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Abstract
In this work, we investigate the problem of adapt-
ing to the presence or absence of causal structure
in multi-armed bandit problems. In addition to
the usual reward signal, we assume the learner
has access to additional variables, observed in
each round after acting. When these variables
d-separate the action from the reward, existing
work in causal bandits demonstrates that one can
achieve strictly better (minimax) rates of regret
(Lu et al., 2020). Our goal is to adapt to this
favorable “conditionally benign” structure, if it
is present in the environment, while simultane-
ously recovering worst-case minimax regret, if it
is not. Notably, the learner has no prior knowl-
edge of whether the favorable structure holds. In
this paper, we establish the Pareto optimal frontier
of adaptive rates. We prove upper and matching
lower bounds on the possible trade-offs in the
performance of learning in conditionally benign
and arbitrary environments, resolving an open
question raised by Bilodeau et al. (2022). Further-
more, we are the first to obtain instance-dependent
bounds for causal bandits, by reducing the prob-
lem to the linear bandit setting. Finally, we ex-
amine the common assumption that the marginal
distributions of the post-action contexts are known
and show that a nontrivial estimate is necessary
for better-than-worst-case minimax rates.

1. Introduction
In real-world decision making, we often want strong worst-
case guarantees as well as the ability to adapt to favorable
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properties of real-world scenarios. Adaptive sequential
decision-making offers a framework to design algorithms to
achieve these objectives.

In this paper, we explore adaptivity in multi-armed bandit
problems. In standard multi-armed bandits, the learner (pol-
icy) takes an action, receives a reward, and then this process
repeats over a number of rounds. The learner’s regret is the
difference between its cumulative reward and the cumulative
reward of the single best action in hindsight. Can we work
to identify high-reward actions while minimizing regret?

In this work, we assume there is post-action context, i.e.,
there may be additional information available to the learner
after taking an action, beyond the reward signal. In a
worst-case analysis, however, the learner can ignore the
post-action context and still achieve minimax rates of regret:
the worst-case environment will not offer useful information.
However, many real-world settings possess the structure of
multi-armed bandit problems with post-action context and,
in those cases, this additional information is useful towards
minimizing regret.

One way that post-action context can be useful is if we can
assume causal structure relating the action (i.e., an inter-
vention) to the reward and post-action (post-intervention)
context. Several authors have studied models in this vein
(Bareinboim et al., 2015; Lattimore et al., 2016). In this
work, we build on the framework of Lattimore et al. (2016),
wherein the post-action context is assumed to d-separate
each intervention from its associated reward.

Under d-separation, the intervention and reward are indepen-
dent, conditional on the post-intervention context. Bilodeau
et al. (2022) formalized this structure in general terms: a
bandit environment is conditionally benign whenever the
conditional distribution of the reward, given the post-action
context, does not depend on the action.

Minimax regret is well understood for both the classical
and causal variant of multi-armed bandits. Notably, algo-
rithms tailored to conditionally benign environments can
achieve lower rates of regret, scaling with the number of
post-action contexts, rather than the potentially much larger
set of actions (Lu et al., 2020; Bilodeau et al., 2022).
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Exploiting causal structure is not without its pitfalls.
Bilodeau et al. (2022) showed that C-UCB, a minimax op-
timal causal bandit algorithm, suffers linear regret in some
non-benign environments. This raised a natural question:
Can we achieve strict adaptivity, i.e., obtain minimax rates
simultaneously in the class of conditionally benign environ-
ments and in the class of all environments, without knowing
in advance which class of environments we will face?

Bilodeau et al. proved that strict adaptivity was impossible,
but showed some level of adaptivity was possible. They
designed a new algorithm, termed HAC-UCB, and proved
that it simultaneously achieves minimax optimal rates on
the class of benign environments and always achieves (sub-
optimal, though sublinear) T 3/4 rates. In light of this result,
Bilodeau et al. raised an open problem, asking whether
HAC-UCB was, in a sense, Pareto optimal, implying that
the slower rate was the price of adaptivity. More generally,
we ask:

What is the Pareto optimal frontier of simultaneously
achievable rates of regret in the classes of benign and

arbitrary environments, and what algorithms achieve these
optimal tradeoffs?

In this paper, we address the above question by providing a
complete characterization of the Pareto optimal frontier (up
to log factors) as well as the achieving algorithms. Besides
adaptation, we also study the complexity of causal bandit
problems from other perspectives. More specifically, we
find a novel reduction from causal bandits to linear ban-
dits, which facilitates the first instance-dependent regret
bound for causal bandits and enables the applications of
some linear bandit algorithms to causal bandits. We also
investigate dropping the common assumption that we have
perfect knowledge of “the marginals”, i.e., the distribution
of the post-action context variable, under each action. On
one hand, we show that it is impossible for any algorithm
to enjoy improved minimax regret in benign environments
without any knowledge of the true marginals. On the other
hand, we identify cases where approximate knowledge of
the marginal distributions suffices. Our contributions are
explained in more details as follows.

• In Section 3, we establish near-optimal Pareto regret fron-
tiers for the setting of causal bandits, resolving an open
problem raised by Bilodeau et al. (2022). Utilizing a dy-
namic balancing method introduced by Cutkosky et al.
(2021), we derive the upper bound and also prove near-
optimal matching lower bounds. Remarkably, we intro-
duce a phenomenon we call the price of adaptivity, to
capture the extra regret that one must incur when attempt-
ing to adapt to the presence or lack of causal structure.
Consequently, we demonstrate that the model selection
method introduced by Cutkosky et al. (2021) cannot be

generally improved, for any nontrivial general improve-
ment would decrease the price of adaptivity beyond our
lower bound.

• In Section 4, we present a novel reduction from causal ban-
dits to linear bandits with conditional sub-Gaussian noise.
Utilizing a phased elimination technique (Lattimore et al.,
2020), we identify a new dimension measuring the inher-
ent complexity of causal bandits. It allows us to establish
the first instance-dependent regret bound and a strictly
tighter worst-case regret bound for causal bandits for con-
ditionally benign environments. Additionally, we prove
instance-dependent bounds for stochastic linear bandits,
which are novel to the best of our knowledge.

• In Section 5, we study the situation where we have lim-
ited knowledge of the marginal distributions over post-
action contexts. We provide a lower bound indicating that
no algorithm can utilize the causal structure to achieve
improved minimax rates without such prior knowledge.
This partly justifies the common assumption in the causal
bandits literature that algorithms are given the marginals.
On the other side, we give a regret upper bound for the
phased elimination algorithm with access to approximate
marginals. This result shows that partial knowledge of the
marginals suffices in some regimes.

1.1. Related Work

Causal bandits. The causal bandit model was introduced by
Lattimore et al. (2016), where their objective was to identify
the best intervention. Such pure exploration problem has
been extensively studied since then (Sen et al., 2017; Xiong
& Chen, 2022), while some other works focused on regret
minimization (Lu et al., 2020; Nair et al., 2021; Bilodeau
et al., 2022). Another interesting topic is to relax the causal
assumptions. For example, the assumption of known causal
graph can be relaxed (Lu et al., 2021; Malek et al., 2023).
Our work mainly builds on the study by Bilodeau et al.
(2022) regarding adapting to the existence of causal struc-
tures as well as approximate marginals.

Model selection. To achieve adaptivity, a natural idea is to
apply some model selection algorithm on top of a group of
base learners. There is an extending line of works study-
ing such corralling strategies in the bandit setting (Agar-
wal et al., 2017; Pacchiano et al., 2020a;b; Cutkosky et al.,
2020; Arora et al., 2021; Cutkosky et al., 2021). Agarwal
et al. (2017) required certain stability conditions on the base
learners, making their algorithm quite restricted. In contrast,
some recently proposed general-purpose model selection
algorithms for stochastic bandit problems (Pacchiano et al.,
2020b; Cutkosky et al., 2020; 2021) are better candidates in
our setting, since they only necessitate mild assumptions on
the base learners.
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Figure 1. The Pareto-optimal frontier of simultaneously achievable
rates of regret in (left axis) the class of conditionally benign envi-
ronments and (bottom axis) the class of all environments. Shaded
regions are unobtainable. All rates are determined up to log terms.
Among algorithms that achieve minimax rates on conditionally
benign environments, the previously best known algorithm (HAC-
UCB) is dominated by an instance of Dynamic Balancing, which
our results also demonstrate is Pareto optimal.

Pareto optimal frontier. When we have multiple perfor-
mance metrics but are unable to achieve the best under all of
them simultaneously, the Pareto optimal frontier becomes a
common objective to pursue subsequently. Problems with
several competing benchmarks are abundant in bandit litera-
ture (Koolen, 2013; Lattimore, 2015; Marinov & Zimmert,
2021; Zhu & Nowak, 2022).

2. Problem Setup
We consider the problem of stochastic bandit with post-
action contexts, as defined by Bilodeau et al. (2022) and
follow their notations. LetA be the finite action space, Z be
the finite context space and Y = [0, 1] be the reward space.
For any set K, we use P(K) to denote the set of all proba-
bility distributions supported on K. For any p ∈ P(Z ×Y),
we use p(Z) to denote its marginal distribution over Z , and
use p(Y |Z) to denote its the conditional distribution over Y
conditioning on the Z−component.

In this bandit problem, a learner interacts with the stochastic
environment for T rounds. The role of the environment
is instantiated with a family of distributions ν = {νa :
a ∈ A} ∈ P(Z × Y)A indexed by actions in A. For

each round t ∈ [T ], the learner picks an action At from A
and then receives a context-reward pair (Zt, Yt) which is
independently sampled from νAt ∈ P(Z × Y).

