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Abstract

Learning the unknown causal parameters of a linear structural causal model is a
fundamental task in causal analysis. The task, known as the problem of iden-
tification, asks to estimate the parameters of the model from a combination of
assumptions on the graphical structure of the model and observational data, repre-
sented as a non-causal covariance matrix. In this paper, we give a new sound and
complete algorithm for generic identification which runs in polynomial space. By
a standard simulation result, namely PSPACE ⊆ EXP, this algorithm has expo-
nential running time which vastly improves the state-of-the-art double exponential
time method using a Gröbner basis approach. The paper also presents evidence
that parameter identification is computationally hard in general. In particular, we
prove, that the task asking whether, for a given feasible correlation matrix, there
are exactly one or two or more parameter sets explaining the observed matrix, is
hard for ∀R, the co-class of the existential theory of the reals. In particular, this
problem is coNP-hard. To our best knowledge, this is the first hardness result for
some notion of identifiability.

1 Introduction

Recognizing and predicting the causal effects and distinguishing them from purely statistical corre-
lations is an important task of empirical sciences. For example, identifying the causes of disease and
health outcomes is of great significance in developing new disease prevention and treatment strate-
gies. A common approach for establishing causal effects is through randomized controlled trials
(Fisher, [20]) – called the gold standard of experimentation – which, however, requires physical in-
tervention in the examined system. Therefore, in many practical applications, experimentation is not
always possible due to cost, ethical constraints, or technical feasibility. E.g., to learn the effects of
radiation on human health one cannot conduct interventional studies involving human participants.
In such cases, a researcher may use an alternative approach and establish cause-effect relationships
by combining existing observed data with the knowledge of the structure of the system under study.
This is called the problem of identification in causal inference (Pearl, [32]) and the approach is
commonly used in various fields, including modern ML.

A key ingredient of this framework is the way the underlying structure models the true mechanism
behind the system. In general, this is done using structural causal models (SCMs) [32, 3]. In this
work, we focus on the problem of identification in linear SCMs, known also as structural equation
models (SEMs) [7, 18]. They represent the causal relationships between observed random variables
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Figure 1: An IV example.

assuming that each variable Xi, with i = 1, . . . , n is linearly dependent on the remaining variables
and an unobserved error term εi of normal distribution with zero mean: Xj =

∑
i λi,jXi + εj . The

model implies the existence of some covariance matrix Ω = (ωi,j) between the error terms. In this
paper, we consider mainly recursive models, i.e., we assume that, for all i > j, we have λi,j = 0,
nonetheless we discuss how our methods can be extended to the general case.

Linear SCMs can be represented as a graph with nodes {1, . . . , n} corresponding to variables
X1, . . . , Xn and with directed and bidirected edges. A directed edge i → j represents a linear
influence λi,j ̸= 0 of a parent node i on its child j. A bidirected edge i↔ j represents a correlation
ωi,j ̸= 0 between error terms εi and εj (cf. Figure 1).

Writing the coefficients of all directed edges as an adjacency matrix Λ = (λi,j) and the coefficients
of all bidirected edges as an adjacency matrix Ω = (ωi,j), the covariances σi,j between each pair of
observed variables Xi and Xj can be calculated as matrix Σ = (σi,j):

Σ = (I − Λ)−TΩ(I − Λ)−1, (1)

where I is the identity matrix [21]. Knowledge of the parameters λi,j allows for the prediction
of all causal effects in the system. The key task here is to learn Λ from the observed covariances
Σ assuming Ω remains unknown. This leads to the formulation of the identification problem in
linear SCMs as solving for the parameter Λ using equation (1). If the problem asks to find symbolic
solutions involving only symbols σi,j , we call it the problem of symbolic identification. In the
case when the parameter can be determined uniquely almost everywhere using Σ alone, we call the
instance to be generically identifiable (for a formal definition, see Sec. 2). If the goal is to find,
for a given Σ of rational numbers, the numerical solutions, we call it the problem of numerical
identification. In this paper, we study the computational complexity of both variants of the problem.

Previous Work. The identification in linear SCMs and its applications have been a subject of re-
search interest for many decades, including the early work in econometrics and agricultural sciences
[42, 41, 19, 8]. Currently, it seems, that one of the most challenging tasks in this field is providing
efficient computational methods to find solutions, both for symbolic and for numeric variants, or
providing evidence that the problems are computationally intractable.

The generic identification can be computed using standard algebraic tools for solving symbolic poly-
nomial equations (1). Such an approach provides a sound and complete method, i.e., it is guaranteed
to identify all identifiable instances. However, common algorithms for solving such equations usu-
ally use Gröbner basis computation, whose time complexity is doubly exponential in the worst case
[22]. So far, it has remained widely open whether the double exponential function is a sharp upper
bound on the computational complexity of the generic identifiability.

Most approaches to solving the problem in practice are based on instrumental variables, in which the
causal direct effect is identified as a fraction of two covariances [41, 8]. For example, in the linear
model shown in Figure 1, one can calculate first λ1,2 = σ1,2 and then λ2,3 =

λ1,2λ2,3

λ1,2
=

σ1,3

σ1,2
. The

variableX1 is then called an instrumental variable (IV). This method is sound but not complete, that
is, when it identifies a parameter, then it is always correct. However, when the method fails due to a
missing IV, then the parameter might still be identified by other means. This approach has inspired
intensive research aimed at providing computational methods that may not be complete but enable
efficient algorithms and identify a significantly large number of cases.

