield provides a step-wise safety guarantee of εt and with a step-wise failure probability of δt = 2δ′.

Proof. We split the proof up into three parts (1), (2), (3).

(1) We first show that the following holds with probability at least 1− δ′,

DTV

(
Pπ(· | s), P̂π(· | s)

)
≤ ε′/N ∀s ∈ S (36)

when every state action pair (s, a) ∈ S ×A has been visited at least,

O
(
N2|S|2

ε′2
log

(
|A||S|2

δ′

))

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

times. First we let #(s, a) denote the total number of times that (s, a) has been observed, similarly
we let #(s′, s, a) denote the total number of times that (s′, s, a) has been observed. The maximum
likelihood estimate for the unknown probability P(s′ |, s, a) is P̂(s′ | s, a) = #(s′, s, a)/#(s, a).
Let us fix some (s, a) ∈ S × A, and s′ ∈ S, we let ps′ = P(s′ | s, a) denote the true probability
of transitioning to s′ from (s, a) and we let p̂s′ = #(s′, s, a)/#(s, a) denote our estimate. We note
that E[p̂s′] = ps′ , i.e. p̂s′ is an unbiased estimator for ps′ . Let m = #(s, a) also be the number of
times that (s, a) has been observed, then by Hoeffding’s inequality (Hoeffding, 1963) we have,

P
[
|ps′ − p̂s′ | ≥

ε′

N |S|

]
≤ 2 exp

(
−2m ε′2

N2|S|2

)
(37)

Bounding the LHS from above by 1−δ′/(|A||S|2) and rearranging gives the following lower bound
for m,

m ≥ N2|S|2

2ε′2
log

(
2|A||S|2

δ′

)
(38)

Taking a union bound over all (s′, s, a) ∈ S × S ×A, then for all state action pairs (s, a) ∈ S ×A
we have the following with probability at least 1− δ′.

2DTV

(
P(· | s, a), P̂(· |, s, a)

)
=

∑
s′∈S

|ps′ − p̂s′ | ≤
∑
s′∈S

ε′

N |S|
≤ ε′/N (39)

Now fix some s ∈ S and we observe the following,

2DTV

(
Pπ(· | s), P̂π(· | s)

)
=

∑
s′∈S
|Pπ(s

′ | s)− P̂π(s
′ | s)| (40)

=
∑
s′∈S

∑
a∈A
|P(s′ | s, a)π(a | s)− P̂(s′ | s, a)π(a | s)| (41)

=
∑
a∈A

π(a | s)
∑
s′∈S
|P(s′ | s, a)− P̂(s′ | s, a)| (42)

=
∑
a∈A

π(a | s)2DTV

(
P(· | s, a), P̂(· |, s, a)

)
(43)

≤ ε′/N (44)

Thus with probability at least 1− δ′ we have for all s ∈ S that,

DTV

(
Pπ(· | s), P̂π(· | s)

)
≤ ε′/N (45)

(2) Now by using assumptions 3.8 and 3.9 we can reason about the safety of the system. Sup-
pose firstly that we can exactly compute the reachability probability Pr(⟨s, q⟩ |= ♢≤Naccept) and
without any failure probability – this corresponds to exact model checking with the transition prob-
abilities P .

Under Assumption 3.9 the initial state ⟨s0, L(s0)⟩ is contained in the probabilistic safe set Sπsafe(εt)
meaning that by following the ‘backup policy’ πsafe we can satisfy the safety property Psafe for the
entire episode length with probability at least 1− εt.

The ‘shielded policy’ πshield is constructed such that an action a proposed by the ‘task policy’ πtask
is only permissible if Pr(⟨s, q⟩ |= ♢≤Naccept) ≤ εt given a,

πshield(⟨s, q⟩, a) =
{
πtask(s, a) if Pr(⟨s, q⟩ |= ♢≤Naccept) ≤ εt (given a)
πsafe(⟨s, q⟩, a) otherwise

(46)

Under Assumption 3.8 any permissible action a proposed by the ‘task policy’ πtask is ‘safe’ in the
sense that ⟨s, q⟩ will be contained in the probabilistic safe set Sπsafe(εt). The reasoning for this
is straightforward proof by contradiction, assume Pr(⟨s, q⟩ |= ♢≤Naccept) ≤ εt (given a) and
Pr(⟨s, q⟩ |= ♢≤Taccept) > εt (given a) then the action a is irrecoverable and so by Assumption 3.8
we must have Pr(⟨s, q⟩ |= ♢≤N∗

accept) > εt, however since N ≥ N∗ then certainly Pr(⟨s, q⟩ |=
♢≤Naccept) > Pr(⟨s, q⟩ |= ♢≤N∗

accept) > εt which is a contradiction.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Thus if a permissible action a proposed by the ‘task policy’ is committed in the environment then we
know that the current state ⟨s, q⟩ is contained in the probabilistic safe set Sπsafe(εt) and thus we have
established the following invariant: ‘we can always fall back on the backup policy for a step-wise
safety guarantee of εt regardless of the previous action’.