To model learner’s strategy, we need to formalize the infor-
mation that can be used for learner’s prediction. Let Ht =
(As, Zs, Ys)s∈[t] denote the observed history up to round t,
which is a random variable valued inHt := (A×Z × Y)t.
A policy π by the learner could be modeled as a sequence
of measurable maps fromHt’s to A

π = (πt)t∈[T ] ∈ Π(A,Z, T ) :=
T∏

t=1

{Ht−1 → A},

where Π(A,Z, T ) is the space of all policies compatible
with (A,Z, T ). Then the learner follows this policy by se-
lecting At = πt(Ht−1) for each round t. Indeed, the distri-
bution of all outcomes over T rounds, i.e. (At, Zt, Yt)t∈[T ],
is determined by the environment ν and the player’s policy
π together. We will always highlight the ambient joint dis-
tribution by the subscript on probabilistic operators P and
E, say Eνa and Eν,π . Additionally, we denote the expected
reward for action a and the optimal action a∗ by

µA(a) := Eνa
[Y ], a∗ := argmax

a∈A
µA(a). (1)

The goal of the learner is to choose some policy π that
maximizes her expected cumulative reward Eν,π[

∑T
t=1 Yt],

or equivalently minimizes her expected pseudo-regret

Eν,π[Reg(T )] := Eν,π[

T∑
t=1

max
a∈A

Eνa
[Y ]− Yt]

= T · µA(a∗)− Eν,π[

T∑
t=1

µA(At)],

with Reg(t) := t · µA(a∗)−
∑t

s=1 µ
A(As), t ∈ [T ] being

the realized regret, which is stochastic.

Conditionally benign property and d-separation. Under
certain structures, the post-action context variable Z enables
more efficient exploration and hence smaller regret. One
special structure that can be exploited for better regret guar-
antee in our setting is called conditionally benign property,
introduced by Bilodeau et al. (2022).

Definition 2.1. (Bilodeau et al., 2022, Definition 3.1) An
environment ν ∈ P(Z ×Y)A is conditionally benign if and
only if there exists p ∈ P(Z ×Y) such that for each a ∈ A,
νa(Z) ≪ p(Z) and νa(Y |Z) = p(Y |Z) p-a.s. We further
denote the space of all conditionally benign environments
by PBenign(Z × Y)A.

The conditional benign property is quite general in the sense
that it is equivalent to or weaker than some well-studied
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causal assumptions (Bilodeau et al. 2022). In particular,
the conditionally benign property is the same thing as the
context variable Z being a d-separator when A is all in-
terventions. To leverage this benign structure, the causal
UCB (C-UCB) algorithm recently proposed by Lu et al.
(2020) achieves Õ(

√
|Z|T ) regret, while non-causal algo-

rithms that is unaware of this structure would still incur the
possibly worse regret of Õ(

√
|A|T ).

2.1. Adaptivity

A natural question is whether we can compete with C-UCB
when the environment is conditionally benign while at the
same time still maintain the worst-case Õ(

√
|A|T ) regret

guarantee, without prior knowledge of the nature of the
environment. Unfortunately algorithms designed specific to
the benign setting may fail drastically in non-benign settings.
For instance, C-UCB provably incurs linear regret in some
non-benign environments (Bilodeau et al., 2022). To remedy
this, Bilodeau et al. (2022) devised HAC-UCB by adding a
hypothesis test in each round, which is used for switching
away from C-UCB to UCB irreversibly whenever it detects
a deviation from conditionally benign property. HAC-UCB
is able to recover the Õ(

√
|Z|T ) regret in benign settings

and achieve sublinear Õ(T 3/4) regret in the worst case.

Prior to this work, we do not know if HAC-UCB is optimal.
Indeed, Bilodeau et al. (2022) showed that strict adaptation,
meaning that always achieving the worst-case O(

√
|A|T )

regret while still being able to perform as good as C-UCB
when causal structure exists, is impossible. But this does not
rule out the possibility of improving the worst-case Õ(T 3/4)
regret of HAC-UCB unilaterally. In this paper we will show
that such improvement is indeed feasible and thus obtain an
algorithm that dominates HAC-UCB. Further we will show
that our regret guarantee is not improvable through the lens
of Pareto optimality.
Remark 2.2. Regarding optimal rate of regret under the
presence of causal structure, it is easy to show a Ω(

√
|Z|T )

regret lower bound, nearly matching existing Õ(
√
|Z|T )

regret upper bounds. Whether the log-factors can be shaved
from the upper bound is unknown. However, the lower
bound of Bilodeau et al. (2022) still implies that strict adapta-
tion is impossible for general A and Z , since when |A|/|Z|
is, say, Ω(T 1/5), the Ω(

√
|A|T ) lower bound in benign

settings rules out a Õ(
√
|Z|T ) upper bound.

Generic algorithms. For rigorous treatment of adaptivity,
we adopt the definition of algorithms as maps from Bilodeau
et al. (2022). Specifically, an algorithm a is any map from
problem-specific inputs to the space of compatible policies

a : (A,Z, T, q) 7→ a(A,Z, T, q) ∈ Π(A,Z, T ),

where q ∈ P(Z)A is the marginal distribution accessed
by this algorithm as prior knowledge. When talking

about algorithm-induced policies, by default we mean
a(A,Z, T, ν(Z)) if not stated otherwise, following the com-
mon assumption in the literature of causal bandits. We
will also deal with the case of imperfect prior knowledge
in Section 5, where q may not be the exact ν(Z). For
notation simplicity, we will use a to denote its induced
policy a(A,Z, T, q) when the problem-specific inputs are
clear from context. For example, Eν,a is the same thing as
Eν,a(A,Z,T,q).

3. The Pareto Regret Frontier
To formalize our notion of Pareto regret frontier, we need
the following definition:

Definition 3.1. A pair of rate functions
(R1(T ;A,Z), R2(T ;A,Z)) is said to be realizable
if there is an algorithm a such that for all A,Z and T ,

sup
ν∈PBenign(Z×Y)A

Eν,a[Reg(T )] ≤ R1(T ;A,Z),

sup
ν∈P(Z×Y)A

Eν,a[Reg(T )] ≤ R2(T ;A,Z).

A pair (R1(T ;A,Z), R2(T ;A,Z)) is reasonable if
R1(T ;A,Z) ≥

√
|Z|T and R2(T ;A,Z) ≥

√
|A|T .

In the following we elide the dependence of rates Ri on A
and Z below for clarity. We can now describe the Pareto
regret frontier, i.e., the set of optimal realizable pairs of
rates.

Theorem 3.2. There exists universal constants C, c, c′ > 0
such that

1. Upper bound: If (R1(T ), R2(T )) is rea-
sonable and R1(T )R2(T ) ≥ |A|T , then
(CR1(T ) log T,CR2(T ) log T ) is realizable;

2. Lower bound: For all realizable (R1(T ), R2(T )), we
have R2(T ) > c′T or R1(T )R2(T ) ≥ c|A|T .

Both upper and lower bounds will be extensively discussed
in the following sections.

3.1. Upper Bounds

In this section, we show that our upper bound can be ob-
tained by applying the algorithmic principle of dynamic
balancing (DB) in Cutkosky et al. (2021) to the stochastic
bandit problem with post-action contexts. This method is
motivated by the fact that, under mild assumptions, it can
always achieve Õ(

√
T ) regret when it is running on top of

a collection of Õ(
√
T ) regret base learners. So the depen-

dence on T in Õ(T 3/4) regret by HAC-UCB in Bilodeau
et al. (2022) is easily improved. The use of dynamic bal-
ancing in our bandit setting can be justified by the fact that
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Algorithm 1 Dynamic balancing (DB) w/ two base learners
Input: Two base learners, {ai}i=1,2, factor di(·) of candi-
date regret bound, reward bias bi(·) and scaling coefficient
vi (hyper-parameters) for each base learner i ∈ {1, 2}, and
confidence level δ ∈ (0, 1).

1. Set Ui(0) = ni(0) = 0 for all i ∈ {1, 2} and let the
set of active learners be I1 = {1, 2}

2. For t = 1, 2, ..., T do

(a) Select learner from the active set:
it ∈ argmini∈It

vidi(δ)
√
ni(t− 1)

(b) Play action At of learner ait and receive reward Yt

and context Zt

(c) Update learner ait with Zt and Yt

(d) Update ni(·) and Ui(·):
Ui(t)← Ui(t− 1) + YtI{i = it}
ni(t)← ni(t− 1) + I{i = it}

(e) Compute adjusted average reward ηi(t) and confi-
dence band γi(t) for all i ∈ {1, 2}:
ηi(t)← Ui(t)

ni(t)
− bi(t)

γi(t)← 3
√

log(2 logni(t)/δ)
ni(t)

(f) Update the set of active learners:
It+1 ←

{
i ∈ {1, 2} : ηi(t) + γi(t) +

di(δ)√
ni(t)

≥ maxj=1,2 ηj(t) + γj(t)
}

dynamic balancing does not rely on what kind of (stochastic)
contextual information can be observed in the underlying
bandit problem. See Appendix A for a detailed explanation.

Note that dynamic balancing algorithm (Algorithm 1) is
input by a set of user-specified candidate regret bounds for
each base learner i (which takes the form of di

√
t in our

setting). In each round, DB merely picks the base learner
with minimal candidate regret bound, and performs a test to
identify and deactivate the learners that seem to violate their
candidate regret bounds. As long as there is one base learner
whose candidate regret is valid, DB is able to compete
with the best of such base learners. A more comprehensive
exposition of the idea behind dynamic balancing can be
found in Cutkosky et al. (2021).

So naturally, we need one base learner that is favorable
in benign instances and another base learner that remains
robust to non-benign instances. For example, we can pick
C-UCB and UCB, but note that any other algorithm with
similar regret bound can be applied as well. Formally we
characterize base learners that enjoys certain regret bound
in certain type of environments by the following definition:

Definition 3.3. Let d : (0, 1)→ R>0. A family of learners
a = (aδ)δ∈(0,1) is a d-benign family if, for all δ ∈ (0, 1), for
all benign instances, with probability at least 1−O(δ), for
all t ∈ [T ], aδ has regret no larger than d(δ)

√
t. Similarly, a

learner a is a d-arbitrary learner if, for all δ ∈ (0, 1), for all
instances, with probability at least 1−O(δ), for all t ∈ [T ],
a has regret no larger than d(δ)

√
t.

Let C-UCB = (C-UCB(δ))δ∈(0,1) and UCB =
(UCB(δ))δ∈(0,1) be the families of instances of the C-UCB
and UCB algorithms, respectively, whose confidence band
is scaled by Θ(

√
log(1/δ)). See Appendix C for details.