Conditional IVs (cIVs) are one of the most natural extensions of simple IVs [8, 31]. The correspond-
ing identification method is based on an efficient, polynomial time algorithm for finding conditional
IVs [38]. More complex criteria and methods proposed in the literature, which are also accompanied
by polynomial time algorithms, involve instrumental sets (IS) [10] half-treks (HTC) [21], instrumen-
tal cutsets (ICs) [28], auxiliary instrumental variables (aIVs) [15]. The generalized HTC (gHTC)
[13, 40] and auxiliary variables (AVS) [13, 14] can be implemented in polynomial time provided
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Figure 2: Methods for generic identification in linear SCMs. An arrow from methodsA→ B means
that B subsume all methods A, i.e., any instance that can be identified by any of methods A can be
identified by method B and this inclusion is proper. Green boxes mean there exist polynomial-time
algorithms to apply the method, a red box means no such algorithm is known or the method has
been proven to be NP-hard. The blue box includes the complete methods.

that the number of incoming edges to each node in the causal graph is bounded. The methods based
on generalized IS (gIS), a simplified version of the criterion (scIS), and generalized AVS (gAVS)
appeared to be computationally intractable [10, 9, 11, 37, 14]. The auxiliary cutsets (ACID) algo-
rithm [29] subsumes all the above methods in the sense that it covers all the instances identified by
them. Recently [39, 24] provide the TreeID algorithm for identification in tree-shaped linear models.
TreeID is incomparable since it is complete for the subclass of tree-like SCMs. However, TreeID
does not work for general SCMs, which is the focus of our work. Figure 2 summarizes these results.

Numerical parameter identification, known in the literature as the estimation of the parameters of
structural equation models, has been the subject of a considerable amount of research, which has
resulted in significant progress in theoretical understanding and development of estimation methods
[2, 26, 12, 30, 7, 25]. Currently, in practical applications (e.g. in econometrics, psychometrics, or
biometrics), methods based on maximum likelihood (ML) or generalized least squares estimator
(GLS) are commonly used to find model parameters. However, despite the great importance of
this problem and considerable effort in method development, the computational complexity of the
parameter estimation problem remains unexplored. In our work, we provide, to our knowledge, the
first hardness result for a very basic variant of the SEM parameter estimation problem, which we
call numerical identification.

Our Contribution. We improve significantly the best-known upper bound on the computational
complexity for generic identification and provide evidence that parameter identification is computa-
tionally hard in general. In more detail, our contributions are as follows:

• We provide a polynomial-space algorithm for sound and complete generic parameter iden-
tification in linear models. This gives an exponential running time which vastly improves
the state-of-the-art double exponential time method using Gröbner basis. In our approach,
we formulate generic identifiability as a formula over real variables with both existential
and universal quantifiers and then use Renegar’s algorithm [33].

• Our constructive technique allows us to prove an ∃∀R (and ∀∃R) upper bound on generic
identifiability, for the well-studied complexity class ∃∀R (see Sec. 2.2 for definitions). It is
an intermediate class between NP and PSPACE.

• We prove that numerical identification is hard for the complexity class ∀R. In particular,
the problem is coNP-hard. Our complexity characterization is quite precise since we show
a (promise) ∀R upper bound for numerical identification. To the best of our knowledge,
this is the first hardness result for some notion of identifiability.

• On the other hand, we show that numerical identifiability can be decided in polynomial
space.

• If an instance is non-identifiable, then an important task is to identify as many model pa-
rameters as possible. We are particularly interested in identifying the parameters of specific
edges in the graph representing the linear model. In the paper, we obtain, for “edge iden-
tifiability”, the same results as for the common identifiability problem. Since these proofs
are essentially the same, they can be found in Appendix A.
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2 Preliminaries

2.1 The Problems of Identification in Linear Causal Models

A mixed graph is a triple G = (V,D,B) where V := {1, . . . , n} is a finite set of nodes and
D ⊆ V ×V and B ⊆

(
V
2

)
are two sets of directed and bidirected edges, respectively. Let RD be the

set of matrices Λ = (λi,j) ∈ Rn×n with λi,j = 0 if i→ j is not inD and let PD(n) denote the cone
of positive definite n × n matrices. Let PD(B) be the set of matrices Ω = (ωi,j) ∈ PD(n) with
ωi,j = 0 if i ̸= j and i ↔ j is not an edge in B. For now, we will only consider recursive models,
i.e. we assume that, for all i > j, we have λi,j = 0 (in Sec. 7 we will discuss how our methods can
be extended to general graphs allowing cycles). Thus, the directed graph (V,D) accompanied with
the model is acyclic. We will assume w.l.o.g. that the nodes are topologically sorted, i.e., there are
no edges i→ j with i > j.

Denote by Nn(µ,Σ) the multivariate normal distribution with mean µ ∈ Rn and covariance matrix
Σ. The linear SCMs M(G) associated with G = (V,D,B) is the family of multivariate normal
distributions Nn(0,Σ) with Σ satisfying equation (1), for Λ ∈ RD and Ω ∈ PD(B). A model
in M(G) is specified in a natural way in terms of a system of linear structural equations: Xj =∑

i∈pa(j) λi,jXi+εj , for j = 1, . . . , n,where pa(j) denote the parents of j inG. If ε = (ε1, . . . , εn)

is a random vector with the multivariate normal distribution Nn(0,Σ) and Λ ∈ RD, then the random
vectorX = (X1, . . . , Xn) is well defined as a solution to the equation system and follows a centered
multivariate normal distribution with covariance matrix (I − Λ)−TΩ(I − Λ)−1 (see, e.g. [17]).

For a given (acyclic) mixed graph G = (V,D,B), define the parametrization map

ϕG : (Λ,Ω) 7→ (I − Λ)−TΩ(I − Λ)−1

and let Θ := RD × PD(B). We say that G is globally identifiable if ϕG is injective on Θ [17].