(3) We we make a similar argument for exact model checking with the empirical probabilities P̂ ,
where we can only obtain an ϵ′-approximate estimate of the reachability probability Pr(⟨s, q⟩ |=
♢≤Naccept). The key to this part of the proof is to only allow actions proposed by the ‘task policy’
πtask we know for certain satisfy Pr(⟨s, q⟩ |= ♢≤Naccept) ≤ εt.

In particular an action a proposed by the ‘task policy’ πtask is only permissible if our estimate for
Pr(⟨s, q⟩ |= ♢≤Naccept) denoted P̂r(⟨s, q⟩ |= ♢≤Naccept), is less than εt − ε′, this decision is
reflected in both Algorithm 3 and 2 in Appendix A. If P̂r(⟨s, q⟩ |= ♢≤Naccept) ≤ εt − ε′ then
Pr(⟨s, q⟩ |= ♢≤Naccept) ≤ εt, the proof of this statement is a straightforward proof by contradic-
tion, assume that P̂r(⟨s, q⟩ |= ♢≤Naccept) ≤ εt − ε′ and Pr(⟨s, q⟩ |= ♢≤Naccept) > εt, then we
have |P̂r(⟨s, q⟩ |= ♢≤Naccept) − Pr(⟨s, q⟩ |= ♢≤Naccept)| > ε′ which is a contradiction as we
have established in Proposition 3.5 that P̂r(⟨s, q⟩ |= ♢≤Naccept) is an ϵ′-approximate estimate of
Pr(⟨s, q⟩ |= ♢≤Naccept) when (45) is satisfied.

Putting it all together. Part (1) of our proof establishes that with probability at least 1− δ′ the total
variation distance between Pπ and P̂π is upper bounded, see (45). Part (3) then establishes how we
can obtain use the ε′-approximate estimate of the reachability probability Pr(⟨s, q⟩ |= ♢≤Naccept)
to only let permissible actions be used by the ‘shielded policy’, this in conjunction with the invariant
established in part (2) completes the proof for exact model checking. We finally need to deal with
the failure probability associated with statistical model checking. In particular, at each timestep we
fix a failure probability of δ′, taking a union bound with part (1) of the proof gives us a step-wise
failure probability of δt = 2δ′. The completes the proof.

C EXTENDED DISCUSSION AND ABLATION STUDIES

In this section we conduct a set of ablation studies, in particular we conduct experiments in the tab-
ular gridworld environments, where in contrast to QL-Shield we are given access to the transition
probabilities P and a safe ‘backup policy’ denoted π∗

safe that is computed with value iteration before
training of the ‘task policy’ πtask. We also use exact PCTL model checking to compute the reacha-
bility probability Pr(⟨s, q⟩ |= ♢≤Naccept) when shielding the ‘task policy’. Since P and π∗

safe are
fixed during learning, we can actually compute an action satisfaction set and verify that Assumption
3.8 and 3.9 do in fact hold. This gives us a step-wise safety guarantee of εt at the start of training,
which will be reflected in our experimental results.

We call this instantiation of our framework QL-Exact. The assumption of prior knowledge of P
of course does not fit in to the general RL framework, however it is interesting to see how quickly
QL-Shield (which is compatible with the typical RL framework) converges to the performance of
QL-Exact. We note that for QL-Exact the ‘task policy’ πtask is not ‘pre-trained’ and so the task
performance of QL-Exact is not immediately optimal. We provide the results below; we plot the
reward, cost ‘episodic’ safety rate and the episode length where relevant.

0.0 0.5 1.0 1.5 2.0 2.5
Step ×104

20

15

10

5

0

Re
wa

rd

0.0 0.5 1.0 1.5 2.0 2.5
Step ×104

0

5

10

15

20

Co
st

0.0 0.5 1.0 1.5 2.0 2.5
Step ×104

0.0

0.2

0.4

0.6

0.8

1.0

Sa
fe

ty
 ra

te

QL QL-Cost QL-Shield QL-Shield (Exact)

Figure 6: Ablation study with QL-Exact for Media Streaming.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Step ×105

0.0

0.2

0.4

0.6

0.8

1.0

Re
wa

rd

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Step ×105

0.0

0.2

0.4

0.6

0.8

Co
st

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Step ×105

0.2

0.4

0.6

0.8

1.0

Sa
fe

ty
 ra

te

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Step ×105

100

200

300

Ep
iso

de
 le

ng
th

QL QL-Cost QL-Shield QL-Shield (Exact)

Figure 7: Ablation study with QL-Exact for Bridge Crossing.