Proposition 3.4. C-UCB is a d-benign family for d(δ) =
O((
√
|Z|+

√
log(T/δ))

√
log(|Z|T/δ)) and UCB is a d′-

arbitrary family for d′(δ) = O(
√
|A| log(|A|T/δ)).

Note that the above result for UCB is folklore, but the
result for C-UCB is new. The following result describes
the adaptive regret of dynamic balancing acting on a benign
family and an arbitrary family, which validates the upper
bound in Theorem 3.2. What is more impressive is that to
realize every point on the Pareto regret frontier (up to log
factors), we need only tune the hyper-parameters in DB
accordingly. We elide the dependence of rates Ri on A and
Z below for clarity. See Appendix A.2 for the proof.

Theorem 3.5. Let a1 be a d1-benign family and
let a2 be a d2-arbitrary family of learners, where
d1(δ) = O

(
(
√
|Z|+

√
log(T/δ))

√
log(|Z|T/δ)

)
,

d2(δ) = O(
√
|A| log(|A|T/δ)). For every pair of

reasonable rate functions R1(T ), R2(T ) such that
R1(T )R2(T ) ≥ |A|T , there exist hyper-parameters
bi(·), vi, i = 1, 2, such that, for all instances ν, the policy
DB(δ), for δ = 1/T , given by Algorithm 1 with a1, a2 and
d1, d2, satisfies

Eν,DB(δ)[Reg(T )] = Õ(R1(T )); ν is conditionally benign,

Eν,DB(δ)[Reg(T )] = Õ(R2(T )); ν is arbitrary.

Corollary 3.6. Taking R1(T ) =
√
|Z|T and R2(T ) =√

|A|/|Z| ·
√
|A|T , the conclusion of Theorem 3.5 is

Eν,DB(δ)[Reg(T )] = Õ(
√
|Z|T ); ν is conditionally benign,

Eν,DB(δ)[Reg(T )] = Õ(
√
|A|/|Z| ·

√
|A|T ); ν is arbitrary.

Corollary 3.6 indicates that we need to pay an extra factor
of
√
|A|/|Z| in the worst-case regret for adaptivity, and it

already improves over the one by HAC-UCB in terms of
worst-case regret. Moreover, our regret analysis does not re-
quire their cumbersome assumption that T ≥ 25|A|2. Such
improvement may be explained as follows. Both dynamic
balancing and HAC-UCB play with two base learners and
decide which to pick in each round. However, DB is operat-
ing in a more reasonable way: DB alternates between two
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base learners and never deactivates any of them permanently,
whereas HAC-UCB first plays the optimistic base learner
persistently up to some point and then switches to UCB
for the remaining rounds. Thus the regret of HAC-UCB
incurred by running the optimistic base learner improperly
may be dominant.

3.2. Lower Bounds

In this section we elaborate on the lower bound in Theo-
rem 3.2 in the following Theorem 3.7, which is a generaliza-
tion of (Bilodeau et al., 2022, Theorem 6.2). The proof of
Theorem 3.7 closely follows that of the original, but we are
able to derive a continuum of lower bounds that constitute
the Pareto regret frontier. For completeness, we provide the
full proof in Appendix D.1.

Theorem 3.7. There exists constants c, c′ > 0 such that,
for all MAB algorithms a, rate functions R(T ;A,Z), if, for
all A,Z, T

sup
ν

Eν,a[Reg(T )] ≤ R(T ;A,Z),

then, for all A,Z and T , there exists a conditionally benign
environment ν such that either R(T ;A,Z) > c′T, or there
exists a conditionally benign environment ν such that

Eν,a[Reg(T )] ≥ c · |A|T
R(T ;A,Z)

.

Theorem 3.7 shows that any pair of realizable rates must
have their product lower bounded by |A|T unless the worst-
case regret bound is vacuously large. Combining Theo-
rem 3.5 with Theorem 3.7, we have justified the Pareto opti-
mality of dynamic balancing. As a corollary, we have found
a problem of adaptation where model selection method can
be optimal and the price of adaptivity is witnessed by the
additional multiplicative factor of

√
|A|/|Z| in the regret

bound.

4. Instance-Dependent Bounds via Phased
Elimination Algorithm

Besides achieving Pareto optimal regret bounds in Theo-
rem 3.5 that are worst-case in nature, the dynamic balancing
algorithm can also enjoy O(log T ) instance-dependent re-
gret at the same time under additional assumptions on the
base learners. In particular, C-UCB may not be our best
choice for the benign base learner. To leverage the strength
of dynamic balancing, we propose a new causal bandit algo-
rithm that enjoys Õ(

√
|Z|T ) worst-case regret and a novel

logarithmic instance-dependent regret in benign settings in
this section. We are the first to pursue instance-dependent
results in conditionally benign environments for algorithms
that are minimax optimal (up to log factors).

Our new algorithm is built upon the idea of phased elimina-
tion with G-optimal design from linear bandits (Lattimore
& Szepesvári, 2020; Lattimore et al., 2020). Our regret
analysis hinges on a novel reduction from causal bandits to
linear bandits. This reduction enables the use of a broad
family of linear bandit algorithms in conditionally benign
environments, whose regret guarantees remain intact.

Finally, we will discuss the possibilities and challenges
regarding adaptive O(log T ) instance-dependent regret.

4.1. Reduction to Linear Bandits

We need additional notations to illustrate our causal-to-
linear reduction. For benign instance ν, define the mean
reward vector µZ ∈ [0, 1]|Z| by µZ(z) = Eνa

[Y |Z =
z],∀z ∈ Z . Also, in this section we use νa to denote its asso-
ciated marginal distribution vector νa(Z) ∈ P(Z) ⊂ R|Z|,
and we won’t distinguish between an action a and its asso-
ciated marginal vector νa.

Recall that in each round t we play some action At and
then observe context Zt and reward Yt. By simply ignoring
the realized contexts Zt, we can write Yt =

∑
z∈Z µZ(z) ·

νAt
(z) + ηAt = ⟨µZ , νAt

⟩+ ηAt , where ηAt is conditionally
1-sub-Gaussian since E[ηAt |(As, Ys)s≤t−1, At] = 0 and
ηAt ∈ [−1, 1]. So now we may think of the game to be linear
bandit with actions being νa and the unknown mean reward
vector being µZ . Therefore, any linear bandit algorithm
that allows such conditionally sub-Gaussian noise condition
should be able to operate in our benign setting by ignoring
the realized contexts. More importantly, its regret analysis
will go through without change, and hence its regret bounds
are retained without loss.

4.2. Phased Elimination and its Regret Bound

Among all valid linear bandit algorithms that can be ap-
plied in conditionally benign environments, we opt for the
phase elimination algorithm (PE) over others due to its su-
perior performance whenever our action set is finite. Its
pseudo-code is summarized in Algorithm 2, which is es-
sentially the same as Lattimore et al. (2020). However, the
regret guarantees we present for PE are novel. Our first re-
sult is an anytime worst-case regret bound, which qualifies
PE for being a base learner of dynamic balancing. Again,
PE = (PE(δ))δ∈(0,1) is the family of instances of phased
elimination algorithm, indexed by the confidence level δ.

Theorem 4.1 (Worst-case regret bound for PE). For all
δ ∈ (0, 1), the policy PE(δ) given by Algorithm 2 satis-
fies the following regret bound for all conditionally benign
environments ν,

Reg(t) ≤ C

√
dν log

(
|A| log T

δ

)
t, ∀t ∈ [T ]
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with probability at least 1− δ, where dν = dim(span{νa :
a ∈ A}) and C > 0 is a universal constant. Note that
dν ≤ |Z| and it could be |Z| in the worst-case. In particular,
after taking δ = 1/T , we obtain the expected regret bound

Eν,PE(δ)[Reg(T )] = O
(√

dνT log(|A|T )
)
.

Corollary 4.2. PE is a d-benign family for d(δ) =

O
(√
|Z| log(|A| log T/δ)

)
. Therefore, the expected regret

bound in Theorem 3.5 can also be achieved by DB with PE
and UCB as base learners.

See Appendix B for the proof. Thanks to our reduction,
Theorem 4.1 only depends on dν (up to log factors) rather
than |Z|. This indicates that the intrinsic complexity of
causal bandit problem is not |Z| and can be further reduced
to dν , which is not captured by the Õ(

√
|Z|T ) regret bound

of C-UCB.

Next we give an instance-dependent regret bound for PE.
Notice that this bound is even new for stochastic linear
bandits (with finite action sets). See Appendix B for the
proof.

Theorem 4.3 (Instance-dependent regret bound for PE).
For all δ ∈ (0, 1), the policy PE(δ) given by Algorithm 2
satisfies the following regret for all conditionally benign
environments ν,

Reg(T ) ≤ C · dν log(|A| log T/δ)
∆min(ν)

with probability at least 1 − δ, where ∆min(ν) :=
mina̸=a∗ µA(a∗) − µA(a) is the minimal sub-optimality
gap of instance ν and C > 0 is a universal constant. In
particular, taking δ = 1/T ,

Eν,PE(δ)[Reg(T )] = O

(
dν log(|A|T )
∆min(ν)

)
.

Remark 4.4. During the implementation of Algorithm 2,
it is possible that Aℓ cannot span R|Z| for some ℓ such
that V (πℓ) is singular for any πℓ ∈ P(Aℓ). For exam-
ple, in later phases |Aℓ| can be smaller than |Z|. Let’s say
dim(span{νa : a ∈ Aℓ}) = r < |Z|. One workaround
is to apply some invertible matrix X ∈ R|Z|×|Z| to
every a ∈ Aℓ such that Xνa can be decomposed to
a dim-r vector (Xνa)[r] and a tail of (|Z| − r) zeros,
and

{
(Xνa)[r] : a ∈ Aℓ

}
can span Rr. Now we use{

(Xνa)[r] : a ∈ Aℓ

}
as our active set in phase ℓ and the

analysis would go through.