Global identification can be decided easily, see [17, Theorem 2]. However, it is a very strong prop-
erty. For instance, as seen in the introduction, in Figure 1, we can recover the parameter λ2,3 as
σ1,3

σ1,2
. If σ1,2 = 0, then the identification fails, so the instance is not globally identifiable. But iden-

tification fails only in the (very unlikely) case that σ1,2 = 0. This leads to the concept of generic
identifiability:
Definition 1 (Generic Identifiability, [21]). The mixed graph G is said to be generically identifiable
if ϕG is injective on the complement Θ \ V of a proper (i.e., strict) algebraic subset V ⊂ Θ.

Given matrices Λ0 ∈ RD and Ω0 ∈ PD(B), the corresponding fiber is defined by

FG(Λ0,Ω0) = {(Λ,Ω) | ϕG(Λ,Ω) = ϕG(Λ0,Ω0),Λ ∈ RD,Ω ∈ PD(B)}.

A fiber contains all pairs of matrices that induce the same observed covariance matrix Σ. For Σ ∈
imϕG, we also write FG(Σ) for the fiber belonging to Σ. We can phrase identifiability in terms of
fibers:

• G is globally identifiable, if |FG(Λ0,Ω0)| = 1 for all Λ0 ∈ RD and Ω0 ∈ PD(B).
• G is generically identifiable, if |FG(Λ0,Ω0)| = 1 for Zariski almost all Λ0 ∈ RD and
Ω0 ∈ PD(B).

Generic identifiability asks whether all parameters are almost always identifiable in the Zariski sense,
that is, everywhere except for a lower dimensional algebraic set. For generic identifiability, we only
consider the parameters λi,j since the parameters ωk,l can be recovered from the λi,j and σi,j using
(1), see also [16].

It is also of interest to ask whether a single parameter λi,j is almost always identifiable. For this, we
consider the projection of the fiber on the single parameter, which we will also call an edge fiber:

F i,j
G (Λ0,Ω0) = {Λi,j | (Λ,Ω) ∈ FG(Λ0,Ω0)}.

(Above Λi,j denotes the entry of Λ in the position (i, j), that is, λi,j .)

Definition 2. The parameter λi,j is generically edge identifiable, if |F i,j
G (Λ0,Ω0)| = 1 for Zariski

almost all Λ0 ∈ RD and Ω0 ∈ PD(B).
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Global and generic identifiability are properties of the given mixed graph. In this work, we also
study identification as a property of the observed numerical data, i.e., of the observed covariance
matrix Σ.

Definition 3 (Numerical Identifiability). Given an acyclic mixed graph G = (V,D,B) and a feasi-
ble matrix Σ, decide whether the parameters are uniquely identifiable, i.e. if |FG(Σ)| = 1?

Note that this is a promise problem. We assume that Σ is feasible, i.e., in the image of ϕG. Therefore,
we shall also study the feasibility problem: Given Σ, is it contained in imϕG?

Similarly we can also define numerical edge identifiability: For a given feasible Σ, test whether the
edge fiber Σ belongs to has size 1 or > 1.

2.2 The (Existential) Theory of the Reals

The existential theory of the reals (ETR) is the set of true sentences of the form

∃x1 . . . ∃xn φ(x1, . . . , xn), (2)

where φ is a quantifier-free Boolean formula over the basis {∨,∧,¬} and a signature consisting
of the constants 0 and 1, the functional symbols + and ·, and the relational symbols <, ≤, and
=. The sentence is interpreted over the real numbers in the standard way. The theory forms its
own complexity class ∃R which is defined as the closure of ETR under polynomial-time many-
one reductions. Many natural problems have been shown to be complete for ETR, for instance the
computation of Nash equilibria [35], the famous art gallery problem [1], or training neural networks
[5], just to mention a few. See the recent compendium [34] for a complete overview.

It turns out that one can simplify the form of an ETR-instance. We can get rid of the relations< and
≤ and it is sufficient to consider only Boolean conjunctions. More precisely, the following problem
is ∃R-complete: Given polynomials p1, . . . , pm in variables x1, . . . , xn, decide whether there is a
ξ ∈ Rn such that

p1(ξ) = · · · = pm(ξ) = 0. (3)

By Tseitin’s trick, we can assume that all polynomials are of one of the forms

ab− c, a+ b− c, a− b, a− 1, a (4)

and all variables in each of the polynomials are distinct. Note that all polynomials in (4) have degree
at most two. Therefore, this problem is also called the feasibility problem of quadratic equations
QUAD. For a proof, see e.g. [35].

Universal Quantification. If, instead of considering existentially quantified true sentences, we
consider universally quantified true sentences of the form

∀x1 . . . ∀xn φ(x1, . . . , xn), (5)

where φ is again a quantifier-free Boolean formula, and form the closure under polynomial-time
many-one reductions, we obtain the complexity class ∀R. Using De Morgan’s law, it is easy to see
the well-known fact that ∀R = co-∃R, i.e. it is the complement class of ∃R.

It is also possible to alternate quantifiers, giving rise to a whole hierarchy, comparable to the well-
known polynomial time hierarchy, see [36]. We call the corresponding classes ∃∀R, ∀∃R, . . .

Complexity of ∃R and ∀R. It is easy to see that quantification over real variables can be used to
simulate quantification over Boolean variables by adding the constraint x(x− 1) = 0. This way we
can convert 3SAT-formulas to ETR-formulas, proving the well-known containment NP ⊆ ∃R.