0.0 0.2 0.4 0.6 0.8 1.0
Step ×105

0.0

0.2

0.4

0.6

0.8

1.0

Re
wa

rd

0.0 0.2 0.4 0.6 0.8 1.0
Step ×105

0.0

0.5

1.0

1.5

Co
st

0.0 0.2 0.4 0.6 0.8 1.0
Step ×105

0.0

0.2

0.4

0.6

0.8

1.0

Sa
fe

ty
 ra

te

0.0 0.2 0.4 0.6 0.8 1.0
Step ×105

20

40

60

80

100

Ep
iso

de
 le

ng
th

QL QL-Cost QL-Shield QL-Shield (Exact)

Figure 8: Ablation study with QL-Exact for 9 × 9 property (1) (reward, cost, episodic safety rate,
episode length).

0.0 0.2 0.4 0.6 0.8 1.0
Step ×105

0.5

0.6

0.7

0.8

0.9

1.0

Re
wa

rd

0.0 0.2 0.4 0.6 0.8 1.0
Step ×105

0.0

0.2

0.4

0.6

0.8

1.0

Co
st

0.0 0.2 0.4 0.6 0.8 1.0
Step ×105

0.0

0.2

0.4

0.6

0.8

1.0

Sa
fe

ty
 ra

te

0.0 0.2 0.4 0.6 0.8 1.0
Step ×105

20

40

60

Ep
iso

de
 le

ng
th

QL QL-Cost QL-Shield QL-Shield (Exact)

Figure 9: Ablation study with QL-Exact for 9× 9 property (2).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Step ×105

0

10

20

30

Re
wa

rd

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Step ×105

0

10

20

30

Co
st

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Step ×105

0.0

0.2

0.4

0.6

0.8

1.0

Sa
fe

ty
 ra

te

QL QL-Cost QL-Shield QL-Shield (Exact)

Figure 10: Ablation study with QL-Exact for 15× 15 property (1).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Step ×105

0

10

20

30

Re
wa

rd

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Step ×105

0

5

10

15

20

25

Co
st

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Step ×105

0.0

0.2

0.4

0.6

0.8

Sa
fe

ty
 ra

te

QL QL-Cost QL-Shield QL-Shield (Exact)

Figure 11: Ablation study with QL-Exact for 15× 15 property (2).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Step ×105

0

10

20

30

Re
wa

rd

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Step ×105

0

5

10

Co
st

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Step ×105

0.0

0.2

0.4

0.6

0.8

1.0

Sa
fe

ty
 ra

te

QL QL-Cost QL-Shield QL-Shield (Exact)

Figure 12: Ablation study with QL-Exact for 15× 15 property (3).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

C.1 EXTENDED DISCUSSION

In all cases we see that QL-Shield eventually converges to or close to the safety and task performance
of QL-Exact, which provides a step-wise safety guarantee of εt at the start of training. However,
we note that this step-wise safety guarantee doesn’t always get us a good episodic guarantee, for
example in the Media Streaming environment, QL-Exact immediately provides a step-wise safety
guarantee of 1 − εt, but only provides an ‘episodic’ safety guarantee of around 0.96, this is in line
with our theory which provides an ‘episodic’ safety guarantee of 1−T ·εt = 1−40∗0.001 = 0.96.

D HYPERPARAMETERS AND IMPLEMENTATION DETAILS

D.1 ACCESS TO CODE

To maintain a high standard of anonymity we provide code for both the gridworld and Atari Seaquest
experiments in the supplementary material as part of the paper submission. The gridworld environ-
ments are implemented with the OpenAI Gym interface (Brockman et al., 2016). Tabular Q-learning
is implemented with numpy in Python, the model checking procedures (both exact and statistical)
are implemented with JAX (Bradbury et al., 2018) which supports vectorized computation on GPU
and CPU. The code for Atari Seaquest is our own branch of the code base for AMBS (Goodall &
Belardinelli, 2023), this also requires JAX among other preliminaries, for setup instructions please
refer to the AMBS code base https://github.com/sacktock/AMBS (MIT License). For
PPO-Lag (Ray et al., 2019) and CPO (Achiam et al., 2017), we use the implementations provided
by Omnisafe (Jiaming Ji, 2023), the code for running these benchmarks can also be found in the
supplementary material however, for setup instructions please refer to the Omnisafe code base
https://github.com/PKU-Alignment/omnisafe (Apache-2.0 license).