4.3. Roadblocks: Instance-Dependent Bounds

Unlike adaptive worst-case regret studied in Section 3, adap-
tive instance-dependent regret is less understood and a gen-
eral theory is still absent in the literature. In particular, we

Algorithm 2 Phased Elimination (PE) in Causal Bandit
Input: Action set A, marginals {νa : a ∈ A}, dν =
dim(span{νa : a ∈ A}), and confidence level δ ∈ (0, 1)

1. Set ℓ = 1 and let the initial active set A1 be A

2. Find some near-optimal design πℓ ∈ P(Aℓ)
with maxa∈Aℓ

∥νa∥2V (πℓ)−1 ≤ 2dν and
|supp(πℓ)| ≤ 4dν log log(dν) + 16, where
V (πℓ) =

∑
a∈Aℓ

πℓ(a)νaν
⊤
a

3. Let mℓ = 2ℓ−1(4dν log log(dν) + 16)
Compute Tℓ(a) = ⌈mℓπℓ(a)⌉ and Tℓ =

∑
a∈Aℓ

Tℓ(a)

4. Play each action a ∈ Aℓ exactly Tℓ(a) times and we
call these Tℓ rounds phase ℓ. We also observe corre-
sponding context-reward pairs (Zt, Yt)t∈phase ℓ

5. Compute the empirical estimate:
µ̂Z
ℓ = V −1

ℓ

∑
t∈phase ℓ νAt

Yt where
Vℓ =

∑
a∈Aℓ

Tℓ(a)νaν
⊤
a

6. Eliminate low rewarding actions and update the active
set:
Aℓ+1 =

{
a ∈ Aℓ : maxb∈Aℓ

⟨µ̂Z
ℓ , νb − νa⟩

≤ 2

√
4dν

mℓ
log
(

2|A| log2(T )
δ

)}
7. ℓ← ℓ+ 1 and Goto 2

do not know if O(log T ) regret can always be achieved,
and whenever achieved, whether it is tight. These issues
are illustrated for model selection methods in the following.
First, it is easy to see that O(log T ) regret can always be
achieved in benign environments, e.g., by corralling PE and
UCB using dynamic balancing, because in this case both
base learners admit logarithmic regret. However, the regret
bound of UCB is dominant and thus naive calculation only
leads to a O(|A| log T/∆min) regret for DB. It remains
open whether we can adapt to the smaller regret achieved
by PE in benign environments. Second, O(log T ) regret
is not always granted by model selection in non-benign
instances. The only exception we are aware of in the liter-
ature is the case where the causal base learner is assumed
to incur linear regret whenever its candidate regret bound
fails (Cutkosky et al., 2021, Theorem 31). If this type of
“algorithm gap” holds, DB will only choose the causal base
learner on a O(log T ) number of rounds, and hence enjoy
logarithmic regret. Moreover, without changing the param-
eter setting, DB is able to realize the Pareto optimal rates
(
√
|Z|T , |A|

√
T/
√
|Z|) up to log factors. However, the

“algorithmic gap” requirement on the causal base learner is
so stringent that we do not know if it is met by any algorithm

7
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in every instance. In Appendix E, we show that a version of
PE incurs linear regret on some instances.

5. Limited Knowledge of the Marginal
Distributions over Context Variables

So far, we have assumed that algorithms knows the marginal
distribution over the post-action context for each arm. Of
course, perfect knowledge of these marginals may not hold
in practice. What is the effect of only having access to
approximate marginals on achievable rates of regret?

In this section, we study this question. We give a lower
bound indicating that, with zero access to the marginals, it
is impossible for any algorithm to exploit the causal struc-
ture and beat the minimax rate of an arbitrary environment.
To model this setting, recall that algorithms are defined as
mappings taking (A,Z, T, q) to policies. So naturally, al-
gorithms considered agnostic to the marginals should be
constant in q ∈ P(Z)A, leading to the following definition:

Definition 5.1. An algorithm a is said to be agnostic to
marginals if, for any A,Z and T , the map

aA,Z,T : q 7→ a(A,Z, T, q)

is constant over P(Z)A. We denote the set of all such
algorithms by Aagnostic.

Examples of algorithms from Aagnostic include not only
heuristic non-causal algorithms like UCB, but also ver-
sions of causal algorithms that are always input by the same
marginals. For all algorithm a ∈ Aagnostic, we will write the
policy it induces givenA,Z, T as a(A,Z, T, ·) to highlight
its independence on the q component. Our lower bound
shows that, under this zero-marginal-knowledge regime, we
cannot do better than the optimal non-causal algorithm.

Theorem 5.2. For all A,Z, T ≥ |A| and MAB algorithms
a ∈ Aagnostic, there exists a conditionally benign environ-
ment ν ∈ P(Z × Y)A such that

Eν,a[Reg(T )] ≥ c
√
|A|T ,

where c > 0 is a universal constant.

See Appendix D.2 for the proof.
Remark 5.3. Our lower bound improves on Lu et al. (2020,
Theorem 4), which is of the form of Cε

√
|A|T 1/2−ε,∀ε >

0 and only holds for some set of non-causal algorithms,
which is a strict subset of Aagnostic.

5.1. Phased Elimination with Approximate Marginals

Despite the negative result Theorem 5.2, we now argue
that some level of misspecification is allowed in the prior

knowledge of marginals. Upon interacting with environment
ν, suppose we are given some marginal ν̃(Z) ∈ P(Z)A
which may deviate from the true ν(Z) to some extent. Now
we show that even instantiating PE with the possibly non-
accurate ν̃(Z) may yield Õ(

√
T ) regret, following a similar

result for C-UCB by Bilodeau et al. (2022). First we need
the the following definition to measure the amount of devia-
tion of ν̃(Z) from ν(Z).

Definition 5.4. (Bilodeau et al., 2022, Definition 4.2) For
any ε ≥ 0, ν̃(Z) and ν(Z) are said to be ε-close if

sup
a∈A

∑
z∈Z
|ν̃a(z)− νa(z)| ≤ ε.

Due to our reduction in Section 4.1, we can find that causal
bandits with misspecified marginals is reduced to the well-
studied misspecified linear bandits, which yields the follow-
ing regret bound that subsumes Theorem 4.1. The proof is
largely based on the analysis of phased elimination in Latti-
more et al. (2020, Proposition 5.1), with necessary modifi-
cations for handling conditionally sub-gaussian noises and
providing an anytime regret bound. See Appendix B for
details.

Theorem 5.5 (Worst-case regret bound, with approximate
marginal distributions). In any conditionally environment ν
suppose we instantiate PE(δ) with ν̃(Z). If ν̃(Z) and ν(Z)
are ε−close, then with probability at least 1− δ, the regret
of PE(δ) is bounded for all rounds t ∈ [T ] by

Reg(t) ≤ C

(√
dν̃ log

(
|A| log T

δ

)
t+ εt

√
dν̃ log T

)
,

where C > 0 is a universal constant and dν̃ =
dim(span{ν̃a : a ∈ A})

It is implied that ε = Õ(
√

1/T ) suffices to recover all
aforementioned regret guarantees of phased elimination and
dynamic balancing. On the other hand, such numerical re-
quirement on ε is almost necessary for us to avoid the lower
bound in Theorem 5.2: from the proof of Theorem 5.2 we
will find that when ε = Ω(

√
|A|/T ), for any algorithm

there exists a conditionally benign environment ν and ap-
proximate marginal ν̃(Z) such that ν̃(Z) and ν(Z) are ε-
close, but this algorithm would incur Ω(

√
|A|T ) regret on

ν when it is input by ν̃(Z).

It is worth mentioning that the
√
dν̃ factor in the misspeci-

fication term cannot be improved in many regimes for lin-
ear bandit algorithms (Lattimore et al., 2020). However,
C-UCB is able to shave this factor off (Bilodeau et al.,
2022, Theorem 4.3) by utilizing realized contexts rather
than the least-square estimate of the mean reward vector
µZ . From this perspective, we see there is a price for pursu-
ing better instance-dependent result by ignoring the context
information.
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6. Conclusions and Discussions
We provide a comprehensive characterization of the Pareto
regret frontier for the bandit problem in the context of adapt-
ing to causal structure whenever feasible. We also give the
first instance-dependent regret bound under conditionally
benign environments, based on our novel causal-to-linear
reduction. Finally, we show that the common assumption
that we have access to the true marginals is necessary in
general but still can be relaxed in some cases.

For future works, it would be important to focus on the de-
sign of algorithms that are easier to implement compared to
running dynamic balancing over some base learners. On the
theoretical side, it would be interesting to investigate other
causal bandit scenarios involving adaptivity in light of our
Pareto regret frontier. For example, we may define a series
of “semi-benign” settings interpolating conditionally benign
environments and non-benign environments and study the
Pareto regret frontier thereof.
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A. Regret Analysis for Dynamic Balancing
In this section we show that the regret guarantees of dynamic balancing in Cutkosky et al. (2021) can be generalized to our
problem and provide a proof of our main upper bound Theorem 3.5.

Notations. For base learner i, we use CandidRegi(t) to denote its candidate anytime regret bound that is expected to
hold in its favorable settings. Throughout we consider CandidRegi(t) with the form of di

√
t, where di implicitly depends

on the confidence parameter δ. Let it be the index of the base learner selected in round t. Ui(t) =
∑t

s=1 YsI{i = is} is the
observed cumulative reward in the first t rounds where i is picked, and ni(t) =

∑t
s=1 I{i = is} is the number of rounds

i is picked by the end of round t. The local regret of i up to round t is Regi(t) = ni(t)µ
A(a∗) − Ui(t). We say learner

i is well-specified if Regi(t) ≤ CandidRegi(ni(t)) = di
√

ni(t),∀t ∈ [T ] and otherwise it is misspecified. We use i⋆ to
denote any well-specified learner.

A.1. Preliminaries

Roughly speaking, in each round t, dynamic balancing works by (1) running a misspecification test to temporarily de-activate
misspecified base learners and (2) picking the learner it with minimal putative regret di

√
ni(t) among all active learners i

in this round. In this way, the regret incurred by DB is comparable to that of the best well-specified learner.

Notice that dynamic balancing was initiated with stochastic contextual bandits (where contexts are revealed prior to actions)
in Cutkosky et al. (2021). To see that DB can also be applied in stochastic bandits with post-action contexts, it is worth
identifying several important features of DB:

1. First of all, the meta decision by DB on each round t only depends on the global information, i.e. Ui(t) and ni(t)
(as well as user-specified di, bi and vi). In particular, it does not need any information regarding context variables or
internal states of base learners.