With his celebrated result about quantifier elimination, Renegar [33] proved that the truth of any
sentence over the reals with a constant amount of quantifier alternations is decidable in PSPACE.
This in particular implies

NP ⊆ ∃R ⊆ PSPACE and coNP ⊆ ∀R ⊆ PSPACE. (6)

While all these inclusions are believed to be strict, it is unknown for all of them.
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3 Finding Another Solution

Numerical identification is a promise problem, i.e., we assume that the given input is feasible. Being
a promise problem means that an algorithm for numerical identification should output the correct
answer whenever the input is feasible. But it can output anything when the input is not feasible. We
give some further information about promise problems in Appendix B for the reader’s convenience.

For our hardness proof, we need to look at instances of ETR or QUAD that are satisfiable. Of
course, deciding whether a satisfiable instance is satisfiable is a trivial task. So the task will be
to decide whether the satisfiable instance has another solution. We call the corresponding promise
problems ETR++ and QUAD++.

It turns out that these promise problems are ∃R-hard. Since QUAD++ is a special case of ETR++,
it suffices to prove this for QUAD++. Let y be an extra variable. We will plant an extra solution
into the system (3):

y(y − 1) = 0 (7)
yxi = 0 i = 1, . . . , n (8)

(y − 1)pj = 0 j = 1, . . . ,m (9)
Lemma 1. The system above has the following solutions:

1. y = 1, x1 = · · · = xn = 0

2. y = 0, x1 = ξ1, . . . , xn = ξn, where ξ ∈ Rn is any solution to the original instance.

In particular, the system always has a solution. It has more than one solution iff the original QUAD-
instance is satisfiable.

Proof. The first equation (7) constrains y to be {0, 1}-valued. If y = 0, then the equations (8) are
trivially satisfied and (9) reduces to the original instance (3). If y = 1, then the equations (9) are
trivially satisfied and (8) reduces to x1 = · · · = xn = 0. Note that in both cases we always get
different solutions since the y-value differs.

Using the transformation in the lemma above, we can map any QUAD-instance into a QUAD++-
instance and obtain
Corollary 1. ETR++and QUAD++are ∃R-hard.

4 Hardness of Numerical Identifiability

This section is dedicated to proving:
Theorem 2. Numerical identifiability is ∀R-hard.

The proof consists of building a polynomial-time reduction from the complement of QUAD++ to
numerical identifiability, i.e., we construct an acyclic mixed graph G and a Σ ∈ imϕG, such that
the fiber FG(Σ) has size 1 iff the given QUAD++-instance has only one solution. For this, we use
the following characterization of fibers due to [16]:
Lemma 3. Let G = (V,D,B) be an acyclic mixed graph, and let Σ ∈ imϕG. The fiber FG(Σ) is
isomorphic to the set of matrices Λ ∈ RD that solve the equation system

[(I − Λ)TΣ(I − Λ)]i,j = 0, i ̸= j, i↔ j /∈ B (10)

We construct G as follows: The directed edges form a bipartite graph with edges going from the
bottom layer to the top layer. Every node at the bottom layer has outdegree one. Moreover bidirected
edges exist between all pairs of nodes, except for certain pairs of nodes of the top layer. See Figure 3
(left-hand side) for an illustration.

This missing edge in Figure 3 corresponds to the equation

0 = σi,j −
n∑

ℓ=1

σaℓ,jλaℓ,i −
m∑

k=1

σbk,iλbk,j +

n∑
ℓ=1

m∑
k=1

σaℓ,bkλaℓ,iλbk,j (11)

in Lemma 3.
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Figure 3: Left: A single missing edge on the top layer. Right: The gadget storing the value of each
variable. λi,r corresponds to xi.
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missing
r i j

1 . . . n i′ j′

λ1,r λn,r λi′,i λj′,j

missing missing

missing

Figure 4: Left: Gadget for affine linear constraints. Right: Gadget for multiplicative constraints.

Observation 4. All σ values that appear in (11) cannot appear in any other missing edge equation
of missing edges in the top layer. Parameters σaℓ,j can only appear in an equation of a missing
edge that contains the node j and another node h such that there is a directed edge from aℓ to h.
However, (aℓ, i) is the only such edge, since the nodes in the bottom layer only have outdegree one.
The same is true for σbk,j . σaℓ,bℓ can only appear in an equation of a missing edge h ↔ h′ if there
are directed edges (aℓ, h) and (bk, h

′). By the same argument, i↔ j is the only such missing edge.
Furthermore σi,j can obviously only appear in this equation.

The above observation means that we can freely “program” the equations, that is, we can freely
choose the σ-values in each missing edge equation without interfering with any other missing edge
equation.

We start with a gadget with one node r in the top layer and n nodes in the bottom layer connected
to it. It is used to store the value of each variable of our ETR instance, λ1,r corresponds to x1, λ2,r
corresponds to x2, etc, see Figure 3 (right-hand side) for an illustration.

By assuming all polynomials in our QUAD++-instance are of the forms (4), we need to be able
to encode products and affine linear forms. We start by showing how to encode an arbitrary affine
linear constraint

∑n
ℓ=1 αℓxℓ = β using a single additional node i in the top layer, “connected” to r

via a missing edge as in Figure 4.

Setting σr,i = β and σℓ,i = αℓ, 1 ≤ ℓ ≤ n, makes (11) together with λℓ,r = xℓ directly equivalent
to

∑n
ℓ=1 αℓxℓ = β.