Training details. For collecting both sets of experiments we has access to 2 NVIDIA Tesla A40
(48GB RAM) GPU and a 24-core/48 thread Intel Xeon CPU each with 32GB of additional RAM.
For the ‘colour’ gridworld experiments each run can take several minutes up to a day depending
on which property is being tested and whether exact or statistical model checking is used.
For the Atari Seaquest experiments each run can take 8 hours to 1 day depending on the precise
configuration of DreamerV3, in general we see a slow down of ×2 when using DreamerV3-Shield
compared to the unmodified DreamerV3 baseline. Memory requirements may differ depending on
the DreamerV3 configuration used, for the xlarge configuration 32GB of GPU memory will suffice.

Statistical significance. Error bars are provided for each of our experiments. In particular, we
report 5 random initializations (seeds) for each experiment, the error bars are non-parametric
(bootstrap) 95% confidence intervals, provided by seaborn.lineplot with default parame-
ters: errorbar=(‘ci’, 95), n boot=1000. The error bars capture the randomness in the
initialization of the DreamerV3 world model and policy parameters, the randomness of the environ-
ment and any randomness in the batch sampling.

D.2 THE AUGMENTED LAGRANGIAN

We first define the following objective functions,

JR(π) = Eπ

[
T∑

t=0

R(st, at)

]
(47)

JC(π) = Eπ

[
T∑

t=0

C(st, at)

]
(48)

(49)

The augmented Lagrangian (Wright, 2006) is an adaptive penalty-based technique for the following
constrained optimization problem,

max
π

JR(π) subject to JC(π) ≤ d (50)

23

https://github.com/sacktock/AMBS
https://github.com/PKU-Alignment/omnisafe

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

where d is some cost threshold. The corresponding Lagrangian is given by,

max
π

min
λ≥0

[
JR(π)− λ (JC(π)− d)

]
= max

π

{
JR(π) if JC(π) < d

−∞ otherwise
(51)

The LHS is an equivalent form for the constrained optimization problem (RHS), since if π is fea-
sible, i.e. JC(π) < d then the maximum value for λ is λ = 0. If π is not feasible then λ can be
arbitrarily large to solve this equation. Unfortunately this form of the objective function is non-
smooth when moving from feasible to infeasible policies, thus we introduce a proximal relaxation
of the augmented Lagrangian (Wright, 2006),

max
π

min
λ≥0

[
JR(π)− λ (JC(π)− d) +

1

µk
(λ− λk)

2

]
(52)

where µk is a non-decreasing penalty multiplier dependent on the gradient step k. The new term
that has been introduced here encourages the λ to stay close to the previous value λk, resulting in
a smooth and differentiable function. The derivative w.r.t λ gives us the following gradient update
step,

λk+1 =

{
λk + µk(JC(π)− d) if λk + µk(JC(π)− d) ≥ 0

0 otherwise
(53)

At each gradient step, the penalty multiplier µk is updated in a non-decreasing way by using some
small fixed (power) parameter σ,

µk+1 = max{(µk)
1+σ, 1} (54)

The policy π is then updated by taking gradient steps of the following unconstrained objective,

J̃(π, λk, µk) = JR(π)−ΨC(π, λk, µk)

where,

ΨC(π, λk, µk) =

{
λk(JC(π)− d) + µk

2 (JC(π)− d)2 if λk + µk(JC(π)− d) ≥ 0

− (λk)
2

2µk
otherwise

D.3 TABULAR RL

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 1: Hyperparameter details for QL, QL-Cost and QL-Shield

Name Symbol Value

Q-Learning

Learning rate α 0.1
Discount factor γ 0.95
Exploration type - Boltzmann
Temperature τ 0.05

QL-Shield

Model checking type - Statistical
Number of samples m varies
Step-wise safety εt varies
Failure probability δt varies
Model checking horizon N varies
Approximation error ε′ varies

‘Backup policy’

Learning rate α 0.1
Discount factor γ 0.95
Exploration type - Boltzmann
Temperature τ 0.01
Cost coefficient c 10.0

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

For the hyperparameters that vary we provide the following details. For Media Streaming: m =
8000, εt = 0.001, δt = 0.01, N = 5, ε′ = 0.02, Bridge Crossing: m = 8000, εt = 0.05,
δt = 0.01, N = 5, ε′ = 0.02, 9 × 9 gridworld: property (1): m = 16000, εt = 0.01, δt = 0.01,
N = 3, ε′t = 0.01, property (2): m = 8000, εt = 0.12, δt = 0.01, N = 5, ε′ = 0.02 and for
15× 15 gridworld: property (3) m = 1000, εt = 0.001, δt = 0.01, N = 13, ε′ = 0.05.