2. Second, DB only updates the selected base learner it in each round t, and the update only uses the reward and contextual
information observed in this round, where the context can be either pre-action or post-action, or both. Thus the regret
guarantees of DB would hold regardless of the nature of contexts given that the internal updates of base learners are
not affected.

Therefore, the essence of dynamic balancing does not rely on what kind of (stochastic) contextual information can be
observed in the underlying (stochastic) bandit problem due to above observations.

Now we state the worst-case regret bound of DB in Cutkosky et al. (2021) adapted to our setting. First define the good event

E(δ) =

{
∀i ∈ {1, 2},∀t ∈ T : |ni(t)µ

A(a∗)− Ui(t)− Regi(t)| ≤ c

√
ni(t) log

(
2 log ni(t)

δ

)}
on which we are able to control the regret of DB. According to the analysis of Cutkosky et al. (2021, Lemma 5), we can
fix c to be some absolute constant (which can be actually set to 3 in our setting) such that Pν,π[E(δ)] ≥ 1 − δ for any
ν ∈ P(Z × Y)A and π ∈ Π(A,Z, T ). Conditioning on E(δ), we have the following regret bound:

Proposition A.1 (Adapted version of Theorem 22 in Cutkosky et al. (2021)). Let a1 be a d1-benign family and let a2
be a d2-arbitrary family of learners. Let Z1, Z2 be arbitrary positive real numbers. For all δ ∈ (0, 1), we can set
hyper-parameters

bi(t) = max
{2Zi√

t
,
3
√
2 log(2 log t/δ)√

t

}
, vi =

√
Zi

di(δ)3

in dynamic balancing such that, the policy DB(δ) given by dynamic balancing with a1, a2, d1, d2 satisfies the following: for
all instances ν, conditioning on E(δ) and the existence of a well-specified base learner i⋆, the regret of DB(δ) is bounded by

Reg(T ) ≤ Regi⋆(T ) + C ′

√log

(
log T

δ

)
+ Zi⋆di⋆(δ) +

∑
i ̸=i⋆

di(δ)

Zi

√T ,
where C ′ > 0 is a universal constant.
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It is straightforward to see that Proposition A.1 is obtained by taking M = 2, C = 1, c = 3, β = 1/2, and W1 = W2 =
√
2

in Cutkosky et al. (2021, Theorem 22).

A.2. Proof of Theorem 3.5

Theorem 3.5 is the immediate consequence of the following regret bound, which is derived by instantiating Z1, Z2 in
Proposition A.1 with specific values.

Proposition A.2. For every pair of reasonable rate functions R1(T ), R2(T ) such that R1(T )R2(T ) ≥ |A|T , we can
instantiate Proposition A.1 with Z1 = 1, Z2 = R2(T )√

|A|T
such that for all δ ∈ (0, 1), the policy DB(δ) with the same setup

as Proposition A.1 satisfies the following: for all instances ν, with probability at least 1 − O(δ), the regret of DB(δ) is
bounded by

Reg(T ) ≤ C ′

(
d1(δ) +

√
log

(
log T

δ

)
+

d2(δ)√
|A|T

R1(T )

)
√
T , if ν is conditionally benign;

Reg(T ) ≤ C ′

(
d1(δ) +

√
log

(
log T

δ

)
+

d2(δ)√
|A|T

R2(T )

)
√
T , if ν is arbitrary,

where C ′ > 0 is a universal constant.

Now we can see that our main upper bound Theorem 3.5 is proved immediately after taking d1(δ) =

O
(
(
√
|Z|+

√
log(T/δ))

√
log(|Z|T/δ)

)
, d2(δ) = O(

√
|A| log(|A|T/δ)) and δ = 1/T .

Proof of Proposition A.2. By Definition 3.3, we know that for all conditionally instances ν, with probability at least 1−O(δ),
learner a1 is well-specified with CandidReg1(t) = d1(δ)

√
t and the regret bound in Proposition A.1 holds with i⋆ = 1.

Plugging in Z1 = 1, Z2 = R2(T )√
|A|T

, the regret of DB(δ) is bounded by

Reg(T ) ≤ C ′

(
2d1(δ) +

√
log

(
log T

δ

)
+ d2(δ)

√
|A|T

R2(T )

)
√
T .

Similarly for all instances ν, with probability at least 1−O(δ), learner a2 is well-specified with CandidReg2(t) = d2(δ)
√
t

and the regret bound in Proposition A.1 holds with i⋆ = 2, which is

Reg(T ) ≤ C ′

(
d2(δ) +

√
log

(
log T

δ

)
+ d2(δ)

R2(T )√
|A|T

+ d1(δ)

)
√
T .

By our assumption that (R1(T ), R2(T )) is reasonable and R1(T )R2(T ) ≥ |A|T , we have that R2(T ) ≥
√
|A|T and

|A|T
R2(T ) ≤ R1(T ). Hence the regret of DB(δ) for all instances ν is further bounded by

Reg(T ) ≤ C ′

(
d1(δ) +

√
log

(
log T

δ

)
+

d2(δ)√
|A|T

R1(T )

)
√
T , if ν is conditionally benign;

Reg(T ) ≤ C ′

(
d1(δ) +

√
log

(
log T

δ

)
+

d2(δ)√
|A|T

R2(T )

)
√
T , if ν is arbitrary,

which completes the proof.

B. Regret analysis of phased elimination
In this section we will prove Theorem 4.3 and Theorem 5.5, while Theorem 4.1 is implied by taking ε = 0 in Theorem 5.5.
Recall that the proof of Theorem 5.5 is based on the analysis of phased elimination in Lattimore et al. (2020, Proposition 5.1).
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For simplicity we will use P and E to denote the probabilistic operators determined jointly by the underlying conditionally
benign environment ν and the phased elimination algorithm. Also we use ∆a,∆min to denote the true sub-optimality gap
∆a(ν) = µA(a∗)−µA(a) and minimal sub-optimality gap ∆min(ν) = mina∈A µA(a∗)−µA(a) respectively with regards
to the underlying instance ν.

B.1. Prerequisite

Lemma B.1. (In-phase concentration) For any phase ℓ, let

Ephase
ℓ (δ) =

{
|⟨µ̂Z

ℓ − µZ , ν̃a⟩| ≤ 2ε
√

dν̃ +

√
4dν̃
mℓ

log

(
2|A| log2(T )

δ

)
,∀a ∈ Aℓ

}

and Fℓ be the σ−algebra generated by the history up to the start of phase ℓ. Then P[Ephase
ℓ (δ)|Fℓ] ≥ 1− δ

log2(T ) .

Proof of Lemma B.1. Let ba = ⟨νa − ν̃a, µ
Z⟩,∀a ∈ A be the error term due to the use of inaccurate marginals, then we

know that |ba| ≤ ε,∀a ∈ A since ν(Z) and ν̃(Z) are ε−close. Observe that

⟨µ̂Z
ℓ − µZ , ν̃a⟩ = ⟨V −1

ℓ

∑
t∈phase ℓ

ν̃At
ν̃⊤At

µZ , ν̃a⟩ − ⟨µZ , ν̃a⟩

+ ⟨V −1
ℓ

∑
t∈phase ℓ

ν̃Atη
A
t , ν̃a⟩+ ⟨V −1

ℓ

∑
t∈phase ℓ

ν̃AtbAt , ν̃a⟩

=
∑

t∈phase ℓ

⟨V −1
ℓ ν̃At , ν̃a⟩ηAt +

∑
t∈phase ℓ

⟨V −1
ℓ ν̃At , ν̃a⟩bAt .

Using Cauchy-Schwarz inequality and the fact that for all a ∈ Aℓ, ∥ν̃a∥2V −1
ℓ

≤ 1
mℓ
∥ν̃a∥2V (πℓ)−1 ≤ 2dν̃

mℓ
, the second term on

the RHS of the above equality can be bounded by∣∣∣∣∣∣
∑

t∈phase ℓ

⟨V −1
ℓ ν̃At

, ν̃a⟩bAt

∣∣∣∣∣∣ ≤ ε
∑

t∈phase ℓ

∣∣⟨V −1
ℓ ν̃At

, ν̃a⟩
∣∣

≤ ε

√√√√√
 ∑

t∈phase ℓ

1

 ∑
t∈phase ℓ

⟨V −1
ℓ ν̃At

, ν̃a⟩2


= ε
√

Tℓ∥ν̃a∥2V −1
ℓ

≤ ε

√
2mℓ

2dν̃
mℓ

= 2ε
√

dν̃ .

To bound the first term, notice that (At)t∈phase ℓ, Vℓ are fixed given the history prior to the start of phase ℓ. Hence (ηAt )t∈phase ℓ

are independent conditioned on Fℓ and bounded by [−1, 1]. By standard concentration bounds, we have that with probability
at least 1− δ

|A| log2(T ) ,∣∣∣∣∣∣
∑

t∈phase ℓ

⟨V −1
ℓ νAt

, ν̃a⟩ηAt

∣∣∣∣∣∣ ≤
√√√√2

∑
t∈phase ℓ

⟨V −1
ℓ ν̃At

, ν̃a⟩2 log
(
2|A| log2(T )

δ

)
,

where the RHS can be rewritten as√
2∥ν̃a∥2V −1

ℓ

log

(
2|A| log2(T )

δ

)
≤

√
4dν̃
mℓ

log

(
2|A| log2(T )

δ

)
.

Combining the two upper bounds above and taking a union bound over all a ∈ Aℓ, we have that with probability at least
1− δ

log2(T ) ,

|⟨µ̂Z
ℓ − µZ , ν̃a⟩| ≤ 2ε

√
dν̃ +

√
4dν̃
mℓ

log

(
2|A| log2(T )

δ

)
, ∀a ∈ Aℓ,

which finishes the proof.
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Since the marginal distributions ν̃a are possibly not accurate, we may not be able to show that the optimal action a∗ is never
eliminated with high probability. So what we can hope for is that actions that are near-optimal relative to the best action in
Aℓ are retained in the end of the phase ℓ. To be concrete, define a∗ℓ ∈ argmina∈Aℓ

∆a to be the true optimal action within
Aℓ. Then we can show that ∆a −∆a∗

ℓ
is rather small for any a that is not eliminated in the end of phase ℓ.