Encoding a product xa = xb ·xc requires two additional nodes i and j in the top layer, with missing
bidirectional edges between them and r. Furthermore we introduce two nodes i′ and j′ in the
bottom layer, connected to i and j respectively, see Figure 4 (right-hand side). This introduces three
equations. The missing edge r ↔ i enforces λi′,i = λc,r by setting σr,i = σ1,i′ = . . . = σn,i′ = 0,
σr,i′ = −1, σc,i = 1, and σℓ,i = 0, for all ℓ ∈ {1, . . . , n} \ {c} in (11). We use the missing edge
i ↔ j to further ensure λj′,j = λi′,i = λc,r, for which we set σi,j = σi′,j′ = 0, σi′,j = 1, and
σi,j′ = −1. After having copied λc,r twice, we are finally able to enforce the multiplication itself
using the missing edge r ↔ j. We set σr,j = σr,j′ = 0, σa,j = 1, σb,j′ = 1, σℓ,j = 0, for all
ℓ ∈ {1, . . . , n} \ {a}, and σℓ,j′ = 0, for all ℓ ∈ {1, . . . , n} \ {b}. We need to copy the parameter
λc,r twice to be able to “program” the equation corresponding to the missing edge r ↔ j.

Proof of Theorem 2. Let polynomials p1, . . . , pm in variables x1, . . . , xn be a QUAD++-instance
with all polynomials being one of the forms in (4). Let the number of affine linear polynomials
among p1, . . . , pm be k. Then the graph G = (V,D,B) constructed above has ℓ := 1 + n + k +
4(m − k) = 1 + n + 4m − 3k nodes. Using Observation 4, we see that the construction induces
a well-defined partial matrix Σ ∈ Rℓ×ℓ. Every entry of Σ not defined by the construction is set to
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0 if it is off-diagonal and ℓ if it is on the diagonal. Since all σi,j set in the construction are from
{−1, 0, 1} and off-diagonal, Σ strictly diagonally dominant by our choice of ℓ and thus positive
definite by the Gershgorin circle theorem [23].

Remains to prove Σ ∈ imϕG. Let ξ ∈ Rn be any solution with p1(ξ) = · · · = pm(ξ) = 0. The
existence of ξ is guaranteed by the promise of QUAD++. Create Λ ∈ Rℓ×ℓ as follows: λi,r = ξi
for i ∈ {1, . . . , n} and λi′,i = λj′,j = ξc whenever the vertices i, i′, j, j′ are the vertices added by
the construction due to a multiplication. All other entries of Λ are 0. Then I − Λ is invertible and
we have Σ = ϕG(Λ,Ω) for Ω = (I − Λ)TΣ(I − Λ). Furthermore Ω is positive definite due to Σ
being positive definite and Ω ∈ PD(B).

By Lemma 3, this implies that |FG(Σ)| is precisely the number of solutions of our QUAD++-
instance. So if the QUAD++-instance is a yes-instance, that is, has more than one solution, then
our constructed instance is not numerically identifiable. If the QUAD++-instance is a no-instance,
that is, has only one solution, then our constructed instance is numerically identifiable. So we have
a reduction from the complement of QUAD++. The theorem now follows, since by Corollary 1,
QUAD++ is ∃R-hard and the complement of an ∃R-hard problem is ∀R-hard.

5 Upper Bound for Numerical Identifiability

In this section, we show a ∀R upper bound for numerical identifiability and thus, combined with
Theorem 2, prove an almost3 matching lower and upper bound. We start with the following lemma.
The ∃R part will be needed in the next section.
Lemma 5. Membership in PD(n) and PD(B) can be expressed in ∃R and ∀R. 4

Proof. For the ∃R expression, we use the fact that every real positive definite matrix A ∈ Rn×n

has a Cholesky decomposition A = LLT where L is a real lower triangular matrix with positive
diagonal entries. We can thus express A ∈ PD(n) as

∃L ∈ Rn×n : A = LLT ∧
∧

i∈{1,...,n}

(Li,i > 0 ∧
∧

j∈{i+1,...,n}

Li,j = 0). (12)

We quantify over matrices and consider matrix equations in (12). But this can be easily rewritten as
an ETR-instance by quantifying over all entries of the matrix and having one individual equation
for each entry of the matrix equation.

For the ∀R expression, we directly use the definition of positive definite matrices to express A ∈
PD(n) as

∀x ∈ Rn : x ̸= 0 =⇒ xTAx > 0. (13)

For membership A ∈ PD(B), in both ∃R and ∀R, we add the constraint
∧

(i,j)/∈B∧i̸=j Ai,j = 0 to
(12) and (13), respectively.

We remind the reader that numerical identifiability is a promise problem with the promise that the
input Σ ∈ imϕG, so it suffices to check whether all elements in the fiber FG(Σ) are identical.

∀Λ1,Λ2 ∈ RD,Ω1,Ω2 ∈ PD(B) :

ϕG(Λ1,Ω1) = ϕG(Λ2,Ω2) = Σ ⇒ (Λ1 = Λ2 ∧ Ω1 = Ω2). (14)

The checks ϕG(Λi,Ωi) = Σ are implemented using Ωi = (I −Λi)
TΣ(I −Λi), which is equivalent

due to I − Λi being invertible for any Λi ∈ RD. This proves the following:
Theorem 6. Numerical identifiability is in (the promise version of) ∀R.
Remark 7. Strictly speaking, numerical identifiability is not contained in ∀R, since it is a promise
problem, that is, the outcome is not specified for Σ that are not feasible. ∀R consists by definition
only of classical decision problems, where the outcome is specified for all inputs. So the corre-
sponding complexity class is Promise-∀R. Section B contains some more information on promise
problems for the reader’s convenience.

3see Remark 7 for the details.
4Note that membership in PD(n) can be even decided faster. However, this will not change the complexity

of our overall algorithm.
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However, we can express feasibility in ∃R:
Lemma 8. Membership in imϕG can be expressed in ∃R.