For PPO-Lag (Ray et al., 2019) and CPO (Achiam et al., 2017) the only hyperparameters that vary
other than the cost threshold C is the steps per epoch n. For Media Streaming: n = 400, Bridge
Crossing n = 2000, 9× 9 gridworld n = 1000 and for 15× 15 gridworld n = 2500.

Table 2: Hyperparameter details for PPO-Lag (Ray et al., 2019) and CPO (Achiam et al., 2017) –
gridworld environments

Name Symbol Value

Actor learning rate η 0.0003
Discount factor γ 0.95
Cost coefficient c 1.0
Cost threshold C varies
Cost gamma γc 0.95
TD-lambda λ 0.95
Cost TD-lambda λc 0.95
Max grad norm - 0.5
Entropy coefficient - 0.0
Steps per epoch n varies

PPO-Lag

Initial Lagrangian multiplier λinit 10.0
Update iterations (per epoch) k 40
Epsilon clip ϵclip 0.2
Batch size B 64

CPO

Update iterations (per epoch) k 10
Batch size B 128

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

D.4 DEEP RL

Table 3: General hyperparameter details for DreamerV3 (Hafner et al., 2023)

Name Symbol Value

Replay capacity D 106

Batch size B 16
Batch length - 64
Number of envs - 8
Train ratio - 64
Number of MLP layers - 5
Number of MLP units - 1024
Activation - LayerNorm + SiLU

World Model

Configuration size - medium
Number of latents - 32
Classes per latent - 32
Number of layers - 3
Number of hidden units - 640
Number of recurrent units - 1024
CNN depth - 48
RSSM loss scales βpred, βdyn, βrep 1.0, 0.5, 0.1
Predictor loss scales βo, βr, βc, βγ 1.0, 1.0, 1.0, 1.0
Learning rate - 10−4

Adam epsilon ϵadam 10−8

Gradient clipping - 1000

Actor Critic

Roll-out horizon H 15
Discount factor γ 0.997
TD lambda λ 0.95
Critic EMA decay - 0.98
Critic EMA regularizer - 1
Return norm. scale Sreward Per(R, 95)− Per(R, 5)
Return norm. limit Lreward 1
Return norm. decay - 0.99
Actor entropy scale ηactor 3 · 10−4

Learning rate - 3 · 10−5

Adam epsilon ϵadam 10−5

Gradient clipping - 100

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 4: Hyperparameter details for DreamerV3-Lag

Name Symbol Value

Penalty multiplier µk 5 · 10−9

Initial Lagrange multiplier λk 0.01
Penalty power σ 10−6

Cost coefficient C 1.0
Cost threshold d 1.0

Table 5: Hyperparameter details for DreamerV3-Shield

Name Symbol Value

Number of samples m 512
Step-wise safety εt 0.01
Failure probability δ 0.01
Lookahead/shielding horizon N {30, 50}
Approximation error ε′ 0.01
Cost coefficient (‘backup policy’) c 10

Table 6: Hyperparameter details for PPO-Lag and CPO – Atari Seaquest environment

Name Symbol Value

Actor learning rate η 0.00003
Discount factor γ 0.9967
Initial Lagrangian multiplier λinit 10.0
Cost coefficient c 1.0
Cost threshold C 1.0
Cost gamma γc 0.95
TD-lambda λ 0.95
Cost TD-lambda λc 0.95
Max grad norm - 40.0
Entropy coefficient - 0.0
Steps per epoch n 20000

PPO-Lag

Update iterations (per epoch) k 40
Epsilon clip ϵclip 0.2
Batch size B 64

CPO

Update iterations (per epoch) k 10
Batch size B 128

28

	Introduction
	Preliminaries
	Lookahead Shielding
	Training the backup policy
	Comparison to Constrained MDP
	Problem settings
	Tabular RL
	Deep RL

	Model Checking
	Global safety guarantees

	Experimental Evaluation
	Tabular RL
	Deep RL
	Discussion

	Related Work
	Conclusion
	Algorithms
	QL-Shield
	Model Checking
	DreamerV3-Shield

	Proofs
	Proof of Proposition 3.4
	Proof of Proposition 3.5
	Proof of Theorem 3.10

	Extended Discussion and Ablation Studies
	Extended discussion

	Hyperparameters and Implementation Details
	Access to code
	The Augmented Lagrangian
	Tabular RL
	Deep RL