Lemma B.2. Conditioning on event Ephase
ℓ (δ), for any action a not eliminated in the end of phase ℓ, it has relative

sub-optimality gap ⟨µZ , νa∗
ℓ
− νa⟩ = ∆a −∆a∗

ℓ
≤ 2ε(1 + 2

√
dν̃) + 4

√
4dν̃

mℓ
log
(

2|A| log2(T )
δ

)
.

Proof of Lemma B.2. According to the rule of updating active set, whenever a ∈ Aℓ is not eliminated at the end of phase ℓ,
it holds

⟨µ̂Z
ℓ , ν̃a∗

ℓ
− ν̃a⟩ ≤ max

b∈Aℓ

⟨µ̂Z
ℓ , ν̃b − ν̃a⟩ ≤ 2

√
4dν̃
mℓ

log

(
2|A| log2(T )

δ

)
.

It implies that

⟨µZ , ν̃a∗
ℓ
− ν̃a⟩ = ⟨µZ − µ̂Z

ℓ , ν̃a∗
ℓ
− ν̃a⟩+ ⟨µ̂Z

ℓ , ν̃a∗
ℓ
− ν̃a⟩

≤ 2
(√4dν̃

mℓ
log

(
2|A| log2(T )

δ

)
+ 2ε

√
dν̃

)
+ 2

√
4dν̃
mℓ

log

(
2|A| log2(T )

δ

)

= 4

√
4dν̃
mℓ

log

(
2|A| log2(T )

δ

)
+ 4ε

√
dν̃ .

where we use the fact that we are conditioning on Ephase
ℓ (δ) in the inequality. Hence under the true marginals ν,

⟨µZ , νa∗
ℓ
− νa⟩ ≤ 4

√
4dν̃
mℓ

log

(
2|A| log2(T )

δ

)
+ 4ε

√
dν̃ + 2ε.

Now we need to track ∆a∗
ℓ
, the sub-optimality of the best active action in each phase. Observe that ∆a∗

ℓ
=
∑ℓ−1

k=1(∆a∗
k+1
−

∆a∗
k
) since ∆a∗

1
= ∆a∗ = 0. Then it suffices to control each ∆a∗

k+1
−∆a∗

k
, k ≤ ℓ− 1, to control the growth of ∆a∗

ℓ
.

Lemma B.3. Conditioning on event Ephase
ℓ (δ), we have ∆a∗

ℓ+1
−∆a∗

ℓ
≤ 2ε(1 + 2

√
dν).

Proof of Lemma B.3. Suppose Ephase
ℓ (δ) happens. Notice that the results holds trivially if a∗ℓ is not eliminated in the end of

phase ℓ, because in this case a∗ℓ+1 = a∗ℓ . On the other hand, if a∗ℓ is eliminated, define âℓ ∈ argmaxa∈Aℓ
⟨µ̂Z

ℓ , ν̃a⟩ to be the
empirically best action in the end of phase ℓ and then we have

⟨µ̂Z
ℓ , ν̃âℓ

− ν̃a∗
ℓ
⟩ > 2

√
4dν̃
mℓ

log

(
2|A| log2(T )

δ

)
,

according to the test performed. In the meantime, recall that due to in-phase concentration and ε−closeness between ν̃ and
ν,

⟨µ̂Z
ℓ , ν̃âℓ

− ν̃a∗
ℓ
⟩ ≤ ⟨µZ , ν̃âℓ

− ν̃a∗
ℓ
⟩+ 4ε

√
dν̃ + 2

√
4dν̃
mℓ

log

(
2|A| log2(T )

δ

)

≤ ⟨µZ , νâℓ
− νa∗

ℓ
⟩+ 2ε+ 4ε

√
dν̃ + 2

√
4dν̃
mℓ

log

(
2|A| log2(T )

δ

)
.

Hence we get
∆âℓ
−∆a∗

ℓ
= ⟨µZ , νa∗

ℓ
− νâℓ

⟩ ≤ 2ε+ 4ε
√

dν̃

and
∆a∗

ℓ+1
−∆a∗

ℓ
≤ ∆âℓ

−∆a∗
ℓ
≤ 2ε+ 4ε

√
dν̃ .
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Corollary B.4. For any ℓ ≥ 2 and conditioning on
⋂

k≤ℓ−1 E
phase
k (δ), we have that ∆a∗

ℓ
≤ 2ε(ℓ − 1)(1 + 2

√
dν̃) and

∆a ≤ 2ε(1 + 2
√
dν̃) + 4

√
4dν̃

mℓ−1
log
(

2|A| log2(T )
δ

)
+ 2ε(ℓ− 2)(1 + 2

√
dν̃) for all a ∈ Aℓ.

Proof of Corollary B.4. By conditioning on the intersection of all Ephase
k (δ), k ≤ ℓ− 1, we have that

∆a∗
k+1
−∆a∗

k
≤ 2ε(1 + 2

√
dν̃),∀k ≤ ℓ− 1,

which implies that ∆a∗
s
=
∑s−1

k=1(∆a∗
k+1
−∆a∗

k
) ≤ 2ε(s− 1)(1 + 2

√
dν̃),∀s ≤ ℓ. In particular, there is

∆a∗
ℓ
≤ 2ε(ℓ− 1)(1 + 2

√
dν̃).

Since every action a ∈ Aℓ passes the test in the end of (ℓ− 1)−th phase and hence is not eliminated, by Lemma B.2 we
know

∆a −∆a∗
ℓ−1
≤ 2ε(1 + 2

√
dν̃) + 4

√
4dν̃
mℓ−1

log

(
2|A| log2(T )

δ

)
.

Therefore, for all a ∈ Aℓ,

∆a = ∆a −∆a∗
ℓ−1

+∆a∗
ℓ−1
≤ 2ε(1 + 2

√
dν̃) + 4

√
4dν̃
mℓ−1

log

(
2|A| log2(T )

δ

)
+ 2ε(ℓ− 2)(1 + 2

√
dν̃).

B.2. Proof of Theorem 5.5

Now we are prepared to prove Theorem 5.5.

Proof of Theorem 5.5. Let ℓmax(t) be the index of the phase where round t is located. It’s easy to see that ℓmax(T ) ≤ log2(T ).
In the following we condition on the event

⋂
ℓ≤ℓmax(T ) E

phase
ℓ (δ), which happens with probability at least 1 − δ due to

Lemma B.1.

Notice that phase ℓmax(t) is not necessarily completed in the end of round t, but we can always round Reg(t) to the regret
incurred in the first ℓmax(t) complete phases. That is,

Reg(t) ≤
ℓmax(t)∑
ℓ=1

∑
a∈Aℓ

Tℓ(a) ·∆a.

Since we have controlled sub-optimality of all active actions in Corollary B.4, it holds with probability at least 1− δ that

Reg(t) ≤
ℓmax(t)∑
ℓ=1

∑
a∈Aℓ

Tℓ(a) ·∆a

≤ 2m1 + C

ℓmax(t)∑
ℓ=2

mℓ

(√
dν̃

mℓ−1
log

(
2|A| log2(T )

δ

)
+ εℓ

√
dν̃

)

≤ 2m1 + C

ℓmax(t)∑
ℓ=2

√
mℓ · dν̃ · log

(
2|A| log2(T )

δ

)
+ Cε

√
dν̃

ℓmax(t)∑
ℓ=2

mℓℓ

≤ 2m1 + C

√
mℓmax(t) · dν̃ · log

(
2|A| log2(T )

δ

)
+ Cε

√
dν̃mℓmax(t) log2(T )

≤ C

(√
dν̃t log

(
2|A| log T

δ

)
+ εt

√
dν̃ log T

)
,

where C > 0 is an absolute constant that can vary from line to line. Thus we have finished the proof.
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B.3. Proof of Theorem 4.3

Now we go back to the setting where ε = 0. The only modification needed to work out Theorem 4.3 is an instance-dependent
control over the number of phases for which sub-optimal arms are not entirely eliminated.

Proof of Theorem 4.3. Again suppose Ephase
ℓ (δ) happens for all ℓ. From Corollary B.4 we know that every suboptimal

action a can only be played in those phase ℓ ≥ 2 s.t. ∆a ≤ 4

√
4dν

mℓ−1
log
(

2|A| log2(T )
δ

)
in addition to the first phase. Let

ℓa = max
{
ℓ ≥ 2 : ∆a ≤ 4

√
4dν
mℓ−1

log

(
2|A| log2(T )

δ

)}
be the maximal number of phases where a can be played. It is easy to see that

ℓa = 2 +

⌊
log2

(
64dν
m1∆2

a

log

(
2|A| log2(T )

δ

))⌋
.

Hence there are at most ℓmax = 2 +
⌊
log2

(
64dν

m1∆2
min

log
(

2|A| log2(T )
δ

))⌋
number of phases before all suboptimals are

eliminated and Reg(T ) can be controlled more carefully:

Reg(T ) ≤
ℓmax∑
ℓ=1

∑
a∈Aℓ

Tℓ(a) ·∆a

≤ 2m1 + C

√
mℓmax · dν · log

(
2|A| log2(T )

δ

)

= 2m1 + C

√
2ℓmax ·m1 · dν · log

(
2|A| log2(T )

δ

)

≤ 2m1 + C

√√√√dν log
(

2|A| log2(T )
δ

)
m1∆2

min

·m1 · dν log
(
2|A| log2(T )

δ

)
≤ C · dν log(|A| log T/δ)

∆min
,

where C > 0 is an absolute constant that can vary from line to line. Again the above regret bound holds with probability at
least 1− δ so we are done.

C. Anytime Regret Bounds for UCB and C-UCB
In this section we verify Proposition 3.4 for UCB and C-UCB algorithms for completeness. Note that our anytime regret
bound for C-UCB is new in the literature.