Proof. We use the expression ∃Λ ∈ RD,Ω ∈ PD(B) : (I − Λ)TΣ(I − Λ) = Ω, where we use
Lemma 5 to express Ω ∈ PD(B) in ∃R, that is, we quantify over an arbitrary matrix Ω first and add
the ETR expression from Lemma 5 to ensure that Ω is in PD(B).

Hence, we can check in ∃R whether the input Σ is feasible and then in ∀R whether the fiber has
only one element. Using Renegar’s algorithm, we get:
Corollary 2. Numerical identifiability can be decided in polynomial space.

6 Generic Identifiability is in PSPACE

Let DIM denote the following problem: Given an encoding of a semi-algebraic set S and a number
d, decide whether dimS ≥ d.
Lemma 9 (Koiran [27]5). The problem DIM is ∃R-complete. Moreover, this is even true when the
set is given by an existentially quantified formula as in (2).

We use the same notation as in Section 2.1. Let G = (V,D,B) be a mixed graph. Let SG =
{(Λ,Ω) | |FG(Λ,Ω)| > 1,Λ ∈ RD,Ω ∈ PD(B)}.
Observation 10. G is generically identifiable iff dimRD + dimPD(B) > dimSG.

Proof. As SG ⊆ RD × PD(B) and dim(RD × PD(B)) = dimRD + dimPD(B), the right-hand
side is just the definition of being generically identifiable.

We postpone the proof that membership in SG can be expressed in ∃R, in favor of first giving our
algorithm to decide generic identifiability, using this observation:
Theorem 11. Generic identifiability is both in ∀∃R and ∃∀R.

Proof. LetG be the given mixed graph. Formulate membership in RD,PD(B), and SG as instances
of ETR using Lemmas 5 and 12. Note that the number of variables and the sizes of these instances
are polynomial in the size ofG. Now we can check whetherG is generically identifiable by checking
the condition in Observation 10.

We first assume that we have oracle access to ETR, that is, we can query ETR a polynomial number
of times. We decide whether G is generically identifiable as follows:

1. Use Koiran’s algorithm (see Lemma 9) repeatedly to compute dimSG by checking whether
dimSG ≥ d for d = 0, . . . , 2n2. (We could even use binary search.)

2. Compute dimRD and dimPD(B) in the same way.6 Here it suffices to check up to the
maximum possible dimension of d = n2.

3. Accept if dimRD + dimPD(B) > dimSG, and reject otherwise.

The algorithm is correct by Observation 10. The algorithm above would already show the PSPACE
upper bound for generic identifiability.

However, we can implement the algorithm above by a single formula by replacing the repeated use
of Koiran’s algorithm by a big disjunction:

n2∨
d1=0

n2∨
d2=0

(dimRD ≥ d1 ∧ dimPD(B) ≥ d2 ∧ dimSG < d1 + d2) .

5see Appendix D for why this statement follows from [27].
6While we could compute these dimensions more directly, this is not necessary to obtain PSPACE algo-

rithm. However for implementing this algorithm in practice, we would advise computing them more efficiently.
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Note that the check dimSG < d1+d2 needs to be implemented as ¬(dimSG ≥ d1+d2), thus being
in ∀R by De Morgan’s laws. The existential and universal quantifiers are however independent,
giving upper bounds of both ∀∃R and ∃∀R.

Using Renegar’s algorithm this implies:
Corollary 3. Generic identifiability can be decided in PSPACE.

It only remains to show how to express membership in SG as an ETR-formula.
Lemma 12. Membership in SG can be expressed in ∃R.

Proof. The membership of some (Λ,Ω) in SG can be expressed as

Λ ∈ RD ∧ Ω ∈ PD(B) ∧ ∃Σ ∈ Rn×n,Λ′ ∈ RD,Ω′ ∈ PD(B) : (I − Λ)TΣ(I − Λ) = Ω

∧ (I − Λ′)TΣ(I − Λ′) = Ω′

∧ (Λ ̸= Λ′ ∨ Ω ̸= Ω′) .

Remark 13. The algorithm of Theorem 11 as is only tests generic identifiability. Since the problem
has a high degree, one cannot expect that the solutions have easy expressions. However, Renegar’s
algorithm shows that the solutions are the linear factors of a certain polynomial, see [33].

7 A Note on Cyclic Graphs

Our results so far have depended on the fact that every matrix I −Λ with Λ ∈ RD is invertible if the
graph is acyclic. However, if the graph is cyclic, I − Λ is not necessarily invertible. So in this case,
we need to explicitly consider the subset RD

reg of matrices Λ ∈ RD such that I − Λ is invertible.

For matrices Λ0 ∈ RD
reg and Ω0 ∈ PD(B), [21] define fibers as

FG(Λ0,Ω0) = {(Λ,Ω) | ϕG(Λ,Ω) = ϕG(Λ0,Ω0),Λ ∈ RD
reg,Ω ∈ PD(B)}.

They determine generic identifiability for cyclic graphs in terms of these fibers. That is a mixed
(cyclic) graph G is said to be generically identifiable if |FG(Λ0,Ω0)| = 1 for Zariski almost all
Λ0 ∈ RD

reg and Ω0 ∈ PD(B).

This is the same criterion used for acyclic graphs, except RD has been replaced by RD
reg twice.

Matrix invertibility can be easily expressed in ∃R, using the definition of invertibility:

A is invertible ⇐⇒ ∃B ∈ Rn×n : AB = I.

Hence, all our upper bounds also hold for general graphs.

8 Conclusions

Due to double exponential runtime, the state-of-the-art algorithm for the generic identification prob-
lem is often too slow to solve instances of reasonable size. For example, Garcı́a-Puente et al. [22]
report that the runtime varies between seconds and 75 days for graphs with four nodes. An in-
teresting topic for future work would be to implement the (theoretical) algorithm presented in our
paper.

We have given a new upper on the complexity of generic identifiability, namely PSPACE. More
precisely, we showed that it is in ∃∀R and ∀∃R. This can be even improved to ∀R. It is not necessary
to express the dimension of RD and PD(B) in terms of the theory of the reals, but they can be
calculated directly, dimRD = |D| as well as dimPD(B) = n + |B|. In the light of our hardness
proofs for the new notion of numerical identifiability, we conjecture that generic identifiability is
hard for ∀R, too.
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[26] Karl G. Jöreskog. A general approach to confirmatory maximum likelihood factor analysis.
Psychometrika, 34(2):183–202, 1969.

[27] Pascal Koiran. The real dimension problem is NPR-complete. J. Complex., 15(2):227–238,
1999.

[28] Daniel Kumor, Bryant Chen, and Elias Bareinboim. Efficient identification in linear structural
causal models with instrumental cutsets. In Proc. Advances in Neural Information Processing
Systems (NeurIPS), pages 12477–12486, 2019.

[29] Daniel Kumor, Carlos Cinelli, and Elias Bareinboim. Efficient identification in linear structural
causal models with auxiliary cutsets. In Proc. International Conference on Machine Learning
(ICML), pages 5501–5510. PMLR, 2020.

[30] Bengt Muthen. Latent variable structural equation modeling with categorical data. Journal of
Econometrics, 22(1-2):43–65, 1983.

[31] Judea Pearl. Parameter identification: A new perspective. Technical Report R-276, UCLA,
2001.

[32] Judea Pearl. Causality. Cambridge University Press, 2009.

[33] James Renegar. On the computational complexity and geometry of the first-order theory of the
reals. parts i-iii. Journal of symbolic computation, 13(3):255–352, 1992.

[34] Marcus Schaefer, Jean Cardinal, and Tillmann Miltzow. The existential theory of the reals as
a complexity class: A compendium. CoRR, abs/2407.18006, 2024.

[35] Marcus Schaefer and Daniel Stefankovic. Fixed points, Nash equilibria, and the existential
theory of the reals. Theory Comput. Syst., 60(2):172–193, 2017.

[36] Marcus Schaefer and Daniel Stefankovic. Beyond the existential theory of the reals. Theory
Comput. Syst., 68(2):195–226, 2024.
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Appendix

A Edge Identifiability

For edge identifiability, we obtain the same results as for identifiability itself.

A.1 Hardness of Numerical Edge Identifiability

If we analyze the reduction in Theorem 2 in a bit more detail, we can use the same reduction to show

Corollary 4. Numerical edge identifiability is ∀R-hard.

Proof. If instead of starting with an arbitrary QUAD++-instance, we start with a QUAD++-
instance generated by Lemma 1 and Corollary 1. These instances have a distinguished variable
y, such that there is always a single solution with y = 1 and possibly multiple solutions with y = 0.
W.l.o.g. let x1 be this distinguished variable. Following the reduction in Theorem 2, we construct a
graph G and a Σ ∈ imϕG, such that the fiber FG(Σ) is isomorphic to the solutions our QUAD++-
instance. In particular the value of λ1,r in the elements of FG(Σ) is exactly the value of x1 in the
solutions to the QUAD++-instance. Thus |F1,r

G (Σ)| = 1 iff the QUAD++ instance has exactly one
solution, otherwise |F1,r

G (Σ)| = 2.

A.2 Upper Bound for Numerical Edge Identifiability

Similarly to (14), we can express numerical edge identifiability as the ∀R-formula

∀Λ1,Λ2 ∈ RD,Ω1,Ω2 ∈ PD(B) :

ϕG(Λ1,Ω1) = ϕG(Λ2,Ω2) = Σ ⇒ (Λ1)i,j = (Λ2)i,j . (15)

This yields

Theorem 14. Numerical edge identifiability is in (the promise version of) ∀R.

Again using Renegar’s algorithm we also get

Corollary 5. Numerical edge identifiability can be decided in polynomial space.

A.3 Generic Edge Identifiability is in PSPACE

We modify the algorithm of Section 6 to work with generic edge identifiability for some λi,j rather
than generic identifiability. Let Si,j

G = {(Λ,Ω) | |F i,j
G (Λ,Ω)| > 1,Λ ∈ RD,Ω ∈ PD(B)}. Then

we have the following analog to Observation 10:

Observation 15. λi,j is generically edge identifiable iff dimRD + dimPD(B) > dimSi,j
G .

Lemma 16. Membership in Sij
G can be expressed in ∃R.

Proof. We use a similar formula to Lemma 12:

Λ ∈ RD ∧ Ω ∈ PD(B) ∧ ∃Σ ∈ Rm×m,Λ′ ∈ RD,Ω′ ∈ PD(B) : (I − Λ)TΣ(I − Λ) = Ω

∧ (I − Λ′)TΣ(I − Λ′) = Ω′

∧ (Λi,j ̸= Λ′
i,j)

Theorem 17. Generic edge identifiability is both in ∀∃R and ∃∀R.

Proof. We use the algorithm of Theorem 11, but replace the set SG by Si,j
G .

Corollary 6. Generic edge identifiability can be decided in PSPACE.
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B Promise problems

We give some background information on promise problems for the readers convenience. In a
classical decision problem L, we are given an input and we have to decide whether x ∈ L (the
so-called yes-instances) or x /∈ L (the no-instances). For instance, in the classical SAT problem,
we are given a Boolean formula F in CNF. The yes-instances are the satisfiable formulas and the
no-instances are the unsatisfiable one.