C.1. Preliminaries

For each t ∈ [T ], a ∈ A and z ∈ Z , define TA
t (a) = 1∨

∑t
s=1 I{As = a} to be the number of action a being chosen in the

first t rounds, and define TZ
t (z) = 1 ∨

∑t
s=1 I{Zs(As) = z} to be the number of context z being observed up to the first t

rounds. Further define the mean reward estimates µ̂A
t (a), µ̂

Z
t (z) by

µ̂A
t (a) =

1

TA
t (a)

t∑
s=1

Ys(As)I{As = a}

µ̂Z
t (z) =

1

TZ
t (z)

t∑
s=1

Ys(As)I{Zs(As) = z}
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Then we introduce the upper confidence bounds used by the UCB-type algorithms under consideration. Given any prescribed

confidence parameter δ ∈ (0, 1), define UCBA
t (a) = µ̂A

t (a) +
√

log(2|A|T/δ)

2TA
t (a)

,UCBZ
t (z) = µ̂Z

t (z) +
√

log(2|Z|T/δ)

2TZ
t (z)

and

ŨCBt(a) =
∑

z∈Z UCBZ
t (z)Pνa [Z = z] for each t ∈ [T ], a ∈ A and z ∈ Z . Furthermore, we use UCB(δ) and

C-UCB(δ) to denote the standard UCB algorithm and C-UCB algorithm (Lu et al. 2020) which run by playing actions
AUCB

t and AC−UCB
t at each round t respectively, according to:

AUCB
t = argmax

a∈A
UCBA

t−1(a)

AC−UCB
t = argmax

a∈A
ŨCBt−1(a).

Before analyzing the regret of UCB(δ) and C-UCB(δ), let’s finally define some high-probability events on which we can
control the regret. For any given confidence parameters δ, δ′, define

EA(δ) =

{
∀t ∈ [T ], a ∈ A, |µ̂A

t (a)− µA(a)| ≤

√
log(2|A|T/δ)

2TA
t (a)

}
,

and in conditionally benign environments we additionally define

EZ(δ) =

{
∀t ∈ [T ], z ∈ Z, |µ̂Z

t (z)− µZ(z))| ≤

√
log(2|Z|T/δ)

2TZ
t (z)

}
,

EMG(δ′) =

{
∀t ∈ [T ],

t∑
s=1

∑
z∈Z

1√
TZ
s−1(z)

(PνAs
[Z = z]− I{Zs = z}) ≤

√
2t log(T/δ′)

}
,

where we recall µZ(z) = Eνa [Y |Z = z] is well-defined here. First we can see that EA(δ) and EZ(δ) happen with
probability at least 1− δ regardless the underlying environment and chosen policy:

Lemma C.1 (Lemma B.1 and B.2 in Bilodeau et al. 2022). For any ν ∈ P(Z × Y)A and π ∈ Π(A,Z, T ),

Pν,π[(E
A(δ))c] ≤ δ,

and for any ν ∈ P(Z × Y)A that is conditionally benign and π ∈ Π(A,Z, T ),

Pν,π[(E
Z(δ))c] ≤ δ.

To get our new anytime regret bound for C-UCB(δ), we need to further condition on EMG(δ′) which happens with
probability at least 1− δ′:

Lemma C.2. For any ν ∈ P(Z × Y)A and π ∈ Π(A,Z, T ),

Pν,π[(E
MG(δ′))c] ≤ δ′

Proof of Lemma C.2. Define

Mt =

t∑
s=1

∑
z∈Z

1√
TZ
s−1(z)

(PνAs
[Z = z]− I{Zs = z}),∀t ∈ [T ],

M0 = 0.

Then EMG(δ′) =

{
∀t ∈ [T ],Mt ≤

√
2t log(T/δ′)

}
and it is easy to find that {Mt}t≥0 is a martingale sequence with

respect to Ft = σ(At, Ht−1) . To see this,

Eν,π[Mt|At, Ht−1] = Mt−1 +
∑
z∈Z

1√
TZ
t−1(z)

Eν,π[PνAt
[Z = z]− I{Zt = z}|At] = Mt−1.
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Also,

|Mt −Mt−1| =

∣∣∣∣∣∣
∑
z∈Z

1√
TZ
t−1(z)

(
PνAt

[Z = z]− I{Zt = z}
)∣∣∣∣∣∣

=

∣∣∣∣∣∣Eν,π

[∑
z∈Z

1√
TZ
t−1(z)

I{Zt = z}|At, Ht−1

]
−
∑
z∈Z

1√
TZ
t−1(z)

I{Zt = z}

∣∣∣∣∣∣
=

∣∣∣∣∣∣Eν,π

[ 1√
TZ
t−1(Zt)

|At, Ht−1

]
− 1√

TZ
t−1(Zt)

∣∣∣∣∣∣
≤ 1.

Then by Azuma-Hoeffding,

Pν,π[Mt >
√
2t log(T/δ′)] = Pν,π[Mt −M0 >

√
2t log(T/δ′)]

≤ exp

(
−2t log(T/δ′)

2t

)
= δ′/T,

and we get Pν,π[(E
MG(δ′))c] ≤ δ′ after taking a union bound over t ∈ [T ].

C.2. Anytime High-probability Regret Bound

Now we provide our high-probability regret bounds for UCB(δ) and C-UCB(δ) that will lead to Proposition 3.4.
Theorem C.3. In any environment ν, the regret of UCB(δ) is bounded by

Reg(t) = O
(√
|A| log(|A|T/δ)t

)
for all t ∈ [T ], conditioning on event EA(δ) which happens with probability at least 1− δ.

Proof of Theorem C.3. In event EA(δ), we have that µA(a) ≤ UCBA
t (a) ≤ µA(a)+2

√
log(2|A|T/δ)

2TA
t (a)

for all a ∈ A, t ∈ [T ].

Hence conditioned on EA(δ), the regret of UCB(δ) up to any round t ∈ [T ] holds

Reg(t) =

t∑
s=1

µA(a∗)− µA(As)

=

t∑
s=1

(µA(a∗)−UCBA
s−1(As)) + (UCBA

s−1(As)− µA(As))

≤
t∑

s=1

(UCBA
s−1(a

∗)−UCBA
s−1(As)) + (UCBA

s−1(As)− µA(As))

≤
t∑

s=1

(UCBA
s−1(As)− µA(As))

≤
t∑

s=1

√
2 log(2|A|T/δ)

TA
s−1(As)

=

t∑
s=1

∑
a∈A

√
2 log(2|A|T/δ)

TA
s−1(As)

I{As = a}

≤
∑
a∈A

√
8 log(2|A|T/δ)TA

t−1(a)

≤
√

8 log(2|A|T/δ)|A|t,

where we use As = AUCB
s throughout to simplify our notation.
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Theorem C.4. In any conditionally benign environment ν, the regret of C-UCB(δ) is bounded by

Reg(t) = O
(√

log(|Z|T/δ)
(√
|Z|+

√
log(T/δ′)

)√
t
)

for all t ∈ [T ], conditioning on event EZ(δ) ∩ EMG(δ′) which happens with probability at least 1− δ − δ′.

Proof of Theorem C.4. Similarly in event EZ(δ) we have µZ(z) ≤ UCBZ
t (z) ≤ µZ(z) + 2

√
log(2|Z|T/δ)

2TZ
t (z)

for all z ∈
Z, t ∈ [T ]. Additionally,

µA(a∗) =
∑
z∈Z

µZ(z)Pνa∗ [Z = z]

≤
∑
z∈Z

UCBZ
t−1(z)Pνa∗ [Z = z]

= ŨCBt−1(a
∗) ≤ ŨCBt−1(At),∀t ∈ [T ],

where At = AC−UCB
t is the action played by C-UCB(δ). Therefore we can control the cumulative the regret of C-UCB(δ)

in the first t rounds as follows

Reg(t) =

t∑
s=1

(µA(a∗)− ŨCBs−1(As)) + (ŨCBs−1(As)− µA(As))

≤
t∑

s=1

ŨCBs−1(As)− µA(As)

=

t∑
s=1

∑
z∈Z

(UCBZ
s−1(z)− µZ(z))PνAs

[Z = z]

≤
t∑

s=1

∑
z∈Z

√
2 log(2|Z|T/δ)

TZ
s−1(z)

PνAs
[Z = z]

=

t∑
s=1

∑
z∈Z

√
2 log(2|Z|T/δ)

TZ
s−1(z)

I{Zs = z}+
t∑

s=1

∑
z∈Z

√
2 log(2|Z|T/δ)

TZ
s−1(z)

(PνAs
[Z = z]− I{Zs = z})

≤
√
8 log(2|Z|T/δ)|Z|t+

t∑
s=1

∑
z∈Z

√
2 log(2|Z|T/δ)

TZ
s−1(z)

(PνAs
[Z = z]− I{Zs = z}),

where in the last inequality we use the same argument as in the proof of Theorem C.3, and the remaining summation term
can be controlled by

√
4 log(2|Z|T/δ) log(T/δ′)t immediately after we further condition on EMG(δ′). Therefore, we get

Reg(t) ≤
√
log(2|Z|T/δ)

(√
8|Z|+

√
4 log(T/δ′)

)√
t,∀t ∈ [T ],

in event EZ(δ) ∩ EMG(δ′).

Combining Theorem C.3 with Theorem C.4 and taking δ′ = δ, we thus verfy Proposition 3.4.

D. Proofs of Lower Bounds
In this section we give the full proof of Theorem 3.7 and Theorem 5.2. Note that our proof of Theorem 3.7 mainly adopts
but also largely generalizes the one of Bilodeau et al. (2022, Theorem 6.2).

D.1. Proof of Theorem 3.7

Proof of Theorem 3.7. Fix A,Z and T . Let Z0 be an arbitrary proper subset of Z and Z1 = Z \ Z0. Fix ∆ ∈ (0, 1/20) to
be chosen later. Define the family of marginals for all instances appearing in this proof

qa[Z ∈ Z0] =

{
1/2 + 2∆ a = 1

1/2 a ̸= 1,
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where probability is evenly spread within Z0 and Z1 respectively. Then define a conditionally benign environment
ν ∈ P(Z × Y)A by

Pνa [Y = 1] =
∑
z∈Z

p[Y = 1|Z = z]qa[Z = z], ∀a ∈ A,

where p[Y |Z] is a Bernoulli conditional distribution such that

p[Y = 1|Z = z] =

{
3/4 z ∈ Z0

1/4 z ∈ Z1.