Promise problems have a third type of instances, the so-called do-not-care-instances. On these in-
stances, an algorithm can do what it wants and give any output. For instance, consider the problem
SAT++, where we ask the question of whether a satisfiable formula in CNF has another satisfying
assignment. The yes-instances are all F with at least two satisfying assignments, the no-instances
are all F with exactly one satisfying assignment, and the do-not-care-instances are all unsatisfiable
F . An algorithm solving SAT++ has to output “yes” on every F with at least two satisfying assign-
ments and “no” on every F with exactly one satisfying assignment. On unsatisfiable formulas, it
can output whatever it wants. Note that every classical decision problem is also a promise problem
with the do-not-care-instances being the empty set.

We can also define many-one reductions for promise problems: A function f : {0, 1}∗ → {0, 1}∗ is
called a many-one reduction from a promise problem L to another promise problem L′, if f maps
yes-instances of L to yes-instances of L′ and no-instances of L to no-instances of L′. f can map
do-not-care-instances of L to any instance of L′. By using a similar trick of encoding an additional
satisfying assignment like in the case of ETR++, one can show that SAT++ is NP-hard, since
we can reduce SAT to it. This reduction maps the unsatisfiable formulas (no-instances of SAT)
to formulas with one satisfying assignment (no-instances of SAT++) and satisfiable formulas (yes-
instances of SAT) to formulas with two or more satisfying assignments (yes-instances of SAT++).
Since SAT is a classical decision problem, there are no do-not-care-instances. SAT++ is, however,
not contained in NP for formal reasons, because NP only contains classical decision problems.

C Semialgebraic sets

For the reader’s convenience, we give a brief introduction to semialgebraic sets and discuss the
notations important for this work. For details and proofs, we refer to the book [4].

A semialgebraic set in Rn is a finite Boolean combination (finite number of unions and intersections)
of sets of the form {(x1, . . . , xn) | f(x1, . . . , xn) > 0} and {(x1, . . . , xn) | g(x1, . . . , xn) ≥ 0}.
Here f and g are real polynomials in n variables.

A semialgebraic function is a function Rn → Rn′
with a semialgebraic graph, that is, the set of all

{(x, f(x)) | x ∈ Rn} is a semialgebraic set.

From this definition of semialgebraic sets, it is easy to see that semialgebraic sets are the solutions
of ETR-instances, that is, all (x1, . . . , xn) satisfying φ(x1, . . . , xn) in (2) form a semialgebraic set.
From Tarski’s theorem (see [4]), it follows that semialgebraic sets allow quantifier elimination, that
is, all (x1, . . . , xn) satisfying

∃y1 . . . ∃ytψ(x1, . . . , xn, y1, . . . , yt)
form a semialgebraic set, where ψ (like φ) is a quantifier-free Boolean formula over the basis
{∨,∧,¬} and a signature consisting of the constants 0 and 1, the functional symbols + and ·,
and the relational symbols <, ≤, and =. ψ depends on two sets of variables. It is clear that all
(x1, . . . , xn, y1, . . . , yt) satisfying ψ form a semialgebraic set. Tarski’s theorem tells us that we still
get a semialgebraic set when we are projecting the y1, . . . , yt away using the existential quantifiers.
This is used frequently in our proofs.
Definition 4. A semialgebraic set S has dimension d if there exists a d-dimensional coordinate
subspace such that the image of S under the canonical projection onto this subspace has a nonempty
interior and there is no such subspace of dimension d+ 1.

Above, by a d-dimensional coordinate subspace, we mean the subspace of Rn of all points x such
that xi = 0 for i /∈ I for some subset I ⊆ {1, . . . , n} and |I| = d.
Theorem 18 (see e.g. [6]). Let S be a semialgebraic set. Then its dimension as a semialgebraic set
(as in Definition 4) equals the dimension of its Zariski closure as an algebraic set.
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D Koiran’s algorithm

Koiran mainly works in the so-called BSS-model of real computation. In this model, one is also
allowed to use arbitrary real constants in the algorithm as well as real inputs. In ∃R, we only
allow the constants 0 and 1 and the inputs are given by some binary encoding. However, Koiran also
considers the bit model. [27, Theorem 6] proves the computational equivalence of DIM and 4FEAS
in the bit model. Since 4FEAS is ∃R-complete [35], this implies that DIM is ∃R-complete. Note
that at the time Koiran wrote his paper, the class ∃R was not formally defined and therefore, Koiran
does not mention it explicitly.

For the moreover part, note that [27, Section 1.1] discusses the representations of semi-algebraic
sets that are supported by his proof. There he mentions existentially quantified formulas explicitly.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The two main claims from the abstract can be found as Corollary 3 and The-
orem 2. In the introduction, we mention five items in the subsection “Our contributions”.
They correspond to Corollary 3, Theorem 11, Theorem 2, Corollary 2, and the results in
Appendix A. All results are formally proved.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
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much the results can be expected to generalize to other settings.
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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regarding the correctness of the output. This is an algorithms theory paper, so we consider
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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Answer: [Yes]
Justification: The paper contains all proofs in the main part, with the exception of the proofs
about edge identifiability, which are almost exactly the same as the proofs from the main
part with slight modifications. They can be found in Appendix A instead. All proofs are
formal and the assumptions are clearly stated. All theorems, formulas, and proofs in the
paper are numbered and cross-referenced.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: This paper does not contain experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: The paper does not contain any experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This is a purely theory based paper with no experiments. No data sets were
used. No crowdsourcing or contract work was done.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This is a purely theory based paper. We do not expect an improvement in the
complexity of identification algorithms to have any negative societal impact.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This is a theory paper with no data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: The paper does not contain any assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not contain any experiments or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not contain any experiments or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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