Now we define some non-benign instances. For every a0 ̸= 1, define νa0
by

Pν
a0
a
[Y = 1] =

∑
z∈Z

pa0
a [Y = 1|Z = z]qa[Z = z], ∀a ∈ A,

where pa0
a [Y |Z] is a Bernoulli conditional distribution such that

pa0
a [Y = 1|Z = z] =



3/4 a = 1, z ∈ Z0

1/4 a = 1, z ∈ Z1

3/4 + 4∆ a = a0, z ∈ Z0

1/4 a = a0, z ∈ Z1

3/4 a /∈ {1, a0}, z ∈ Z0

1/4 a /∈ {1, a0}, z ∈ Z1.

For any MAB algorithm a, let πq = a(A,Z, q, T ) be the actual policy implemented by a when it’s interacting with ν and
νa0 . Then by the divergence decomposition formula and Bretagnolle-Huber inequality,

Eν,πq [Reg(T )] + Eνa0 ,πq [Reg(T )] ≥ T∆

2
Pν,πq [TA

T (1) ≤ T/2] +
T∆

2
Pνa0 ,πq [TA

T (1) > T/2]

≥ T∆

4
exp(−KL(Pν,πq ∥ Pνa0 ,πq ))

=
T∆

4
exp

(
−1

2
Eν,πq [TA

T (a0)]KL(Ber(3/4) ∥ Ber(3/4 + 4∆))

)
≥ T∆

4
exp
(
−Eν,πq [TA

T (a0)] · 32∆2
)
,

where in the last step we use KL(Ber(3/4) ∥ Ber(3/4 + 4∆)) ≤ 64∆2 for ∆ < 1/40. Combined with the worst-case
regret upper bound Eν,πq [Reg(T )] + Eνa0 ,πq [Reg(T )] ≤ 2R(T ;A,Z), it implies that

Eν,πq [TA
T (a0)] ≥

1

32∆2
log

(
T∆

8R(T ;A,Z)

)
,∀a0 ̸= 1.

Realizing Eν,πq [Reg(T )] =
∑

a0 ̸=1 ∆Eν,πq [TA
T (a0)], we have

Eν,πq [Reg(T )] ≥ |A| − 1

32∆
log

(
T∆

8R(T ;A,Z)

)
.

So there exists absolute constants c = log 2/1024, c′ = 1/641 such that whenever R(T ;A,Z) ≤ c′T , the choice of
∆ = 16R(T ;A,Z)

T satisfies ∆ < 1/40 and

Eν,πq [Reg(T )] ≥ c · |A|T
R(T ;A,Z)

,

which completes the proof.
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D.2. Proof of Theorem 5.2

Proof of Theorem 5.2. Fix A,Z and T . Let Z0 be an arbitrary proper subset of Z and Z1 = Z \ Z0. Fix ∆ ∈ (0, 1
40 ) to be

chosen later. For all conditionally benign instances ν in this proof, we consider Pνa
[Y |Z] to be the Bernoulli distribution

given by

Pνa
[Y = 1|Z = z] = p[Y = 1|Z = z] =

{
3/4 z ∈ Z0

1/4 z ∈ Z1,

which implies that contexts from Z0 are more rewarding than those from Z1.

Now define conditionally benign environments ν, νa0 ∈ P(Z × Y)A,∀a0 ̸= 1, through their marginals

Pνa
[Y = 1] =

∑
z∈Z

p[Y = 1|Z = z]qa[Z = z],

Pν
a0
a
[Y = 1] =

∑
z∈Z

p[Y = 1|Z = z]qa0
a [Z = z],∀a ∈ A

where

qa[Z ∈ Z0] =

{
1/2 + 2∆ a = 1

1/2 a ̸= 1
and qa0

a [Z ∈ Z0] =


1/2 + 2∆ a = 1

1/2 + 4∆ a = a0

1/2 a ̸= 1, a0,

where probability is evenly spaced within Z0 and Z1. So clearly action 1 is the only optimal action in ν and action a0 is the
only optimal action in νa0 , with sub-optimality gap ∆min(ν) = ∆min(ν

a0) = ∆.

Fix algorithm a ∈ Aagnostic with π̃ = a(A,Z, T, ·) be the actual policy implemented by a. By the divergence decomposition
formula (Bilodeau et al. 2022), we have that for every a0 ̸= 1,

KL(Pν,π̃ ∥ Pνa0 ,π̃) =
∑
a∈A

Eν,π̃[TA
T (a)]KL(Pνa ∥ Pν

a0
a
)

=
∑
a∈A

Eν,π̃[TA
T (a)]KL(qa ∥ qa0

a )

= Eν,π̃[TA
T (a0)]KL(qa0 ∥ qa0

a0
)

= Eν,π̃[TA
T (a0)]KL(Ber(1/2) ∥ Ber(1/2 + 4∆)).

By Bretagnolle–Huber inequality,

Eν,π̃[Reg(T )] + Eνa0 ,π̃[Reg(T )] ≥
T∆

2

(
Pν,π̃[TA

T (1) ≤ T/2] + Pνa0 ,π̃[TA
T (1) > T/2]

)
≥ T∆

4
exp(−KL(Pν,π̃ ∥ Pνa0 ,π̃))

=
T∆

4
exp(−Eν,π̃[TA

T (a0)]KL(Ber(1/2) ∥ Ber(1/2 + 4∆))).

Now we pick a0 ∈ argmina̸=1 Eν,π̃[TA
T (a)] which implies that Eν,π̃[TA

T (a0)] ≤ T
|A|−1 . Also KL(Ber(1/2) ∥ Ber(1/2 +

4∆)) ≤ 4(4∆)2 = 64∆2 for ∆ < 1/40. So

Eν,π̃[Reg(T )] + Eνa0 ,π̃[Reg(T )] ≥
T∆

4
exp

(
− 64T∆2

|A| − 1

)
.

Taking ∆ = 1
40

√
|A|−1

T , we know that max{Eν,π̃[Reg(T )],Eνa0 ,π̃[Reg(T )]} ≥ 1
2 (Eν,π̃[Reg(T )] + Eνa0 ,π̃[Reg(T )]) ≥

c
√
|A|T for some absolute constant c > 0, which yields the claim.

In the above proof, it is easy to see that ν(Z) and νa0(Z) are ε−close, where ε = c ·
√
|A|/T for some absolute constant c.

So for any algorithm input by ν̃(Z) = ν(Z) when interacting with ν̄ ∈ {ν, νa0 , a0 ̸= 1}, it is satisfied that ν̃(Z) and ν̄(Z)
are always ε−close, but the algorithm incurs Ω(

√
|A|T ) regret in some instance from {ν, νa0 , a0 ̸= 1}.
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E. Instances where PE incurs linear regret
In this section we give an example for PE to illustrate that to merely force linear regret on a causal bandit algorithm, we
need to construct non-benign instances carefully and re-code the algorithm to ensure its erratic behavior in those instances.
In particular, we construct a non-benign environment ν for every ∆ ∈ (0, 1) such that ∆min(ν) = ∆ while the re-coded PE
never plays the optimal arm.

Proposition E.1. Suppose we modify Algorithm 2 such that, in each phase, we always choose an exact-optimal design
whenever feasible. For any A,Z and T with |A| > |Z| ≥ 3 and ∆ ∈ (0, 1), there exists a non-benign environment ν such
that ∆min(ν) = ∆, while Algorithm 2 will never play the optimal arm, hence incurring linear regret,

Reg(t) ≥ ∆min(ν) · t = ∆ · t, ∀t ∈ [T ].

Proof of Proposition E.1. For any A and Z with |A| > |Z| ≥ 3, suppose we index the contexts in arbitrary way such that
Z =

{
z1, ..., z|Z|

}
, and we pick (|Z|+1) number of arms fromA and denote them by a∗, a1, ..., a|Z|. Construct marginals

νa as follows:
νai

(Z) = δ{zi} =: ei, i ∈ [|Z|],

νa∗(Z) =
1

2
(δ{z1} + δ{z2}) =

1

2
(e1 + e2),

where we write marginal distributions over Z as vectors in R|Z| according to context indices. Then define conditional
distributions Pνa

(Y |Z):

Pνai
[Y |Z = zi] =

{
δ{0} i ∈ [|Z| − 1]

δ{1−∆} i = |Z|

and
Pνa∗ [Y |Z = z1] = Pνa∗ [Y |Z = z2] = δ{1}.

In other words, playing arm ai yields context zi and deterministic reward, while we could observe z1 or z2 with equal
probability and always get the optimal reward by playing arm a∗. So the only optimal arm for ν is a∗ with ∆min(ν) = ∆.
We can treat all other a ∈ A as dummy actions by identifying each of them with one of a∗, ai, i ∈ [|Z|] arbitrarily.

Next we will verify the following facts. (1) When no action is eliminated and Aℓ = A, any exact G-optimal design
πℓ ∈ P(Aℓ) does not have positive mass over a∗. (2) Whenever any action is eliminated in the end of phase ℓ, it must be
that all actions except for a|Z| are eliminated as well. Then PE would just play a|Z| till the end. Combining these two facts
we can conclude that PE never picks a∗ during the interaction with ν.

No G-optimal design is supported on a∗. Recall that any G-optimal design πℓ maximizes f(π) = log detV (π), where
V (π) =

∑
a∈Aℓ

π(a)νaν
⊤
a over π ∈ P(Aℓ) (Lattimore & Szepesvári, 2020, Theorem 21.1). When Aℓ = A, detV (π) can

be computed as

detV (π) =

(
π(a1)π(a2) +

π(a∗)

4
(π(a1) + π(a2))

)
π(a3) · · ·π(a|Z|).

Then we can find that any maximizing π should have π(a∗) = 0 after realizing that π(a1) = π(a2) for such π. Moreover,
there is only one G-optimal design in this case, which is πℓ = Unif(a1, ..., a|Z|).

All actions other than a|Z| would be eliminated at the same time. If the first elimination happens in the end of
phase ℓ, then we must have µ̂Z

ℓ = (0, ..., 0, 1 −∆)⊤ due to that πℓ = Unif(a1, ..., a|Z|) and rewards are deterministic.
So maxb∈Aℓ

⟨µ̂Z
ℓ , νb − νa⟩ is 1 − ∆ for all a ̸= a|Z| and 0 for a = a|Z|. Then the elimination must happen within

a∗, a1, ..., a|Z|−1, and thus every one of it should be eliminated simultaneously.
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